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Framelet based blind motion deblurring from a
single image

Jian-Feng Cai, Hui Ji, Chaoqiang Liu and Zuowei Shen

Abstract—How to recover a clear image from a single motion-
blurred image has long been a challenging open problem in
digital imaging. In this paper, we focus on how to recover a
motion-blurred image due to camera shake. A regularization-
based approach is proposed to remove motion blurring from
the image by regularizing the sparsity of both the original
image and the motion-blur kernel under tight wavelet frame
systems. Furthermore, an adapted version of the split Bregman
method ( [1], [2]) is proposed to efficiently solve the the resulting
minimization problem. The experiments on both synthesized
images and real images show that our algorithm can effectively
remove complex motion blurring from natural images without
requiring any prior information of the motion-blur kernel.

Index Terms—tight frame, split Bregman method, motion blur,
blind deconvolution

EDICS Category— TEC-MRS, TEC-RST

I. INTRODUCTION

Motion blurring is one of the prime causes of poor image
quality in digital imaging. When an image is captured by a
digital camera, the image represents not just the scene at a
single instant of time, but the scene over a period of time. If
objects in a scene are moving fast or the camera is moving
over the period of exposure time, the objects or the whole
scene will look blurry along the direction of relative motion
between the object/scene and the camera. Camera shake is one
main cause of motion blurring, especially when taking images
using telephoto lens or using long shutter speed under low
lighting condition.

In the past, many researchers have been working on motion
deblurring which recovers clear images from motion-blurred
images. In most works, the motion blur caused by camera
shake is modeled by a spatial-invariant convolution process:

f = g ∗ p+ η, (1)

where “∗” is the discrete convolution operator, g is the original
image to recover, f is the observed blurry image, p is the
blur kernel (or point spread function), and η is the noise.
How to recover the original image g from the observed
image f is the so-called image deconvolution problem. Based
on the availability of p, there are two categories of image
deconvolution problems. If the blur kernel p is given as
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Fig. 1. (a): a motion-blurred image of size 1280× 1024; (b) the image of
blur kernel of (a) with image size 64× 64. Both images are from [8].

a prior, recovering the original image becomes a non-blind
deconvolution problem. Non-blind deconvolution is known as
an ill-conditioned inverse problem as a small perturbation of f
may cause the direct solution from (1) being heavily distorted.
In the past, there have been extensive research literatures on
robust non-blind deconvolution algorithm (e.g. [1], [3]–[7]). If
the blur kernel p is also unknown, how to reverse the effect
of convolution by p on the blurred image f is then a blind
deconvolution problem. In general, blind deconvolution is a
very challenging ill-conditioned and ill-posed inverse problem
because it is not only sensitive to image noise but also under-
constrained with infinitely many solutions. Removing motion
blurring from images is a typical blind deconvolution problem,
as the relative motion between the camera and the scene varies
for individual images.

Certain priors on both the blur kernel p and the original
image g have to be assumed to overcome the ill-posedness of
motion deblurring. The motion-blur kernel is quite different
from some other types of blur kernels, e.g., out-of-focus blur
kernel and Gaussian optical blur kernel, as motion-blur kernel
can not be represented by some simple parametric form. In this
paper, we assume that only significant motion of the camera
is a translation along image plane and that the scene being
photographed is static. Let f denote the true sharp image
and let g denote the observed blurry image due to camera
shake. Then, the relationship between f and g is a convolution
process (1) with the blur kernel p that vanishes out of the
camera motion trajectory during exposure time. See Fig. 1 (b)
for the illustration of a real motion-blur kernel p. Briefly,
the motion-blur kernel p is approximately a smooth function
with its support on a continuous curve in the image plane.
From this perspective, motion deblurring is a challenging
blind deconvolution problem as the motion-blur kernels can
not be characterized easily by some parametric functional.
As a result, it requires a significant number of unknowns to
represent motion-blur kernels.
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A. Previous work on blind deconvolution

In the past, there have been extensive research works
on single-image blind deconvolution. Early works on blind
deblurring usually use a single image and assume a prior
parametric form of the blur kernel p, such as linear motion
blur kernel model (e.g. [9]). These parametric motion-blur
kernel models can be obtained by estimating only a few
parameters, but they are often overly simplified for practical
motion blurring. To remove more general motion blurring
from images, some probabilistic priors on natural images’
edge distributions have been proposed to derive the blur
kernel (e.g., [10]–[13]). One weakness of these methods is
either that the assumed probabilistic priors do not always
hold true for natural images or that it needs certain user
interactions to obtain an accurate estimation. It is noted that
there also have been active researches on multi-image based
blind motion deblurring methods as multiple images provide
more information of the scene and could lead to an easier
configuration for accurately estimating blur kernels. Interested
readers are referred to [8], [14]–[19] for more details.

An alternative approach is to formulate the blind decon-
volution as a joint minimization problem to simultaneously
estimate both the blur kernel and the clear image. To overcome
the inherent ambiguities between the blur kernel p and the
clear image g, certain regularization terms on both p and g
have to be added in the minimization, which results in the
following minimization formulation:

E(p, q) = min
p,g

Φ(g ∗ p− f) + λ1Θ1(g) + λ2Θ2(p), (2)

where Φ(p ∗ g − f) is the fidelity term, Θ1(g) and Θ2(p)
are the regularization terms on the clear image and on the
blur kernel respectively. Early regularization-based methods
assume the smooth constraints on images and kernels. One
such regularization (e.g. [20]) is to use the square `2 norm
of image/kernel derivatives as the regularization term on the
image/kernel, which is also the so-called Tikhonov regulariza-
tion method. The variational approach is proposed in [21])
which also assumes the smooth prior of both images and
kernels by considering Gaussian distribution priors. Moreover,
the parameters involved in the regularization are also automat-
ically inferred in [21] by using the conjugate hyperpriors on
parameters.

In recent years, TV (Total Variation) and its variations have
been popular choices of the regularization term in recent years
to solve various blind deblurring problems (e.g., [5], [22]–
[26]). These TV-based blind deconvolution techniques showed
good performance on removing certain types of blurrings on
specific types of images, such as out-of-focus blurring on med-
ical images and satellite images. However, TV regularization is
not the optimal choice for removing motion-blurring, because
TV regularization penalizes, e.g., the total length of the edges
for piecewise constant functions (see [5]). As a result, the
support of the resulting blur kernel tends to be a disk or several
isolated disks. A more sophisticated TV-norm related model is
presented in [27] with good performances on removing modest
motion blurring from images without rich textures. Also, it is
dependent on the accurate input of some prior information of

the blur kernel. The main limitation of TV-based regularization
for nature images is TV-based regularizations do not preserve
the details and textures very well on the regions of complex
structures due to the stair-casing effects (see e.g. [28], [29]).

Another type of regularization techniques for blind decon-
volution is using various sparsity-based priors to regularize
images, kernels or both of them. Considering a smooth blur
kernel, a quasi maximum-likelyhood approach is proposed in
[30] for de-convolute both sparse images and nature images
which are sparsified in [30] through a sparsifying kernel
learned from training data. Based on a Bayesian approach, a
sparsity-based prior on kernel is proposed in [31] that assumes
the kernel can be represented by a weighted combination of
Gaussian-type basis functions with weights satisfying a heavy
tailed student’s-t distribution. The regularization on images is
also based on the assumption that the image differences satisfy
a heavy tailed student’s-t distribution.

B. Our approach and most related works

In this paper, we propose a new optimization approach
to remove complex motion blurring from a single image
by introducing new sparsity-based regularization terms on
both images and motion-blur kernels. Our approach is closely
related to recent works on both non–blind image deconvolution
( [1], [32]) and blind motion deblurring ( [33]).

Two non-blind image deconvolution algorithms in [1],
[32] are both based on the observation that images usually
have sparse representations or sparse approximations in some
redundant transformed domains, e.g., wavelet ( [34]) and
framelet ( [35], [36]) transforms. Given the blur kernel p,
(1) is solved in [1], [32] by seeking a sparse solution in
the corresponding transformed domain. The main difference
between two methods lies in the different approaches to
enforce the sparsity prior: one is using the so-called synthesis-
based sparsity prior ( [32]) and the other is using the so-
called analysis-based sparsity prior ( [1]). Here we give a brief
explanation of two sparsity priors in terms of deconvolution.
Interested readers are referred to [1], [37] for more detailed
discussions.

For simplicity, we denote images as vectors in Rn by
concatenating their columns. Let D ∈ Rm×n be an analy-
sis operator which decomposes the data g ∈ Rn to some
transform coefficients Dg ∈ Rm. Let R ∈ Rm×n be an
synthesis operator which synthesizes the data g ∈ Rn from
some transform coefficients u ∈ Rm. If R is the left inverse
of D, RD = I , we have the perfect reconstruction formula

g = Ru = R(Dg).

Then, the approach using the synthesis-based sparsity prior
gives the solution ḡ as following:

ḡ := Rū; ū := argminu∈Rm Φ(p ∗ g − f) + λ‖u‖1, (3)

where Φ is the fidelity term, λ is the regularization parameter
and p is the blur kernel. The approach using the analysis-based
sparsity prior yields the following solution:

ḡ := argming∈Rn Φ(p ∗ g − f) + λ‖Dg‖1. (4)
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or equivalently,

ḡ := Rū; ū := argminu∈range(D) Φ(p∗g−f)+λ‖u‖1 (5)

as RD = I . Two minimizations (3) and (5) are equivalent
only if range(D) = Rm, i.e., D (or R) is an invertible
square matrix with m = n. When the analysis operator D
is a redundant transform (e.g., tight frame transform) whose
row dimension m is larger than its column dimension n, the
two minimizations gives different solutions. As the domain
of unknowns in (5) is only a strict subset of the domain of
unknowns in (3), the synthesis-based approach (3) is seeking
for the most sparse solution among all transform coefficient
vectors while the analysis sparsity based minimization (5)
(or (4)) is seeking for the most sparse solution only among
the canonical framelet coefficient vector (transform coefficient
vector decomposed from some images). Since the weighted
norm of canonical framelet coefficients are closely related to
the smoothness of the underlying function ( [38]), the result
from the analysis-based approach (5) will give a less sparse but
smoother solution than that of the synthesis-based approach
(3). It is observed in extensive experiments that the deblurred
result (5) with certain smoothness tends to have better visual
quality than that from (3) which often has visible artifacts
along image edges.

In [33], the sparsity prior under redundant tight frame
system is used to remove motion blurring from natural images
for the first time. In [33], the sparsity prior of images under
framelet ( [35], [36]) domain and the sparsity prior of motion-
blur kernels under curvelet ( [39]) domain are used to regular-
ize both images and kernels. Both sparsity priors are enforced
by the synthesis-based approach. Although impressive results
have been demonstrated in [33], there are still rooms for
further improvements, especially on reducing the artifacts of
the estimated original images and better estimation of more
complex motion-blur kernels. Motivated by the benefits gained
in the application of non-blind deconvolution by using the
analysis-based sparsity prior ( [1]), we also adopt the analysis
based sparsity prior of images under suitable tight frame
system to regularize images.

Regarding motion-blur kernel, we take a different approach
from [33] to regularize it. Based on the assumption that the
motion-blur kernel can be approximated by a smooth function
with the support close to a continuous “thin” curve, we propose
a mixed regularization strategy for blur kernel which includes
both analysis based sparsity prior and `2 norm regularization
of blur kernels under a certain tight frame system. In our
implementation, framelet system ( [35], [36]) is chosen to
represent both original images and motion-blur kernels for its
implementation simplicity and computational efficiency. Also,
the minimization (5) is a more challenging problem to solve
than (3). The linearized Bregman iteration ( [25], [26]) used
in [33] for solving (3) is not applicable to (5). Thus, in this
paper, we introduce another efficient solver for (5), i.e., the
split Bregman method (See [1], [2]).

The rest of the paper is organized as follows. In Section 2,
we formulate the minimization model and the corresponding
algorithms. Section 3 is devoted to the experimental evaluation
and the discussion on future work.

II. FORMULATIONS AND ALGORITHMS

It is known that non-blind deconvolution is an ill-
conditioned problem as it is sensitive to noise, that is, a small
perturbation of f may lead to a large distortion on the direct
solution of (1). Extensive studies have been done along the
line of developing algorithms robust to noise. Imposing some
regularization terms is proven to be an effective approach.
However, blind deblurring is a much more challenging prob-
lem as it is also an under-constrained problem. Mathematically,
there exists infinitely many solutions to (1).

There is one type of degenerate solutions (g̃, p̃) of (1) which
bothers many existing blind deconvolution methods:

g̃ = g ∗ h; p̃ = p ∗ h−1, (6)

where h is some low-pass/high-pass filter. In such a case, the
de-blurred image will be either over-deblurred when h being
a high-pass filter or less-deblurred when h being a low-pass
filter. The extreme case of less-deblurring is

g̃ := f ; p̃ := δ, (7)

where the image is not deblurred at all. To overcome such ill-
posedness of blind deconvolution, certain priors on both im-
ages and kernels should be enforced by adding corresponding
regularization terms in the minimization. And one main role
of these regularization terms is to guarantee that the solution
generated by the algorithm does not fall into the degenerate
case.

In the remaining of this section, we will introduce a new
approach to solve (1) with analysis-based sparsity priors on
both images and kernels under some suitable tight frame
systems. In our approach, we choose framelet system ( [35],
[36]) as the frame system to represent both original images
and blur kernels. Before presenting our formulation on blind
motion deblurring, we first give a brief introduction to framelet
system and interested readers are referred to [6], [40], [41] for
more implementation details.

A. Wavelet tight frame and image representation

The wavelet tight frames used here are mainly in two vari-
able setting, however, for simplicity, we only present wavelet
tight frames in the univariate setting, since we use tensor
product wavelet frames in the implementation. A countable
subset of X ⊂ L2(R) is called a tight frame of L2(R) if

f =
∑
x∈X
〈f, x〉x, ∀ f ∈ L2(R). (8)

This is equivalent to

‖f‖2 =
∑
x∈X
|〈f, x〉|2, ∀ f ∈ L2(R),

where 〈f, g〉 and ‖f‖ denote the inner product and the norm
of L2(R) for any two functions f, g ∈ L2(R) respectively.
Tight frame, as a generalization to orthonormal basis, relaxes
the requirement of X being a basis of L2(R) and brings in
redundancy that has been proved useful in many applications
in signal and image processing (see e.g. [34], [41]). Since tight
frame is redundant, there are an infinite number of possible
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expansions of f in the system X . The particular expansion
given in (8) is called the canonical expansion, and {〈f, g〉} is
the canonical frame coefficient sequence.

A wavelet system X(Ψ) is defined to be a collection of
dilations and shifts of a finite set Ψ = {ψ1, . . . , ψr} ⊂ L2(R),

X(Ψ) := {ψj,k := 2j/2ψ(2jx− k), j ∈ Z, k ∈ Z, ψ ∈ Ψ}.

When X(Ψ) forms a tight frame, it is called a wavelet tight
frame and each ψ ∈ Ψ is called a framelet. To construct
compactly supported wavelet tight frames, one usually starts
from a compactly supported refinable function φ (called a
scaling function) with a refinement mask h0 satisfying

φ̂(2ω) = h0φ̂(ω),

where φ̂ is the Fourier transform ( [34]) of φ, and h0 is a 2π-
periodic trigonometric polynomial with h0(0) = 1. For a given
compactly supported refinable function φ, the construction of
a wavelet tight frame is to find an appropriate set of framelets
Ψ = {ψ1, . . . , ψr} defined in the Fourier domain by

ψ̂i(2ω) = hiφ̂(ω), i = 1, 2, . . . , r,

where the framelet masks hi’s are 2π-periodic trigonometric
polynomials. The Unitary Extension Principle (UEP) of [35]
says that X(Ψ) forms a tight frame provided that

h0(ω)h0(ω + γπ) +

r∑
i=1

hi(ω)hi(ω + γπ) = δγ,0, γ = 0, 1.

As an application of UEP, a family of wavelet tight frame
systems is derived in [35] by using uniform B-splines ( [42])
as the refinable function φ. The simplest system in this family
is piecewise linear B-spline tight frame which uses piecewise
linear B-spline function as φ. This φ has the refinement mask
h0 = cos2(ω2 ), and the corresponding low-pass filter is

h0 =
1

4
[1, 2, 1],

Two framelets ψ1, ψ2 are defined by the framelet masks h1 =

−
√
2i
2 sin(ω) and h2 = sin2(ω2 ), whose corresponding high-

pass filters are

h1 =

√
2

4
[−1, 0, 1], h2 =

1

4
[−1, 2,−1]. (9)

Numerical computation of the wavelet frame transform is
done by using the wavelet frame decomposition algorithm
given in [36]. In fact, we use the decomposition algorithm
without down-sampling. This can be easily implemented by
using the refinement and framelet masks. The transform can
be represented by a matrix W whose construction depends on
the boundary conditions. In this paper, we use the Neumann
(symmetric) boundary condition. Since [6], [40] have given
details of how to generate such matrices, we omit the detailed
discussions here and the interested reader should consult [6],
[40] for details.

With the matrix W , it is easy to describe the transformation
process. Let g be a vector of the image after column concate-
nation, the frame coefficient vector u can be computed via

u = Wg.

Once we have W , the inverse transform, i.e. the reconstruction
algorithm, is WT , i.e.

g = WTu.

It is very important to note that W can be constructed from
the refinement and framelet masks such that WTW = I .
The rows of the matrix W form a tight frame in a finite
dimensional space which connects well to the wavelet frame
system in function spaces (see e.g. [36] for details). In general,
since there are more rows than columns in W , WWT 6= I .
When WWT = I , then the rows of W form an orthonormal
basis. Finally we remark that in practical computation, we are
working in the bivariate setting. We employ the tensor product
of 1D wavelet tight frame, and the corresponding matrix W
can be constructed easily via the Kronecker product of the
matrix constructed by univariate wavelet frame transform (see
[6] for details). In the rest of this paper, we still use W to
denote the discrete transform generated by bivariate wavelet
tight frame. We further note that W is basically used for
notational convenience. In the real computation, we do not use
matrix multiplication. Instead, we use a wavelet decomposition
and reconstruction algorithm directly modified from [36].

B. Formulation of our minimization model

Given a blurred image f satisfying the relationship (1):

f = p ∗ g + η.

we take a regularization-based approach to solve the blind
motion deblurring problem, which requires the simultaneous
estimations of both the original image g and the blur kernels
p. It is well known that the regularization-based blind de-
convolution approach usually results in solving a challenging
non-convex minimization problem. The most commonly used
approach is an alternative iteration scheme; see [22] for
instance. Let p(0) be the initial guess on the blur kernel, the
alternative iteration scheme is described in Algorithm 1.

Algorithm 1 Outline of the alternative iterations

For k = 0, 1, . . .,
1) given the blur kernels p(k), compute the clear image

g(k+1):

g(k+1) := argming
1

2
‖p(k) ∗ g − f‖22 + λ1Θ1(g), (10)

where Θ1(·) is the regularization term on images and λ1
is the corresponding regularization parameter.

2) given the clear image g(k+1), compute the blur kernels
p(k+1);

p(k+1) := argminp
1

2
‖g(k+1) ∗ p− f‖22 +λ2Θ2(p), (11)

where Θ2(·) is regularization term on kernels and λ2 is
the corresponding regularization parameter.

There are two steps in Algorithm 1 and both steps are about
using regularization-based approach for non-blind deconvolu-
tion. Step 1 is a non-blind image deblurring problem, which
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has been studied extensively in the literature; see, for instances,
[3]–[7], [32]. However, there are subtle differences between
Step 1 and the classic non-blind deconvolution problems,
that is, the intermediate estimated blur kernel p(k+1) used
for deblurring in Step 1 is not perfect and it is far way
from the truth during the initial iterations. Inspired by the
strong noise robustness of the recent non-blind deblurring
technique ( [1]), we also use the analysis sparsity prior on
the original image g under framelet system to regularize the
non-blind image deblurring to alleviate the distortion caused
by erroneous intermediate estimate of the blur kernel. Thus,
we propose the following regularization term in (10) of Step 1:

Θ1(g) = ‖Wg‖1, (12)

where g is the vectorized form of image g and W is the
framelet transform given in last section.

Step 2 is also a non-blind deconvolution problem but the
data to recover is the motion-blur kernel p. Motion-blur kernel
can also be viewed as an image but with unique image content.
See Fig. 1 for one sample motion-blur kernel visualized as an
image. It is observed that there are two essential constraints
of a function being a “sound” motion-blur kernel. One is its
curvy support which implies its sparsity in spatial domain;
the other is the continuity of its support and the smoothness
of the kernel along its support. We propose to translate these
two constraints to the following regularization term in (11) of
Step 2:

Θ2(p) = ‖Wp‖1 +
τ

2
‖p‖22, (13)

where p is the vectorized form of kernel p, W is the same
framelet transform as that in (12) and τ is the parameter which
balances the sparsity of the blur kernel and the continuity of
the support of the blur kernel.

The motivation of the proposed regularization term (13)
on motion blur kernels is explained as follows. There are
two components in the regularization term (13): one is the
analysis based sparsity regularization under framelet domain
‖Wp‖1 and the other is the `2 norm regularization ‖p‖22.
The regularization term ‖Wp‖1 penalizes the number of large
framelet coefficients, which could be viewed as penalizing the
number of pixels with large discontinuities. Thus, the resulting
minimizer p tends to be a function with the area of the
support being small. However, by only using the analysis based
sparsity regularization, the support of the resulting kernel is
biased to sparse isolated points, especially when there are
large oscillations on the speed of camera motion. The second
regularization term ‖p‖22 in (13) comes to correct such a bias
by also regularizing the kernel p with `2 norm ‖ · ‖22, as the
resulting minimizer tends to favor the blur kernels of larger
connected support. By balancing the sparsity prior ‖Wp‖1
and the support continuity prior ‖p‖22 using parameter τ , the
proposed regularization term (13) will yield a sound motion-
blur kernel.

In general, the minimization problem resulting from the
regularization-based formulation for blind deconvolution is not
a convex problem due to the non-convexity of the fidelity term
Φ(g ∗p−f) (Φ(·) = ‖ ·‖22 in our approach). Thus, the method
may converge to a local minimum instead of the global one,

depending on how it is initialized. As a result, many existing
blind deconvolution algorithms require some accurate physical
measurement of the blur kernel, e.g., the kernel size ( [10]).
Algorithm 1 can not guarantee the convergence to the global
minimum either. However, in the experiments, it has been
consistently converging to the result of high visual quality
without requiring knowing the kernel size. In the remaining of
this section, we give a heuristic argument on why Algorithm 1
with proposed regularization terms (12)–(13) is very likely
to converge to a sound solution, instead of some degenerate
solution (6).

The two regularization terms (12) and (13) play important
roles on avoiding the convergence to the degenerate solution
(6). For the case of over-deblurring where h is a high-pass
filter, the de-blured image g̃ = g ∗ h is a wrongly sharpened
version of natural image by high-pass filtering, which will
significantly increase the high-frequency content of the image.
Thus, g̃ will have much more large framelet coefficients than
g does, or equivalently ‖Wg̃‖1 is much larger than ‖Wg‖1.
On the other hand, the resulting blur kernel p̃ = p ∗ h−1 is a
smoothed version of p by low-pass filtering. Notice that the
blur kernel p itself is a smooth kernel with very few high-
frequency components, compared to nature images. Thus, the
number of large framelet coefficients of p̃ is nearly the same
as that of p, which implies that ‖Wp̃‖1 is still very close
to ‖Wp‖1. With an appropriate parameter τ , the overall cost
(2) for the over-deblurred solution (g̃, p̃) will be larger than
that of the true solution. For the case of less-deblurring where
h is a low-pass filter, the deblurred image g̃ = g ∗ h is a
still a smoothed version of g but with less blurring effect. In
such a case, the resulted blur kernel p̃ is usually a blur kernel
with a smaller support than the truth. Although we can see
a small decrease on the costs of both ‖Wg̃‖1, both ‖Wp̃‖1
and the penalty term ‖p̃‖22 in (13) will see an increase of their
values. By assigning an appropriate value to the parameter
τ , the overall cost for such (g̃, p̃) will still be larger than
that of the true solution. In summary, the balance between
the sparsity-based regularization ‖Wg‖1 on the image g, the
sparsity-based regularization ‖Wp‖1 and the `2 norm-based
regularization ‖p‖22 on the kernel p is likely to avoid those
degenerated solutions and generate a sound solution of high
visual quality.

C. Numerical algorithms

This section is devoted to the detailed numerical algorithm
of our blind motion deblurring algorithm outlined in Algorithm
1. Both steps in Algorithm 1 are solving the same type of large
scale minimization problems. The difficulties lie in the non-
separable `1 norm terms ‖Wg‖1 and ‖Wp‖1. One efficient
solver for minimizations involving such terms is the split Breg-
man iteration [1], [2], which will be used in our solver. The
split Bregman iteration is based on the Bregman iteration. The
Bregman iteration was first introduced for non-differentiable
TV-energy in [43] and then was successfully applied to wavelet
based denoising in [44]. The Bregman iteration was also used
in TV-based blind deconvolution in [25], [26]. To further
improve the performance of the Bregman iteration, a linearized
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Bregman iteration was invented in [45]. More details and
an improvement called “kicking” of the linearized Bregman
iteration is described in [46], and a rigorous theory was given
in [47]. The linearized Bregman iteration for frame-based
image deblurring was proposed in [32]. Recently, a new type
of iteration based on Bregman distance, called split Bregman
iteration, was introduced in [2] which extended the utility of
Bregman iteration and linearized Bregman iteration to more
general `1 norm minimization problems. The split Bregman
iteration for frame-based image deblurring was first proposed
in [1]. The basic idea of split Bregman iteration is to convert
the unconstrained minimization problem (10) and (12) ((11)
and (13) respectively) into a constrained one by introducing
an auxiliary variable d1 = Wg (d2 = Wp respectively) and
then invoke the Bregman iteration to solve the constrained
minimization problem. Numerical simulations in [1], [2] show
that it converges fast and only uses a small memory footprint
which make it very attractive for large-scale problems.

Let f ,g ∈ Rn denote the given blurred image f and the
original image g after column concatenation. We assume that
the size of the blur kernel is not larger than that of the images,
and let p ∈ Rn denote its vectorized version. Let [·]∗ denote
the matrix form of the convolution operator after concatenating
operations as follows,

p ∗ f ⇐⇒ [p]∗g = [g]∗p.

In Step 1, we need to solve the following `1-norm based
minimization:

min
g

1

2
‖[p(k)]∗g − f‖22 + λ1‖Wg‖1. (14)

By letting d1 = Wg, the minimization (14) is equivalent to

min
g,d1

1

2
‖[p(k)]∗g − f‖22 + λ1‖d1‖1 s.t. d1 = Wg. (15)

Then, the problem (15) is further transferred into a non-
constrained minimization

min
g,d1

1

2
‖[p(k)]∗g− f‖22 +λ1‖d1‖1 +

λ1µ

2
‖(Wg−d1)+b1‖22,

(16)
where µ is a constant number. This is the so-called split Breg-
man iteration. The iterative numerical algorithm for solving
(16) (14) is described as following:

g(`+1,k) := argming
1
2‖[p

(k)]∗g − f‖22
+λ1µ

2 ‖Wg − d
(`,k)
1 + b

(`,k)
1 ‖22,

d
(`+1,k)
1 := T1/µ(Wg(`+1,k) + b

(`,k)
1 ),

b
(`+1,k)
1 := b

(`,k)
1 + (Wg(`+1,k) − d

(`+1,k)
1 ),

(17)

Interesting readers are referred to [1] for more detailed deriva-
tion of (17). The following theorem, which follows directly
from [1, Theorem 3.2], says that iteration (17) is the right one
to use.

Theorem 1: The iteration (17) satisfies the following prop-
erty:

lim`→+∞
1
2‖[p

(k)]∗g
(`,k) − f‖22 + λ1‖Wg(`,k)‖1

= 1
2‖[p

(k)]∗g
(∗,k) − f‖22 + λ1‖Wg(∗,k)‖1,

where g(∗,k) is a minimizer of (14). Furthermore, assume that
(14) has a unique minimizer, then iteration (17) converges, i.e.,

lim
`→+∞

‖g(`,k) − g(∗,k)‖2 = 0.

Proof: To apply [1, Theorem 3.2], we need to prove that
there exists a minimizer satisfying (14). The existence of such
a minimizer follows immediately from the definition of the
cost functional.

In Step 2 of Algorithm 2, we need to solve the minimization
problem similar to (14):

1

2
‖[g(k+1)]∗p− f‖22 + λ2(‖Wp‖1 +

τ

2
‖p‖22). (18)

The split Bregman iteration can also be used to solve the
above minimization efficiently with some modifications. The
sequences of v(`,k),d

(`,k)
2 ,b

(`,k)
2 is generated as following:

p(`+1,k) := argminp
1
2‖[g

(k+1)]∗p− f‖22 + λ2τ
2 ‖p‖

2
2

+λ2µ
2 ‖Wp− d

(`,k)
2 + b

(`,k)
2 ‖22,

d
(`+1,k)
2 := T1/µ(Wp(`+1,k) + b

(`,k)
2 ),

b
(`+1,k)
2 := b

(`,k)
2 + (Wp(`+1,k) − d(`+1,k)),

(19)
where µ > 0 is some parameter of the iteration, Tθ is the
soft-thresholding operator. The first step of each iteration in
(19) is done by solving the following positive definite linear
system:

([g(k+1)]T∗ [g(k+1)]∗ + λ2(µ+ τ)I)v
= [g(k+1)]T∗ f + λ2µW

T (d(`,k) − b(`,k)).

We have the same convergence result for (19) as that of (17).
In Step 1 (respectively Step 2), to get an exact solution of

(14) (respectively (18)), we need to choose g(k+1) = g(+∞,k)

(respectively p(k+1) = p(+∞,k)) as stated in Theorem 1. How-
ever, it is too conservative to use infinite steps of iterations.
The reason is that the image g(k) or the kernel p(k) might not
be accurate enough, and accuracy obtained by the infinite loop
will be wasted. This is typical in split Bregman iterations; see
[1], [2]. Therefore, for computational efficiency, we only need
to perform one iteration in (17) and (19), i.e., we choose set
g(k+1) = g(1,k) and p(k+1) = p(1,k).

Moreover, in practice, the iterates g(k) and p(k) may not
always be a physically sound solution. Thus, we chose to
impose the following physical conditions:

p ≥ 0,
∑
j

p(j) = 1; and 0 ≤ g ≤ 1. (20)

which says that the blur kernel is non-negative and is normal-
ized, and the range of the original image is between [0, 1]. In
each step, we project g(k) and p(k) such that they satisfies the
physical conditions in (20). Taking all above into account, we
get the complete iteration that will be used in our algorithm
for blind motion-deblurring; see Algorithm 2 for a detailed
description.

III. EXPERIMENTS AND CONCLUSIONS

In our implementation, the maximum iteration number of
Algorithm 2 is set to 100. For blurred color images of size
866 × 1280, each iteration in Algorithm 2 (implemented in
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Algorithm 2 Numerical algorithm for blind motion deblurring

(1) Set k := 0, p(0) := δ,d1 = b1 := 0 and d2 = b2 := 0,
where δ is the Delta function;
(2) DO

g(k+ 1
2 ) := argming

1
2‖[p

(k)]∗g − f‖22
+λ1µ1

2 ‖Wg − d
(k)
1 + b

(k)
1 ‖22,

g(k+1)(j) :=


1, if g(k+ 1

2 )(j) > 1;

0, if g(k+ 1
2 )(j) < 0;

g(k+ 1
2 )(j), otherwise,

j = 1, 2, . . . , N,

d
(k+1)
1 := T1/µ1

(Wg(k+1) + b
(k)
1 ),

b
(k+1)
1 := b

(k)
1 + (Wg(k+1) − d

(k+1)
1 ),

p(k+ 1
2 ) := argminp

1
2‖[g

(k+1)]∗p− f‖22 + λ2τ
2 ‖p‖

2
2

+λ2µ2

2 ‖Wp− d
(k)
2 + b

(k)
2 ‖22,

p̃(k+1)(j) := max(p(k+ 1
2 )(j), 0), j = 1, 2, . . . , N,

p(k+1) := p̃(k+1)

‖p̃(k+1)‖1
,

d
(k+1)
2 := T1/µ2

(Wp(k+1) + b
(k)
2 ),

b
(k+1)
2 := b

(k)
2 + (Wp(k+1) − d

(k+1)
2 ),

k := k + 1,
(21)

UNTIL (k ≥ K or ‖p(k) − p(k−1)‖22 ≤ ε)

(a) One clear image (b) the blurred image (c) the blur kernel

Fig. 2. (a): an clear image; (b): the blurred image (c): the corresponding
blur kernel.

Matlab 7.8) takes roughly 10 seconds on a windows PC with
4GB memory and one single Intel Core 2 CPU of 2 GHz
Frequency. In Section III. B, when running Algorithm 2 on
real image data, maximum iteration number K = 200 and
the stopping threshold ε = 10−5. The parameters used inside
Algorithm 2 are set as the following:


λ2 = 10−1λ1(

∑
i,j f(i, j));

µ1 = 2 · 103;
µ2 = 10−1µ1;
τ = 10−1µ2.

In these parameters, µ1 and µ2 are only related to the conver-
gence rate of the Bregman iteration. Setting different values of
µ1 and µ2 does not change the outcome of Algorithm 2. The
parameter λ1 depends on the complexity of the image constant.
The image with simple structure will prefer a smaller λ1. It
is noted that Algorithm 2 is rather insensitive to the value of
λ1. In our experiments, we tried Algorithm 2 on image data
using three candidate values of λ1: {10−4, 10−3, 10−2} and
set λ1 = 10−3 uniformly for all experiments.

(a) k = 0 (b) k = 10 (c) k = 20 (d) k = 40

(e) k = 80 (f) k = 160 (g) k = 320 (h) k = 640

Fig. 3. (a)–(h) are the results on deblurring the blurred image shown in Fig. 2
(b) in k-th iteration of Algorithm 2, for k = 0, 10, 20, 40, 80, 160, 320, 640
respectively. Estimated blur kernels are shown in the first row; intermediate
deblurred images in the second row; and one region after zooming in in the
third row.

A. Simulated images

In the first part of the experiments, we synthesized one
sample motion-blurred image of size 866× 1280 to illustrate
the convergence behavior of Algorithm 2. The motion blur-
kernel is simulated by letting the camera move in a constant
speed along an ”S” curve in the image plane. The sample
original image is shown in Fig. 2 (a) and the synthesized
blurred image are shown in Fig. 2 (b) with the corresponding
blur kernels shown in Fig. 2 (c). The intermediate results
obtained during the iterations of Algorithm 2 are shown
in Fig. 3. The estimated motion-blur kernels are shown in
the first row, the intermediate recovered images are shown
in the second row, and the same region of the recovered
images are shown in the third row after zooming in for better
visual inspection. It is clear that Algorithm 2 is empirically
convergent to the ground truth of the original image and
blur kernel. And the convergence rate is fairly fast as it only
took 160 iterations to obtain a satisfactory result. With more
iterations, it is seen from Fig. 3 (h) that Algorithm 2 estimated
the motion-blur kernel very accurately and yielded a high-
quality deblurring image with little artifacts.

B. Real images

In the second part of the experiments, Algorithm 2 is applied
on real image data from various sources ( [10], [33], [48]).
We compared our results against the other five single-image
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based methods: You & Kaveh’s method ( [20]), Fergus et
al.’s method ( [10]), Shan et al.’s method ( [27]), Tzikas et
al.’s method ( [31]) and Cai et al.’s method ( [33]). As we
discussed in Section I, the approach proposed in [20] is based
on the Tikhonov regularization on both images and kernels.
Fergus et al.’s method use the statistical properties of image
derivatives to infer motion-blur kernel. In order to get a good
result, it need fairly accurate information regarding the size
the motion-blur kernel, especially when the size of motion-
blur kernel is large (≥ 30 pixels). Shan et al.’s method is
based on a sophisticated TV-norm based minimization model
on both image intensity and image gradients, the regularization
term on the motion-blur kernel is the `1 norm of the kernel
intensity. Similar to [10], it also requires the input of the
kernel size. Cai et al.’s method ( [33]) is based on synthesis-
based sparsity constraint of motion kernels in curvelet domain
and synthesis-based sparsity constraint of images in wavelet
domain. For [10], [27] and [33], the results are from the
authors’ implementations. For [20] and [31], the results are
from our own implementations. The parameters of the above
methods above are tuned up to find visually pleasant results
on tested images. Tzikas et al.’s method estimates the blur
kernel using a weighted combination of Gaussian-type basis
functions whose weights satisfying a heavy tailed Students-t
distribution. It is noted that one advantage of Tzikas et al.’s
method is that many parameters are automatically estimated
and we used the default values of remained few parameters
proposed in their paper.

Fig. 4 – 7 showed the recovered results from all six methods
on four real blurred images, which differ from each other
on the type of image content, the blurring degree and the
type of camera motion. The motion-blur kernels estimated
by Algorithm 2 are shown in Fig. 4(h) – 7 (h) for all tested
images. It is seen that there are camera motion along straight
line segmentations but with varies speed, camera motion
along curve and camera motion along trajectory with sharp
corners. It is seen that the visual quality of recovered images
from Algorithm 2 degraded a little bit compared against that
from the previous simulated experiment. The main reason is
that the blurring happening in real life is hardly a perfect
spatial-invariant motion blurring, either there exist other image
blurring effects, e.g., out of focus blurring; or the motion-
blurring is not completely uniform over the whole image.

Overall, compared to other evaluated methods, Algorithm 2
performed consistently over these images and the results are of
good quality with few noticeable image artifacts. The results
from five other existing methods varied in terms of visual
quality and are in general visually inferior than that from
Algorithm 2. You & Kaveh’s method ( [20]) only worked
well on the image shown in Fig. 6 and did poorly on three
other images. Such a result is not surprising as the Tikhonov
regularization used in You & Kaveh’s method emphasizes too
much on the smoothness of blur kernels such that it tends
to yield Gaussian-type blur kernels. As a result, the kernel
is often over-sized which will lead to over-deblurred results.
Fergus et al.’s method ( [10]) performance relies on how well
the distribution of image derivatives fit the assumption, which
certainly has its limitation as the image content could vary

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. The blurred image of size 728 ∗ 905 and its deblurred results with
zoomed regions. (a) Blurred image; (b) You & Koveh [20]; (c) Fergus et
al. [10]; (d) Shan et al. [27]; (e) Tzikas et al. [31]; (f) Cai et al. [33]; (g)
Algorithm 2. (h) Color-visualization of the motion-blur kernel estimated by
Alg. 2 with image size 25 ∗ 25.

significantly in the experiments. It is seen from Fig. 6 and
Fig. 7 that it tends to under-estimate the blur degree such
that the results look still blurry. The kernel estimation of
Shan et al.’s method ( [27]) is based on the regularization
`1 norm of blur kernel, which seems not adequate enough to
yield accurate estimation of motion-blur kernels tested in the
experiments. Thus, the results on tested images from Shan
et al.’s method is not satisfactory. Tzikas et al.’s method (
[31]) has its advantages over other methods on the autonomous
estimation of regularization parameters. However, the kernel
model considered in Tzikas is the linear combination of
Gaussian-type blur kernel. As a result, it did not perform
well on images blurred by ”thin” kernels, such as Fig. 5.
Cai et al.’s method ( [33]) is quite stable compared to other
methods. However, the results from Cai et al.’s method tend
to show noticeable artifacts along edges. The main reason is
the usage of synthesis-based approach to enforce the sparsity
constraints of image/kernel. Such a drawback is well addressed
in Algorithm 2. The results from Algorithm 2 are consistent
on tested images and in general are more visually pleasant
with fewer artifacts than that of the other methods.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. The blurred image of size 640 ∗ 480 and its deblurred results with
zoomed regions. (a) Blurred image; (b) You & Koveh [20]; (c) Fergus et
al. [10]; (d) Shan et al. [27]; (e) Tzikas et al. [31]; (f) Cai et al. [33]; (g)
Algorithm 2. (h) Color-visualization of the motion-blur kernel estimated by
Alg. 2 with image size 45 ∗ 45.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. The blurred image of size 1024 ∗ 768 and its deblurred results with
zoomed regions. (a) Blurred image; (b) You & Koveh [20]; (c) Fergus et
al. [10]; (d) Shan et al. [27]; (e) Tzikas et al. [31]; (f) Cai et al. [33]; (g)
Algorithm 2. (h) Color-visualization of the motion-blur kernel estimated by
Alg. 2 with image size 65 ∗ 65.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. The blurred image of size 255 ∗ 255 and its deblurred results with
zoomed regions. (a) Blurred image; (b) You & Koveh [20]; (c) Fergus et
al. [10]; (d) Shan et al. [27]; (e) Tzikas et al. [31]; (f) Cai et al. [33]; (g)
Algorithm 2. (h) Color-visualization of the motion-blur kernel estimated by
Alg. 2 with image size 25 ∗ 25.

C. Conclusions and future work

In this paper, a new algorithm is presented to remove camera
shake from a single image. Based on analysis-based sparsity
prior of images in framelet domain and a mixed regularization
on motion-blur kernels, which includes both analysis-based
sparsity prior of kernels in framelet domain and smoothness
prior on kernels, our new formulation on motion deblurring
leads to a powerful algorithm which can recover a clear
image from a given motion-blurred image. The analysis-based
sparsity prior used in our approach empirically yields more
visually pleasant results than the synthesis-based sparse prior
used in other methods do ( [33]). Also, our formulation does
not suffer from converging to some well-known degenerate
cases as many other approaches might do. As a result, our
method does not require any prior information on the kernel
while many existing techniques are dependently on some
accurate information of motion blurring which usually needs
user interactions. The resulting minimization problem from
our formulation could be solved efficiently by the split Breg-
man method. The experiments on both synthesized and real
images show that our proposed algorithm is very efficient and
very effective on removing complicated blurring from nature
images of complex structures.

Blind motion deblurring is a challenging blind deconvolu-
tion problem and there are still many open questions remained.
Our proposed algorithm performs quite well in the case of
motion-blurring being the uniform blurring over the image,
but can not deal with non-uniform motion-blurring, including
image blurring caused by camera rotation and the partial image
blurring caused by fast moving objects in the scene. In future,
we would like to extend our proposed algorithm to remove
non-uniform motion blurring from images. Also, although the
parameter setting in our algorithm is rather simple without
requiring rigorous tuning up, it is still more preferred for some
applications to have a completely automatic parameter setting
process. Recently, there have been some blind deconvolution
techniques that use either variational Bayesian approach (e.g.
[49]) or cross-validation techniques to automatically determine



10

the optimal parameter values (e.g. [50]). In future, we also
would like to investigate how to incorporate these techniques
into our method to automatically infer optimal parameter
setting of the de-blurring algorithm.

REFERENCES

[1] J.-F. Cai, S. Osher, and Z. Shen, “Split Bregman method and frame
based image restoration,” Multiscale model. Simul., vol. 8, no. 2, pp.
337–369, 2009.

[2] T. Goldstein and S. Osher, “The split bregman method for l1-regularized
problems,” SIAM J. Imaging Sci., vol. 2, no. 2, pp. 323–343, 2009.

[3] H. C. Andrews and B. R. Hunt, Digital image restoration. Englewood
Cliffs, NJ: Prentice-Hall, 1977.

[4] M. K. Ng, R. H. Chan, and W. Tang, “A fast algorithm for deblurring
models with neumann boundary condition,” SIAM J. Sci. Comput.,
vol. 21, no. 3, pp. 851–866, 2000.

[5] T. F. Chan and J. Shen, Image processing and analysis, ser. Variational,
PDE, wavelet, and stochastic methods. Philadelphia, PA: Society for
Industrial and Applied Mathematics (SIAM), 2005.

[6] A. Chai and Z. Shen, “Deconvlolution: A wavelet frame approach,”
Numer. Math., vol. 106, pp. 529–587, 2007.

[7] Y. Lou, X. Zhang, S. Osher, and A. Bertozzi, “Image recovery via
nonlocal operators,” Journal of Scientific Computing, vol. 42, no. 2,
pp. 185–197, 2010.

[8] J.-F. Cai, H. Ji, C. Liu, and Z. Shen, “Blind motion deblurring using
multiple images,” Journal of Computational Physics, vol. 228, no. 14,
pp. 5057–5071, 2009.

[9] G. Pavlovic and A. M. Tekalp, “Maximum likelihood parametric blur
identification based on a continuous spatial domain model,” IEEE Trans.
Image Processing, vol. 1, no. 4, Oct. 1992.

[10] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman,
“Removing camera shake from a single photograph,” in SIGGRAPH,
vol. 25, 2006, pp. 783–794.

[11] A. Levin, “Blind motion deblurring using image statistics.” in NIPS,
Dec. 2006, pp. 841–848.

[12] J. Jia, “Single image motion deblurring using transparency,” in CVPR,
2007, pp. 1–8.

[13] N. Joshi, R. Szeliski, and D. Kriegman, “PSF estimation using sharp
edge prediction,” in CVPR, 2008.

[14] B. Bascle, A. Blake, and A. Zisserman, “Motion deblurring and super-
resolution from an image sequence,” in ECCV, 1996, pp. 573–582.

[15] M. Ben-Ezra and S. K. Nayar, “Motion-based motion deblurring,” IEEE
Trans. PAMI, vol. 26, no. 6, pp. 689–698, 2004.

[16] F. Sroubek and J. Flusser, “Multichannel blind deconvolution of spatially
misaligned images,” IEEE Tran. Image Processing, vol. 14, no. 7, pp.
874–883, 2005.

[17] R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography:
Motion deblurring via fluttered shutter,” in SIGGRAPH, vol. 25, 2006,
pp. 795–804.

[18] J. Chen, L. Yuan, C. K. Tang, and L. Quan, “Robust dual motion
deblurring,” in CVPR, 2008.

[19] Y. Lu, J. Sun, L. Quan, and H. Shum, “Blurred/non-blurred image
alignment using an image sequence,” in SIGGRAPH, 2007.

[20] Y. You and M. Kaveh, “A regularization approach to joint blur identi-
fication and image restoration,” IEEE Tran. Image Processing, vol. 5,
1996.

[21] R. Molina, J. Mateos, and A. K. Katsaggelos, “Blind deconvolution
using a variational approach to parameter, image, and blur estimation,”
IEEE transacion on image processing, vol. 15, no. 12, pp. 3715–3727,
2006.

[22] T. F. Chan and C. K. Wong, “Total variation blind deconvolution,” IEEE
Tran. Image Processing, vol. 7, no. 3, pp. 370–375, 1998.

[23] L. Bar, B. Berkels, M. Rumpf, and G. Sapiro, “A variational framework
for simultaneous motion estimation and restoration of motion-blurred
video,” in ICCV, 2007.

[24] P. D. Romero and V. F. Candela, “Blind deconvolution models regu-
larized by fractional powers of the laplacian,” Journal of Mathematical
Imaging and Vision, vol. 32, 2008.

[25] L. He, A. Marquina, and S. Osher, “Blind deconvolution using TV
regularization and Bregman iteration,” Int. J. Imaging Syst. Technol.,
vol. 15, pp. 74–83, 2005.

[26] A. Marquina, “Inverse scale space methods for blind deconvolution,”
UCLA CAM Reports, vol. 06-36, 2006.

[27] Q. Shan, J. Jia, and A. Agarwala, “High-quality motion deblurring from
a single image,” in SIGGRAPH, 2008.

[28] D. C. Dobson and F. Santosa, “Recovery of blocky images from noisy
and blurred data,” SIAM J. Appl. Math., vol. 56, pp. 1181–1198, 1996.

[29] M. Nikolova, “Local strong homogeneity of a regularized estimator,”
SIAM J. Appl. Math., vol. 61, pp. 633–658, 2000.

[30] M. M. Bronstein, A. M. Bronstein, M. Zibulevsky, and Y. Y. Zeevi,
“Blind deconvolution of images using optimal sparse representations,”
IEEE Trans. Image Processing, vol. 14, no. 6, pp. 726–736, 2005.

[31] D. G. Tzikas, A. C. Likas, and N. P. Galasanos, “Variational bayesian
sparse kernel-based blind image deconvolution with student’s-t priors,”
IEEE Trans. Image Processing, vol. 18, no. 4, pp. 753–764, 2009.

[32] J.-F. Cai, S. Osher, and Z. Shen, “Linearized bregman iterations for
frame-based image deblurring,” SIAM Journal on Imaging Sciences, pp.
226–252, 2009.

[33] J.-F. Cai, H.Ji, C. Liu, and Z. Shen, “Blind motion deblurring from a
single image using sparse approximation,” in CVPR, 2009.

[34] S. Mallat, A Wavelet Tour of Signal Processing. Academic Press, 1999.
[35] A. Ron and Z. Shen, “Affine system in L2(Rd): the analysis of the

analysis operator,” J. of Func. Anal., vol. 148, 1997.
[36] I. Daubechies, B. Han, A. Ron, and Z. Shen, “Framelets: MRA-based

constructions of wavelet frames,” Appl. Comput. Harmon. Anal., vol. 14,
pp. 1–46, 2003.

[37] M. Elad, P. Milanfar, and R. Rubinstein, “Analysis versus synthesis in
signal priors,” in EUSIPCO, 2006.

[38] L. Borup, R. Gribonval, and M. Nielsen, “Bi-framelet systems with few
vanishing moments characterize Besov spaces,” Appl. Comput. Harmon.
Anal., vol. 14, no. 1, 2004.

[39] E. Candes, L. Demanet, D. L. Donoho, and L. Ying, “Fast discrete
curvelet transforms,” Multiscale Model. Simul., vol. 5, pp. 861–899,
2005.

[40] J.-F. Cai, R. Chan, and Z. Shen, “A framelet-based image inpainting
algorithm,” Appl. Comput. Harmon. Anal., vol. 24, pp. 131–149, 2008.

[41] Z. Shen, “Wavelet frames and image restorations,” in Proceedings of the
International Congress of Mathematicians, Hyderabad, India, 2010.

[42] C. de Boor, A Practical Guide to Splines. Spring, 1978.
[43] S. Osher, B. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regu-

larization method for total variation-based image restoration,” Multiscale
Model. Simul, vol. 4, pp. 460–489, 2005.

[44] J. Xu and S. Osher, “Iterative regularization and nonlinear inverse
scale space applied to wavelet-based denoisin,” IEEE Trans. Image
Processing., vol. 16, pp. 534–544, 2007.

[45] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, “Bregman iterative al-
gorithms for `1-minimization with applications to compressed sensing,”
SIAM J. Imaging Sci., vol. 1, pp. 143–168, 2008.

[46] S. Osher, Y. Mao, B. Dong, and W. Yin, “Fast linearized bregman iter-
ation for compressive sensing and sparse denoising,” Communications
in Mathematical Sciences., vol. 8, no. 2, pp. 93–111, 2010.

[47] J.-F. Cai, S. Osher, and Z. Shen, “Linerarized bregman iterations for
compressed sensing,” Mathematics of Computation, vol. 78, no. 267,
pp. 1515–1536, 2009.

[48] W. Freeman, F. Durang, Y. Fredo, and A. Levin, “Understanding and
evaluating blind deconvolution algorithms,” in CVPR, 2009.

[49] S. D. Babacan, R. Molina, and A. K. Katsaggelos, “Variational bayesian
blind deconvolution using a total variation prior,” IEEE Tran. Image
Processing, vol. 18, p. 1, 2009.

[50] L. H. and M. K. Ng, “Blind deconvolution using generalized cross-
validation approach to regularization parameter estimati,” IEEE Trans.
Image Processing, vol. 20, no. 3, pp. 670–680, 2011.

Hui Ji received the BSc degree from Nanjing Uni-
versity in China, the MSc degree in mathematics
from National University of Singapore in Singapore
and the PhD degree in computer science from Uni-
versity of Maryland, College Park, USA. Since 2006,
he has been an assistant professor in Department
of Mathematics at National University of Singapore
in Singapore. His research interests are in human
and computer vision, image and video processing,
computational harmonic analysis and optimization.



11

Zuowei Shen Biography text here.


