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1 Introduction

Tensor decomposition can be viewed as an extension of the singular value decom-
position (SVD) for matrices, which is obviously one of the fundamental tools in
numerous applications. Unlike for matrices, the term “decomposition” for tensors
can carry very different meanings in different studies. In this paper we focus on one
of the most commonly used notions of tensor decomposition: the canonical polyadic
decomposition (CP decomposition, or CPD).

Before going further we first introduce some notations. Let A be a tensor, which
is an element of

⊗m
j=1Rnj :=Rn1×n2×···×nm . A rank-one tensor A in

⊗m
j=1Rnj has

the form A=
∏m

k=1vk :=v1⊗v2⊗···⊗vm, namely [A]j1j2···jm = v1j1v2j2 ···vmjm . For
simplicity we use j to denote the multi-index j :=(j1,j2,··· ,jm), and [A]j to denote
the j-th entry of A. Given a general tensor A∈

⊗m
j=1Rnj , a CP decomposition (CPD)

of A is to decompose it into sum of rank-one tensors, A=A1+A2+···+Ar, where
each Ai, i=1,...,r is a rank-one tensor. The minimal r is called the CP rank of A.
A major problem in tensor decomposition is to compute the CP rank and the CP
decomposition of a tensor.

A particularly important class of tensors are the so-called super symmetric ten-
sors, or simply symmetric tensors. A tensor A∈

⊗mRn is called a symmetric tensor
if for any multi-index j∈{1,2,...,n}m and any permutation i of j we have [A]i=[A]j.
It is easy to see that a rank-one symmetric tensor A must have the form

A=λv⊗m :=λv⊗···⊗v︸ ︷︷ ︸
m

,

where v∈Rn and λ∈R are both nonzero. For a general symmetric tensor A, a
symmetric CP decomposition (symmetric CPD) is

A=A1+A2+···+Ar,

where each Ai, i=1,...,r is a symmetric rank-one tensor. The minimal r is called
the symmetric CP rank of A. Like general tensor decomposition, symmetric CP
decomposition of a symmetric tensor is a major (and challenging) problem in the
study of tensors. Although finding the symmetric CP rank of a symmetric ten-
sor and its symmetric CP decomposition are generally very challenging, they are
very useful in applications. For example, symmetric tensors appear as higher order
derivatives or moments and cumulants of random vectors, which are often used in
source extraction, mobile communications, machine learning, factor analysis of m-
way arrays, biomedical engineering, psychometrics, and chemometrics [4,6–9,16,25].
More recently, ℓp norm with p>2 maximization [24, 27] is introduced instead of ℓ1
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norm minimization to exploit sparsity and learn complete dictionary, which can be
considered as a CP orthogonal decomposition problem.

A general formulation is to convert them into optimization problems. Let A be
a symmetric tensor. Then for any s>0 the best symmetric CP rank-s approximation
of A is to solve the minimization problem

min
λj ,∥vj∥=1

∥∥∥A−
s∑

j=1

λjv
⊗m
j

∥∥∥2
F
, (1.1)

where λj∈R, vj∈Rn and the Frobenious norm of a tensor A is defined as ∥A∥F :=√∑
i∈[n]m [A]2i with [n] = {1,2,...,n} for simplicity. Unfortunately, the above opti-

mization problem (1.1) is not convex. Note that in the case of real field with m=2,
the problem (1.1) can be solved through the greedy algorithm in the sense that we
first find the largest singular value and singular vector, subtract the corresponding
component from A, and repeat the process. This greedy algorithm guarantees that
we actually get the optimal best rank r approximation of A. Several studies have
employed this approach for tensors with order m>2 [1,2,10–12,14,15,18,19,21–23].
In this approach, one first obtain the best symmetric rank-1 decomposition by solv-
ing the optimization problem

min
λ,∥x∥=1

1

2

∥∥A−λx⊗m
∥∥2
F
, (1.2)

which is equivalent to

max |⟨A,x⊗m⟩|, subject to ∥x∥=1, (1.3)

where the inner product is ⟨A,B⟩=
∑

i∈[n]m [A]i[B]i. Once the best symmetric rank-
one approximation is obtained, we repeat the procedure on the residue tensor A−
λx⊗m. After r iterations we find a rank r approximation of the symmetric tensor
A.

Problem (1.3) is unfortunately an NP-hard problem when m>2 [11]. A variety
of methods have been introduced to solve it, see e.g. [11, 12, 14, 15, 18, 21, 22]. Qi,
Wang and Wang [22] proposed some Z-eigenvalue methods for solving the symmetric
CP decomposition problem. Kofidis and Regalia [12] consider the high-order power
method (HOPM) and explain the condition under which the method is convergent
for even-order symmetric tensors. A shifted symmetric higher-order power method
(SS-HOPM) [15] is introduced by Kolda et al. for computing tensor eigenpairs and
give the convergence guarantee to a tensor eigenpair. Anandkumar et al. [1] give a
robust power method of tensor decompositions for learning latent variable models.
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They provide detailed perturbation analysis for a robust variant of tensor power
method. Although the convergence rate for orthogonally decomposable tensors is
quadratic, the optimizer relies on the choice of initialization. Kolda [13] points out
there is a transformation from non-orthogonal tensor decomposition to orthogonal
tensor decomposition when the matrix V =[v1,··· ,vr] is with full column rank. Jiang
et al. [11] introduced tensor principal component analysis (tensor PCA) via convex
optimization. They showed the general tensor PCA problem is reducible when the
tensor is supersymmetric with an even order. They prove that if the tensor is rank-1,
then the embedded matrix must be rank-1, and vice versa. To enforce a low-rank
solution, they impose a nuclear norm penalty or relax the rank-1 constraint by
semidefinite programming. To further cope with the size of the resulting convex
optimization models, they solve by ADMM. Liu uses alternating minimization to
find CP decomposition of symmetric tensors [19]. Pan et al. [20] apply the symmetric
orthogonal approximation to symmetric tensor to image reconstructions, which is
tensor power method plus orthogonal projection.

Despite numerous aforementioned efficient best symmetric rank-one approxima-
tion algorithms by solving (1.2) or its variants, no algorithm is theoretically guar-
anteed to find the maximal component in obtaining the best rank-1 decomposition.
We aims at filling this gap in this paper. We mainly focus on rank-r orthogonally
decomposible symmetric tensors of order-3. In this case, to find the best rank-one
approximation of a symmetric tensor A∈R⊗3, the nonconvex least squares model
(1.2) is equivalent to the following

min
z

f(z), where f(z)=
1

6
∥A−z⊗3∥2F . (1.4)

The contribution of this paper is two-folded. Firstly, we give a geometric land-
scape analysis of the nonconvex function f in Section 2. In particular, we show
that any local minimizer must be a factor in the CP low-rank decomposition of A,
and any other critical points are linear combinations of the factors. Then, we pro-
pose in Section 3 a gradient descent algorithm with a well-designed initialization to
solve (1.4), and prove that the algorithm converges to the global minimizer (i.e., the
best rank-one approximation) with high probability. This result, combined with the
landscape of f , reveals that the greedy algorithm with carefully initialized gradient
descent get the CP low-rank decomposition of A.
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2 Landscape of nonconvex optimization model to

solve tensor decomposition

In this section, we analyze the landscapes of the nonconvex function f in (1.4).
That is, the locations and the characterization of local/global optimum and saddle
points. We show that, for an orthogonally symmetric decomposable tensor A, the
factors in the CP low-rank decomposition of A are only local minimizers of (1.4),
and all other non-zero critical points are linear combinations of the factors, which
are strict saddle points. The result is presented in Theorem 2.1. A similar result
was presented in [1].

Theorem 2.1 (Classification of Critical Points). Let A=
∑r

i=1xi⊗xi⊗xi, where
{xi}ri=1 are nonzero orthogonal vectors and ∥x1∥≥∥x2∥≥ ···≥∥xr∥>0. Then any
critical point z of f defined in (1.4) is in the form of

z=
∑
j∈I

∥z∥4

∥xj∥4
xj, I⊆ [r].

Moreover, we have

1. When |I|=1, the critical points are xj, j=1,··· ,r, which are all local mini-
mizers.

2. When |I|≥2, the critical points are strict saddle points.

3. When |I|=0, the critical point is 0, which is not a local minimizer.

Here |I| stands for the cardinality of a set I.

Proof. We expand {x1,··· ,xr} to be an orthogonal (not necessarily normal) basis of
Rn, denoted by {x1,··· ,xn}, where all vectors are nonzero and orthogonal to each
other. Let z be a critical point of f . Then z can be expanded as z=

∑n
j=1cjxj with

cj=
xT
j z

∥xj∥2 , and direct calculation gives

0=∇f(z)=∥z∥4z−
r∑

j=1

(xT
j z)

2xj=
r∑

j=1

(
cj∥z∥4−c2j∥xj∥4

)
xj+

n∑
j=r+1

cj∥z∥4xj.

Therefore,

cj=

{
0 or ∥z∥4

∥xj∥4 , j=1,··· ,r,
0, j=r+1,··· ,n.
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Thus

z=
∑
j∈I

∥z∥4

∥xj∥4
xj, I⊆{1,...,r}. (2.1)

Next, we characterize the critical points. Direct calculation gives the Hessian
matrix of f at any point y

∇2f(y)=∥y∥4I+4∥y∥2yyT−2
r∑

i=1

(xT
i y)xix

T
i . (2.2)

1. When |I|=1, the critical points are z=xj, j=1,··· ,r. In this case,

∇2f(xj)=∥xj∥4I+2∥xj∥2xjx
T
j ≻0.

Therefore, they are local minimizers. As we will see in the rest of the proof,
other critical points are not minimizers. Thus, z=xj, j=1,··· ,r are all local
minimizers.

2. When a critical point z satisfies |I| ≥ 2, the subspaces {d : zTd = 0} and
span{xj :j∈I} are (n−1)-dimensional and at least 2-dimensional respectively.
Therefore, their intersection must be a nontrivial subspace. Choose d be a
nonzero vector in the intersection. That is, d∈{d :zTd=0}∩span{xj :j∈I}.
Then (2.1) and (2.2) give

⟨d,∇2f(z)d⟩=∥z∥4∥d∥2+4∥z∥2(zTd)2−2
∑
j∈I

(dTxj)
2 ∥z∥4

∥xj∥2

=∥z∥4∥d∥2−2∥z∥4∥d∥2<0.

This implies the critical points with |I|≥2 are strict saddle points.

3. Finally we consider z=0. Obviously, there exists u0 such that ⟨A,u⊗3
0 ⟩ ̸=0.

Define

g(α)=f(αu0)=
1

6
∥A−α3u⊗3

0 ∥2= 1

6
(α6∥u0∥6−2α3⟨A,u⊗3

0 ⟩+∥A∥2F ).

By calculation, we have g′(α) = α5∥u0∥6−α2⟨A,u⊗3
0 ⟩, for which the second

term dominant the first term when α is sufficiently close to 0. Therefore, g′(α)
does not change the sign in a small neighborhood of α=0, and thus g(α) is
monotonic near α=0. Since g(α) ̸=g(0) if α ̸=0 near α=0, z=0 is not a local
minimum.
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Furthermore, the following theorem reveals that f is strongly convex and has a
bounded Hessian in a neighbourhood of the local minimizers.

Theorem 2.2 (Strong convexity and Smoothness around Local Minimizers). Let
A=

∑r
i=1xi⊗xi⊗xi, where {xi}ri=1 are nonzero orthogonal vectors and ∥x1∥≥∥x2∥≥

···≥∥xr∥>0. Let κ= ∥x1∥3
∥xr∥3 be a condition number of A. Then, for any positive number

γ satisfying γ≤min{0.01,0.15κ−1}, any i∈{1,...,r}, and any z∈Si,γ :={z | ∥z−xi∥≤
γ∥xi∥}, the Hessian matrix of f= 1

6
∥A−z⊗3∥2F obeys

ω∥xi∥4I⪯∇2f(z)⪯ζ∥xi∥4I,

where ω and ζ are absolute positive constants satisfying 0.05≤ω<ζ≤4.1.

Proof. Let i∈ [r] be a fixed index, and z∈Si,γ. Then

(1−γ)∥xi∥≤∥z∥≤(1+γ)∥xi∥, and
∑
j ̸=i

|xT
j z|2

∥xj∥2
+

(
∥xi∥−

xT
i z

∥xi∥

)2

≤γ2∥xi∥2,

(2.3)
which derives

(1−γ)∥xi∥≤
xT
i z

∥xi∥
≤(1+γ)∥xi∥.

Then, (2.2) gives

∇2f(z)=∥z∥4I+4∥z∥2zzT−2
r∑

j=1

(xT
j z)xjx

T
j

=∥z∥4I+2(2∥z∥2−xT
i z)zz

T︸ ︷︷ ︸
M1

+2xT
i z(zz

T−xix
T
i )︸ ︷︷ ︸

M2

−2
∑
j ̸=i

(xT
j z)xjx

T
j︸ ︷︷ ︸

M3

.

Let us estimate the terms in the Hessian.

• For M1: (2.3) implies

2∥z∥2−xT
i z≥2(1−γ)2∥xi∥2−(1+γ)∥xi∥2=(1−5γ+2γ2)∥xi∥2

and

2∥z∥2−xT
i z≤2(1+γ)2∥xi∥2−(1−γ)∥xi∥2=(1+5γ+2γ2)∥xi∥2.

Thus, provided 0<γ≤ 1
5
, we have 1−5γ+2γ2≥1−5γ≥0. Therefore

0⪯M1⪯(1+5γ+2γ2)∥xi∥2zzT ,

which yields

∥M1∥≤(1+5γ+2γ2)∥xi∥2∥z∥2≤(1+5γ+2γ2)(1+γ)2∥xi∥4
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• For M2: since ∥zzT−xix
T
i ∥2F =∥z∥4+∥xi∥4−2(xT

i z)
2, it is deducted from (2.3)

that

∥zzT−xix
T
i ∥≤∥zzT−xix

T
i ∥F ≤

(
(1+γ)4+1−2(1−γ)2

)1/2∥xi∥2

=γ1/2(8+4γ+4γ2+γ3)1/2∥xi∥2≤3γ1/2∥xi∥2,

if 0≤γ≤1/5, and thus

∥M2∥≤|xT
i z|∥zzT−xix

T
i ∥F ≤3(1+γ)γ1/2∥xi∥4.

• For M3: since {xj}j ̸=i are orthogonal, (2.3) leads to

∥M3∥≤max
j ̸=i

|xT
j z|∥xj∥2≤max

j ̸=i

|xT
j z|

∥xj∥
·max

j ̸=i
∥xj∥3

≤

(∑
j ̸=i

|xT
j z|2

∥xj∥2

)1/2

·max
j ̸=i

∥xj∥3≤κγ∥xi∥4.

Altogether, it follows from Weyl’s theorem that, if γ≤ 1
5
,

λmin(∇2f(z))≥∥z∥4−2∥M2∥−2∥M3∥≥∥z∥4−6(1+γ)γ1/2∥xi∥4−2κγ∥xi∥4

≥
(
(1−γ)4−6(1+γ)γ1/2−2κγ︸ ︷︷ ︸

ω

)
∥xi∥4

and

λmax(∇2f(z))≤∥z∥4+2∥M1∥+2∥M2∥+2∥M3∥
≤∥z∥4+2(1+5γ+2γ2)(1+γ)2∥xi∥4+6(1+γ)γ1/2∥xi∥4+2κγ∥xi∥4

≤
(
(1+γ)4+2(1+γ)2(1+5γ+2γ2)+6(1+γ)γ1/2+2κγ︸ ︷︷ ︸

ζ

)
∥xi∥4.

If we further restrict 0≤γ≤0.01, we have

ω≥0.994−6·1.01·0.1−2γκ≥0.35−2γκ.

Therefore, if 0≤γ≤min{0.01,0.15κ−1}, then ω≥0.05. Similarly, ζ≤4.1.
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3 Gradient descent algorithm finds the best rank-

1 approximation

Model (1.4) is obviously nonconvex, which causes computational challenges. Nowa-
days, gradient descent algorithm shows good performance for nonconvex problem to
solve phase retrieval, matrix completion and blind deconvolution [3, 5]. We may as
well apply gradient descent to solve model (1.4) to find the best rank-1 approxima-
tion of a given symmetric tensor. The gradient descent scheme is

zk+1=zk−µk∇f(zk), (3.1)

with ∇f(z)=∥z∥4z−A⊗2z⊗3z and µk is the stepsize in the k-th iteration, where
the k-mode product of a tensor A∈

⊗mRn with a matrix U ∈RJ×n is denoted by
A⊗kU and defined as [A⊗kU ]i1,···,ik−1,j,ik+1,···,im =

∑n
ik=1Ai1,···,imUj,ik .

As we have seen from Theorem 2.1, the objective function in (1.4) has different
types of critical points, namely, local minima, strict saddle points, and 0. Though
gradient descent algorithm is shown not to converge to strict saddle points [17]
with probability 1, it might converges to the critical point 0 or a local minimum.
Furthermore, the convergence rate is unknown. Therefore, there is a need of the
analysis of the convergence of gradient descent for (1.4).

In order the algorithm converges to the global minimizer, the initial guess should
lie in a neighbourhood of the global minimizer in general. We design a careful
initialization, which is generated as follows. Let wi∈Rn, i=1,··· ,L be i.i.d. random
vectors chosen uniformly from sphere with radius 1√

n
and

z0=
1

L

L∑
i=1

(wi−n2∇f(wi)). (3.2)

In other words, we average outputs of the first step of randomly initialized gradient
descent algorithms as the initial guess.

We will prove that gradient descent, starting from the initial guess in (3.2),
converges to a global minimizer, and the convergence rate is linear. The results are
summarized in the following theorem.

Theorem 3.1 (Convergence to the Global Minimizer). Let A, xi, i=1,...,r, and

κ be the same as in Theorem 2.2. Let δ= ∥x1∥6−∥x2∥6
3∥x1∥6 be a gap. Assume δ>0. Let

{zk}k∈N be generated by (3.1) with the initial guess z0 in (3.2) and the step size
µk satisfying 1−µk∥zk∥4 = θ for all k≥ 0. Let γ be a positive number satisfying
0<γ≤min{0.01,0.15κ−1}. There exist positive constants Cδ,cδ,Cθ,δ,∥x1∥,Cθ,∥x1∥,θγ∈
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(0,1),ρθ ∈ (0,1) depending only on their corresponding subscripts respectively such
that: with probability at least 1−e−cδn, as long as L≥Cδn and θ∈ (θγ,1), it holds
true that

∥zk−x1∥≤γ ·ρk−Tγ

θ ∥x1∥, ∀k≥Tγ,

where Tγ=Cθ,δr
2.1κ4.2(logγ−1+logr+logκ)+Cθ,∥x1∥γ

−1(logr+logκ).

The above theorem tells us that, after Tγ steps, the gradient descent algorithm
converges linearly to the principal component in the CP decomposition of A. To
obtain a CP decomposition of A, we may combine the randomly initialized gradient
descent algorithm with the greedy strategy. The combined approach consists of r
phases. At phase j, we first apply the randomly initialized gradient descent algo-
rithm to obtain xij , and then we subtract x⊗3

ij
from A. Due to the orthogonality of

factors of A, it gives another new factor of A in the next phase. By this way, after
r phases, we obtain all the factors of A, and hence the CP decomposition of A.

A theoretical result concerning the convergence of power method for symmet-
ric rank-1 approximation of orthogonally decomposible tensors was provided in [1].
Although the result there shows the super-linear convergence, it is not guaranteed
the convergence to the global minimum, and only the convergence to a local min-
imum was established. As a comparison, our result indicates the gradient descent
algorithm converges with high probability to the global minimum.

To prove Theorem 3.1, we divide the iteration into two stages, and we give
convergence analysis for these two stages respectively. The first stage is the initial
finite steps of the iteration. We show that, after Cθ,δr

2.1κ4.2(logγ−1+logr+logκ)+
Cθ,∥x1∥γ

−1(logr+logκ) steps, zk will be in a γ-neighbourhood of the globle minimizer
x1 with high probability. The result is presented in the following Theorem 3.2.

Theorem 3.2 (Initial Stage). Let A, κ, δ, {xi}ri=1, {zk,µk}k∈N be the same as
in Theorem 3.1. Let θ ∈ [0.7,1) and γ ∈ (0,0.05]. There exist positive constants
Cδ,cδ,Cθ,δ,∥x1∥,Cθ,∥x1∥ depending only on their corresponding subscripts respectively
such that: with probability at least 1−e−cδn, as long as L≥Cδn, it holds true that

∥zk−x1∥≤γ∥x1∥,

for k=T , where T ≤Cθ,δr
2.1κ4.2(logγ−1+logr+logκ)+Cθ,∥x1∥γ

−1(logr+logκ).

Proof. The proof is delayed in Section 4.

In the second stage, the iterations are kept in the neighbourhood Sγ of the
global minimizer x1. Since f is strongly convex in Sγ according to Theorem 2.2,
the gradient descent algorithm converges linearly to x1. In particular, we have the
following theorem.
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Theorem 3.3 (Refinement Stage). Let A, κ, δ, θ, {xi}ri=1, {zk,µk}k∈N be the same
as in Theorem 3.1. Let γ be satisfying 0≤ γ ≤min{0.01,0.15κ−1}. There exists
positive constants θc∈ (0,1) and ρθ∈ [0,1) such that: if θ∈ (θc,1) and zT ∈Sγ :={z :
∥z−x1∥≤γ∥x1∥} for some T , then {zk}k≥T ⊂Sγ and

∥zk+1−x1∥≤ρθ∥zk−x1∥, ∀ k≥T.

Proof. It suffices to prove

∥zk+1−x1∥≤(1−ρθ)∥zk−x1∥, ∀ k≥T,

which is done by induction. Let k be larger than T . Suppose zk∈Sγ. From Theorem
2.2,

ω∥x1∥4≤λmin(∇2f(z))≤λmax(∇2f(z))≤ζ∥x1∥4, ∀ z∈Sγ,

from which it follows that, for any z,y∈Sγ,

(z−y)T (∇f(z)−∇f(y))≥ω∥x1∥4∥z−y∥2,

and
∥∇f(z)−∇f(y)∥≤ζ∥x1∥4∥z−y∥.

In view of gradient descent scheme, the above two inequalities imply

∥zk+1−x1∥2=∥(zk−µk∇f(zk))−(x1−µk∇f(x1))∥2

=∥zk−x1∥2−2µk(zk−x1)
T (∇f(zk)−∇f(x1))+µ2

k∥∇f(zk)−∇f(x1)∥2

≤
(
1−2µkω∥x1∥4+µ2

kζ
2∥x1∥8

)
∥zk−x1∥2

:=ρ2∥zk−x1∥2.

Since θ=1−µk∥zk∥4 and zk∈Sγ with γ∈(0,min{0.01,0.15κ−1}], we have

1−θ

1.014
1

∥x1∥4
≤ 1−θ

(1+γ)4
1

∥x1∥4
≤µk=

1−θ

∥zk∥4
≤ 1−θ

(1−γ)4
1

∥x1∥4
≤ 1−θ

0.994
1

∥x1∥4
.

Therefore, if we choose θc such that 1−θc
0.994

= ω
ζ2
, then for any θ ∈ (θc,1) we have

1−θ
1.014

≤µk∥x1∥4≤ 1−θ
0.994

≤ ω
ζ2
, which implies

0≤ρ2=1−µk∥x1∥4
(
2ω−µkζ

2∥x1∥4
)
≤1− 1−θ

1.014
ω :=ρ2θ<1.

Combining Theorems 3.2 and 3.3, we obtain Theorem 3.1.
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4 Proof of Theorem 3.2

This section is devoted to the proof of Theorem 3.2.

Proof of Theorem 3.2. We can expand xi,i=1,··· ,r to a basis of Rn, denoted by
{u1,u2,··· ,un}, where ui=xi/∥xi∥, i=1,··· ,r. Set α

(i)
k =zTkui, i=1,··· ,r and βk=(∑n

j=r+1(u
T
j zk)

2
)1/2

. Thus, we have ∥zk∥2 =
∑r

i=1

(
α
(i)
k

)2
+β2

k , and the gradient

descent scheme zk+1=zk−µk∇f(zk) can be expressed as
α
(1)
k+1=α

(1)
k −µk(∥zk∥4α(1)

k −∥x1∥3(α(1)
k )2)

...

α
(r)
k+1=α

(r)
k −µk(∥zk∥4α(r)

k −∥xr∥3(α(r)
k )2)

βk+1=
∣∣1−µk∥zk∥4

∣∣βk

. (4.1)

Since wi ∈Rn, i=1,··· ,L are i.i.d. random vectors chosen uniformly from sphere
with radius 1√

n
and set µ−1=n2, we have

z0=
1

L

L∑
i=1

(wi−µ−1∇f(wi))=
1

L

L∑
i=1

(1−µ−1∥wi∥4)wi+µ−1
1

L

L∑
i=1

r∑
j=1

(xT
j wi)

2xj

=
n2

L

L∑
i=1

r∑
j=1

(xT
j wi)

2xj,

and

α
(l)
0 =zT0 ul=

zT0 xl

∥xl∥
=
n2

L

L∑
i=1

(xT
l wi)

2∥xl∥, l=1,2,··· ,r, β0=
( n∑
j=r+1

(uT
j z0)

2
)1/2

=0.

(4.2)
The rest of the proof is divided into the following several steps.

Step 1.

We show the following statement. For any δ>0, there exist constants Cδ,cδ>0 such
that: when L>Cδn, we have

(1+δ)∥xi∥3≥α
(i)
0 ≥(1−δ)∥xi∥3, i=1,··· ,r (4.3)

holds with probability at least 1−2e−cδn. In particular, we choose δ= ∥x1∥6−∥x2∥6
3∥x1∥6 ∈

(0, 1
3
), we have

4

3
∥xi∥3≥α

(i)
0 ≥ 2

3
∥xi∥3, i=1,··· ,r (4.4)
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and

∥x1∥3α(1)
0 −∥xi∥3α(i)

0 ≥ ∥x1∥6−∥x2∥6

3
, ∀i>1 (4.5)

with probability at least 1−2e−cδn.
Since E(n2

L

∑L
ℓ=1wℓw

T
ℓ )= I, by [26, Remark 5.40], for any positive constant δ > 0,

there exist constants Cδ,cδ>0 such that: when L≥Cδn, we get∥∥∥∥∥n2

L

L∑
ℓ=1

wℓw
T
ℓ −I

∥∥∥∥∥≤δ (4.6)

with probability at most 1−2e−cδn. Applying it to α
(i)
0 in (4.2) we obtain (4.3).

Moreover, (4.6) implies, for ℓ ̸=1,

∥x1∥3α(1)
0 −∥xi∥3α(i)

0 −∥x1∥6+∥xi∥6

=∥x1∥4xT
1

(
n2

L

L∑
ℓ=1

wℓw
T
ℓ −I

)
x1−∥xi∥4xT

i

(
n2

L

L∑
ℓ=1

wℓw
T
ℓ −I

)
xi≥−δ∥x1∥6−δ∥xi∥6.

Therefore,

∥x1∥3α(1)
0 −∥xi∥3α(i)

0 ≥(1−δ)∥x1∥6−(1+δ)∥xi∥6,

which by choosing δ= ∥x1∥6−∥x2∥6
3∥x1∥6 ≤ ∥x1∥6−∥xℓ∥6

3∥x1∥6 gives (4.5).

The rest of the proof are established on the event where (4.3) (4.4) (4.5) are
successful, and the probability is at least 1−2e−cδn.

Step 2.

Define ck=mini>1{∥x1∥3−∥xi∥3α(i)
k /α

(1)
k }. We prove

ck≥
∥x1∥6−∥x2∥6

4∥x1∥3
, ∀k≥0. (4.7)

To this end, we first show by induction that

∥x1∥3α(1)
k >∥xi∥3α(i)

k , ∀ k≥0, 1<i≤r, (4.8)

which holds obviously for k=0. Suppose (4.8) holds for k=0,...,m, which yields

θ+µm∥x1∥3α(1)
m ≥θ+µm∥xi∥3α(i)

m , ∀i>1.
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Applying this inequality to (4.1) gives

α
(1)
m+1

α
(i)
m+1

=
θ+µm∥x1∥3α(1)

m

θ+µm∥xi∥3α(i)
m

·α
(1)
m

α
(i)
m

≥ α
(1)
m

α
(i)
m

≥ ...≥ α
(1)
0

α
(i)
0

>
∥xi∥3

∥x1∥3
, ∀i>1, (4.9)

which implies (4.8) with k=m+1 immediately. Therefore, (4.8) holds for any k≥0.

It is also seen from (4.9) that the ratio
α
(1)
k

α
(i)
k

is monotonically increasing with respect

to k, and hence ck is. Thus, ck≥c0. By (4.5) in Step 1, we have c0≥ ∥x1∥6−∥x2∥6
4∥x1∥3 , we

obtain (4.7).

Step 3.

We then prove the following result. For any γ>0, we have

ρk :=
α
(1)
k√∑r

i=2(α
(i)
k )2+β2

k

≥ 2+γ

γ
,

for all k ≥ T1 with T1 ≤ Cθ,∥x1∥(logr+logκ)+Cθ,δ ·r2.1κ4.2(logγ−1+logr+logκ) for
some constants Cθ,∥x1∥ and Cθ,δ.

We first give an obvious lower bound of ρk. From (4.1) and (4.2) we see that

β0=0 and βk+1=θβk, which implies βk=0 for any k≥0. Recall κ=maxi
∥x1∥3
∥xi∥3 is a

condition number of A. A lower bound of ρk is obtained as in the following

ρk=
α
(1)
k√∑r

i=2(α
(i)
k )2+β2

k

=
α
(1)
k√∑r

i=2(α
(i)
k )2

≥ 1√
rκ2

, (4.10)

where in the last inequality we used (4.8).

Now we define νk :=
α
(1)
k

∥x1∥ and show that

νk≤ν :=max

{
θ+0.16θ−2r2κ4,

4∥x1∥2

3
+(1−θ)

9

4∥x1∥4

}
, ∀ k≥0, (4.11)

whose proof is presented in the rest of this paragraph. By simple calculation, ∥zk∥2=
(α

(1)
k )2+(α

(1)
k )2/ρ2k=(1+ρ−2

k )(α
(1)
k )2. It follows from (4.1) that

α
(1)
k+1=α

(1)
k −µk

(
∥zk∥4α(1)

k −∥x1∥3
(
α
(1)
k

)2)
=θα

(1)
k +

(1−θ)∥x1∥3

(1+ρ−2
k )2

1(
α
(1)
k

)2 ,
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and therefore
νk+1=θνk+(1−θ)

(
1+ρ−2

k

)−2
ν−2
k . (4.12)

A lower bound of νk is obtained by the inequality of arithmetic and geometric means

νk+1=
θ

2
νk+

θ

2
νk+(1−θ)

(
1+ρ−2

k

)−2
ν−2
k ≥1.88θ

2
3 (1−θ)

1
3

(
1+ρ−2

k−1

)− 2
3

≥1.88θ
2
3 (1−θ)

1
3 (rκ2)−

2
3 ,

(4.13)

where we used (4.10). For the upper bound,

νk+1=θνk+(1−θ)
(
1+ρ−2

k

)−2
ν−2
k ≤

(
θ+(1−θ)ν−3

k

)
νk. (4.14)

Therefore, if νk>1, then the sequence {νk,νk+1,...} starts decreasing until νk′≤1 for
some k′>k. Let 2≤k1<k2<... be all the integers satisfying νki−1≤1<νki . Obviously,
supk≥0νk=sup{ν0,ν1,νk1 ,νk2 ,....}. It is deducted from (4.14) and the lower bound
of νki−1 that

νki ≤
(
θ+(1−θ)ν−3

ki−1

)
νki−1≤θ+(1−θ)

(
1.88θ

2
3 (1−θ)

1
3

(
1+ρ−2

ki−2

)− 2
3

)−3

≤θ+0.16θ−2
(
1+ρ−2

ki−2

)2≤θ+0.16θ−2r2κ4,
(4.15)

where the last inequality follows from (4.10). By (4.4), ν0≤ 4∥x1∥2
3

. It remains to

estimate ν1. Since ∥z0∥≥α
(1)
0 ≥ 2∥x1∥3

3
,

α
(1)
1 =θα

(1)
0 +(1−θ)

∥x1∥3
(
α
(1)
0

)2
∥z0∥4

≤θα
(1)
0 +(1−θ)

∥x1∥3

∥z0∥2
≤ 4θ∥x1∥3

3
+(1−θ)

9

4∥x1∥3
.

Therefore,

ν1≤
4θ∥x1∥2

3
+(1−θ)

9

4∥x1∥4
. (4.16)

Putting this together with (4.15) we obtain (4.11).
Next we prove in this paragraph

∥zk∥≤ ι∥x1∥, ∀ k≥T1,1, (4.17)

where ι is a constant defined by

ι=max

θ+(1−θ)
r

8
15κ

16
15

5·
(
1.88
4

) 4
5 θ

32
15 (1−θ)

2
3

,1.1

, (4.18)
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and T1,1 is a constant bounded by T1,1≤Cθ,∥x1∥(logr+logκ+logn) for some Cθ,∥x1∥
depending only on θ and ∥x1∥. For this purpose, we first estimate the lower bound
of ∥zk∥. We have for all k≥0

∥zk+1∥2=
r∑

i=1

(
α
(1)
k+1

)2 (4.1)

≥
(
θα

(1)
k +

1−θ

∥zk∥4
∥x1∥3

(
α
(1)
k

)2)2

+θ2
r∑

i=2

(
α
(i)
k

)2
≥θ2∥zk∥2+

(1−θ)2

∥zk∥8
∥x1∥6

(
α
(1)
k

)4 (4.13)

≥ θ2∥zk∥2+
θ

8
3 (1−θ)

10
3

∥zk∥8
∥x1∥101.884r−

8
3κ− 16

3

=
θ2

4
∥zk∥2+

θ2

4
∥zk∥2+

θ2

4
∥zk∥2+

θ2

4
∥zk∥2+

θ
8
3 (1−θ)

10
3

∥zk∥8
∥x1∥101.884r−

8
3κ− 16

3

≥5

(
θ8

44
·θ

8
3 (1−θ)

10
3 ∥x1∥101.884r−

8
3κ− 16

3

) 1
5

=5·
(
1.88

4

) 4
5

θ
32
15 (1−θ)

2
3 r−

8
15κ− 16

15∥x1∥2.

(4.19)

Now we estimate an upper bound of ∥zk∥. The iteration scheme (4.1) and the choice
of µk give, for all k≥0,

α
(i)
k+1=θα

(i)
k +(1−θ)

∥xi∥3

∥zk∥4
(α

(i)
k )2≤θα

(i)
k +(1−θ)

∥xi∥3

∥zk∥3
α
(i)
k ≤

(
θ+(1−θ)

∥x1∥3

∥zk∥3

)
α
(i)
k .

Summing up the squares of the inequalities for i=1,...,r and noticing βk=0 for all
k, we obtain

∥zk+1∥≤
(
θ+(1−θ)

∥x1∥3

∥zk∥3

)
∥zk∥, ∀ k≥0. (4.20)

Let T1,1 be the smallest non-zero such that ∥zT1,1∥≤ ι∥x1∥. There are two cases.

• Case 1: ∥zT1,1∥≥∥x1∥. In this case, (4.20) gives ∥zT1,1+1∥≤∥zT1,1∥≤ ι∥x1∥.

• Case 2: ∥zT1,1∥<∥x1∥. In this case, we have by (4.19) and (4.20)

∥zT1,1+1∥≤θ∥zT1,1∥+(1−θ)
∥x1∥3

∥zT1,1∥2
≤ ι∥x1∥.

By induction of ∥zk∥, we have ∥zk∥≤ι∥x1∥ for all k≥T1,1. Let us estimate T1,1. We
have either T1,1=1 or T1,1≥2. The former case has a constant bound, and the latter

case is estimated as in the following. The definition of T1,1 gives ∥x1∥
∥zk∥

<ι−1 for all

k∈(0,T1,1), which together with (4.20) implies

ι∥x1∥<∥zT1,1−1∥≤
(
1−(1−θ)(1−ι−3)

)T1,1−2∥z1∥.
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Therefore,

T1,1≤
logι+log ∥x1∥

∥z1∥

log(1−(1−θ)(1−ι−3))
+2≤

log ∥x1∥
∥z1∥

log(1−(1−θ)(1−1.1−3))
+2, (4.21)

where the last inequality is deducted from ι≥1.1 and the denominator is negative.
It remains to estimate ∥z1∥. It follows from (4.8), (4.11), and βk=0 that

∥zk∥2=
r∑

i=1

(
α
(i)
k

)2
≤rκ2

(
α
(1)
k

)2
≤rκ2ν2∥x1∥2, ∀ k>0, (4.22)

where ν is the upper bound of νk,k≥0 estimated in (4.11). Setting k=1 and plugging
(4.22) into (4.21), we obtain

T1,1≤Cθ,∥x1∥(logκ+logr),

where Cθ,∥x1∥ is a constant depending only on θ and ∥x1∥.
Finally, we prove in this paragraph that ρk≥ 2+γ

γ
for all k≥T1,1+T1,2, where

T1,2≤Cθ,δr
2.1κ4.2(logγ−1+logr+logκ).

Set i∗=argmaxi>1∥xi∥3α(i)
k . Due to θ=1−µk∥zk∥4 and the iteration scheme (4.1),

it holds that√∑r
i=2(α

(i)
k+1)

2=

√∑r
i=2

(
(θ+µk∥xi∥3α(i)

k )α
(i)
k

)2
≤(θ+µk∥xi∗∥3α(i∗)

k )

√∑r
i=2(α

(i)
k )2.

Combining it with the definition of ρk and the fact βk=0, we obtain

ρk+1≥
θ+µk∥x1∥3α(1)

k

θ+µk∥xℓ∗∥3α(i∗)
k

ρk

Using the definition ck=mini>1{∥x1∥3−∥xi∥3α(i)
k /α

(1)
k }, the factor in the above in-

equality is estimated by

θ+µk∥x1∥3α(1)
k

θ+µk∥xi∗∥3α(i∗)
k

=1+
µk(∥x1∥3α(1)

k −∥xi∗∥3α(i∗))

θ+µk∥xi∗∥3α(i∗)
k

≥1+
ck(1−θ)

θ∥zk∥4/α(1)
k +(1−θ)∥xℓ∗∥3α(i∗)

k /α
(1)
k

(4.7)

≥ 1+
(∥x1∥6−∥x2∥6)(1−θ)

4∥x1∥3(θ∥zk∥4/α(1)
k +(1−θ)∥xi∗∥3α(i∗)

k /α
(1)
k )

(4.17),(4.8)

≥ 1+
(∥x1∥6−∥x2∥6)(1−θ)

4(θι3
√
rκ+(1−θ))∥x1∥6

,
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where the last inequality follows from also ∥zk∥/α(1)
k =

(∑r
i=1(α

(i)
k )2

) 1
2
/α

(1)
k ≤

√
rκ

by (4.8). Therefore, for any k≥T1,1, we have

ρk≥
(
1+

(∥x1∥6−∥x2∥6)(1−θ)

4(θι3
√
rκ+(1−θ))∥x1∥6

)k−T1,1

ρT1,1

(4.10)

≥
(
1+

(∥x1∥6−∥x2∥6)(1−θ)

4(θι3
√
rκ+(1−θ))∥x1∥6

)k−T1,1 1√
rκ

.

Thus, for all k satisfying

k≥T1,1+
log 2+γ

γ
+log(

√
rκ)

log
(
1+ (∥x1∥6−∥x2∥6)(1−θ)

4(θι3
√
rκ+(1−θ))∥x1∥6

) :=T1,1+T1,2,

we have ρk≥ 2+γ
γ
. Obviously,

T1,2≤C ′
θ,δι

3
√
rκ(logγ−1+logr+logκ)≤Cθ,δr

2.1κ4.2(logγ−1+logr+logκ)

for some constants C ′
θ,δ and Cθ,δ.

By setting T1 :=T1,1+T1,2, we conclude the proofs of Step 3.

Step 4.

Let T2 be the minimum integer such that T2≥T1 and |α(1)
T2
−∥x1∥|≤ γ

2
∥x1∥. We prove

that T2≤T1+Cθ,∥x1∥γ
−1(logr+logκ).

Noticing the definition νk :=
α
(1)
k

∥x1∥ , it suffices to determine the minimum T2 such

that T2≥T1 and νT2∈
[
1− γ

2
,1+ γ

2

]
. By the result of Step 3, we have ρk≥ 2+γ

γ
>
√

2−γ
γ

for all k≥ T1, which implies (1+ρ−2
k )−1 ≥ 1− γ

2
for all k≥ T1. This together with

(4.12) gives

νk+1≥
(
θ+(1−θ)

(
1− γ

2

)2
ν−3
k

)
νk, ∀ k≥T1. (4.23)

We consider the following three cases.

• Case I: νT1 ∈
[
1− γ

2
,1+ γ

2

]
. We are done.

• Case II: νT1 <1− γ
2
.

It follows from (4.23) that νk+1 >νk if νk < 1− γ
2
. In other words, the first

few terms in νT1 , νT1+1, ... is monotonically strictly increasing. Let K1 be the
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minimum integer such that K1>T1 and νK1 ≥1− γ
2
. In the following we will

show that νK1 ≤1+ γ
2
. Since

νK1 ≤θνK1−1+(1−θ)ν−2
K1−1 :=f(νK1−1),

We only need to show f(νK1−1)≤ 1+ γ
2
. We have f ′(t0) = 0 if and only if

t0=
(

2(1−θ)
θ

)1/3
, and f ′(t)>0 for t∈ [t0,+∞). Moreover, (4.23) yields

νK1−1≥
θ

2
νK1−2+

θ

2
νK1−2+(1−θ)

(
1− γ

2

)2
ν−2
K1−2≥1.88θ

2
3 (1−θ)

1
3

(
1− γ

2

)2/3
:=t1.

Let t2 :=1− γ
2
. Therefore, provided t1≥ t0, i.e.,(

2(1−θ)

θ

)1/3

≤1.88θ
2
3 (1−θ)

1
3

(
1− γ

2

)2/3
⇐⇒ θ≥ 2

1
3

1.88

(
1− γ

2

)−2/3

, (4.24)

we have t2>νK1−1≥ t1≥ t0 and thus

f(νK1−1)≤f(t2).

A simple calculation reveals that

f(t2)≤1+
γ

2
⇐⇒ θ≥

1
2
γ+ 1

4
γ2− 1

8
γ3

3
2
γ− 3

4
γ2+ γ3

8

. (4.25)

Now we choose θ∈ (0.7,1), so that both (4.24) and (4.25) are satisfied for all
γ≤0.05. Consequently, νK1 ∈

[
1− γ

2
,1+ γ

2

]
. It remains to estimate K1. Using

(4.23) and the lower bound of νk leads to,

1− γ

2
>νK1−1≥

(
θ+(1−θ)

(
1− γ

2

)−1
)
νK1−2≥ ...

≥
(
θ+(1−θ)

(
1− γ

2

)−1
)K1−T1

νT1+1

≥
(
θ+(1−θ)

(
1− γ

2

)−1
)K1−T1

·1.88θ
2
3 (1−θ)

1
3

(
1− γ

2

)2/3
,

from which it follows that, for all γ∈(0,0.05) and θ∈(0.7,1),

K1−T1≤
1
3
log
(
1− γ

2

)
−log

(
1.88θ2/3(1−θ)1/3

)
log
(
θ+(1−θ)

(
1− γ

2

)−1
)

≤
−log

(
1.88θ2/3(1−θ)1/3

)
1
2
(1−θ) γ

2−γ

≤Cθγ
−1

for some constant Cθ. Therefore, we have νK1 ≥1− γ
2
with K1−T1≤Cθγ

−1.
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• Case III: νT1 >1+ γ
2
. It follows from (4.14) that

νk+1≤
(
θ+(1−θ)ν−3

k

)
νk<νk, for k=T1,T1+1,...,K2−1, (4.26)

where we have defined K2 to be the minimum integer such that K2>T1 and
νK2≤1+ γ

2
. If νK2≥1− γ

2
, then νK2∈

[
1− γ

2
,1+ γ

2

]
and we are done. Otherwise,

νK2<1− γ
2
, and it is reduced to Case II; more precisely, νK3∈

[
1− γ

2
,1+ γ

2

]
with

K3−K2≤Cθγ
−1.

It remains to estimate K2. Eq. (4.26) implies

1+
γ

2
<νK2−1≤

(
θ+(1−θ)ν−3

K2−2

)
νK2−2≤

(
θ+(1−θ)

(
1+

γ

2

)−3
)
νK2−2

≤ ...≤
(
θ+(1−θ)

(
1+

γ

2

)−3
)K2−T1−1

·νT1

≤
(
θ+(1−θ)

(
1+

γ

2

)−3
)K2−T1−1

·ν

with ν being the upper bound of νk defined in (4.11). Therefore, for any
γ∈(0,0.05),

K2−T1≤1+
log ν

1+ γ
2

−log
(
θ+(1−θ)

(
1+ γ

2

)−3
)≤1+

logν

(1−θ)
(
1−
(
1+ γ

2

)−3
)

=1+
logν

(1−θ)
(
1−
(
1+ γ

2

)−1
)(

1+
(
1+ γ

2

)−1
+
(
1+ γ

2

)−2
)

≤C ′
θ,∥x1∥γ

−1(logr+logκ)

Combining all the cases above, we have

T2≤max{K1,K2,K3}≤T1+Cθγ
−1+C ′

θ,∥x1∥γ
−1(logr+logκ)≤T1+Cθ,∥x1∥γ

−1(logr+logκ)

Step 5.

We prove

√∑r
i=2

(
α
(i)
i

)2
+β2

k≤
γ
2
∥x1∥ for k=T2.

Since ρk≥ 2+γ
γ

and α
(1)
k ≤(1+ γ

2
)∥x1∥ when k=T2, we have

(1+ γ
2
)∥x1∥√∑r

i=2

(
α
(i)
k

)2
+β2

k

≥ α
(1)
k√∑r

i=2

(
α
(i)
k

)2
+β2

k

=ρk≥
2+γ

γ
,

which implies

√∑r
i=2

(
α
(i)
i

)2
+β2

k≤
γ
2
∥x1∥.



J.-F. Cai et al. / Ann. Appl. Math., x (202x), pp. 1-25 21

To sum up: When k=T2, we have

∥zk−x1∥=

√√√√∣∣∣α(1)
k −∥x1∥

∣∣∣2+ r∑
i=2

(
α
(i)
i

)2
+β2

k≤
∣∣∣α(1)

k −∥x1∥
∣∣∣+
√√√√ r∑

i=2

(
α
(i)
i

)2
+β2

k≤γ∥x1∥.

Moreover, T2 satisfies

T2≤Cθ,δr
2.1κ4.2(logγ−1+logr+logκ)+Cθ,∥x1∥γ

−1(logr+logκ)

5 Numerical Implements

In this section, we explore the performance of our proposed method for tensor de-
composition. For the stepsize, we initially set it to µ0=10−14 and then use Barzilai-
Borwein’s method (B-B method) to choose it during the iteration. Here we choose
stepsize as the absolute value of itself because stepsize is positive in general. The
algorithm stops when ∥gk∥<10−16, where gk=∇f(zk)−∇f(zk+1), or the maximal
iteration number is reached.

5.1 Numerical results

We demonstrate the numerical performance of our proposed method to find the
best rank-1 approximation. In order to verify the global convergence, we generate
A=

∑r
i=1xi⊗xi⊗xi, where {xi}ri=1 are nonzero orthogonal vectors and ∥x1∥>∥x2∥≥

···≥∥xr∥>0. We consider the following two examples.

Example 5.1. Let µ=(µ1 ··· µ6)=(0.6859 −0.5641 −0.5491 0.3792 −0.3530 0.0945)
and

y=[y1,··· ,y6]=



−0.3628 −0.2999 0.2888 −0.2649 −0.1895 −0.2424
0.3063 −0.4028 0.1969 −0.3806 0.5056 0.1386
−0.5211 −0.3685 −0.1368 0.1244 −0.1636 −0.3962
0.3728 −0.2374 −0.2764 0.0824 −0.6928 0.2981
0.0635 −0.3267 −0.6741 −0.4802 0.0819 −0.1060
0.3692 −0.3637 0.5396 −0.0581 −0.2898 −0.2125
0.2970 −0.3365 −0.1774 0.6795 0.3132 −0.3435
−0.3681 −0.4511 0.0750 0.2589 0.1135 0.7084


.

Set xi= 3
√
µiyi,i=1,··· ,6, and

A=
6∑

i=1

x⊗3
i .
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Example 5.2. Let A=x1⊗x1⊗x1+10·x2⊗x2⊗x2, where x1,x2∈Rn, x1∼N (0,I)
and xT

2 x1=0, ∥x2∥=1.

We first evaluate the effectiveness of our proposed algorithm in terms of the
smallest L required for successful tensor decomposition. We use 100 trials for test.
In each trial, we generate L random sampling vectors for initialization. We declare it
is successful if the error ∥z− zTx1

∥x1∥2x1∥<10−5, where z is the numerical solution. The
empirical probability of success is defined as the average of success over 100 trials.
We use n=128 for Example 5.2. Figure 1 gives the plot of the empirical probability
of success against the over sampling number L. We see that for a 100% successful
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Figure 1: The plot of the empirical probability of success against the over sampling number L, left for
Example 5.1 and right for Example 5.2.

convergence to global minimizer we need a large L – L is about 160 for Example
5.1. We see also that the success rate increases with respect to L. It confirms that
a multi-start of our algorithm with large L is necessary for a global minimum.

Next, we demonstrate the efficiency of our proposed method. To investigate the
convergence of zk generated by the proposed algorithm, we calculate and demon-
strate the change of the relative error ∥zk−x1∥/∥x1∥ to the global minimizer, the

coefficient α
(1)
k = ⟨zk,x1⟩

∥x1∥ of the projection of zk onto the span of x1, and the coeffi-

cient χk=
(
∥zk∥2−(α

(1)
k )2

)1/2
of zk onto the orthogonal complementary of x1. We

use L=200 in the following all experiments. For Example 5.2, we actually vary the
dimension numbers n with n=64,128,256,512 and the results are almost the same.
Here we only show the results with n=128 to save page.

In Figure 2, we plot ∥zk−x1∥/∥x1∥, |α(1)
k |, and χk versus the iteration number

k for Examples 5.1 and 5.2, respectively. From these figures, we observe that the
gradient descent algorithm with the initialization in (3.2) to solve (1.4) does not hit
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Figure 2: Plots of ∥zk−x1∥/∥x1∥, |α(1)
k |, and χk versus the iteration number, left for Example 5.1 and

right for Example 5.2.

the saddle points, local minima, or 0 at all. It will converge to global minimizer,
although the nonconvex optimization objective function here has numerous critical
points, including local (global) minima, saddle points, and 0. That is, starting
from the designed initialization, gradient descent will bypass the saddle points and
entry the local region containing the truth. This observation is consistent with our
theoretical results in the previous sections.

6 Conclusion

In this paper, we use nonconvex optimization model (1.4) to find the best rank-
one approximation of a symmetric tensor. First of all, we give the optimization
landscape of the nonconvex optimization (1.4). We find that the local minimizers
are the factors in the CP low-rank decomposition of the given symmetric tensor.
We use gradient descent to solve the nonconvex optimization model. We prove
that gradient descent from one careful initialization will arrive at one convex region
of the global minimizer after at most finite steps and then converge to the local
minimizer linearly. Numerical results coincide with the theoretical proof. For the
future directions of tensor decomposition, we may focus on the theoretical proof of
noisy tensor and some applications of tensor decomposition, for example, ℓp-norm
maximization.
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