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Abstract

This paper explores robust recovery of a superposition of R distinct complex exponential functions
with or without damping factors from a few random Gaussian projections. We assume that the signal
of interest is of 2N − 1 dimensions and R < 2N − 1. This framework covers a large class of signals
arising from real applications in biology, automation, imaging science, etc. To reconstruct such a signal,
our algorithm is to seek a low-rank Hankel matrix of the signal by minimizing its nuclear norm subject
to the consistency on the sampled data. Our theoretical results show that a robust recovery is possible
as long as the number of projections exceeds O(R ln2

N). No incoherence or separation condition is
required in our proof. Our method can be applied to spectral compressed sensing where the signal of
interest is a superposition of R complex sinusoids. Compared to existing results, our result here does not
need any separation condition on the frequencies, while achieving better or comparable bounds on the
number of measurements. Furthermore, our method provides theoretical guidance on how many samples
are required in the state-of-the-art non-uniform sampling in NMR spectroscopy. The performance of our
algorithm is further demonstrated by numerical experiments.

1 Introduction

Many practical problems involve signals that can be modeled or approximated by a superposition of a few
complex exponential functions. In particular, if we choose the exponential function to be complex sinusoid,
it covers signals in acceleration of medical imaging [15], analog-to-digital conversion [24], inverse scattering
in seismic imaging [1], etc. Time domain signals in nuclear magnetic resonance (NMR) spectroscopy, that
are widely used to analyze the compounds in chemistry and protein structures in biology, are another type
of signals that can be modeled or approximated by a superposition of complex exponential functions [18].
How to recover those superposition of complex exponential functions is of primary importance in those
applications.

In this paper, we will consider how to recover those complex exponentials from linear measurements of
their superposition. More specifically, let x̂ ∈ C2N−1 be a vector satisfying

x̂j =

R
∑

k=1

ckz
j
k, j = 0, 1, . . . , 2N − 2, (1)

where zk ∈ C, k = 1, . . . , R, are some unknown complex numbers. In other words, x̂ is a superposition of
R exponential functions. We assume R < 2N − 1. When |zk| = 1, k = 1, . . . , R, x̂ is a superposition of
complex sinusoids. When zk = e−τke2πıfk , k = 1, . . . , R, x̂ models the signal in NMR spectroscopy.
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Since R < 2N−1, the degree of freedom to determine x̂ is much less than the ambient dimension 2N−1.
Therefore, it is possible to recover x̂ from its under-sampling [3,5,8,12]. In particular, we consider to recover
x̂ from its linear measurement

b = Ax̂, (2)

where A ∈ CM×(2N−1) with M < 2N − 1.
We will use a Hankel structure to reconstruct the signal of interest x̂. The Hankel structure originates

from the matrix pencil method [14] for harmonic retrieval for complex sinusoid. The conventional matrix
pencil method assumes fully observed x̂ as well as the model order R, which are both unknown here.
Following the ideas of the matrix pencil method in [14] and enhanced matrix completion (EMaC) in [10], we

construct a Hankel matrix based on signal x̂. More specifically, define the Hankel matrix Ĥ ∈ CN×N by

Ĥjk = x̂j+k, j, k = 0, 1, . . . , N − 1. (3)

Throughout this paper, indices of all vectors and matrices start from 0, instead of 1 in conventional notations.
It can be shown that Ĥ is a matrix with rank R. Instead of reconstructing x̂ directly, we reconstruct the
rank-R Hankel matrix Ĥ, subject to the constraint that (2) is satisfied.

Low rank matrix recovery has been widely studied [2,5,6,19]. It is well known that minimizing the nuclear
norm tends to lead to a solution of low-rank matrices. Therefore, a nuclear norm minimization problem
subject to the constraint (2) is proposed. More specifically, for any given x ∈ C2N−1, let H(x) ∈ CN×N be
the Hankel matrix whose first row and last column is x, i.e., [H(x)]jk = xj+k. We propose to solve

min
x

‖H(x)‖∗, subject to Ax = b, (4)

where ‖ · ‖∗ is the nuclear norm function (the sum of all singular values), and A and b are from the linear
measurement (2). When there is noise contained in the observation, i.e.,

b = Ax̂+ η,

we solve
min
x

‖H(x)‖∗, subject to ‖Ax− b‖2 ≤ δ, (5)

where δ = ‖η‖2 is the noise level.
An important theoretical question is how many measurements are required to get a robust reconstruction

of Ĥ via (4) or (5). For a generic unstructured N × N matrix of rank R, standard theory [6, 7, 9, 19]
indicates that O(NR · poly(logN)) measurements are needed for a robust reconstruction by nuclear norm

minimization. This result, however, is unacceptable here since the number of parameters of Ĥ is only 2N−1
with the actual degrees of freedom R. The main contribution of this paper is then to prove that (4) and (5)

give a robust recovery of Ĥ (hence x̂) as soon as the number of projections exceeds O(R ln2 N) if we choose
the linear operator A to be some scaled random Gaussian projections. This result is further extended to the
robust reconstruction of low-rank Hankel or Toeplitz matrices from its few Gaussian random projections.

Our result can be applied to various signals of superposition of complex exponentials, including, but
not limited to, signals of complex sinusoids and signals in accelerated NMR spectroscopy. When applied
to complex sinusoids, our result here does not need any separation condition on the frequencies, while
only requiring O(R ln2 N) measurements instead of O(R ln4 N) in [10]. Furthermore, our theoretical result
provides some guidance on how many samples to choose for the model proposed in [18] to recover NMR
spectroscopy.

• Complex sinusoids. When |zk| = 1 for k = 1, . . . , R, we must have zk = e2πıfk for some frequency
fk. In this case, x̂ is a superposition of complex sinusoids, for example, in the analog-to-digital
conversion of radio signals [24]. We often encounter the problem of signal recovery from compressed
linear measurements of the superposition of complex sinusoids in various applications. For example,
in compressed sensing of spectrally sparse bandlimited signals [24], the random demodulator obtains
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linear mixing measurements of spectrally sparse bandlimited signals through matching filters. We refer
the reader to Sections III and IV of [24] for details. In array signal processing for Direction of Arrival
(DoA) estimation of electromagnetic waves [25], the signals received at the antennas of the antenna
array are a superposition of complex sinusoids with different frequencies. Suppose that the battery-
powered antenna array aims to save energy in sending the measurements to the fusion center where the
DoAs are calculated, the antenna array can send linear projections of the signals received across the
antenna array. Moreover, if the antenna array is a non-uniform antenna array, the observations across
the antenna array are also linear non-uniform compressive sampling of the uniform antenna array.

The problem on recovering x̂ from its as few as possible linear measurements (2) may be solved using
compressed sensing (CS) [8]. One can discretize the domain of frequencies fk by a uniform grid. When
the frequencies fk indeed fall on the grid, x̂ is sparse in the discrete Fourier transform domain, and
CS theory [8, 12] suggests that it is possible to reconstruct x̂ from its very few samples via ℓ1-norm
minimization, provided that R ≪ 2N − 1. Nevertheless, the frequencies fk in our setting usually do
not exactly fall on a grid. The basis mismatch between the true parameters and the grid based on
discretization degenerates the performance of conventional compressed sensing [11].

To overcome this, the authors of [4, 22] proposed to recover off-the-grid complex sinusoid frequencies
using total variation minimization or atomic norm [9] minimization. They proved that the total
variation minimization or atomic norm minimization can have a robust reconstruction of x̂ from a
non-uniform sampling of very few entries of x̂, provided that the frequencies fk, k = 1, . . . , R, has a
good separation. Another method for recovering off-the-grid frequencies is enhanced matrix completion
(EMaC) proposed by Chen et al [10], where the Hankel structure plays a central role similar to our
model. The main result in [10] is that the complex sinusoids x̂ can be robustly reconstructed via
EMaC from its very few non-uniformly sampled entries. Again, the EMaC requires a separation of the
frequencies, described implicitly by an incoherence condition.

When applied to complex sinusoids, compared to the aforementioned existing results, our result in this
paper does not need any separation condition on the frequencies, while achieving better or comparable
bounds on the number of measurements.

• Accelerated NMR spectroscopy. When zk = e−τke2πıfk , k = 1, . . . , R, x̂ models the signal
in NMR spectroscopy, which arises frequently in studying short-lived molecular systems, monitoring
chemical reactions in real-time, high-throughput applications, etc. Recently, Qu et al. [18] proposed an
algorithm based on low rank Hankel matrix. In this specific application, A is a matrix that denotes the
under-sampling of NMR signals in the time domain. We remark that linear non-uniform subsampling
measurements of the signal can greatly speed up the NMR spectroscopy [18]. Numerical results show
its efficiency in [18] for which theoretical guarantee results are still needed. It is vital to give some
theoretical results on this model since it will give us some guidance on how many samples should be
chosen to guarantee the robust recovery. Though the result in [10] applies to this problem, it needs an
incoherence condition, which remains uncertain for diverse chemical and biology samples. Our result
in this paper does not require any incoherence condition. Moreover, our bound is better than that
in [10].

The rest of this paper is organized as follows. We begin with our model and our main results in Section
2. Proofs for the main result are given in Section 3. Then, in Section 4, we extend the main result to
the reconstruction of generic low-rank Hankel or Toeplitz matrices. The performance of our algorithm is
demonstrated by numerical experiments in Section 5. Finally, in Section 6, we conclude the paper and point
out some possible future works.
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2 Model and Main Results

Our approach is based on the observation that the Hankel matrix whose first row and last column consist of
entries of x̂ has rank R. Let Ĥ be the Hankel matrix defined by (3). Eq. (1) leads to a decomposition

Ĥ =











1 . . . 1
z1 . . . zR
...

...
...

zN−1
1 . . . zN−1

R

















c1
. . .

cR













1 z1 . . . zN−1
1

...
...

...

1 zR . . . zN−1
R







Therefore, the rank of Ĥ is R. Similar to Enhanced Matrix Completion (EMaC) in [10], in order to

reconstruct x̂, we first reconstruct the rank-R Hankel matrix Ĥ, subject to the constraint that (2) is

satisfied. Then, x̂ is derived directly by choosing the first row and last column of Ĥ . More specifically, for
any given x ∈ C2N−1, let H(x) ∈ CN×N be the Hankel matrix whose first row and last column is x, i.e.,
[H(x)]jk = xj+k. We propose to solve

min
x

rank(H(x)), subject to Ax = b, (6)

where rank(H(x)) denotes the rank of H(x), and A and b are from the linear measurement (2). When
there is noise contained in the observation, i.e, b = Ax̂+ η, we correspondingly solve

min
x

rank(H(x)), subject to ‖Ax− b‖2 ≤ δ, (7)

where δ = ‖η‖2 is the noise level.
These two problems are all NP hard problems and not easy to solve. Following the ideas of matrix

completion and low rank matrix recovery [6, 7, 9, 19], it is possible to exactly recover the low rank Hankel
matrix via nuclear norm minimization. Therefore, it is reasonable to use nuclear norm minimization for our
problem and it leads to the models in (4) and (5).

Theoretical results are desirable to guarantee the success of this Hankel matrix completion method. The
results in [6, 7, 9, 19] do not consider the Hankel structure. For generic N ×N rank-R matrix, they requires
O(NR ·poly(logN)) measurements for robust recovery which is too much since there are only 2N−1 degrees
of freedom in H(x). The theorems proposed in [22] work only for a special case where signals of interest
are superpositions of complex sinusoids, which excludes, e.g., the signals in NMR spectroscopy. While the
results from [10] extend to complex exponentials, the performance guarantees in [4,10,22] require incoherence
conditions, implying the knowledge of frequency interval in spectroscopy, which are not available before the
realistic sampling of diverse chemical or biological samples. This limits the applicability of these theories.

It is challenging to provide a theorem guaranteeing the exact recovery for model (4) with arbitrarily
linear measurements A. In this paper, we provide a theoretical result ensuring exact recovery when A is
a scaled random Gaussian matrix. Our result does not assume any incoherence conditions on the original
signal.

Theorem 1. Let A = BD ∈ CM×(2N−1), where B ∈ CM×(2N−1) is a random matrix whose real and
imaginary parts are i.i.d. Gaussian with mean 0 and variance 1, D ∈ R(2N−1)×(2N−1) is a diagonal matrix
with the j-th diagonal

√
j + 1 if j ≤ N − 1 and

√
2N − 1− j otherwise. Then, there exists a universal

constant C1 > 0 such that, for an arbitrary ǫ > 0, If

M ≥ (C1

√
R lnN +

√
2ǫ)2 + 1,

then, with probability at least 1− 2e−
M−1

8 , we have

(a) x̃ = x̂, where x̃ is the unique solution of (4) with b = Ax̂;

(b) ‖D(x̃− x̂)‖2 ≤ 2δ/ǫ, where x̃ is the unique solution of (5) with ‖b−Ax̂‖2 ≤ δ.
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The scaling matrixD is introduced to preserve energy. In particular, we will introduce a variable y = Dx,
and then the operator G induced by Gy = H(x) satisfies ‖y‖2 = ‖Gy‖F ; see details in (9). This energy
preserving property is critical in our estimation that will be seen later.

The number of measurements required is O(R ln2 N), which is reasonable small compared with the
number of parameters in H(x). Furthermore, there is a parameter ǫ in Theorem 1. For the noise-free case
(a), the best choice of ǫ is obviously a number that is very close to 0. For the noisy case (b), we can balance
the error bound and the number of measurements to get an optimal ǫ. On the one hand, according to the
result in (b), in order to make the error in noisy case as small as possible, we would like ǫ to be as large as
possible. On the other hand, we would like to keep the measurements M of the order of R ln2 N . Therefore,
a seemingly optimal choice of ǫ is ǫ = O(

√
R lnN). With this choice of ǫ, the number of measurements

M = O(R ln2 N) and the error ‖D(x̃− x̂)‖2 ≤ O
(

δ√
M

)

.

Compared to results in [10,22], our theorem does not require any incoherence condition of the matrix Ĥ.
In particular, our proposed approach for complex sinusoid signals does not need any separation condition
on frequencies fk’s for k = 1, 2, . . . , R. The reason for not needing a separation condition in noiseless
case may be due to the Hankel matrix reconstruction method. Our proof of this fact also depends on the
assumption of Gaussian measurements, for which we have the tool of Gaussian width analysis framework. For
generic low-rank matrix reconstruction, it is well known that incoherence condition is necessary for successful
reconstruction if partial entries of the underlying matrix are sampled [6, 7]; however, incoherence is not
required if Gaussian random projections are used [9,19]. We are in the same situation except for the additional

Hankel structure. Our proposed approach uses Gaussian random projections of Ĥ, while the methods in [10,

22] sample partial entries Ĥ. However, empirically, even for non-uniform time-domain samples, we observe
that Hankel matrix completion does not seem to require the separation condition between frequencies. We
thus conjecture that Hankel matrix completion does not require separations-between-frequencies condition
to recover missing data from noiseless measurements under non-uniform time-domain samples, for which we
currently do not have a proof.

2.1 Hankel matrix completion for recovering off-the-grid frequencies

Our results also apply to recovering frequencies in superposition of complex sinusoids, instead of recovering
only the superposition of complex sinusoids. We divide our discussion into two cases.

The first case is the noise-free case, where the observations are not contaminated by additive noises. In
this case, since we can recover the full signal of the superposition of the underlying sinusoids, we can use the
single-snapshot MUSIC algorithm [26] to recover the underlying frequencies precisely.

The second case is the noisy case, where the observation is contaminated by additive noises. For this case,
we have obtained a bound on the recovery error for the superposition signal (Theorem 1 of our paper). We
can further recover the frequencies using the single-snapshot MUSIC algorithm by choosing the R smallest
local minimum of surrogate criterion function R(ω) in [26]. In [26], the authors provided the stability result
of recovering frequency using the single-snapshot MUSIC algorithm (Theorem 3 of [26]). Specifically, the
error in surrogate criterion function R(ω) is upper bounded by the Euclidean norm of the observation noise
multiplied by a constant C, where the constant C depends on the largest and smallest nonzero singular
values of the involved Hankel matrix. Moreover, the recovered frequency deviates from the true frequency
in the order of noise standard deviation when the noise is small (Remark 9 of [26]). We remark that this
stability result from [26] is applicable without imposing separation condition on frequencies.

For frequencies satisfying a certain separation condition (Equation (23) of [26]), the authors of [26]
further provide stronger and more explicit bounds on the stability of recovering frequencies from noisy data
(by explicitly bounding the singular values of the involved Hankel matrix).

Moitra [27] proved that stability of recovering frequencies from noisy observations depends on the separa-
tion of frequencies. In particular, [27] shows a sharp phase transition for the relationship between the cutoff
time observation index m (namely 2N − 1 in this paper) and the frequency separation δ. If m > 1/δ + 1,
there is a polynomial-complexity estimator converging to the true frequencies at an inverse polynomial rate
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in terms of the magnitude of the noise. And conversely, when m < (1 − ǫ)/δ, no estimator can distinguish
between a particular pair of δ-separated signals if the magnitude of the noise is not exponentially small.

However, the converse results in [27] are dealing with worst-case frequencies and worst-case frequency
coefficients. Namely if the separation condition is not satisfied, one can always finds a worst-case pair
of signals x and x′ such that telling them apart requires exponentially small noise. Thus Moitra’s result
in [27] is not for an average-case, fixed signal x. Moreover, Moitra’s results does not mean that the single-
snapshot MUSIC cannot tolerate small noises in recovering frequencies. By comparison, in this paper, our
stability result is an average-case stability result, where our spectrally sparse signal is a fixed signal of
superposition of complex exponentials, and our stability result is obtained over the ensemble of random
Gaussian measurements. Our results are especially useful when the observations are noiseless or have high
SNR.

3 Proof of Theorem 1

In this section, we prove the main result Theorem 1. The most crucial factors are that i) one has an explicit
formula for the subdifferential of the objective function, and ii) The Gaussian width under the current
measurement model is computable.

3.1 Orthonormal Basis of the N ×N Hankel Matrices Subspace

In this subsection, we introduce an orthonormal basis of the subspace of N ×N Hankel matrices and use it
to define a projection from CN×N to the subspace of all N ×N Hankel matrices.

Let Ej ∈ CN×N , j = 0, 1 . . . , 2N − 2, be the Hankel matrix satisfying

[Ej ]kl =

{

1/
√

Kj, if k + l = j,

0, otherwise,
k, l = 0, . . . , N − 1, (8)

where Kj = j+1 for j ≤ N − 1 and Kj = 2N − 1− j for j ≥ N − 1 is the number of non-zeros in Ej . Then,
it is easy to check that {Ej}2N−2

j=0 forms an orthonormal basis of the subspace of all N ×N Hankel matrices,

under the standard inner product in CN×N .
Define a linear operator

G : x ∈ C
2N−1 7→ Gx =

2N−2
∑

j=0

xjEj ∈ C
N×N . (9)

The adjoint G∗ of G is

G∗ : X ∈ C
N×N 7→ G∗X ∈ C

2N−1, [G∗X]j = 〈X,Ej〉.

Obviously, G∗G is the identity operator in C
2N−1, and GG∗ is the orthogonal projector onto the subspace of

all Hankel matrices.

3.2 Recovery condition based on restricted minimum gain condition

First of all, let us simplify the minimization problem (4) by introducing D ∈ C(2N−1)×(2N−1), the diagonal
matrix with j-th diagonal

√

Kj. Then, by letting y = Dx, (4) is rewritten as,

min
y

‖Gy‖∗ subject to By = b, (10)

where B = AD−1. Recall that G satisfies G∗G = I, which is crucial in the proceeding analysis. Similarly,
for the noisy case, (5) is rearranged to

min
y

‖Gy‖∗ subject to ‖By − b‖2 ≤ ǫ. (11)
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By our assumption in Theorem 1, B ∈ CM×(2N−1) is a random matrix whose real and imaginary parts
are both real-valued random matrices with i.i.d. Gaussian entries of mean 0 and variance 1. We will prove
ỹ = Dx̂ (respectively ‖ỹ − ŷ‖2 ≤ 2δ/ǫ) with dominant probability for problem (10) for the noise free case
(respectively (11) for the noisy case).

Let the desent cone of ‖G · ‖∗ at ŷ be

T(ŷ) = {λz | λ ≥ 0, ‖G(ŷ + z)‖∗ ≤ ‖Gŷ‖∗}. (12)

To characterize the recovery condition, we need to use the minimum value of ‖Bz‖2

‖z‖2
for nonzero z ∈ T(ŷ).

This quantity is commonly called theminimum gain of the measurement operatorB restricted on T(ŷ) [9]. In
particular, if the minimum gain is bounded away from zero, then the exact recovery (respectively approximate
recovery) for problem (10) (respectively (11)) holds.

Lemma 1. Let T(ŷ) be defined by (12). Assume

min
z∈T(ŷ)

‖Bz‖2
‖z‖2

≥ ǫ. (13)

(a) Let ỹ be the solution of (10) with b = Bŷ. Then ỹ = ŷ.

(b) Let ỹ be the solution of (11) with ‖b−Bŷ‖2 ≤ δ. Then ‖ỹ − ŷ‖2 ≤ 2δ/ǫ.

Proof. Since (a) is a special case of (b) with δ = 0, we prove (b) only. The optimality of ỹ implies ỹ−ŷ ∈ T(ŷ).
By (13), we have

‖ỹ − ŷ‖2 ≤
1

ǫ
‖B(ỹ − ŷ)‖2 ≤ 1

ǫ
(‖Bỹ − b‖2 + ‖Bŷ − b‖2) ≤ 2δ/ǫ.

Minimum gain condition is a powerful concept and has been employed in recent recovery results via ℓ1
norm minimization, block-sparse vector recovery, low-rank matrix reconstruction and other atomic norms [9].

3.3 Bound of minimum gain via Gaussian width

Lemma 1 requires to estimate the lower bound of minz∈T(ŷ)
‖Bz‖2

‖z‖2
. Gordon gave a solution using Gaussian

width of a set [9, 13] to estimate the lower bound of minimum gain.

Definition 1. The Gaussian width of a set S ⊂ Rp is defined as:

w(S) := Eξ

[

sup
γ∈S

γT ξ

]

,

where ξ ∈ Rp is a random vector of independent zero-mean unit-variance Gaussians.

Let λn denote the expected length of a n-dimensional Gaussian random vector. Then λn =
√
2Γ(n+1

2 )/Γ(n2 )
and it can be tightly bounded as n√

n+1
≤ λn ≤ √

n [9]. The following theorem is given in Corollary 1.2

in [13]. It gives a bound on minimum gain for a random map Π : Rp 7→ Rn.

Theorem 2 (Corollary 1.2 in [13]). Let Ω be a closed subset of {x ∈ Rp|‖x‖2 = 1}. Let Π ∈ Rn×p be a
random matrix with i.i.d. Gaussian entries with mean 0 and variance 1. Then, for any ǫ > 0,

P

(

min
z∈Ω

‖Πz‖2 ≥ ǫ

)

≥ 1− e−
1
2 (λn−w(Ω)−ǫ)2 ,

provided λn − w(Ω) − ǫ ≥ 0. Here n√
n+1

≤ λn ≤ √
n, and w(Ω) is the Gaussian width of Ω.
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By converting the complex setting in our problem to the real setting and using Theorem 2, we can get
the bound of (13) in terms of Gaussian width of TR(ŷ)∩ S

4N−3
R

, where TR(ŷ) is a cone in R4N−2 defined by

TR(ŷ) =

{[

α

β

]

∣

∣

∣ α+ ıβ ∈ T(ŷ)

}

. (14)

Lemma 2. Let the real and imaginary parts of entries of B ∈ C
M×(2N−1) be i.i.d. Gaussian with mean 0

and variance 1. Let TR(ŷ) be defined by (14) and S2N−2
c be the unit sphere in C2N−1. Then for any ǫ > 0,

P

(

min
z∈T(ŷ)∩S

2N−2
c

‖Bz‖2 ≥ ǫ

)

≥ 1− 2e
− 1

2

(

λM−w(TR(ŷ)∩S
4N−3
R

)− ǫ√
2

)2

,

where S
4N−3
R

is the unit sphere in R4N−2.

Proof. In order to use Theorem 2, we convert the complex setting in our problem to the real setting in
Theorem 2. We will use Roman letters for vectors and matrices in complex-valued spaces, and Greek letters
for real valued ones. Let B = Φ + ıΨ ∈ CM×(2N−1), where both Φ ∈ RM×(2N−1) and Ψ ∈ RM×(2N−1)

are real-valued random matrices whose entries are i.i.d. mean-0 variance-1 Gaussian. Then, for any z =
α+ ıβ ∈ C2N−1 with α,β ∈ R2N−1,

‖Bz‖2 = ‖(Φ+ ıΨ)(α+ ıβ)‖2 = ‖(Φα−Ψβ) + ı(Ψα+Φβ)‖2

=

(

∥

∥

∥

∥

[

Φ −Ψ
]

[

α

β

]∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

[

Ψ Φ
]

[

α

β

]∥

∥

∥

∥

2

2

)1/2

Then

min
z=α+ıβ∈T(ŷ)∩S

2N−2
c

∥

∥

∥

∥

[

Φ −Ψ
]

[

α

β

]∥

∥

∥

∥

2

≥ ǫ/
√
2, and min

z=α+ıβ∈T(ŷ)∩S
2N−2
c

∥

∥

∥

∥

[

Ψ Φ
]

[

α

β

]∥

∥

∥

∥

2

≥ ǫ/
√
2 (15)

implies
min

z∈T(ŷ)∩S
2N−2
c

‖Bz‖2 ≥ ǫ.

Therefore,

P

(

min
z∈T(ŷ)∩S

2N−2
c

‖Bz‖2 ≥ ǫ

)

≥ P ((15) holds true) .

It is easy to see that both
[

Φ −Ψ
]

and
[

Ψ Φ
]

are real-valued random matrices with i.i.d. Gaussian
entries of mean 0 and variance 1. By Theorem 2,

P ((15) holds true) ≥ 1− 2e
− 1

2

(

λM−w(TR(ŷ)∩S
4N−3
R

)− ǫ√
2

)2

,

and therefore we get the desired result.

3.4 Estimation of Gaussian width w(TR(ŷ) ∩ S
4N−3
R

)

Denote T∗
R
(ŷ) be polar cone of TR(ŷ) ∈ R

4N−2, i.e.,

T∗
R
(ŷ) = {δ ∈ R

4N−2 | γTδ ≤ 0, ∀γ ∈ TR(ŷ)}. (16)

Following the arguments in Proposition 3.6 in [9], we obtain

w(TR(ŷ) ∩ S
4N−3
R

) = E

(

sup
γ∈TR(ŷ)∩S

4N−3
R

ξTγ

)

≤ E

(

min
γ∈T∗

R
(ŷ)

‖ξ − γ‖2
)

, (17)
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where ξ ∈ R4N−2 is a random vector of i.i.d. Gaussian entries of mean 0 and variance 1. Hence, instead

of estimating Gaussian width w(TR(ŷ) ∩ S
4N−3
R

), we bound E

(

minγ∈T∗
R
(ŷ) ‖ξ − γ‖2

)

. For this purpose, let

F : R4N−2 7→ R be defined by

F
([

α

β

])

= ‖G(α+ ıβ)‖∗. (18)

The following lemma gives us a characterization of E
(

minγ∈T∗
R
(ŷ) ‖ξ − γ‖2

)

in terms of the subdifferential

∂F of F .

Lemma 3. Let T∗
R
(ŷ) and F be defined by (16) and (18) respectively. Let ω̂1, ω̂2 ∈ R2N−1 be the real and

imaginary parts of ŷ respectively and denote ω̂ =

[

ω̂1

ω̂2

]

. Then

T∗
R(ŷ) = cone (∂F (ω̂)) =

{

λδ | λ ≥ 0, F (γ + ω̂) ≥ F (ω̂) + γT δ, ∀γ ∈ R
4N−2

}

. (19)

Proof. It is observed that TR(ŷ) in (14) is the descent cone of the function F

TR(ŷ) = {δγ | δ ≥ 0, F (γ + ω̂) ≤ F (ω̂)} .

According to Theorem 23.4 in [20], the cone dual to the descent cone is the conic hull of subgradient, which
is exactly (19).

The following lemma gives us an estimation of Gaussian width w(TR(ŷ) ∩ S
4N−3
R

) in terms of E(‖Gg‖2).

Lemma 4. Let TR(ŷ) and G be defined by (14) and (9) respectively. Then

w(TR(ŷ) ∩ S
4N−3
R

) ≤ 3
√
R · E(‖Gg‖2),

where E(‖Gg‖2) is the expectation with respect to g ∈ C2N−1. Here g is a random vector whose real and
imaginary parts are i.i.d. mean-0 and variance-1 Gaussian entries.

Proof. By using (17) and Lemma 3, we need to find ∂F (ω̂) and thus T∗
R
(ŷ). Let Ω̂1 = Gω̂1 and Ω̂2 = Gω̂2.

Then Gŷ = Ω̂1 + ıΩ̂2. Let a singular value decomposition of the rank-R matrix Gŷ be

Gŷ = UΣV ∗, with U = Θ1 + ıΘ2, V = Ξ1 + ıΞ2, (20)

where Θ1,Θ2,Ξ1,Ξ2 ∈ RN×R and Σ ∈ RR×R, and U ∈ CN×R and V ∈ CN×R satisfies U∗U = V ∗V = I.
Then, by direct calculation,

Θ ≡
[

Θ1 −Θ2

Θ2 Θ1

]

∈ R
2N×(2R), Ξ ≡

[

Ξ1 −Ξ2

Ξ2 Ξ1

]

∈ R
2N×(2R) (21)

satisfy ΘTΘ = ΞTΞ = I. Moreover, if we define Ω̂ =

[

Ω̂1 −Ω̂2

Ω̂2 Ω̂1

]

, then

Ω̂ = Θ

[

Σ

Σ

]

ΞT (22)

is a singular value decomposition of the real matrix Ω̂, and the singular values Ω̂ are those of Gŷ, each
repeated twice. Therefore,

F (ω̂) = ‖Gŷ‖∗ = ‖Σ‖∗ =
1

2
‖Ω̂‖∗. (23)

Define a linear operator E : R
4N−2 7→ R

2N×2N by

E
([

α

β

])

=

[

Gα −Gβ
Gβ Gα

]

, with α,β ∈ R
2N−1.

9



By (23) and the definition of Ω̂, we obtain F(ω̂) = 1
2‖Eω̂‖∗. From convex analysis theory and Ω̂ = Eω̂, the

subdifferential of F is given by

∂F(ω̂) =
1

2
E∗∂‖Ω̂‖∗. (24)

On the one hand, the adjoint E∗ is given by, for any ∆ =

[

∆11 ∆12

∆21 ∆22

]

∈ R2N×2N with each block in RN×N ,

E∗∆ =

[

G∗(∆11 +∆22)
G∗(∆21 −∆12)

]

. (25)

On the other hand, since (22) provides a singular value decomposition of Ω̂,

∂‖Ω̂‖∗ =
{

ΘΞT +∆ | ΘT∆ = 0, ∆Ξ = 0, ‖∆‖2 ≤ 1
}

. (26)

Combining (24)(25)(26) and (21) yields the subdifferential of F at ω̂

∂F(ω̂) =

{[

G∗ (Θ1Ξ
T
1 +Θ2Ξ

T
2 + ∆11+∆22

2

)

G∗ (Θ2Ξ
T
1 −Θ1Ξ

T
2 + ∆21−∆12

2

)

]

∣

∣

∣ ∆ =

[

∆11 ∆12

∆21 ∆22

]

, ΘT∆ = 0, ∆Ξ = 0, ‖∆‖2 ≤ 1

}

.

We are now ready for the estimation of the Gaussian width. Let the set S be a subset of the set of
complex-valued vectors

S = {G∗(UV ∗ +W ) | U∗W = 0, WV = 0, ‖W ‖2 ≤ 1} , (27)

where U ,V are in (20). Then, it can be checked that

H ≡
{[

α

β

]

∣

∣

∣
α+ ıβ ∈ S

}

⊂ ∂F(ω̂). (28)

Actually, for any W = ∆1 + ı∆2 satisfying U∗W = 0,WV = 0 and ‖W ‖2 ≤ 1, we choose ∆ =
[

∆1 −∆2

∆2 ∆1

]

. Obviously, this choice of∆ satisfies the constraints on∆ in ∂F(ω̂). Furthermore, UV ∗+W =

(Θ1Ξ
T
1 +Θ2Ξ

T
2 +∆1) + ı(Θ2Ξ

T
1 +Θ1Ξ

T
2 +∆2). Therefore, (28) holds.

With the help of (28), we get

min
γ∈T∗

R
(ŷ)

‖ξ − γ‖2 = min
λ≥0

min
γ∈∂F(ω̂)

‖ξ − λγ‖2 ≤ min
λ≥0

min
γ∈H

‖ξ − λγ‖2. (29)

We then convert the real-valued vectors to complex-valued vectors by letting g = ξ1 + ıξ2 and c = γ1 + ıγ2,
where ξ1 and ξ2 are the first and second half of ξ respectively and so for γ1 and γ2. This leads to

min
γ∈T∗

R
(ŷ)

‖ξ − γ‖2 ≤ min
λ≥0

min
γ∈H

‖ξ − λγ‖2 = min
λ≥0

min
c∈S

‖g − λc‖2.

Since G∗G is the identity operator and GG∗ is an orthogonal projector, for any λ ≥ 0 and c ∈ S,

‖g − λc‖2 = ‖Gg − λGc‖F = ‖Gg − λGG∗(UV ∗ +W )‖F
=
(

‖Gg − λ(UV ∗ +W )‖2F − ‖λ(I − GG∗)(UV ∗ +W )‖2F
)1/2

≤ ‖Gg − λ(UV ∗ +W )‖F ,
(30)

where W satisfies the conditions in the definition of S in (27). Define two orthogonal projectors P1 and P2

in CN×N by

P1X = UU∗X +XV V ∗ −UU∗XV V ∗, P2X = (I −UU∗)X(I − V V ∗).
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Then, it can be easily checked that: P1X and P2X are orthogonal, X = P1X + P2X, and

P1UV ∗ = UV ∗, P2W = 0, P1W = 0, P2W = W , (31)

where U ,V ,W the same as those in (27). We choose

λ = ‖P2(Gg)‖2, W =
1

λ
P2(Gg).

Then, W satisfies constraints in (27). This, together with (29)(30)(31), implies

min
γ∈T∗

R
(ŷ)

‖ξ − γ‖2 ≤
∥

∥Gg − ‖P2(Gg)‖2UV ∗ − P2(Gg)
∥

∥

F
=
∥

∥P1(Gg)− ‖P2(Gg)‖2UV ∗∥
∥

F

≤ ‖P1(Gg)‖F + ‖P2(Gg)‖2‖UV ∗‖F = ‖P1(Gg)‖F +
√
R‖P2(Gg)‖2.

We will estimate both ‖P1(Gg)‖F and ‖P2(Gg)‖2. For ‖P1(Gg)‖F , we have

‖P1(Gg)‖F = ‖UU∗(Gg) + (Gg)V V ∗ −UU∗(Gg)V V ∗‖F = ‖UU∗(Gg) + (I −UU∗)(Gg)V V ∗‖F
≤ ‖UU∗(Gg)‖F + ‖(I −UU∗)(Gg)V V ∗‖F ≤ ‖UU∗(Gg)‖F + ‖(Gg)V V ∗‖F
≤ 2

√
R‖Gg‖2

where in the last line we have used the inequality

‖UU∗(Gg)‖F ≤ ‖UU∗‖F ‖Gg‖2 ≤
√
R‖Gg‖2

and similarly ‖(Gg)V V ∗‖F ≤
√
R‖Gg‖2. For ‖P2(Gg)‖2,

‖P2(Gg)‖2 = ‖(I −UU∗)(Gg)(I − V V ∗)‖2 ≤ ‖I −UU∗‖2‖Gg‖2‖I − V V ∗‖2 ≤ ‖Gg‖2.

Altogether, we obtain
min

γ∈T∗
R
(ŷ)

‖ξ − γ‖2 ≤ 3
√
R‖Gg‖2,

which together with (17) gives

w(TR(ŷ) ∩ S
4N−3
R

) ≤ 3
√
R · E(‖Gg‖2).

3.5 Bound of E(‖Gg‖2)
The estimation of E(‖Gg‖2) plays an important role in proving Theorem 1 since it is needed to give the tight
bound of the Gaussian width w(TR(ŷ) ∩ S

4N−3
R

). The following Theorem gives us a bound for E(‖Gg‖2).

Theorem 3. Let g ∈ R2N−1 be a random vector whose entries are i.i.d. Gaussian random variables with
mean 0 and variance 1, or g ∈ C2N−1 a random vector whose real part and imaginary part have i.i.d.
Gaussian random entries with mean 0 and variance 1. Then,

E(‖Gg‖2) ≤ C1 lnN,

where C1 are some positive universal constants.

We will use the moment method (see Chapter 2.3 in [23] for more details) to prove Theorem 3. In order
to help the reader easily understand the proof, we begin with the real case and introduce some ideas and
lemmas first. Assume g ∈ R2N−1 has i.i.d standard Gaussian entries with mean 0 and variance 1. Notice
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that Gg is symmetric. Therefore, for any even integer k, (tr (Gg)k)1/k is the k-norm of vector of singular

values, which implies ‖Gg‖2 ≤ (tr (Gg)k)1/k. This together with Jensen’s inequality,

E(‖Gg‖2) ≤ E

(

(tr (Gg)k)1/k
)

≤
(

E(tr (Gg)k)
)1/k

. (32)

Thus, in order to get an upper bound of E(‖Gg‖2), we estimate E

(

tr
(

(Gg)k
))

. Denote M = Gg. It is easy
to see that

E(tr(Mk)) =
∑

0≤i1,i2,...,ik≤N−1

E(Mi1i2Mi2i3 . . .Mik−1ikMiki1). (33)

Therefore, we only need to estimate
∑

0≤i1,i2,...,ik≤N−1 E(Mi1i2Mi2i3 . . .Mik−1ikMiki1).

To simplify the notation, we denote ik+1 = i1. Notice that Mij =
gi+j√
Ki+j

, where gi+j is a random

Gaussian variable and Kj is defined in (8). Hence, Miℓ,iℓ+1
= Miℓ′ ,iℓ′+1

if and only if iℓ + iℓ+1 = iℓ′ + iℓ′+1.
In order to utilize this property, we would like to introduce a graph for any given index i1, i2, . . . , ik and its
equivalent edges on the graph. More specifically, we construct graph Fi1,i2,...,ik with nodes to be i1, i2, . . . , ik
and edges to be (i1, i2), (i2, i3), . . . , (ik−1, ik), (ik, i1). Let the weight for the edge (iℓ, iℓ+1) be iℓ + iℓ+1. The
edges with the same weights are considered as an equivalent class. Obviously, Miℓ,iℓ+1

= Miℓ′ ,iℓ′+1
if and

only if (iℓ, iℓ+1) and (iℓ′ , iℓ′+1) are in the same equivalent class. Assume there are p equivalent classes of the
edges of Fi1,i2,...,ik . These equivalent classes are indexed by 1, 2, . . . , p according to their order in the graph
traversal i1 → i2 → . . . → ik → i1. We associate with the graph Fi1,i2,...,ik a sequence c1c2 . . . ck, where cj is
the index of the equivalent class of the edge (ij , ij+1). We call c1c2 . . . ck the label for the equivalent classes
of the graph Fi1,i2,...,ik .

The label for the equivalent classes of the graph Fi1,i2,...,ik plays an important role in bounding E(‖Gg‖2).
In order to help the reader understand this concept better, we give two specific examples here. For N =
6, k = 6, i1 = 1, i2 = 4, i3 = 1, i4 = 3, i5 = 1, i6 = 4, we have a corresponding graph and its label for the
equivalent classes of the graph is 112211. For N = 6, k = 6, i1 = 2, i2 = 3, i3 = 2, i4 = 4, i5 = 2, i6 = 3,
the label for the equivalent classes of the corresponding graph is 112211 as well. Therefore, there may be
several different index sequences i1i2 . . . ik that correspond to the same label for the equivalent classes of the
corresponding graph. Let Ac1c2...ck be the set of indices whose label of equivalent class of the corresponding
graph is c1c2 . . . ck, i.e.

Ac1c2...ck = {i1i2 . . . ik| the label for the equivalent class of the graph Fi1,i2,...,ik is c1c2 . . . ck} (34)

For given c1c2 . . . ck, Ac1c2...ck is a subset of {i1i2 . . . ik|ij ∈ {0, 1, . . . , N − 1}, ∀ j = 1, . . . , k}. The
following lemma gives us an estimate for the bound

∑

i1i2...ik∈Ac1c2...ck

E(Mi1i2Mi2i3 . . .Mik−1ikMiki1).

Lemma 5. Let ζ be the Riemann zeta function and Ac1c2...ck be defined in (34). Define B(s) = ln(N + 1)
if s = 2 and B(s) = ζ(s/2) ≤ π2/6 for s ≥ 4. Then

∑

i1i2...ik∈Ac1c2...ck

E(Mi1i2Mi2i3 . . .Mik−1ikMiki1) ≤ N

p
∏

ℓ=1

B(sℓ)(sℓ − 1)!! (35)

where p is the number of equivalent classes shown in c1c2 . . . ck, and sℓ, ℓ = 1, . . . , p, is the frequency of ℓ in
c1c2 . . . ck.

Proof. We begin with finding free indices for any i1, i2, . . . , ik in the set Ac1c2...ck . Let (j1, j2) be the first edge
of the class 1. Therefore, the weight of the first class is j1 + j2. For convenience, we define k1(j1) = j1. The
first edge of the class 2 must have a vertex k2(j1, j2), depending on j1 and j2, and a free vertex, denoted by
j3. The weight of the second class is k2(j1, j2)+j3. Similarly, the first edge in class 3 has a vertex k3(j1, j2, j3)
and a free vertex j4, and the weight is k3(j1, j2, j3) + j4, and so on. Finally, the first edge in class p has a
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vertex kp(j1, j2, . . . , jp) and a free vertex jp+1, and the weight is kp(j1, j2, . . . , jp) + jp+1. Recall that the
entry Mij is

gi+j√
Ki+j

, where gi+j is a random Gaussian variable. Therefore, for any i1i2 . . . ik ∈ Ac1c2...ck ,

E(Mi1i2Mi2i3 . . .Mik−1ikMiki1) =

p
∏

ℓ=1

1

K
sℓ/2
mℓ

E
(

gsℓmℓ

)

, (36)

where mℓ = kℓ(j1, j2, . . . , jℓ) + jℓ+1. Therefore, it is non-vanishing if and only if s1, s2, . . . , sp are all even.
In these cases,

E(Mi1i2Mi2i3 . . .Mik−1ikMiki1 ) =

p
∏

ℓ=1

(sℓ − 1)!!

K
sℓ/2
mℓ

. (37)

Summing (37) over Ac1c2...ck , we obtain

∑

i1i2...ik∈Ac1c2...ck

E(Mi1i2Mi2i3 . . .Mik−1ikMiki1) ≤
N−1
∑

j1=0

N−1
∑

j2=0

. . .
N−1
∑

jp=0

N−1
∑

jp+1=0

p
∏

ℓ=1

(sℓ − 1)!!

K
sℓ/2
mℓ

=

N−1
∑

j1=0

N−1
∑

j2=0





(s1 − 1)!!

K
s1/2
k1(j1)+j2

N−1
∑

j3=0





(s2 − 1)!!

K
s2/2
k2(j1,j2)+j3

N−1
∑

i4=0



. . .

N−1
∑

jp+1=0

(sp − 1)!!

K
sp/2

kp(j1,...,jp)+jp+1



 . . .









Since, for any 0 ≤ c ≤ N − 1,

N−1
∑

ℓ=0

1

K
s/2
c+ℓ

≤
{

1 + 1/2 + 1/3 + . . . 1/N ≤ ln(N + 1) s = 2,

1 + 1/2s/2 + . . .+ 1/Ns/2 ≤ ζ(s/2) s = 4, 6, . . .

where ζ is the Riemann zeta function. By defining B(s) = ln(N + 1) if s = 2 and B(s) = ζ(s/2) ≤ π2/6 for
s ≥ 4, the desired result easily follows.

The desired bound for E(‖Gg‖2) can be obtained if we know how many different sets of Ac1c2...ck are
available in the set {i1i2 . . . ik|ij ∈ {0, 1, . . . , N − 1}, ∀ j = 1, . . . , k}. Let Bs1s2...sp be the set of all labels of
p equivalent classes with ℓ-th class containing sℓ equivalent edges respectively, i.e.

Bs1s2...sp =

{

c1c2 . . . cp
∣

∣

c1c2 . . . cp is a valid label of equivalent classes in graph Fi1i2...ik

and there are sℓ ℓ’s in the label c1c2 . . . cp

}

(38)

Let Cp be the set of all possible choice of p positive even numbers s1, . . . , sp satisfying s1 + s2 + . . .+ sp = k.
Then

E(tr(Mk)) =
∑

0≤i1,i2,...,ik≤N−1

E(Mi1i2Mi2i3 . . .Mik−1ikMiki1)

≤
k/2
∑

p=1

∑

s1...sp∈Cp

∑

c1c2...ck∈Bs1s2...sp

∑

i1i2...ik∈Ac1c2...ck

E(Mi1i2Mi2i3 . . .Mik−1ikMiki1)

(39)

By bounding the cardinality of Bs1s2...sp and Cp, we can derive the bound E(tr(Mk)) hence E(‖Gg‖2) for
the real case. The complex case can be proved by directly using the results for the real case. Now, we are
in position to prove Theorm 3.

Proof of Theorem 3. Following (39), we need to count the cardinality of Bs1s2...sp . For any c1c2 . . . ck ∈
Bs1s2...sp , we must have c1 = 1. Therefore, there are

(

k−1
s1−1

)

choices of the positions of remaining 1’s in
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c1c2 . . . ck. Once positions for 1’s are fixed, the position of the first 2 has to be the first available slot, we
have

(

k−s1−1
s2−1

)

choices for the positions of remaining 2’s, and so on. Thus,

|Bs1s2...sp | ≤
(

k − 1

s1 − 1

)

·
(

k − s1 − 1

s2 − 1

)

· . . . ·
(

k − s1 − . . .− sp−1 − 1

sp − 1

)

=
(k − 1)(k − 2) . . . (k − s1 + 1)

(s1 − 1)!

(k − s1 − 1) . . . (k − s1 − s2 + 1)

(s2 − 1)!
. . . 1

=
(k − 1)!

∏p
ℓ=1(sℓ − 1)!

∏p−1
ℓ=1 (k − s1 − . . .− sℓ)

,

which together with (35) implies, for any s1s2 . . . sp ∈ Cp,

∑

c1c2...ck∈Bs1s2...sp

∑

i1i2...ik∈Ac1c2...ck

E(Mi1i2Mi2i3 . . .Mik−1ikMiki1)

≤N
(k − 1)!

∏p
ℓ=1(sℓ − 2)!!

∏p−1
ℓ=1 (k − s1 − . . .− sℓ)

p
∏

ℓ=1

B(sℓ)

(40)

Summing (40) over Cp yields

∑

s1...sp∈Cp

∑

c1c2...ck∈Bs1s2...sp

∑

i1i2...ik∈Ac1c2...ck

E(Mi1i2Mi2i3 . . .Mik−1ikMiki1)

≤N(k − 1)!
∑

s1...sp∈Cp

∏p
ℓ=1 B(sℓ)

∏p
ℓ=1(sℓ − 2)!!

∏p−1
ℓ=1 (k − s1 − . . .− sℓ)

(41)

Let us estimate the sum in the last line. Let s be the number of 2’s in s1s2 . . . sp. Then,

p
∏

ℓ=1

B(sℓ) ≤ lns(N + 1)

(

π2

6

)p−s

. (42)

Since each s1, . . . , sp ≥ 2 and there are p− s terms greater than 4 among them, we have

p
∏

ℓ=1

(sℓ − 2)!! ≥ 2p−s (43)

and k − s1 − . . .− sℓ = sℓ+1 + . . .+ sp ≥ 2(p− ℓ), which implies

p−1
∏

ℓ=1

(k − s1 − . . .− sℓ) ≥
p−1
∏

ℓ=1

2(p− ℓ) = 2p−1(p− 1)!. (44)

There are
(

p
s

)

choices of the positions of the s 2’s. Moreover, once the s 2’s in s1s2 . . . sp are chosen, there
are at most

(

k

2
− s

)

·
(

k

2
− s− 1

)

· . . . ·
(

k

2
− s− (p− s+ 1)

)

≤
(

k

2

)p−s
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choices of the remaining p− s sj’s. Altogether,

∑

s1...sp∈Cp

∑

c1c2...ck∈Bs1s2...sp

∑

i1i2...ik∈Ac1c2...ck

E(Mi1i2Mi2i3 . . .Mik−1ikMiki1)

≤N(k − 1)!

p
∑

s=0

(

p

s

)(

k

2

)p−s

lns(N + 1)

(

π2

6

)p−s
1

2p−s2p−1(p− 1)!

=2N(k − 1)!
1

(p− 1)!

p
∑

s=0

(

p

s

)(

k

2

)p−s

lns(N + 1)

(

π2

6

)p−s
1

4p−s2s

=
2N(k − 1)!

(p− 1)!

p
∑

s=0

(

p

s

)(

π2k

48

)p−s(
ln(N + 1)

2

)s

=2N(k − 1)!

(

π2

48k + ln(N+1)
2

)p

(p− 1)!

(45)

Finally, (45) is summed over all possible p and we obtain

E(tr(Mk)) =
∑

i1,i2,...,ik

E(Mi1i2Mi2i3 . . .Mik−1ikMiki1)

≤
k/2
∑

p=1

∑

s1...sp∈Cp

∑

c1c2...ck∈Bs1s2...sp

∑

i1i2...ik∈Ac1c2...ck

E(Mi1i2Mi2i3 . . .Mik−1ikMiki1)

≤ 2N(k − 1)!

k/2
∑

p=1

(

π2

48k + ln(N+1)
2

)p

(p− 1)!

(46)

By using the fact that, for any A > 0,

k/2
∑

p=1

Ap

(p− 1)!
= A

(

1 +A+
A2

2!
+ . . .+

Ak/2−1

(k/2− 1)!

)

≤ AeA,

(46) is rearranged into

E(tr(Mk)) ≤ 2N(k − 1)!

(

π2

48
k +

ln(N + 1)

2

)

e
π2

48 k+ ln(N+1)
2 = 2N

√
N + 1(k − 1)!

(

π2

48
k +

ln(N + 1)

2

)

e
π2

48 k

≤ 2(N + 1)
3
2 kk

(

π2

48
+

ln(N + 1)

2k

)

e
π2

48 k.

Let k be the smallest even integer greater than 24
π2 ln(N + 1). Then using ‖M‖2 ≤ (tr(Mk))1/k lead to

E(‖M‖2) ≤ E((tr(Mk))1/k) ≤
(

E(tr(Mk))
)1/k ≤ (2(N + 1)

3
2 )1/kk

(

π2

48
+

ln(N + 1)

2k

)1/k

e
π2

48

≤ 2
π2

24 ln(N+1) · e π2

16 · 24
π2

ln(N + 1) ·
(

π2

24

)
π2

24 ln(N+1)

· e π2

48 ≤ C1 lnN,

where the constant C1 is some universal constant.
Next, we estimate the complex case. In this case, g ∈ C2N−1, where both its real part and imaginary

part have i.i.d. Gaussian entries. Write g = ξ + ıη, where ξ,η ∈ R2N−1 are real-valued random Gaussian
vectors. From the real-valued case above, we derive

E(‖Gξ‖2) ≤ C1 lnN, E(‖Gη‖2) ≤ C1 lnN.
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Therefore,
E(‖Gg‖2) = E(‖Gξ + ıGη‖2) ≤ E(‖Gξ‖2) + E(‖Gη‖2) ≤ 2C1 lnN.

3.6 Proof of Theorem 1

With Lemmas 1, 2, 4, and Theorem 3 in hand, we are in position to prove Theorem 1.

Proof of Theorem 1. Since (10) is equivalent to (4) by the relation y = Dx, we only need to prove that
ŷ = ỹ for noise free data ( ‖ŷ− ỹ‖2 ≤ 2δ/ǫ for noisy data) with dominant probability. According to Lemma
1, we only need to prove (13). By Lemma 2,

P

(

min
z∈T(ŷ)∩S

2N−2
c

‖Bz‖2 ≥ ǫ

)

≥ 1− 2e
− 1

2

(

λM−w(TR(ŷ)∩S
4N−3
R

)− ǫ√
2

)2

.

Lemma 4, Theorem 3, and the inequality λM ≥ M√
M+1

imply that

λM − w(TR(ŷ) ∩ S
4N−3
R

)− ǫ√
2
≥ M√

M + 1
− 3C1

√
R lnN − ǫ√

2
≥

√
M − 1− 3C1

√
R lnN − ǫ√

2
.

When M ≥ (6C1

√
R lnN +

√
2ǫ)2+1, we can easily get P

(

minz∈T(ŷ)∩S
2N−2
c

‖Bz‖2 ≥ ǫ
)

≥ 1− 2e−
M−1

8 . We

get the desired result.

4 Extension to Structured Low-Rank Matrix Reconstruction

In this section, we extend our results to low-rank Hankel matrix reconstruction and low-rank Toeplitz matrix
reconstruction from their Gaussian measurements.

Since the proof of Theorem 1 does not use the specific property that ŷ is an exponential signal, Theorem
1 holds true for any low-rank Hankel matrices. We have the following corollary, which reads that any Hankel
matrix of size N ×N and rank R can be recovered exactly from its O(R ln2 N) Gaussian measurements, and
this reconstruction is robust to noise.

Corollary 1 (Low-Rank Hankel Matrix Reconstruction). Let Ĥ ∈ CN×N be a given Hankel matrix with
rank R. Let x̂ ∈ C2N−1 be satisfying x̂i+j = Ĥij for 0 ≤ i, j ≤ N − 1. Let A = BD ∈ CM×(2N−1),
where B ∈ CM×(2N−1) is a random matrix whose real and imaginary parts are i.i.d. Gaussian with mean 0
and variance 1, D ∈ R

(2N−1)×(2N−1) is the same as defined in Theorem 1. Then, there exists a universal
constant C1 > 0 such that, for any ǫ > 0, if

M ≥ (C1

√
R lnN +

√
2ǫ)2 + 1,

then, with probability at least 1− 2e−
M−1

8 , we have

(a) H(x̃) = Ĥ, where x̃ is the unique solution of

min
x

‖H(x)‖∗ subject to Ax = b

with b = Ax̂;

(b) ‖H(x̃)− Ĥ)‖F ≤ 2δ/ǫ, where x̃ is the unique solution of

min
x

‖H(x)‖∗ subject to ‖Ax− b‖2 ≤ δ

with ‖b−Ax̂‖2 ≤ δ.
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Moreover, Theorem 1 can be extended to the reconstruction of low-rank Toeplitz matrix from its Gaussian
measurements. Let T̂ ∈ CN×N be a Toeplitz matrix. Let x̂ ∈ C2N−1 be a vector satisfying x̂N−1+(i−j) = T̂i,j

for 0 ≤ i, j ≤ N − 1. Let P ∈ CN×N be an anti-diagonal matrix with anti-diagonals of 1. Then, it is easy
to check that T̂ = H(x̂)P . Thus, we define a linear operator T that maps a vector in C2N−1 to a N ×N
Toeplitz matrix by T (x) = H(x)P . Since P is a unitary matrix, one has ‖T (x)‖∗ = ‖H(x)P ‖∗ = ‖H(x)‖∗.
Therefore, the above corollary can be adapted to low-rank Toeplitz matrices.

5 Numerical Experiments

In this section, we use numerical experiments to demonstrate the empirical performance of our proposed
approach, and compare it with other methods including those in [10, 22]. We use superpositions of complex
sinusoids as test signals. Note that the application of our approach is not limited to such signals but any
signals that are superpositions of complex exponentials. We are going to consider two sampling schemes,
namely, the random Gaussian sampling model in Theorem 1 and the non-uniform sampling of entries studied
in [10,22]. For the latter sampling scheme, it randomly observesM entries of x̂ whose locations are uniformly
distributed in all M -subsets of {0, 1, . . . , 2N−2}. We also consider two signal reconstruction algorithms, the
Hankel nuclear norm minimization and the atomic norm minimization, from the given samples. Therefore,
we have four different approaches to compare: the Hankel nuclear norm minimization with random Gaussian
sampling (our proposed approach), the Hankel nuclear norm minimization with non-uniform sampling of
entries (EMaC in [10]), the atomic norm minimization with random Gaussian sampling, and the atomic
norm minimization with non-uniform sampling of entries (off-the-grid CS in [22]).

We fix N = 64, i.e., the dimension of the true signal x̂ is 127. We conduct experiments under different M
and R for different approaches. For each approach with a fixed M and R, we test 100 runs, where each run is
executed as follows. We first generate the true signal x̂ = [x̂(0), x̂(1), . . . , x̂(126)]T with x̂(t) =

∑R
k=1 cke

ı2πfkt

for t = 0, 1, . . . , 126, where fk are frequencies drawn from the interval [0, 1] uniformly at random, and ck are
complex coefficients satisfying the model ck = (1+100.5mk)ei2πθk with mk and θk being uniformly randomly
drawn from the interval [0, 1]. Then we get M samples of x̂ according to the corresponding sampling scheme.
Finally, a reconstruction x̃ is obtained by solving the corresponding reconstruction algorithm, which is

numerically implemented by alternating direction method of multipliers (ADMM). If ‖x̃−x̂‖2

‖x̂‖2
≤ 10−3, then

we regard it as a successful reconstruction.
We plot in Fig. 1 the rate of successful reconstruction with respect to different M and R for different

approaches. The black and white region indicate a 0% and 100% of successful reconstruction respectively,
and a grey between 0% and 100%. From the figure, we see that the atomic norm minimization has similar
performance under the random Gaussian sampling and the non-uniform sampling of entries. Moreover, the
Hankel nuclear norm minimization also has similar performance under these two types of different sampling
schemes. Compared with the atomic norm minimization, the Hankel nuclear norm minimization method is
more robust when neighboring frequencies are close, despite different sampling schemes used.

6 Conclusion and Future Works

In this paper, we study compressed sensing of signal that is a weighted sum of R complex exponential
functions with or without damping factor. The measurements are obtained by random Gaussian projections.
We prove that, as long as the number of measurements is greater than O(R ln2 N) with N the dimension of
the signal, minimization (4) is guaranteed to get a robust reconstruction of the underlying signal. Compared
to results in [10,22] where partial entries of the underlying signal are observed, our proposed approach does
not require any incoherence condition (i.e. does not require any separation condition on frequencies for
signals without damping).

The bound O(R ln2 N) we obtained is not optimal. There are several possible direction to improve it.
Firstly, we may improve the estimation of E(‖Gg‖2), a key step in our proof. We empirically observed
that E(‖Gg‖2) = O(

√
R lnN), which is better than the bound in Theorem 3. We would prove this bound
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(a) Hankel nuclear norm minimization with ran-
dom Gaussian projections.
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(b) Hankel nuclear norm minimization with non-
uniform sampling of entries.

M: number of measurements

R
: s

pa
rs

ity

 

 

20 30 40 50 60 70 80 90 100 110 120

40

35

30

25

20

15

10

5

0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Atomic norm minimization with random
Gaussian projections.
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(d) Atomic norm minimization with non-uniform
sampling of entries.

Figure 1: Numerical Results.
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theoretically. Secondly, we may borrow techniques from compressed sensing to get the optimal bound under
Gaussian measurements. Actually, there has been recent work that yields precise bounds [16, 17, 21]. These
results assume Gaussian measurements, but all quantities involved are reals. It is interesting to explore
whether those results can be extended to our setting.
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