
A SINGULAR VALUE THRESHOLDING ALGORITHM FOR
MATRIX COMPLETION

JIAN-FENG CAI ∗, EMMANUEL J. CANDÈS † , AND ZUOWEI SHEN ‡

Abstract. This paper introduces a novel algorithm to approximate the matrix with minimum
nuclear norm among all matrices obeying a set of convex constraints. This problem may be un-
derstood as the convex relaxation of a rank minimization problem, and arises in many important
applications as in the task of recovering a large matrix from a small subset of its entries (the famous
Netflix problem). Off-the-shelf algorithms such as interior point methods are not directly amenable
to large problems of this kind with over a million unknown entries.

This paper develops a simple first-order and easy-to-implement algorithm that is extremely effi-
cient at addressing problems in which the optimal solution has low rank. The algorithm is iterative
and produces a sequence of matrices {𝑿𝑘,𝒀 𝑘} and at each step, mainly performs a soft-thresholding
operation on the singular values of the matrix 𝒀 𝑘. There are two remarkable features making this
attractive for low-rank matrix completion problems. The first is that the soft-thresholding opera-
tion is applied to a sparse matrix; the second is that the rank of the iterates {𝑿𝑘} is empirically
nondecreasing. Both these facts allow the algorithm to make use of very minimal storage space and
keep the computational cost of each iteration low. On the theoretical side, we provide a convergence
analysis showing that the sequence of iterates converges. On the practical side, we provide numerical
examples in which 1, 000× 1, 000 matrices are recovered in less than a minute on a modest desktop
computer. We also demonstrate that our approach is amenable to very large scale problems by recov-
ering matrices of rank about 10 with nearly a billion unknowns from just about 0.4% of their sampled
entries. Our methods are connected with the recent literature on linearized Bregman iterations for
ℓ1 minimization, and we develop a framework in which one can understand these algorithms in terms
of well-known Lagrange multiplier algorithms.

Keywords. Nuclear norm minimization, matrix completion, singular value thresh-
olding, Lagrange dual function, Uzawa’s algorithm, and linearized Bregman iteration.

1. Introduction.

1.1. Motivation. There is a rapidly growing interest in the recovery of an un-
known low-rank or approximately low-rank matrix from very limited information.
This problem occurs in many areas of engineering and applied science such as ma-
chine learning [2–4], control [54] and computer vision, see [62]. As a motivating
example, consider the problem of recovering a data matrix from a sampling of its
entries. This routinely comes up whenever one collects partially filled out surveys,
and one would like to infer the many missing entries. In the area of recommender
systems, users submit ratings on a subset of entries in a database, and the vendor
provides recommendations based on the user’s preferences. Because users only rate a
few items, one would like to infer their preference for unrated items; this is the famous
Netflix problem [1]. Recovering a rectangular matrix from a sampling of its entries
is known as the matrix completion problem. The issue is of course that this problem
is extraordinarily ill posed since with fewer samples than entries, we have infinitely
many completions. Therefore, it is apparently impossible to identify which of these
candidate solutions is indeed the “correct” one without some additional information.

In many instances, however, the matrix we wish to recover has low rank or ap-
proximately low rank. For instance, the Netflix data matrix of all user-ratings may
be approximately low-rank because it is commonly believed that only a few factors
contribute to anyone’s taste or preference. In computer vision, inferring scene geom-
etry and camera motion from a sequence of images is a well-studied problem known

∗Department of mathematics, University of California, Los Angeles, CA 90095.
†Applied and Computational Mathematics, Caltech, Pasadena, CA 91125
‡Department of Mathematics, National University of Singapore, Singapore 117543

1

as the structure-from-motion problem. This is an ill-conditioned problem for objects
may be distant with respect to their size, or especially for “missing data” which oc-
cur because of occlusion or tracking failures. However, when properly stacked and
indexed, these images form a matrix which has very low rank (e.g. rank 3 under or-
thography) [24,62]. Other examples of low-rank matrix fitting abound; e.g. in control
(system identification), machine learning (multi-class learning) and so on. Having said
this, the premise that the unknown has (approximately) low rank radically changes
the problem, making the search for solutions feasible since the lowest-rank solution
now tends to be the right one.

In a recent paper [16], Candès and Recht showed that matrix completion is not
as ill-posed as people thought. Indeed, they proved that most low-rank matrices can
be recovered exactly from most sets of sampled entries even though these sets have
surprisingly small cardinality, and more importantly, they proved that this can be
done by solving a simple convex optimization problem. To state their results, suppose
to simplify that the unknown matrix 𝑴 ∈ ℝ𝑛×𝑛 is square, and that one has available
𝑚 sampled entries {𝑴𝑖𝑗 : (𝑖, 𝑗) ∈ Ω} where Ω is a random subset of cardinality 𝑚.
Then [16] proves that most matrices 𝑴 of rank 𝑟 can be perfectly recovered by solving
the optimization problem

minimize ∥𝑿∥∗
subject to 𝑋𝑖𝑗 = 𝑀𝑖𝑗 , (𝑖, 𝑗) ∈ Ω,

(1.1)

provided that the number of samples obeys 𝑚 ≥ 𝐶𝑛6/5𝑟 log 𝑛 for some positive nu-
merical constant 𝐶.1 In (1.1), the functional ∥𝑿∥∗ is the nuclear norm of the matrix
𝑴 , which is the sum of its singular values. The optimization problem (1.1) is convex
and can be recast as a semidefinite program [34,35]. In some sense, this is the tightest
convex relaxation of the NP-hard rank minimization problem

minimize rank(𝑿)
subject to 𝑋𝑖𝑗 = 𝑀𝑖𝑗 , (𝑖, 𝑗) ∈ Ω,

(1.2)

since the nuclear ball {𝑿 : ∥𝑿∥∗ ≤ 1} is the convex hull of the set of rank-one
matrices with spectral norm bounded by one. Another interpretation of Candès and
Recht’s result is that under suitable conditions, the rank minimization program (1.2)
and the convex program (1.1) are formally equivalent in the sense that they have
exactly the same unique solution.

1.2. Algorithm outline. Because minimizing the nuclear norm both provably
recovers the lowest-rank matrix subject to constraints (see [57] for related results) and
gives generally good empirical results in a variety of situations, it is understandably of
great interest to develop numerical methods for solving (1.1). In [16], this optimization
problem was solved using one of the most advanced semidefinite programming solvers,
namely, SDPT3 [60]. This solver and others like SeDuMi are based on interior-point
methods, and are problematic when the size of the matrix is large because they need
to solve huge systems of linear equations to compute the Newton direction. In fact,
SDPT3 can only handle 𝑛 × 𝑛 matrices with 𝑛 ≤ 100. Presumably, one could resort
to iterative solvers such as the method of conjugate gradients to solve for the Newton
step but this is problematic as well since it is well known that the condition number
of the Newton system increases rapidly as one gets closer to the solution. In addition,

1Note that an 𝑛× 𝑛 matrix of rank 𝑟 depends upon 𝑟(2𝑛− 𝑟) degrees of freedom.

2

none of these general purpose solvers use the fact that the solution may have low
rank. We refer the reader to [50] for some recent progress on interior-point methods
concerning some special nuclear norm-minimization problems.

This paper develops the singular value thresholding algorithm for approximately
solving the nuclear norm minimization problem (1.1) and by extension, problems of
the form

minimize ∥𝑿∥∗
subject to 𝒜(𝑿) = 𝒃,

(1.3)

where 𝒜 is a linear operator acting on the space of 𝑛1×𝑛2 matrices and 𝒃 ∈ ℝ𝑚. This
algorithm is a simple first-order method, and is especially well suited for problems of
very large sizes in which the solution has low rank. We sketch this algorithm in the
special matrix completion setting and let 𝒫Ω be the orthogonal projector onto the
span of matrices vanishing outside of Ω so that the (𝑖, 𝑗)th component of 𝒫Ω(𝑿) is
equal to 𝑋𝑖𝑗 if (𝑖, 𝑗) ∈ Ω and zero otherwise. Our problem may be expressed as

minimize ∥𝑿∥∗
subject to 𝒫Ω(𝑿) = 𝒫Ω(𝑴),

(1.4)

with optimization variable 𝑿 ∈ ℝ𝑛1×𝑛2 . Fix 𝜏 > 0 and a sequence {𝛿𝑘}𝑘≥1 of scalar
step sizes. Then starting with 𝒀 0 = 0 ∈ ℝ𝑛1×𝑛2 , the algorithm inductively defines{

𝑿𝑘 = shrink(𝒀 𝑘−1, 𝜏),

𝒀 𝑘 = 𝒀 𝑘−1 + 𝛿𝑘𝒫Ω(𝑴 −𝑿𝑘)
(1.5)

until a stopping criterion is reached. In (1.5), shrink(𝒀 , 𝜏) is a nonlinear function
which applies a soft-thresholding rule at level 𝜏 to the singular values of the input
matrix, see Section 2 for details. The key property here is that for large values of 𝜏 ,
the sequence {𝑿𝑘} converges to a solution which very nearly minimizes (1.4). Hence,
at each step, one only needs to compute at most one singular value decomposition
and perform a few elementary matrix additions. Two important remarks are in order:

1. Sparsity. For each 𝑘 ≥ 0, 𝒀 𝑘 vanishes outside of Ω and is, therefore, sparse,
a fact which can be used to evaluate the shrink function rapidly.

2. Low-rank property. The matrices 𝑿𝑘 turn out to have low rank, and hence
the algorithm has minimum storage requirement since we only need to keep
principal factors in memory.

Our numerical experiments demonstrate that the proposed algorithm can solve
problems, in Matlab, involving matrices of size 30, 000 × 30, 000 having close to a
billion unknowns in 17 minutes on a standard desktop computer with a 1.86 GHz
CPU (dual core with Matlab’s multithreading option enabled) and 3 GB of memory.
As a consequence, the singular value thresholding algorithm may become a rather
powerful computational tool for large scale matrix completion.

1.3. General formulation. The singular value thresholding algorithm can be
adapted to deal with other types of convex constraints. For instance, it may address
problems of the form

minimize ∥𝑿∥∗
subject to 𝑓𝑖(𝑿) ≤ 0, 𝑖 = 1, . . . ,𝑚,

(1.6)

where each 𝑓𝑖 is a Lipschitz convex function (note that one can handle linear equality
constraints by considering pairs of affine functionals). In the simpler case where the

3

𝑓𝑖’s are affine functionals, the general algorithm goes through a sequence of iterations
which greatly resemble (1.5). This is useful because this enables the development of
numerical algorithms which are effective for recovering matrices from a small subset
of sampled entries possibly contaminated with noise.

1.4. Contents and notations. The rest of the paper is organized as follows.
In Section 2, we derive the singular value thresholding (SVT) algorithm for the ma-
trix completion problem, and recasts it in terms of a well-known Lagrange multiplier
algorithm. In Section 3, we extend the SVT algorithm and formulate a general itera-
tion which is applicable to general convex constraints. In Section 4, we establish the
convergence results for the iterations given in Sections 2 and 3. We demonstrate the
performance and effectiveness of the algorithm through numerical examples in Section
5, and review additional implementation details. Finally, we conclude the paper with
a short discussion in Section 6.

Before continuing, we provide here a brief summary of the notations used through-
out the paper. Matrices are bold capital, vectors are bold lowercase and scalars or
entries are not bold. For instance, 𝑿 is a matrix and 𝑋𝑖𝑗 its (𝑖, 𝑗)th entry. Likewise,
𝒙 is a vector and 𝑥𝑖 its 𝑖th component. The nuclear norm of a matrix is denoted by
∥𝑿∥∗, the Frobenius norm by ∥𝑿∥𝐹 and the spectral norm by ∥𝑿∥2; note that these
are respectively the 1-norm, the 2-norm and the sup-norm of the vector of singular val-
ues. The adjoint of a matrix 𝑿 is 𝑿∗ and similarly for vectors. The notation diag(𝒙),
where 𝒙 is a vector, stands for the diagonal matrix with {𝑥𝑖} as diagonal elements.
We denote by ⟨𝑿,𝒀 ⟩ = trace(𝑿∗𝒀) the standard inner product between two matri-
ces (∥𝑿∥2𝐹 = ⟨𝑿,𝑿⟩). The Cauchy-Schwarz inequality gives ⟨𝑿,𝒀 ⟩ ≤ ∥𝑿∥𝐹 ∥𝒀 ∥𝐹
and it is well known that we also have ⟨𝑿,𝒀 ⟩ ≤ ∥𝑿∥∗∥𝒀 ∥2 (the spectral and nuclear
norms are dual from one another), see e.g. [16, 57].

2. The Singular Value Thresholding Algorithm . This section introduces
the singular value thresholding algorithm and discusses some of its basic properties.
We begin with the definition of a key building block, namely, the singular value
thresholding operator.

2.1. The singular value shrinkage operator. Consider the singular value
decomposition (SVD) of a matrix 𝑿 ∈ ℝ𝑛1×𝑛2 of rank 𝑟

𝑿 = 𝑼Σ𝑽 ∗, Σ = diag({𝜎𝑖}1≤𝑖≤𝑟), (2.1)

where 𝑼 and 𝑽 are respectively 𝑛1×𝑟 and 𝑛2×𝑟 matrices with orthonormal columns,
and the singular values 𝜎𝑖 are positive (unless specified otherwise, we will always
assume that the SVD of a matrix is given in the reduced form above). For each 𝜏 ≥ 0,
we introduce the soft-thresholding operator 𝒟𝜏 defined as follows:

𝒟𝜏 (𝑿) := 𝑼𝒟𝜏 (Σ)𝑽 ∗, 𝒟𝜏 (Σ) = diag({𝜎𝑖 − 𝜏)+}), (2.2)

where 𝑡+ is the positive part of 𝑡, namely, 𝑡+ = max(0, 𝑡). In words, this operator
simply applies a soft-thresholding rule to the singular values of𝑿, effectively shrinking
these towards zero. This is the reason why we will also refer to this transformation
as the singular value shrinkage operator. Even though the SVD may not be unique,
it is easy to see that the singular value shrinkage operator is well defined and we
do not elaborate further on this issue. In some sense, this shrinkage operator is a
straightforward extension of the soft-thresholding rule for scalars and vectors. In
particular, note that if many of the singular values of 𝑿 are below the threshold

4

𝜏 , the rank of 𝒟𝜏 (𝑿) may be considerably lower than that of 𝑿, just like the soft-
thresholding rule applied to vectors leads to sparser outputs whenever some entries
of the input are below threshold.

The singular value thresholding operator is the proximity operator associated with
the nuclear norm. Details about the proximity operator can be found in e.g. [42].

Theorem 2.1. 2For each 𝜏 ≥ 0 and 𝒀 ∈ ℝ𝑛1×𝑛2 , the singular value shrinkage
operator (2.2) obeys

𝒟𝜏 (𝒀) = argmin
𝑿

1

2
∥𝑿 − 𝒀 ∥2𝐹 + 𝜏∥𝑿∥∗. (2.3)

Proof. Since the function ℎ0(𝑿) := 𝜏∥𝑿∥∗ + 1
2∥𝑿 −𝒀 ∥2𝐹 is strictly convex, it is

easy to see that there exists a unique minimizer, and we thus need to prove that it is
equal to 𝒟𝜏 (𝒀). To do this, recall the definition of a subgradient of a convex function
𝑓 : ℝ𝑛1×𝑛2 → ℝ. We say that 𝒁 is a subgradient of 𝑓 at 𝑿0, denoted 𝒁 ∈ ∂𝑓(𝑿0), if

𝑓(𝑿) ≥ 𝑓(𝑿0) + ⟨𝒁,𝑿 −𝑿0⟩ (2.4)

for all 𝑿. Now 𝑿̂ minimizes ℎ0 if and only if 0 is a subgradient of the functional ℎ0

at the point 𝑿̂, i.e.

0 ∈ 𝑿̂ − 𝒀 + 𝜏∂∥𝑿̂∥∗, (2.5)

where ∂∥𝑿̂∥∗ is the set of subgradients of the nuclear norm. Let 𝑿 ∈ ℝ𝑛1×𝑛2 be an
arbitrary matrix and 𝑼Σ𝑽 ∗ be its SVD. It is known [16,46,65] that

∂∥𝑿∥∗ =
{
𝑼𝑽 ∗ +𝑾 : 𝑾 ∈ ℝ𝑛1×𝑛2 , 𝑼∗𝑾 = 0, 𝑾𝑽 = 0, ∥𝑾 ∥2 ≤ 1

}
. (2.6)

Set 𝑿̂ := 𝒟𝜏 (𝒀) for short. In order to show that 𝑿̂ obeys (2.5), decompose the
SVD of 𝒀 as 𝒀 = 𝑼0Σ0𝑽

∗
0 +𝑼1Σ1𝑽

∗
1 , where 𝑼0, 𝑽0 (resp. 𝑼1, 𝑽1) are the singular

vectors associated with singular values greater than 𝜏 (resp. smaller than or equal to

𝜏). With these notations, we have 𝑿̂ = 𝑼0(Σ0 − 𝜏𝑰)𝑽 ∗
0 and, therefore,

𝒀 − 𝑿̂ = 𝜏(𝑼0𝑽
∗
0 +𝑾), 𝑾 = 𝜏−1𝑼1Σ1𝑽

∗
1 .

By definition, 𝑼∗
0𝑾 = 0, 𝑾𝑽0 = 0 and since the diagonal elements of Σ1 have

magnitudes bounded by 𝜏 , we also have ∥𝑾 ∥2 ≤ 1. Hence 𝒀 − 𝑿̂ ∈ 𝜏∂∥𝑿̂∥∗, which
concludes the proof.

2.2. Shrinkage iterations. We are now in the position to introduce the singular
value thresholding algorithm. Fix 𝜏 > 0 and a sequence {𝛿𝑘} of positive step sizes.
Starting with 𝒀0, inductively define for 𝑘 = 1, 2, . . .,{

𝑿𝑘 = 𝒟𝜏 (𝒀
𝑘−1),

𝒀 𝑘 = 𝒀 𝑘−1 + 𝛿𝑘𝒫Ω(𝑴 −𝑿𝑘)
(2.7)

until a stopping criterion is reached (we postpone the discussion this stopping criterion
and of the choice of step sizes). This shrinkage iteration is very simple to implement.

2One reviewer pointed out that a similar result had been mentioned in a talk given by Donald
Goldfarb at the Foundations of Computational Mathematics conference which took place in Hong
Kong in June 2008.

5

At each step, we only need to compute an SVD and perform elementary matrix
operations. With the help of a standard numerical linear algebra package, the whole
algorithm can be coded in just a few lines. As we will see later, the iteration (2.7) is
the linearized Bregman iteration, which is a special instance of Uzawa’s algorithm.

Before addressing further computational issues, we would like to make explicit the
relationship between this iteration and the original problem (1.1). In Section 4, we
will show that the sequence {𝑿𝑘} converges to the unique solution of an optimization
problem closely related to (1.1), namely,

minimize 𝜏∥𝑿∥∗ + 1
2∥𝑿∥2𝐹

subject to 𝒫Ω(𝑿) = 𝒫Ω(𝑴).
(2.8)

Furthermore, it is intuitive that the solution to this modified problem converges to
that of (1.4) as 𝜏 → ∞ as shown in Section 3. Thus by selecting a large value of the
parameter 𝜏 , the sequence of iterates converges to a matrix which nearly minimizes
(1.1).

As mentioned earlier, there are two crucial properties which make this algorithm
ideally suited for matrix completion.

∙ Low-rank property. A remarkable empirical fact is that the matrices in the
sequence {𝑿𝑘} have low rank (provided, of course, that the solution to (2.8)
has low rank). We use the word “empirical” because all of our numerical ex-
periments have produced low-rank sequences but we cannot rigorously prove
that this is true in general. The reason for this phenomenon is, however,
simple: because we are interested in large values of 𝜏 (as to better approxi-
mate the solution to (1.1)), the thresholding step happens to ‘kill’ most of the
small singular values and produces a low-rank output. In fact, our numerical
results show that the rank of 𝑿𝑘 is nondecreasing with 𝑘, and the maximum
rank is reached in the last steps of the algorithm, see Section 5.
Thus, when the rank of the solution is substantially smaller than either di-
mension of the matrix, the storage requirement is low since we could store
each 𝑿𝒌 in its SVD form (note that we only need to keep the current iterate
and may discard earlier values).

∙ Sparsity. Another important property of the SVT algorithm is that the it-
eration matrix 𝒀 𝑘 is sparse. Since 𝒀 0 = 0, we have by induction that 𝒀 𝑘

vanishes outside of Ω. The fewer entries available, the sparser 𝒀 𝑘. Because
the sparsity pattern Ω is fixed throughout, one can then apply sparse matrix
techniques to save storage. Also, if ∣Ω∣ = 𝑚, the computational cost of up-
dating 𝒀 𝑘 is of order 𝑚. Moreover, we can call subroutines supporting sparse
matrix computations, which can further reduce computational costs.
One such subroutine is the SVD. However, note that we do not need to com-
pute the entire SVD of 𝒀 𝑘 to apply the singular value thresholding operator.
Only the part corresponding to singular values greater than 𝜏 is needed.
Hence, a good strategy is to apply the iterative Lanczos algorithm to com-
pute the first few singular values and singular vectors. Because 𝒀 𝑘 is sparse,
𝒀 𝑘 can be applied to arbitrary vectors rapidly, and this procedure offers a
considerable speedup over naive methods.

2.3. Relation with other works. Our algorithm is inspired by recent work in
the area of ℓ1 minimization, and especially by the work on linearized Bregman itera-
tions for compressed sensing, see [11–13, 27, 56, 67] for linearized Bregman iterations
and [17,19–21,30] for some information about the field of compressed sensing. In this

6

line of work, linearized Bregman iterations are used to find the solution to an under-
determined system of linear equations with minimum ℓ1 norm.In fact, Theorem 2.1
asserts that the singular value thresholding algorithm can be formulated as a linearized
Bregman iteration. Bregman iterations were first introduced in [55] as a convenient
tool for solving computational problems in the imaging sciences, and a later paper [67]
showed that they were useful for solving ℓ1-norm minimization problems in the area of
compressed sensing. Linearized Bregman iterations were proposed in [27] to improve
performance of plain Bregman iterations, see also [67]. Additional details together
with a technique for improving the speed of convergence called kicking are described
in [56]. On the practical side, the paper [13] applied Bregman iterations to solve a
deblurring problem while on the theoretical side, the references [11, 12] gave a rigor-
ous analysis of the convergence of such iterations. New developments keep on coming
out at a rapid pace and recently, [39] introduced a new iteration, the split Bregman
iteration, to extend Bregman-type iterations (such as linearized Bregman iterations)
to problems involving the minimization of ℓ1-like functionals such as total-variation
norms, Besov norms, and so forth.

When applied to ℓ1-minimization problems, linearized Bregman iterations are se-
quences of soft-thresholding rules operating on vectors. Iterative soft-thresholding
algorithms in connection with ℓ1 or total-variation minimization have quite a bit of
history in signal and image processing and we would like to mention the works [14,48]
for total-variation minimization, [28,29,36] for ℓ1 minimization, and [5,9,10,22,23,32,
33,59] for some recent applications in the area of image inpainting and image restora-
tion. Just as iterative soft-thresholding methods are designed to find sparse solutions,
our iterative singular value thresholding scheme is designed to find a sparse vector of
singular values. In classical problems arising in the areas of compressed sensing, and
signal or image processing, the sparsity is expressed in a known transformed domain
and soft-thresholding is applied to transformed coefficients. In contrast, the shrinkage
operator 𝒟𝜏 is adaptive. The SVT not only discovers a sparse singular vector but also
the bases in which we have a sparse representation. In this sense, the SVT algorithm
is an extension of earlier iterative soft-thresholding schemes.

Finally, we would like to contrast the SVT iteration (2.7) with the popular it-
erative soft-thresholding algorithm used in many papers in imaging processing and
perhaps best known under the name of Proximal Forward-Backward Splitting method
(PFBS), see [10,26,28,36,40,63,64] for example. The constrained minimization prob-
lem (1.4) may be relaxed into

minimize 𝜆∥𝑿∥∗ + 1

2
∥𝒫Ω(𝑿)− 𝒫Ω(𝑴)∥2𝐹 (2.9)

for some 𝜆 > 0. Theorem 2.1 asserts that 𝒟𝜆 is the proximity operator of 𝜆∥𝑿∥∗
and Proposition 3.1(iii) in [26] gives that the solution to this unconstrained problem is
characterized by the fixed point equation 𝑿 = 𝒟𝜆𝛿(𝑿+𝛿𝑃Ω(𝑴−𝑿)) for each 𝛿 > 0.
One can then apply a simplified version of the PFBS method (see (3.6) in [26]) to
obtain iterations of the form 𝑿𝑘 = 𝒟𝜆𝛿𝑘−1

(𝑿𝑘−1+𝛿𝑘−1𝑃Ω(𝑴−𝑿𝑘−1)). Introducing
an intermediate matrix 𝒀 𝑘, this algorithm may be expressed as{

𝑿𝑘 = 𝒟𝜆𝛿𝑘−1
(𝒀 𝑘−1),

𝒀 𝑘 = 𝑿𝑘 + 𝛿𝑘𝑃Ω(𝑴 −𝑿𝑘).
(2.10)

The difference with (2.7) may seem subtle at first—replacing 𝑿𝑘 in (2.10) with 𝒀 𝑘−1

and setting 𝛿𝑘 = 𝛿 gives (2.7) with 𝜏 = 𝜆𝛿—but has enormous consequences as

7

this gives entirely different algorithms. First, they have different limits: while (2.7)
converges to the solution of the constrained minimization (2.8), (2.10) converges to
the solution of (2.9) provided that the sequence of step sizes is appropriately selected.
Second, selecting a large 𝜆 (or a large value of 𝜏 = 𝜆𝛿) in (2.10) gives a low-rank
sequence of iterates and a limit with small nuclear norm. The limit, however, does
not fit the data and this is why one has to choose a small or moderate value of 𝜆 (or
of 𝜏 = 𝜆𝛿). However, when 𝜆 is not sufficiently large, the 𝑿𝑘’s may not have low
rank even though the solution has low rank (and one may need to compute many
singular vectors), and thus applying the shrinkage operation accurately to 𝒀 𝑘 may be
computationally very expensive. Moreover, the limit does not necessary have a small
nuclear norm. These are some of the reasons why (2.10) does not seems to be very
suitable for very large-scale matrix completion problems (in cases where computing
the SVD is prohibitive). Since the original submission of this paper, however, we note
that several papers proposed some working implementations [51,61].

2.4. Interpretation as a Lagrange multiplier method. In this section, we
recast the SVT algorithm as a type of Lagrange multiplier algorithm known as Uzawa’s
algorithm. An important consequence is that this will allow us to extend the SVT
algorithm to other problems involving the minimization of the nuclear norm under
convex constraints, see Section 3. Further, another contribution of this paper is that
this framework actually recasts linear Bregman iterations as a very special form of
Uzawa’s algorithm, hence providing fresh and clear insights about these iterations.

In what follows, we set 𝑓𝜏 (𝑿) = 𝜏∥𝑿∥∗+ 1
2∥𝑿∥2𝐹 for some fixed 𝜏 > 0 and recall

that we wish to solve (2.8)

minimize 𝑓𝜏 (𝑿)
subject to 𝒫Ω(𝑿) = 𝒫Ω(𝑴).

The Lagrangian for this problem is given by ℒ(𝑿,𝒀) = 𝑓𝜏 (𝑿) + ⟨𝒀 ,𝒫Ω(𝑴 −𝑿)⟩,
where 𝒀 ∈ ℝ𝑛1×𝑛2 . Strong duality holds and 𝑿★ and 𝒀 ★ are primal-dual optimal if
(𝑿★,𝒀 ★) is a saddlepoint of the Lagrangian ℒ(𝑿,𝒀), i.e. a pair obeying

sup
𝒀

inf
𝑿

ℒ(𝑿,𝒀) = ℒ(𝑿★,𝒀 ★) = inf
𝑿

sup
𝒀

ℒ(𝑿,𝒀). (2.11)

The function 𝑔0(𝒀) = inf𝑿 ℒ(𝑿,𝒀) is called the dual function. Here, 𝑔0 is continu-
ously differentiable and has a gradient which is Lipschitz with Lipschitz constant at
most one, as this is a consequence of well-known results concerning conjugate func-
tions. Uzawa’s algorithm approaches the problem of finding a saddlepoint with an
iterative procedure. From 𝒀0 = 0, say, inductively define{

ℒ(𝑿𝑘,𝒀 𝑘−1) = min𝑿 ℒ(𝑿,𝒀 𝑘−1)

𝒀 𝑘 = 𝒀 𝑘−1 + 𝛿𝑘𝒫Ω(𝑴 −𝑿𝑘),
(2.12)

where {𝛿𝑘}𝑘≥1 is a sequence of positive step sizes. Uzawa’s algorithm is, in fact, a
subgradient method applied to the dual problem, where each step moves the current
iterate in the direction of the gradient or of a subgradient. Indeed, observe that the
gradient of 𝑔0(𝒀) is given by

∂𝒀 𝑔0(𝒀) = ∂𝒀 ℒ(𝑿̃,𝒀) = 𝒫Ω(𝑴 − 𝑿̃), (2.13)

where 𝑿̃ is the minimizer of the Lagrangian for that value of 𝒀 so that a gradient
descent update for 𝒀 is of the form

𝒀 𝑘 = 𝒀 𝑘−1 + 𝛿𝑘∂𝒀 𝑔0(𝒀
𝑘−1) = 𝒀 𝑘−1 + 𝛿𝑘𝒫Ω(𝑴 −𝑿𝑘).

8

It remains to compute the minimizer of the Lagrangian (2.12), and note that

argmin 𝑓𝜏 (𝑿) + ⟨𝒀 ,𝒫Ω(𝑴 −𝑿)⟩ = argmin 𝜏∥𝑿∥∗ + 1

2
∥𝑿 − 𝒫Ω𝒀 ∥2𝐹 . (2.14)

However, we know that the minimizer is given by 𝒟𝜏 (𝒫Ω(𝒀)) and since 𝒀 𝑘 = 𝒫Ω(𝒀
𝑘)

for all 𝑘 ≥ 0, Uzawa’s algorithm takes the form{
𝑿𝑘 = 𝒟𝜏 (𝒀

𝑘−1)

𝒀 𝑘 = 𝒀 𝑘−1 + 𝛿𝑘𝒫Ω(𝑴 −𝑿𝑘),

which is exactly the update (2.7). This point of view brings to bear many different
mathematical tools for proving the convergence of the singular value thresholding
iterations. For an early use of Uzawa’s algorithm minimizing an ℓ1-like functional,
the total-variation norm, under linear inequality constraints, see [14].

3. General Formulation. This section presents a general formulation of the
SVT algorithm for approximately minimizing the nuclear norm of a matrix under
convex constraints.

3.1. Linear equality constraints. Set the objective functional 𝑓𝜏 (𝑿) = 𝜏∥𝑿∥∗+
1
2∥𝑿∥2𝐹 for some fixed 𝜏 > 0, and consider the following optimization problem:

minimize 𝑓𝜏 (𝑿)
subject to 𝒜(𝑿) = 𝒃,

(3.1)

where 𝒜 is a linear transformation mapping 𝑛1 × 𝑛2 matrices into ℝ𝑚 (𝒜∗ is the
adjoint of 𝒜). This more general formulation is considered in [16] and [57] as an
extension of the matrix completion problem. Then the Lagrangian for this problem
is of the form

ℒ(𝑿,𝒚) = 𝑓𝜏 (𝑿) + ⟨𝒚, 𝒃−𝒜(𝑿)⟩, (3.2)

where 𝑿 ∈ ℝ𝑛1×𝑛2 and 𝒚 ∈ ℝ𝑚, and starting with 𝒚0 = 0, Uzawa’s iteration is given
by {

𝑿𝑘 = 𝒟𝜏 (𝒜∗(𝒚𝑘−1)),

𝒚𝑘 = 𝒚𝑘−1 + 𝛿𝑘(𝒃−𝒜(𝑿𝑘)).
(3.3)

The iteration (3.3) is of course the same as (2.7) in the case where 𝒜 is a sampling
operator extracting 𝑚 entries with indices in Ω out of an 𝑛1×𝑛2 matrix. To verify this
claim, observe that in this situation, 𝒜∗𝒜 = 𝒫Ω, and let 𝑴 be any matrix obeying
𝒜(𝑴) = 𝒃. Then defining 𝒀 𝑘 = 𝒜∗(𝒚𝑘) and substituting this expression in (3.3)
gives (2.7).

3.2. General convex constraints. One can also adapt the algorithm to handle
general convex constraints. Suppose we wish to minimize 𝑓𝜏 (𝑿) defined as before
over a convex set 𝑿 ∈ 𝒞. To simplify, we will assume that this convex set is given by
𝒞 = {𝑿 : 𝑓𝑖(𝑿) ≤ 0, ∀𝑖 = 1, . . . ,𝑚}, where the 𝑓𝑖’s are convex functionals (note that
one can handle linear equality constraints by considering pairs of affine functionals).
The problem of interest is then of the form

minimize 𝑓𝜏 (𝑿)
subject to 𝑓𝑖(𝑿) ≤ 0, 𝑖 = 1, . . . ,𝑚.

(3.4)

9

Just as before, it is intuitive that as 𝜏 → ∞, the solution to this problem converges
to a minimizer of the nuclear norm under the same constraints (1.6) as shown in
Theorem 3.1 at the end of this section.

Put ℱ(𝑿) := (𝑓1(𝑿), . . . , 𝑓𝑚(𝑿)) for short. Then the Lagrangian for (3.4) is
equal to ℒ(𝑿,𝒚) = 𝑓𝜏 (𝑿) + ⟨𝒚,ℱ(𝑿)⟩, where 𝑿 ∈ ℝ𝑛1×𝑛2 and 𝒚 ∈ ℝ𝑚 is now a
vector with nonnegative components denoted, as usual, by 𝒚 ≥ 0. One can apply
Uzawa’s method just as before with the only modification that we will use a subgra-
dient method with projection to maximize the dual function since we need to make
sure that the successive updates 𝒚𝑘 belong to the nonnegative orthant. This gives{

𝑿𝑘 = argmin {𝑓𝜏 (𝑿) + ⟨𝒚𝑘−1,ℱ(𝑿)⟩},
𝒚𝑘 = [𝒚𝑘−1 + 𝛿𝑘ℱ(𝑿𝑘)]+.

(3.5)

Above, 𝒙+ is of course the vector with entries equal to max(𝑥𝑖, 0). When ℱ is an
affine mapping of the form 𝒃−𝒜(𝑿), this simplifies to{

𝑿𝑘 = 𝒟𝜏 (𝒜∗(𝒚𝑘−1)),

𝒚𝑘 = [𝒚𝑘−1 + 𝛿𝑘(𝒃−𝒜(𝑿𝑘))]+,
(3.6)

and thus the extension to linear inequality constraints is straightforward.

3.3. Examples. Suppose we have available linear measurements 𝒃 about a ma-
trix 𝑴 , which take the form

𝒃 = 𝒜(𝑴) + 𝒛 (3.7)

where 𝒛 ∈ ℝ𝑚 is a noise vector. Then under these circumstances, one might want
to find the matrix which minimizes the nuclear norm among all matrices which are
consistent with the data 𝒃.

3.3.1. Linear inequality constraints. A possible approach to this problem
consists in solving

minimize ∥𝑿∥∗
subject to ∣vec(𝒜∗(𝒓))∣ ≤ vec(𝑬), 𝒓 := 𝒃−𝒜(𝑿),

(3.8)

where 𝑬 is an array of tolerances, which is adjusted to fit the noise statistics. Above,
vec(𝑨) ≤ vec(𝑩), for any two matrices 𝑨 and 𝑩, means componentwise inequalities;
that is, 𝐴𝑖𝑗 ≤ 𝐵𝑖𝑗 for all indices 𝑖, 𝑗. We use this notation as not to confuse the reader
with the positive semidefinite ordering. In the case of the matrix completion problem
where 𝒜 extracts sampled entries indexed by Ω, one can always see the data vector
as the sampled entries of some matrix 𝑩 obeying 𝒫Ω(𝑩) = 𝒜∗(𝒃); the constraint is
then natural for it may be expressed as

∣𝐵𝑖𝑗 −𝑋𝑖𝑗 ∣ ≤ 𝐸𝑖𝑗 , (𝑖, 𝑗) ∈ Ω,

If 𝒛 is white noise with standard deviation 𝜎, one may want to use a multiple of 𝜎
for 𝐸𝑖𝑗 . In words, we are looking for a matrix with minimum nuclear norm under the
constraint that all of its sampled entries do not deviate too much from what has been
observed.

Let 𝒀+ ∈ ℝ𝑛1×𝑛2 (resp. 𝒀− ∈ ℝ𝑛1×𝑛2) be the Lagrange multiplier associated with
the componentwise linear inequality constraints vec(𝒜∗(𝒓)) ≤ vec(𝑬) (respectively

10

−vec(𝒜∗(𝒓)) ≤ vec(𝑬)). Then starting with 𝒀 0
± = 0, the SVT iteration for this

problem is of the form{
𝑿𝑘 = 𝒟𝜏 (𝒜∗𝒜(𝒀 𝑘−1

+ − 𝒀 𝑘−1
−)),

𝒀 𝑘
± = [𝒀 𝑘−1

± + 𝛿𝑘(±𝒜∗(𝒓𝑘)−𝑬)]+, 𝒓𝑘 = 𝒃𝑘 −𝒜(𝑿𝑘),
(3.9)

where again [⋅]+ is applied componentwise (in the matrix completion problem, 𝒜∗𝒜 =
𝒫Ω).

3.3.2. Quadratic constraints. Another natural solution is to solve the quadra-
tically constrained nuclear-norm minimization problem

minimize ∥𝑿∥∗
subject to ∥𝒃−𝒜(𝑿)∥ ≤ 𝜖.

(3.10)

When 𝑧 is a stochastic error term, 𝜖 would typically be adjusted to depend on the
noise power.

To see how we can adapt our ideas in this setting, we work with the approximate
objective functional 𝜏∥𝑿∥∗+ 1

2∥𝑿∥2𝐹 as before, and rewrite our program in the conic
form

minimize 𝜏∥𝑿∥∗ + 1
2∥𝑿∥2𝐹

subject to

[
𝒃−𝒜(𝑿)

𝜖

]
∈ 𝒦,

(3.11)

where 𝒦 is the second-order cone 𝒦 = {(𝒙, 𝑡) ∈ ℝ𝑚+1 : ∥𝒙∥ ≤ 𝑡}. This model has
also been considered in [49]. The cone 𝒦 is self-dual. The Lagrangian is then given
by

ℒ(𝑿;𝒚, 𝑠) = 𝜏∥𝑿∥∗ + 1

2
∥𝑿∥2𝐹 + ⟨𝒚, 𝒃−𝒜(𝑿)⟩ − 𝑠𝜖,

where (𝒚, 𝑠) ∈ ℝ𝑚+1 ∈ 𝒦∗ = 𝒦; that is, ∥𝒚∥ ≤ 𝑠. Letting 𝑃𝒦 be the orthogonal
projection onto 𝒦, this leads to the simple iteration⎧⎨⎩

𝑿𝑘 = 𝒟𝜏 (𝒜∗(𝒚𝑘)),[
𝒚𝑘

𝑠𝑘

]
= 𝑃𝒦

([
𝒚𝑘−1

𝑠𝑘−1

]
+ 𝛿𝑘

[
𝒃−𝒜(𝑿𝑘)

−𝜖

])
.

(3.12)

This is an explicit algorithm since the projection is given by (see also [37, Prop 3.3])

𝑃𝒦 : (𝑥, 𝑡) 7→

⎧⎨⎩
(𝑥, 𝑡), ∥𝑥∥ ≤ 𝑡,
∥𝑥∥+𝑡
2∥𝑥∥ (𝑥, ∥𝑥∥), −∥𝑥∥ ≤ 𝑡 ≤ ∥𝑥∥,
(0, 0), 𝑡 ≤ −∥𝑥∥.

3.3.3. General conic constraints. Clearly, one could apply this methodology
with general cone constraints of the form ℱ(𝑿)+𝒅 ∈ 𝒦, where 𝒦 is some closed and
pointed convex cone. Inspired by the work on the Dantzig selector [18], which was
originally developed for estimating sparse parameter vectors from noisy data, another
approach is to set a constraint on the spectral norm of 𝒜∗(𝒓)—recall that 𝒓 is the
residual vector 𝒃−𝒜(𝑿)—and solve

minimize ∥𝑿∥∗
subject to ∥𝒜∗(𝒓)∥ ≤ 𝜖.

(3.13)

Developing our approach in this setting is straightforward and involves projections of
the dual variable onto the positive semi-definite cone.

11

3.4. When the proximal problem gets close. We now show that minimizing
the proximal objective 𝑓𝜏 (𝑿) = 𝜏∥𝑿∥∗ + 1

2∥𝑿∥2𝐹 is the same as minimizing the
nuclear norm in the limit of large 𝜏 ’s. The theorem below is general and covers the
special case of linear equality constraints as in (2.8).

Theorem 3.1. Let 𝑿★
𝜏 be the solution to (3.4) and 𝑿∞ be the minimum Frobe-

nius norm solution to (1.6) defined as

𝑿∞ := argmin
𝑿

{∥𝑿∥2𝐹 : 𝑿 is a solution of (1.6)}. (3.14)

Assume that the 𝑓𝑖(𝑿)’s, 1 ≤ 𝑖 ≤ 𝑚, are convex and lower semi-continuous. Then

lim
𝜏→∞ ∥𝑿★

𝜏 −𝑿∞∥𝐹 = 0. (3.15)

Proof. It follows from the definition of 𝑿★
𝜏 and 𝑿∞ that

∥𝑿★
𝜏 ∥∗ +

1

2𝜏
∥𝑿★

𝜏 ∥2𝐹 ≤ ∥𝑿∞∥∗ + 1

2𝜏
∥𝑿∞∥2𝐹 , and ∥𝑿∞∥∗ ≤ ∥𝑿★

𝜏 ∥∗. (3.16)

Summing these two inequalities gives

∥𝑿★
𝜏 ∥2𝐹 ≤ ∥𝑿∞∥2𝐹 , (3.17)

which implies that ∥𝑿★
𝜏 ∥2𝐹 is bounded uniformly in 𝜏 . Thus, we would prove the the-

orem if we could establish that any convergent subsequence {𝑿★
𝜏𝑘
}𝑘≥1 must converge

to 𝑿∞.
Consider an arbitrary converging subsequence {𝑿★

𝜏𝑘
} and set 𝑿𝑐 := lim𝑘→∞ 𝑿★

𝜏𝑘
.

Since for each 1 ≤ 𝑖 ≤ 𝑚, 𝑓𝑖(𝑿
★
𝜏𝑘
) ≤ 0 and 𝑓𝑖 is lower semi-continuous, 𝑿𝑐 obeys

𝑓𝑖(𝑿𝑐) ≤ 0 for 𝑖 = 1, . . . ,𝑚. Furthermore, since ∥𝑿★
𝜏 ∥2𝐹 is bounded, (3.16) yields

lim sup
𝜏→∞

∥𝑿★
𝜏 ∥∗ ≤ ∥𝑿∞∥∗, ∥𝑿∞∥∗ ≤ lim inf

𝜏→∞ ∥𝑿★
𝜏 ∥∗.

An immediate consequence is lim𝜏→∞ ∥𝑿★
𝜏 ∥∗ = ∥𝑿∞∥∗ and, therefore, ∥𝑿𝑐∥∗ =

∥𝑿∞∥∗. This shows that 𝑿𝑐 is a solution to (1.1). Now it follows from the definition
of 𝑿∞ that ∥𝑿𝑐∥𝐹 ≥ ∥𝑿∞∥𝐹 , while we also have ∥𝑿𝑐∥𝐹 ≤ ∥𝑿∞∥𝐹 because of
(3.17). We conclude that ∥𝑿𝑐∥𝐹 = ∥𝑿∞∥𝐹 and thus 𝑿𝑐 = 𝑿∞ since 𝑿∞ is unique.

4. Convergence Analysis. This section establishes the convergence of the SVT
iterations. We begin with the simpler proof of the convergence of (2.7) in the special
case of the matrix completion problem, and then present the argument for the more
general constraints (3.5). We hope that this progression will make the second and
more general proof more transparent. We have seen that SVT iterations are projected
gradient-descent algorithms applied to the dual problems. The convergence of pro-
jected gradient-descent algorithms has been well studied, see [6, 25, 38, 43, 45, 52, 68]
for example.

4.1. Convergence for matrix completion. We begin by recording a lemma
which establishes the strong convexity of the objective 𝑓𝜏 .

Lemma 4.1. Let 𝒁 ∈ ∂𝑓𝜏 (𝑿) and 𝒁 ′ ∈ ∂𝑓𝜏 (𝑿
′). Then

⟨𝒁 −𝒁 ′,𝑿 −𝑿 ′⟩ ≥ ∥𝑿 −𝑿 ′∥2𝐹 . (4.1)

12

The proof may be found in [58, Page 240] but we sketch it for convenience. We have
𝒁 ∈ ∂𝑓𝜏 (𝑿) if and only if 𝒁 = 𝜏𝒁0 +𝑿, where 𝒁0 ∈ ∂∥𝑿∥∗. This gives

⟨𝒁 −𝒁 ′,𝑿 −𝑿 ′⟩ = 𝜏 ⟨𝒁0 −𝒁 ′
0,𝑿 −𝑿 ′⟩+ ∥𝑿 −𝑿 ′∥2𝐹 ,

and it suffices to show that ⟨𝒁0 − 𝒁 ′
0,𝑿 − 𝑿 ′⟩ ≥ 0. From (2.6), we have that any

subgradient of the nuclear norm at 𝑿 obeys ∥𝒁0∥2 ≤ 1 and ⟨𝒁0,𝑿⟩ = ∥𝑿∥∗. In
particular, this gives ∣⟨𝒁0,𝑿

′⟩∣ ≤ ∥𝒁0∥2∥𝑿 ′∥∗ ≤ ∥𝑿 ′∥∗ and, likewise, ∣⟨𝒁 ′
0,𝑿⟩∣ ≤

∥𝑿∥∗. Then the lemma follows from

⟨𝒁0 −𝒁 ′
0,𝑿 −𝑿 ′⟩ = ⟨𝒁0,𝑿⟩+ ⟨𝒁 ′

0,𝑿
′⟩ − ⟨𝒁0,𝑿

′⟩ − ⟨𝒁 ′
0,𝑿⟩

= ∥𝑿∥∗ + ∥𝑿 ′∥∗ − ⟨𝒁0,𝑿
′⟩ − ⟨𝒁 ′

0,𝑿⟩ ≥ 0.

This lemma is key in showing that the SVT algorithm (2.7) converges. Indeed,
applying [25, Theorem 2.1] gives the theorem below.

Theorem 4.2. Suppose the step sizes obey 0 < inf 𝛿𝑘 ≤ sup 𝛿𝑘 < 2/∥𝒜∥2. Then
the sequence {𝑿𝑘} obtained via (3.3) converges to the unique solution to (3.1). In
particular, the sequence {𝑿𝑘} obtained via (2.7) converges to the unique solution of
(2.8) provided that 0 < inf 𝛿𝑘 ≤ sup 𝛿𝑘 < 2.

4.2. General convergence theorem. Our second result is more general and
establishes the convergence of the SVT iterations to the solution of (3.4) under general
convex constraints. From now now, we will only assume that the function ℱ(𝑿) is
Lipschitz in the sense that

∥ℱ(𝑿)−ℱ(𝒀 ∥ ≤ 𝐿(ℱ)∥𝑿 − 𝒀 ∥𝐹 , (4.2)

for some nonnegative constant 𝐿(ℱ). Note that if ℱ is affine, ℱ(𝑿) = 𝒃 − 𝒜(𝑿),
we have 𝐿(ℱ) = ∥𝒜∥2 where ∥𝒜∥2 is the spectrum norm of the linear transformation
𝒜 defined as ∥𝒜∥2 := sup{∥𝒜(𝑿)∥ℓ2 : ∥𝑿∥𝐹 = 1}. We also recall that ℱ(𝑿) =
(𝑓1(𝑿), . . . , 𝑓𝑚(𝑿)) where each 𝑓𝑖 is convex, and that the Lagrangian for the problem
(3.4) is given by

ℒ(𝑿,𝒚) = 𝑓𝜏 (𝑿) + ⟨𝒚,ℱ(𝑿)⟩, 𝒚 ≥ 0.

To simplify, we will assume that strong duality holds which is automatically true if
the constraints obey constraint qualifications such as Slater’s condition [7].

We first establish a preparatory lemma, whose proof can be found in [31].
Lemma 4.3. Let (𝑿★,𝒚★) be a primal-dual optimal pair for (3.4). Then for each

𝛿 > 0, 𝒚★ obeys

𝒚★ = [𝒚★ + 𝛿ℱ(𝑿★)]+. (4.3)

We are now in the position to state our general convergence result, see also [25,
Theorem 2.1].

Theorem 4.4. Suppose that the step sizes obey 0 < inf 𝛿𝑘 ≤ sup 𝛿𝑘 < 2/∥𝐿(ℱ)∥2,
where 𝐿(ℱ) is the Lipschitz constant in (4.2). Then assuming strong duality, the
sequence {𝑿𝑘} obtained via (3.5) converges to the unique solution of (3.4).

Proof. Let (𝑿★,𝒚★) be primal-dual optimal for the problem (3.4). We claim that
the optimality conditions give that for all 𝑿

⟨𝒁𝑘,𝑿 −𝑿𝑘⟩+ ⟨𝒚𝑘−1,ℱ(𝑿)−ℱ(𝑿𝑘)⟩ ≥ 0,

⟨𝒁★,𝑿 −𝑿★⟩+ ⟨𝒚★,ℱ(𝑿)−ℱ(𝑿★)⟩ ≥ 0, (4.4)

13

for some 𝒁𝑘 ∈ ∂𝑓𝜏 (𝑿
𝑘) and some 𝒁★ ∈ ∂𝑓𝜏 (𝑿

★). We justify this assertion by
proving one of the two inequalities since the other is exactly similar. For the first,
𝑿𝑘 minimizes ℒ(𝑿,𝒚𝑘−1) over all 𝑿 and, therefore, there exist 𝒁𝑘 ∈ ∂𝑓𝜏 (𝑿

𝑘) and
𝒁𝑘

𝑖 ∈ ∂𝑓𝑖(𝑿
𝑘), 1 ≤ 𝑖 ≤ 𝑚, such that

𝒁𝑘 +

𝑚∑
𝑖=1

𝑦𝑘−1
𝑖 𝒁𝑘

𝑖 = 0.

Now because each 𝑓𝑖 is convex,

𝑓𝑖(𝑿)− 𝑓𝑖(𝑿
𝑘) ≥ ⟨𝒁𝑘

𝑖 ,𝑿 −𝑿𝑘⟩
and, therefore,

⟨𝒁𝑘,𝑿 −𝑿𝑘⟩+
𝑚∑
𝑖=1

𝑦𝑘−1
𝑖 (𝑓𝑖(𝑿)− 𝑓𝑖(𝑿

𝑘)) ≥ ⟨𝒁𝑘 +

𝑚∑
𝑖=1

𝑦𝑘−1
𝑖 𝒁𝑘

𝑖 ,𝑿 −𝑿𝑘⟩ = 0.

This is (4.4).
Now write the first inequality in (4.4) for 𝑿★, the second for 𝑿𝑘 and sum the

two inequalities. This gives

⟨𝒁𝑘 −𝒁★,𝑿𝑘 −𝑿★⟩+ ⟨𝒚𝑘−1 − 𝒚★,ℱ(𝑿𝑘)−ℱ(𝑿★)⟩ ≤ 0.

It follows from Lemma 4.1 that

⟨𝒚𝑘−1 − 𝒚★,ℱ(𝑿𝑘)−ℱ(𝑿★)⟩ ≤ −⟨𝒁𝑘 −𝒁★,𝑿𝑘 −𝑿★⟩ ≤ −∥𝑿𝑘 −𝑿★∥2𝐹 . (4.5)

We continue and observe that because 𝒚★ = [𝒚★ + 𝛿𝑘ℱ(𝑿)]+ by Lemma 4.3, we have

∥𝒚𝑘 − 𝒚★∥ = ∥[𝒚𝑘−1 + 𝛿𝑘ℱ(𝑿𝑘)]+ − [𝒚★ + 𝛿𝑘ℱ(𝑿★)]+∥
≤ ∥𝒚𝑘−1 − 𝒚★ + 𝛿𝑘(ℱ(𝑿𝑘)−ℱ(𝑿★))∥

since the projection onto the convex set ℝ𝑚
+ is a contraction. Therefore,

∥𝒚𝑘 − 𝒚★∥2 = ∥𝒚𝑘−1 − 𝒚★∥2 + 2𝛿𝑘 ⟨𝒚𝑘−1 − 𝒚★,ℱ(𝑿𝑘)−ℱ(𝑿★)⟩+ 𝛿2𝑘∥ℱ(𝑿𝑘)−ℱ(𝑿★)∥2
≤ ∥𝒚𝑘−1 − 𝒚★∥2 − 2𝛿𝑘∥𝑿𝑘 −𝑿★∥2𝐹 + 𝛿2𝑘𝐿

2 ∥𝑿𝑘 −𝑿★∥2𝐹 ,
where we have put 𝐿 instead of 𝐿(ℱ) for short. Under our assumptions about the
size of 𝛿𝑘, we have 2𝛿𝑘 − 𝛿2𝑘𝐿

2 ≥ 𝛽 for all 𝑘 ≥ 1 and some 𝛽 > 0. Then

∥𝒚𝑘 − 𝒚★∥2 ≤ ∥𝒚𝑘−1 − 𝒚★∥2 − 𝛽∥𝑿𝑘 −𝑿★∥2𝐹 , (4.6)

and the conclusion is as before.

5. Implementation and Numerical Results. This section provides imple-
mentation details of the SVT algorithm—as to make it practically effective for ma-
trix completion—such as the numerical evaluation of the singular value threshold-
ing operator, the selection of the step size 𝛿𝑘, the selection of a stopping criterion,
and so on. This section also introduces several numerical simulation results which
demonstrate the performance and effectiveness of the SVT algorithm. We show that
30, 000 × 30, 000 matrices of rank 10 are recovered from just about 0.4% of their
sampled entries in a matter of a few minutes on a modest desktop computer with a
1.86 GHz CPU (dual core with Matlab’s multithreading option enabled) and 3 GB of
memory.

14

5.1. Implementation details.

5.1.1. Evaluation of the singular value thresholding operator. To apply
the singular value thresholding operator at level 𝜏 to an input matrix, it suffices to
know those singular values and corresponding singular vectors above the threshold 𝜏 .
In the matrix completion problem, the singular value thresholding operator is applied
to sparse matrices {𝒀 𝑘} since the number of sampled entries is typically much lower
than the number of entries in the unknown matrix 𝑴 , and we are hence interested in
numerical methods for computing the dominant singular values and singular vectors
of large sparse matrices. The development of such methods is a relatively mature
area in scientific computing and numerical linear algebra in particular. In fact, many
high-quality packages are readily available. Our implementation uses PROPACK,
see [44] for documentation and availability. One reason for this choice is convenience:
PROPACK comes in a Matlab and a Fortran version, and we find it convenient to use
the well-documented Matlab version. More importantly, PROPACK uses the iterative
Lanczos algorithm to compute the singular values and singular vectors directly, by
using the Lanczos bidiagonalization algorithm with partial reorthogonalization. In
particular, PROPACK does not compute the eigenvalues and eigenvectors of (𝒀 𝑘)∗𝒀 𝑘

and 𝒀 𝑘(𝒀 𝑘)∗, or of an augmented matrix as in the Matlab built-in function ‘svds’
for example. Consequently, PROPACK is an efficient—both in terms of number
of flops and storage requirement—and stable package for computing the dominant
singular values and singular vectors of a large sparse matrix. For information, the
available documentation [44] reports a speedup factor of about ten over Matlab’s
‘svds’. Furthermore, the Fortran version of PROPACK is about 3–4 times faster
than the Matlab version. Despite this significant speedup, we have only used the
Matlab version but since the singular value shrinkage operator is by-and-large the
dominant cost in the SVT algorithm, we expect that a Fortran implementation would
run about 3 to 4 times faster.

As for most SVD packages, though one can specify the number of singular values
to compute, PROPACK can not automatically compute only those singular values
exceeding the threshold 𝜏 . One must instead specify the number 𝑠 of singular values
ahead of time, and the software will compute the 𝑠 largest singular values and corre-
sponding singular vectors. To use this package, we must then determine the number
𝑠𝑘 of singular values of 𝒀 𝑘−1 to be computed at the 𝑘th iteration. We use the follow-
ing simple method. Let 𝑟𝑘−1 = rank(𝑿𝑘−1) be the number of nonzero singular values
of 𝑿𝑘−1 at the previous iteration. Set 𝑠𝑘 = 𝑟𝑘−1+1 and compute the first 𝑠𝑘 singular
values of 𝒀 𝑘−1. If some of the computed singular values are already smaller than 𝜏 ,
then 𝑠𝑘 is a right choice. Otherwise, increment 𝑠𝑘 by a predefined integer ℓ repeatedly
until some of the singular values fall below 𝜏 . In the experiments, we choose ℓ = 5.
Another rule might be to repeatedly multiply 𝑠𝑘 by a positive number—e.g. 2—until
our criterion is met. Incrementing 𝑠𝑘 by a fixed integer works very well in practice;
in our experiments, we very rarely need more than one update.

We note that it is not necessary to rerun the Lanczos iterations for the first
𝑠𝑘 vectors since they have been already computed; only a few new singular values
(ℓ of them) need to be numerically evaluated. This can be done by modifying the
PROPACK routines. We have not yet modified PROPACK, however. Had we done
so, our run times would be decreased.

5.1.2. Step sizes. There is a large literature on ways of selecting a step size but
for simplicity, we shall use step sizes that are independent of the iteration count; that
is 𝛿𝑘 = 𝛿 for 𝑘 = 1, 2, From Theorem 4.2, convergence for the completion problem

15

is guaranteed (2.7) provided that 0 < 𝛿 < 2. This choice is, however, too conservative
and the convergence is typically slow. In our experiments, we use instead

𝛿 = 1.2
𝑛1𝑛2

𝑚
, (5.1)

i.e. 1.2 times the undersampling ratio. We give a heuristic justification below.
Consider a fixed matrix 𝑨 ∈ ℝ𝑛1×𝑛2 . Under the assumption that the column and

row spaces of 𝑨 are not well aligned with the vectors taken from the canonical basis of
ℝ𝑛1 and ℝ𝑛2 respectively—the incoherence assumption in [16]—then with very large
probability over the choices of Ω, we have

(1− 𝜖)𝑝 ∥𝑨∥2𝐹 ≤ ∥𝒫Ω(𝑨)∥2𝐹 ≤ (1 + 𝜖)𝑝 ∥𝑨∥2𝐹 , 𝑝 := 𝑚/(𝑛1𝑛2), (5.2)

provided that the rank of𝑨 is not too large. The probability model is that Ω is a set of
sampled entries of cardinality 𝑚 sampled uniformly at random so that all the choices
are equally likely. In (5.2), we want to think of 𝜖 as a small constant, e.g. smaller than
1/2. In other words, the ‘energy’ of 𝑨 on Ω (the set of sampled entries) is just about
proportional to the size of Ω. The near isometry (5.2) is a consequence of Theorem
4.1 in [16], and we omit the details.

Now returning to the proof of Theorem 4.2, one sees that a sufficient condition
for the convergence of (2.7) is

∃𝛽 > 0, −2𝛿∥𝑿★ −𝑿𝑘∥2𝐹 + 𝛿2∥𝒫Ω(𝑿
★ −𝑿𝑘)∥2𝐹 ≤ −𝛽∥𝑿★ −𝑿𝑘∥2𝐹 ,

which is equivalent to

0 < 𝛿 < 2
∥𝑿★ −𝑿𝑘∥2𝐹

∥𝒫Ω(𝑿★ −𝑿𝑘)∥2𝐹
.

Since ∥𝒫Ω(𝑿)∥𝐹 ≤ ∥𝑿∥𝐹 for any matrix 𝑿 ∈ ℝ𝑛1×𝑛2 , it is safe to select 𝛿 < 2. But
suppose that we could apply (5.2) to the matrix 𝑨 = 𝑿★ −𝑿𝑘. Then we could take
𝛿 inversely proportional to 𝑝; e.g. with 𝜖 = 1/4, we could take 𝛿 ≤ 1.6𝑝−1. Below, we
shall use the value 𝛿 = 1.2𝑝−1 which allows us to take large steps and still provides
convergence, at least empirically.

The reason why this is not a rigorous argument is that (5.2) cannot be applied
to 𝑨 = 𝑿★ − 𝑿𝑘 even though this matrix difference may obey the incoherence
assumption. The issue here is that 𝑿★−𝑿𝑘 is not a fixed matrix, but rather depends
on Ω since the iterates {𝑿𝑘} are computed with the knowledge of the sampled set.

5.1.3. Initial steps. The SVT algorithm starts with 𝒀 0 = 0, and we want to
choose a large 𝜏 to make sure that the solution of (2.8) is close enough to a solution
of (1.1). Define 𝑘0 as that integer obeying

𝜏

𝛿∥𝒫Ω(𝑴)∥2 ∈ (𝑘0 − 1, 𝑘0]. (5.3)

Since 𝒀 0 = 0, it is not difficult to see that 𝑿𝑘 = 0 and 𝒀 𝑘 = 𝑘𝛿𝒫Ω(𝑴) for
𝑘 = 1, . . . , 𝑘0. To save work, we may simply skip the computations of 𝑿1, . . . ,𝑿𝑘0 ,
and start the iteration by computing 𝑿𝑘0+1 from 𝒀 𝑘0 .

This strategy is a special case of a kicking device introduced in [56]; the main idea
of such a kicking scheme is that one can ‘jump over’ a few steps whenever possible.
Just like in the aforementioned reference, we can develop similar kicking strategies
here as well. Because in our numerical experiments the kicking is rarely triggered, we
forgo the description of such strategies.

16

5.1.4. Stopping criteria. Here, we discuss stopping criteria for the sequence
of SVT iterations (2.7), and present two possibilities.

The first is motivated by the first-order optimality conditions or KKT conditions
tailored to the minimization problem (2.8). By (2.14) and letting ∂𝒀 𝑔0(𝒀) = 0 in
(2.13), we see that the solution 𝑿★

𝜏 to (2.8) must also verify{
𝑿 = 𝒟𝜏 (𝒀),

𝒫Ω(𝑿 −𝑴) = 0,
(5.4)

where 𝒀 is a matrix vanishing outside of Ω𝑐. Therefore, to make sure that 𝑿𝑘 is
close to 𝑿★

𝜏 , it is sufficient to check how close (𝑿𝑘,𝒀 𝑘−1) is to obeying (5.4). By
definition, the first equation in (5.4) is always true. Therefore, it is natural to stop
(2.7) when the error in the second equation is below a specified tolerance. We suggest
stopping the algorithm when

∥𝒫Ω(𝑿
𝑘 −𝑴)∥𝐹

∥𝒫Ω(𝑴)∥𝐹 ≤ 𝜖, (5.5)

where 𝜖 is a fixed tolerance, e.g. 10−4. We provide a short heuristic argument justifying
this choice below.

In the matrix completion problem, we know that under suitable assumptions

∥𝒫Ω(𝑴)∥2𝐹 ≍ 𝑝 ∥𝑴∥2𝐹 ,
which is just (5.2) applied to the fixed matrix 𝑴 (the symbol ≍ here means that
there is a constant 𝜖 as in (5.2)). Suppose we could also apply (5.2) to the matrix
𝑿𝑘 −𝑴 (which we rigorously cannot since 𝑿𝑘 depends on Ω), then we would have

∥𝒫Ω(𝑿
𝑘 −𝑴)∥2𝐹 ≍ 𝑝 ∥𝑿𝑘 −𝑴∥2𝐹 , (5.6)

and thus

∥𝒫Ω(𝑿
𝑘 −𝑴)∥𝐹

∥𝒫Ω(𝑴)∥𝐹 ≍ ∥𝑿𝑘 −𝑴∥𝐹
∥𝑴∥𝐹 .

In words, one would control the relative reconstruction error by controlling the relative
error on the set of sampled locations.

A second stopping criterion comes from duality theory. Firstly, the iterates 𝑿𝑘

are generally not feasible for (2.8) although they become asymptotically feasible. One
can construct a feasible point from 𝑿𝑘 by projecting it onto the affine space {𝑿 :
𝒫Ω(𝑿) = 𝒫Ω(𝑴)} as 𝑿̃𝑘 = 𝑿𝑘 + 𝒫Ω(𝑴 − 𝑿𝑘). As usual let 𝑓𝜏 (𝑿) = 𝜏∥𝑿∥∗ +
1
2∥𝑿∥2𝐹 and denote by 𝑝★ the optimal value of (2.8). Since 𝑿̃𝑘 is feasible, we have

𝑝★ ≤ 𝑓𝜏 (𝑿̃
𝑘) := 𝑏𝑘. Secondly, using the notations of Section 2.4, duality theory gives

that 𝑎𝑘 := 𝑔0(𝒀
𝑘−1) = ℒ(𝑿𝑘,𝒀 𝑘−1) ≤ 𝑝★. Therefore, 𝑏𝑘 − 𝑎𝑘 is an upper bound on

the duality gap and one can stop the algorithm when this quantity falls below a given
tolerance.

For very large problems in which one holds 𝑿𝑘 in reduced SVD form, one may
not want to compute the projection 𝑿̃𝑘 since this matrix would not have low rank
and would require significant storage space (presumably, one would not want to spend
much time computing this projection either). Hence, the second method only makes
practical sense when the dimensions are not prohibitively large, or when the iterates
do not have low rank.

Similarly, one can derive stopping criteria for all the iterations (3.3), (3.5) and
(3.6). For example, we can stop (3.3) for general linear constraints when ∥𝒜(𝑿𝑘) −
𝒃∥/∥𝒃∥ ≤ 𝜖. We omit the detailed discussions here.

17

5.1.5. Algorithm. We conclude this section by summarizing the implementa-
tion details and give the SVT algorithm for matrix completion below (Algorithm 1).
Of course, one would obtain a very similar structure for the more general problems
of the form (3.1) and (3.4) with linear inequality constraints. For convenience, define
for each nonnegative integer 𝑠 ≤ min{𝑛1, 𝑛2},

[𝑼𝑘,Σ𝑘,𝑽 𝑘]𝑠, 𝑘 = 1, 2, . . . ,

where 𝑼𝑘 = [𝒖𝑘
1 , . . . ,𝒖

𝑘
𝑠] and 𝑽 𝑘 = [𝒗𝑘

1 , . . . ,𝒗
𝑘
𝑠] are the first 𝑠 singular vectors of the

matrix 𝒀 𝑘, and Σ𝑘 is a diagonal matrix with the first 𝑠 singular values 𝜎𝑘
1 , . . . , 𝜎

𝑘
𝑠 on

the diagonal.

Algorithm 1: Singular Value Thresholding (SVT) Algorithm

Input: sampled set Ω and sampled entries 𝒫Ω(𝑴), step size 𝛿, tolerance 𝜖, parameter 𝜏 ,
increment ℓ, and maximum iteration count 𝑘max

Output: 𝑿opt

Description: Recover a low-rank matrix 𝑴 from a subset of sampled entries

1 Set 𝒀 0 = 𝑘0𝛿𝒫Ω(𝑴) (𝑘0 is defined in (5.3))
2 Set 𝑟0 = 0
3 for 𝑘 = 1 to 𝑘max

4 Set 𝑠𝑘 = 𝑟𝑘−1 + 1
5 repeat
6 Compute [𝑼𝑘−1,Σ𝑘−1,𝑽 𝑘−1]𝑠𝑘
7 Set 𝑠𝑘 = 𝑠𝑘 + ℓ
8 until 𝜎𝑘−1

𝑠𝑘−ℓ ≤ 𝜏

9 Set 𝑟𝑘 = max{𝑗 : 𝜎𝑘−1
𝑗 > 𝜏}

10 Set 𝑿𝑘 =
∑𝑟𝑘

𝑗=1(𝜎
𝑘−1
𝑗 − 𝜏)𝒖𝑘−1

𝑗 𝒗𝑘−1
𝑗

11 if ∥𝒫Ω(𝑿𝑘 − 𝑴)∥𝐹 /∥𝒫Ω𝑴∥𝐹 ≤ 𝜖 then break

12 Set 𝑌 𝑘
𝑖𝑗 =

{
0 if (𝑖, 𝑗) ∕∈ Ω,

𝑌 𝑘−1
𝑖𝑗 + 𝛿(𝑀𝑖𝑗 − 𝑋𝑘

𝑖𝑗) if (𝑖, 𝑗) ∈ Ω

13 end for 𝑘
14 Set 𝑿opt = 𝑿𝑘

5.2. Numerical results.

5.2.1. Linear equality constraints. Our implementation is in Matlab and all
the computational results we are about to report were obtained on a desktop computer
with a 1.86 GHz CPU (dual core with Matlab’s multithreading option enabled) and 3
GB of memory. In our simulations, we generate 𝑛×𝑛 matrices of rank 𝑟 by sampling
two 𝑛 × 𝑟 factors 𝑴𝐿 and 𝑴𝑅 independently, each having i.i.d. Gaussian entries,
and setting 𝑴 = 𝑴𝐿𝑴

∗
𝑅 as it is suggested in [16]. The set of observed entries Ω is

sampled uniformly at random among all sets of cardinality 𝑚.
The recovery is performed via the SVT algorithm (Algorithm 1), and we use

∥𝒫Ω(𝑿
𝑘 −𝑴)∥𝐹 /∥𝒫Ω𝑴∥𝐹 < 10−4 (5.7)

as a stopping criterion. As discussed earlier, the step sizes are constant and we set
𝛿 = 1.2𝑝−1. Throughout this section, we denote the output of the SVT algorithm by
𝑿opt. The parameter 𝜏 is chosen empirically and set to 𝜏 = 5𝑛. A heuristic argument
is as follows. Clearly, we would like the term 𝜏∥𝑴∥∗ to dominate the other, namely,
1
2∥𝑴∥2𝐹 . For products of Gaussian matrices as above, standard random matrix theory
asserts that the Frobenius norm of 𝑴 concentrates around 𝑛

√
𝑟, and that the nuclear

norm concentrates around about 𝑛𝑟 (this should be clear in the simple case where
𝑟 = 1 and is generally valid). The value 𝜏 = 5𝑛 makes sure that on the average, the

18

Unknown 𝑴 Computational results

size (𝑛 × 𝑛) rank (𝑟) 𝑚/𝑑𝑟 𝑚/𝑛2 time(s) # iters relative error

10 6 0.12 23 117 1.64 × 10−4

1, 000 × 1, 000 50 4 0.39 196 114 1.59 × 10−4

100 3 0.57 501 129 1.68 × 10−4

10 6 0.024 147 123 1.73 × 10−4

5, 000 × 5, 000 50 5 0.10 950 108 1.61 × 10−4

100 4 0.158 3,339 123 1.72 × 10−4

10 6 0.012 281 123 1.73 × 10−4

10, 000 × 10, 000 50 5 0.050 2,096 110 1.65 × 10−4

100 4 0.080 7,059 127 1.79 × 10−4

10 6 0.006 588 124 1.73 × 10−4

20, 000 × 20, 000
50 5 0.025 4,581 111 1.66 × 10−4

30, 000 × 30, 000 10 6 0.004 1,030 125 1.73 × 10−4

Table 5.1
Experimental results for matrix completion. The rank 𝑟 is the rank of the unknown matrix 𝑴 ,

𝑚/𝑑𝑟 is the ratio between the number of sampled entries and the number of degrees of freedom in
an 𝑛 × 𝑛 matrix of rank 𝑟 (oversampling ratio), and 𝑚/𝑛2 is the fraction of observed entries. All
the computational results on the right are averaged over five runs.

value of 𝜏∥𝑴∥∗ is about 10 times that of 1
2∥𝑴∥2𝐹 as long as the rank is bounded

away from the dimension 𝑛.
Our computational results are displayed in Table 5.1. There, we report the run

time in seconds, the number of iterations it takes to reach convergence (5.7), and the
relative error of the reconstruction

relative error = ∥𝑿opt −𝑴∥𝐹 /∥𝑴∥𝐹 , (5.8)

where 𝑴 is the real unknown matrix. All of these quantities are averaged over five
runs. The table also gives the percentage of entries that are observed, namely, 𝑚/𝑛2

together with a quantity that we may want to think as the information oversampling
ratio. Recall that an 𝑛 × 𝑛 matrix of rank 𝑟 depends upon 𝑑𝑟 := 𝑟(2𝑛 − 𝑟) degrees
of freedom. Then 𝑚/𝑑𝑟 is the ratio between the number of sampled entries and the
‘true dimensionality’ of an 𝑛× 𝑛 matrix of rank 𝑟.

The first observation is that the SVT algorithm performs extremely well in these
experiments. In all of our experiments, it takes fewer than 200 SVT iterations to reach
convergence. As a consequence, the run times are short. As indicated in the table,
we note that one recovers a 1, 000 × 1, 000 matrix of rank 10 in less than a minute.
The algorithm also recovers 30, 000× 30, 000 matrices of rank 10 from about 0.4% of
their sampled entries in just about 17 minutes. In addition, higher-rank matrices are
also efficiently completed: for example, it takes between one and two hours to recover
10, 000 × 10, 000 matrices of rank 100 and 20, 000 × 20, 000 matrices of rank 50. We
would like to stress that these numbers were obtained on a modest CPU (1.86GHz).
Furthermore, a Fortran implementation is likely to cut down on these numbers by a
multiplicative factor typically between three and four.

We also check the validity of the stopping criterion (5.7) by inspecting the relative
error defined in (5.8). The table shows that the heuristic and nonrigorous analysis
of Section 5.1 holds in practice since the relative reconstruction error is of the same
order as ∥𝒫Ω(𝑿

opt − 𝑴)∥𝐹 /∥𝒫Ω𝑴∥𝐹 ∼ 10−4. Indeed, the overall relative errors
reported in Table 5.1 are all less than 2× 10−4.

We emphasized all along an important feature of the SVT algorithm, which is
that the matrices 𝑿𝑘 have low rank. We demonstrate this fact empirically in Fig-
ure 5.1, which plots the rank of 𝑿𝑘 versus the iteration count 𝑘, and does this for
unknown matrices of size 5, 000 × 5, 000 with different ranks. The plots reveal an

19

𝛿 = 0.8𝑝−1 𝛿 = 1.2𝑝−1 𝛿 = 1.6𝑝−1

of iters rank # of iters rank # of iters rank
mean std mean mean std mean mean std mean

𝜏 = 2𝑛 322 192 15.4 764 1246 11.9 DNC DNC DNC
𝜏 = 3𝑛 117 2.6 10.0 77 1.8 10.0 1310 2194 10.0
𝜏 = 4𝑛 146 3.1 10.0 97 2.0 9.9 266 435 10.0
𝜏 = 5𝑛 177 4.1 10.0 117 2.8 10.0 87 2.3 10.0
𝜏 = 6𝑛 207 6.2 10.0 136 2.7 10.0 102 1.9 10.0

Table 5.2
Mean and standard deviation over five runs of the number of iterations needed to achieve (5.7)

for different values of the parameters 𝛿 and 𝜏 , together with the average ranks of 𝑿𝑘. The test
example is a random 1000× 1000 matrix of rank 10, and the number of sampled entries is 𝑚 = 6𝑑𝑟.
We also report ‘DNC’ when none of the five runs obeys (5.7) after 1,000 iterations.

interesting phenomenon: in our experiments, the rank of 𝑿𝑘 is nondecreasing so that
the maximum rank is reached in the final steps of the algorithm. In fact, the rank
of the iterates quickly reaches the value 𝑟 of the true rank. After these few initial
steps, the SVT iterations search for that matrix with rank 𝑟 minimizing the objec-
tive functional. As mentioned earlier, the low-rank property is crucial for making the
algorithm run fast.

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

9

10

11

Itertion Step k

R
an

k
of

 X
k

(a) 𝑟 = 10

0 20 40 60 80 100
0

10

20

30

40

50

60

Iteration step k

R
an

k
of

 X
k

(b) 𝑟 = 50

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

110

Iteration step k

R
an

k
of

 X
k

(c) 𝑟 = 100

Fig. 5.1. Rank of 𝑿𝑘 as a function 𝑘 when the unknown matrix 𝑴 is of size 5, 000 × 5, 000
and of rank 𝑟.

We now present a limited study examining the role of the parameters 𝛿 and 𝜏
in the convergence. We consider a square 1000 × 1000 matrix of rank 10, and select
a number 𝑚 of entries equal to 6 times the number of degrees of freedom; that is,
𝑚 = 6𝑑𝑟. Numerical results are reported in Table 5.2, which gives the number of
iterations needed to achieve convergence (5.7) and the average rank of each iteration
for different values of 𝛿 and 𝜏 . This table suggests that for each value of 𝛿, there
exists an optimal 𝜏 for which the SVT algorithm performs best. In more details,
when 𝜏 is smaller than this optimal value, the number of iterations needed to achieve
convergence is larger (and also more variable). In addition, the average rank of each
iteration is also larger, and thus the computational cost is higher. When 𝜏 is close to
the optimal value, the SVT algorithm exhibits a rapid convergence, and there is little
variability in the number of iterations needed to achieve convergence. When 𝜏 is too
large, the SVT algorithm may overshrink 𝒀 𝑘 at each iterate which, in turn, leads to
slow convergence. Table 5.2 also indicates that the convergence of the SVT algorithm
depends on the step size 𝛿.

Finally, we demonstrate the results of the SVT algorithm for matrix completion
from noisy sampled entries. Suppose we observe data from the model

𝐵𝑖𝑗 = 𝑀𝑖𝑗 + 𝑍𝑖𝑗 , (𝑖, 𝑗) ∈ Ω, (5.9)

20

noise Unknown matrix 𝑴 Computational results

ratio size (𝑛 × 𝑛) rank (𝑟) 𝑚/𝑑𝑟 𝑚/𝑛2 time(s) # iters relative error
10 6 0.12 10.8 51 0.78 × 10−2

10−2 1, 000 × 1, 000 50 4 0.39 87.7 48 0.95 × 10−2

100 3 0.57 216 50 1.13 × 10−2

10 6 0.12 4.0 19 0.72 × 10−1

10−1 1, 000 × 1, 000 50 4 0.39 33.2 17 0.89 × 10−1

100 3 0.57 85.2 17 1.01 × 10−1

10 6 0.12 0.9 3 0.52
1 1, 000 × 1, 000 50 4 0.39 7.8 3 0.63

100 3 0.57 34.8 3 0.69

Table 5.3
Simulation results for noisy data. The computational results are averaged over five runs. For

each test, the table shows the results of Algorithm 1 applied with an early stopping criterion

where 𝒁 is a zero-mean Gaussian white noise with standard deviation 𝜎. We run the
SVT algorithm but stop early, as soon as 𝑿𝑘 is consistent with the data and obeys

∥𝒫Ω(𝑿
𝑘 −𝑩)∥2𝐹 ≤ (1 + 𝜖)𝑚𝜎2, (5.10)

where 𝜖 is a small parameter. Since ∥𝒫Ω(𝑴 − 𝑩)∥2𝐹 is very close to 𝑚𝜎2 for large

values of 𝑚, we set 𝜖 = 0. Our reconstruction 𝑴̂ is the first 𝑿𝑘 obeying (5.10). The
results are shown in Table 5.3 (the quantities are averages of 5 runs). Define the noise
ratio as ∥𝒫Ω(𝒁)∥𝐹 /∥𝒫Ω(𝑴)∥𝐹 , and the relative error by (5.8). From Table 5.3, we
see that the SVT algorithm works well as the relative error between the recovered
and the true data matrix is just about equal to the noise ratio.

The theory of low-rank matrix recovery from noisy data is nonexistent at the
moment, and is obviously beyond the scope of this paper. Having said this, we would
like to conclude this section with an intuitive and nonrigorous discussion, which may
explain why the observed recovery error is within the noise level. Suppose again that
𝑴̂ obeys (5.6), namely,

∥𝒫Ω(𝑴̂ −𝑴)∥2𝐹 ≍ 𝑝∥𝑴̂ −𝑴∥2𝐹 . (5.11)

As mentioned earlier, one condition for this to happen is that 𝑴 and 𝑴̂ have low
rank. This is the reason why it is important to stop the algorithm early as we hope to
obtain a solution which is both consistent with the data and has low rank (the limit
of the SVT iterations, lim𝑘→∞ 𝑿𝑘, will not generally have low rank since there may
be no low-rank matrix matching the noisy data). From

∥𝒫Ω(𝑴̂ −𝑴)∥𝐹 ≤ ∥𝒫Ω(𝑴̂ −𝑩)∥𝐹 + ∥𝒫Ω(𝑩 −𝑴)∥𝐹 ,

and the fact that both terms on the right-hand side are on the order of
√
𝑚𝜎2, we

would have 𝑝∥𝑴̂ − 𝑴∥2𝐹 = 𝑂(𝑚𝜎2) by (5.11). In particular, this would give that
the relative reconstruction error is on the order of the noise ratio since ∥𝒫Ω(𝑴)∥2𝐹 ≍
𝑝∥𝑴∥2𝐹—as observed experimentally.

5.2.2. Inequality constraints. We now examine the speed at which one can
solve similar problems with inequality constraints instead of linear equality con-
straints. We assume the model (5.9), where the matrix 𝑴 of rank 𝑟 is sampled
as before.

We use the noise-aware variant with quadratic constraints (3.10)–(3.11). We set
𝜖 to 𝜖2 = 𝜎2(𝑚+2

√
2𝑚) as this provides a likely upper bound on ∥𝒛∥ so that the true

21

tol time(s) # iters ∥𝑴̂ − 𝑴∥𝐹 /(𝑛𝜎) ∥𝑴̂∥∗ rank(𝑴̂)
0.25 32.8 126 1.11 9034 10
0.2 45.1 158 1.06 9119 15
0.15 94.2 192 1.04 9212 26
0.1 248 232 1.04 9308 39
0.05 447 257 1.03 9415 45

Table 5.4
Simulation results for the noise-aware variant (3.12), which solves (3.11). The unknown matrix

𝑴 is 1000× 1000 and of rank 𝑟 = 10. We get to see 6 entries per degree of freedom; i.e. 𝑚 = 6𝑑𝑟.
The noise ratio added is 0.1. The averaged true nuclear norm is 9961. We choose 𝜏 = 5𝑛 and
𝛿 = 1.2𝑝−1. The computational results are averaged over five runs. The computer here is a quad-
core 2.30GHz AMD Phenom running Matlab 7.6.0 with 3 threads.

matrix 𝑴 is in the feasible set with high probability. The step size is as before and
set to 1.2/𝑝. As a stopping criterion, we stop the iterations (3.12) when the quadratic
constraint is very nearly satisfied; in details, we terminate the algorithm when

∥𝒃−𝒜(𝑿𝑘)∥𝐹 ≤ (1 + tol) 𝜖

where tol is some small scalar, typically 0.05 so that the constraint is nearly enforced.
The experimental results are shown in Table 5.4. Our experiments suggest that

the algorithm (3.12) is fast, and provides statistically accurate answers since it predicts
the unseen entries with an accuracy which is about equal to the standard deviation
of the noise. In fact, very recent work [15] performed after the original submission of
this paper suggests that even with considerable side information about the unknown
matrix, one would not be able to do much better.

As seen in the table, although the reconstruction is accurate, the ranks of the
iterates 𝑿𝑘 seem to increase with the iteration count 𝑘. This is unlike the case with
equality constraints, and we have witnessed this phenomenon in other settings as well
such as in the case of linear inequality constraints; e.g. with the iteration (3.9) for
solving (3.8). Because a higher rank slows down each iteration, it would be of interest
to find methods which stabilize the rank and keep it low in general settings. We leave
this important issue for future research.

5.3. An example with real data. We conclude the numerical section by ap-
plying our algorithms to a real dataset. We downloaded from the website [8] a matrix
of geodesic distances (in miles) between 312 cities located in the United States and
Canada. The geodesic distances were computed from latitude and longitude informa-
tion, and rounded to the nearest integer. It is well known that the squared Euclidean
distance matrix is a low rank matrix. With geodesic distances, however, a numeri-
cal test suggests that the geodesic-distance matrix 𝑴 can be well approximated by
a low-rank matrix. Indeed, letting 𝑴3 be the best rank-3 approximation, we have
∥𝑴3∥𝐹 /∥𝑴∥𝐹 = 0.9933 or, equivalently, ∥𝑴3 −𝑴∥𝐹 /∥𝑴∥𝐹 = 0.1159. Now sam-

ple 30% of the entries of 𝑴 and obtain and estimate 𝑴̂ by the SVT algorithm and
its noise aware variant (3.6). Here, we set 𝜏 = 107 which happens to be about 100
times the largest singular value of 𝑴 , and set 𝛿 = 2. For completion, we use the
SVT algorithm and the iteration (3.6), which solves (3.8) with 𝐸𝑖𝑗 = 0.01∣𝑀 ∣𝑖𝑗 . In
Figure 5.2, we plot the relative error ∥𝑴 −𝑿𝑘∥𝐹 /∥𝑴∥𝐹 , the relative residual error
∥𝒫Ω(𝑴 −𝑿𝑘)∥𝐹 /∥𝒫Ω(𝑴)∥𝐹 and the error of the best approximation with the same
rank. Let 𝑘𝑖 be the smallest integer such that the rank of 𝑿𝑘𝑖 is 𝑖 and the rank
of 𝑿𝑘𝑖+1 is 𝑖 + 1. The computational times needed to reach the 𝑘𝑖th iteration are
shown in Table 5.5. This table indicates that in a few seconds and in a few iterations,

22

Algorithm rank 𝑘𝑖 time ∥𝑴 − 𝑴𝑖∥𝐹 /∥𝑴∥𝐹 ∥𝑴 − 𝑿𝑘𝑖∥𝐹 /∥𝑴∥𝐹

1 58 1.4 0.4091 0.4170
SVT 2 190 4.8 0.1895 0.1980

3 343 8.9 0.1159 0.1252
1 47 2.6 0.4091 0.4234

(3.6) 2 166 7.2 0.1895 0.1998
3 310 13.3 0.1159 0.1270

Table 5.5
Speed and accuracy of the completion of the city-to-city distance matrix. Here, ∥𝑴 −

𝑴𝑖∥𝐹 /∥𝑴∥𝐹 is the best possible relative error achieved by a matrix of rank 𝑖.

both the SVT algorithm and the iteration (3.6) give a completion, which is nearly as
accurate as the best possible low-rank approximation to the unknown matrix 𝑴 .

50 100 150 200 250 300 350 400

10
−1

10
0

Relative Error
Relative Residual Error
 Best Possible Relative Error Using the same rank

(a) SVT

50 100 150 200 250 300 350 400

10
−1

10
0

Relative Error
Relative Residual Error
 Best Possible Relative Error Using the same rank

(b) Noise aware variant (3.6)

50 100 150 200 250 300 350 400
0

1

2

3

4

5

k
R

an
k

SVT
DS

(c) Rank vs. iteration count

Fig. 5.2. Computational results for the city-to-city distance dataset. (a) Plot of the reconstruc-
tion errors from of the SVT algorithm. The blue dashed line is the relative error ∥𝑿𝑘−𝑴∥𝐹 /∥𝑴∥𝐹 ,
the red dotted line is the relative residual error ∥𝒫Ω(𝑿

𝑘 −𝑴)∥𝐹 /∥𝒫Ω(𝑴)∥𝐹 and the black line is
the best possible relative error achieved by truncating the SVD of 𝑴 and keeping a number of terms
equal to the rank of 𝑿𝑘. (b) Same as (a) but with the iteration (3.6). (c) Rank of the successive
iterates 𝑿𝑘; the SVT algorithm is in blue and the noise aware variant (3.6) is in red.

6. Discussion. This paper introduced a novel algorithm, namely, the singular
value thresholding algorithm for matrix completion and related nuclear norm min-
imization problems. This algorithm is easy to implement and surprisingly effective
both in terms of computational cost and storage requirement when the minimum
nuclear-norm solution is also the lowest-rank solution. We would like to close this
paper by discussing a few open problems and research directions related to this work.

Our algorithm exploits the fact that the sequence of iterates {𝑿𝑘} have low rank
when the minimum nuclear solution has low rank. An interesting question is whether
one can prove (or disprove) that in a majority of the cases, this is indeed the case.

It would be interesting to explore other ways of computing 𝒟𝜏 (𝒀)—in words,
the action of the singular value shrinkage operator. Our approach uses the Lanczos
bidiagonalization algorithm with partial reorthogonalization which takes advantages
of sparse inputs but other approaches are possible. We mention two of them.

1. A series of papers have proposed the use of randomized procedures for the
approximation of a matrix 𝒀 with a matrix 𝒁 of rank 𝑟 [47, 53]. When
this approximation consists of the truncated SVD retaining the part of the
expansion corresponding to singular values greater than 𝜏 , this can be used
to evaluate 𝒟𝜏 (𝒀). Some of these algorithms are efficient when the input 𝒀
is sparse [53], and it would be interesting to know whether these methods are
fast and accurate enough to be used in the SVT iteration (2.7).

2. A wide range of iterative methods for computing matrix functions of the

23

general form 𝑓(𝒀) are available today, see [41] for a survey. A valuable
research direction is to investigate whether some of these iterative methods,
or other to be developed, would provide powerful ways for computing 𝒟𝜏 (𝒀).

In practice, one would like to solve (2.8) for large values of 𝜏 . However, a larger
value of 𝜏 generally means a slower rate of convergence. A good strategy might be to
start with a value of 𝜏 , which is large enough so that (2.8) admits a low-rank solution,
and at the same time for which the algorithm converges rapidly. One could then use
a continuation method as in [66] to increase the value of 𝜏 sequentially according to
a schedule 𝜏0, 𝜏1, . . ., and use the solution to the previous problem with 𝜏 = 𝜏𝑖−1 as
an initial guess for the solution to the current problem with 𝜏 = 𝜏𝑖 (warm starting).
We hope to report on this in a separate paper.

Acknowledgments. J-F. C. is supported by the Wavelets and Information Processing Pro-

gramme under a grant from DSTA, Singapore. E. C. is partially supported by the Waterman Award

from the National Science Foundation and by an ONR grant N00014-08-1-0749. Z. S. is supported

in part by Grant R-146-000-113-112 from the National University of Singapore. E. C. would like to

thank Benjamin Recht and Joel Tropp for fruitful conversations related to this project, and Stephen

Becker for his help in preparing the computational results of Section 5.2.2.

REFERENCES

[1] ACM SIGKDD and Netflix, Proceedings of kdd cup and workshop. Proceedings available
online at http://www.cs.uic.edu/˜liub/KDD-cup-2007/proceedings.html.

[2] J. Abernethy, F. Bach, T. Evgeniou, and J.P. Vert, Low-rank matrix factorization with
attributes, Arxiv preprint cs/0611124, (2006).

[3] Y. Amit, M. Fink, N. Srebro, and S. Ullman, Uncovering shared structures in multiclass
classification, in Proceedings of the 24th international conference on Machine learning,
ACM, 2007, pp. 17–24.

[4] A. Argyriou, T. Evgeniou, and M. Pontil, Multi-task feature learning, Advances in Neural
Information Processing Systems, 19 (2007), pp. 41–48.

[5] J. Bect, L. Blanc-Feraud, G. Aubert, and A. Chambolle, A-unified variational framework
for image restoration, in Proc. ECCV, vol. 3024, Springer, 2004, pp. 1–13.

[6] D. Bertsekas, On the Goldstein-Levitin-Polyak gradient projection method, IEEE Transac-
tions on Automatic Control, 21 (1976), pp. 174–184.

[7] S. P. Boyd and L. Vandenberghe, Convex optimization, Cambridge Univ Pr, 2004.
[8] J. Burkardt, Cities – city distance datasets. http://people.sc.fsu.edu/˜burkardt/

datasets/cities/cities.html.
[9] J.-F. Cai, R. H. Chan, L. Shen, and Z. Shen, Restoration of chopped and nodded images by

framelets, SIAM J. Sci. Comput., 30 (2008), pp. 1205–1227.
[10] J.-F. Cai, R. H. Chan, and Z. Shen, A framelet-based image inpainting algorithm, Appl.

Comput. Harmon. Anal., 24 (2008), pp. 131–149.
[11] J.-F. Cai, S. Osher, and Z. Shen, Convergence of the linearized Bregman iteration for ℓ1-

norm minimization, Math. Comp., 78 (2009), pp. 2127–2136.
[12] J.-F. Cai, S. Osher, and Z. Shen, Linearized Bregman iterations for compressed sensing,

Math. Comp., 78 (2009), pp. 1515–1536.
[13] J.-F. Cai, S. Osher, and Z. Shen, Linearized Bregman iterations for frame-based image

deblurring, SIAM J. Imaging Sci., 2 (2009), pp. 226–252.
[14] E. J. Candès and F. Guo, New multiscale transforms, minimum total variation synthesis: Ap-

plications to edge-preserving image reconstruction, Signal Processing, 82 (2002), pp. 1519–
1543.

[15] E. J. Candès and Y. Plan, Matrix completion with noise, Proceedings of the IEEE, (2009).
[16] E. J. Candès and B. Recht, Exact matrix completion via convex optimization, Foundations

of Computational Mathematics, (2009), pp. 717–772.
[17] E. Candès and J. Romberg, Sparsity and incoherence in compressive sampling, Inverse Prob-

lems, 23 (2007), pp. 969–985.
[18] E. Candès and T. Tao, The Dantzig selector: statistical estimation when 𝑝 is much larger

than 𝑛, Ann. Statist., 35 (2007), pp. 2313–2351.

24

[19] E. J. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: exact signal recon-
struction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52
(2006), pp. 489–509.

[20] E. J. Candès and T. Tao, Decoding by linear programming, IEEE Trans. Inform. Theory, 51
(2005), pp. 4203–4215.

[21] E. J. Candès and T. Tao, Near-optimal signal recovery from random projections: universal
encoding strategies?, IEEE Trans. Inform. Theory, 52 (2006), pp. 5406–5425.

[22] A. Chai and Z. Shen, Deconvolution: A wavelet frame approach, Numer. Math., 106 (2007),
pp. 529–587.

[23] R. H. Chan, T. F. Chan, L. Shen, and Z. Shen, Wavelet algorithms for high-resolution image
reconstruction, SIAM J. Sci. Comput., 24 (2003), pp. 1408–1432 (electronic).

[24] P. Chen and D. Suter, Recovering the missing components in a large noisy low-rank ma-
trix: Application to SFM, IEEE transactions on pattern analysis and machine intelligence,
(2004), pp. 1051–1063.

[25] Y. C. Cheng, On the gradient-projection method for solving the nonsymmetric linear comple-
mentarity problem, Journal of Optimization Theory and Applications, 43 (1984), pp. 527–
541.

[26] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting,
Multiscale Model. Simul., 4 (2005), pp. 1168–1200 (electronic).

[27] J. Darbon and S. Osher, Fast discrete optimization for sparse approximations and deconvo-
lutions, 2007. preprint.

[28] I. Daubechies, M. Defrise, and C. De Mol, An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), pp. 1413–
1457.

[29] I. Daubechies, G. Teschke, and L. Vese, Iteratively solving linear inverse problems under
general convex constraints, Inverse Probl. Imaging, 1 (2007), pp. 29–46.

[30] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289–1306.
[31] B.C. Eaves, On the basic theorem of complementarity, Mathematical Programming, 1 (1971),

pp. 68–75.
[32] M. Elad, J.-L. Starck, P. Querre, and D. L. Donoho, Simultaneous cartoon and texture

image inpainting using morphological component analysis (MCA), Appl. Comput. Harmon.
Anal., 19 (2005), pp. 340–358.

[33] M. J. Fadili, J.-L. Starck, and F. Murtagh, Inpainting and zooming using sparse represen-
tations, The Computer Journal, 52 (2009), pp. 64–79.

[34] M. Fazel, Matrix rank minimization with applications, PhD thesis, Stanford University, (2002).
[35] M. Fazel, H. Hindi, and S. P. Boyd, Log-det heuristic for matrix rank minimization with

applications to Hankel and Euclidean distance matrices, in Proceedings of the American
Control Conference, vol. 3, 2003, pp. 2156–2162.

[36] M. A. T. Figueiredo and R. D. Nowak, An EM algorithm for wavelet-based image restoration,
IEEE Trans. Image Process., 12 (2003), pp. 906–916.

[37] M. Fukushima, Z.-Q. Luo, and P. Tseng, Smoothing functions for second-order-cone com-
plementarity problems, SIAM J. Optim., 12 (2001/02), pp. 436–460 (electronic).

[38] A. A. Goldstein, Convex programming in Hilbert space, Bull. Amer. Math. Soc, 70 (1964),
pp. 709–710.

[39] T. Goldstein and S. Osher, The split Bregman method for 𝐿1-regularized problems, SIAM
J. Imaging Sci., 2 (2009), pp. 323–343.

[40] E. T. Hale, W. Yin, and Y. Zhang, Fixed-point continuation for 𝑙1-minimization: method-
ology and convergence, SIAM J. Optim., 19 (2008), pp. 1107–1130.

[41] N. J. Higham, Functions of matrices, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2008. Theory and computation.

[42] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms.
I, vol. 305 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], Springer-Verlag, Berlin, 1993. Fundamentals.

[43] A. N. Iusem, On the convergence properties of the projected gradient method for convex opti-
mization, Computational & Applied Mathematics, 22 (2003), pp. 37–52.

[44] R. M. Larsen, PROPACK – software for large and sparse SVD calculations. Available from
http://sun.stanford.edu/˜rmunk/PROPACK/.

[45] E. S. Levitin and B. T. POLIAK, Constrained minimization methods(Extremum problems
from functional-analytic point of view, discussing methods of solving and convergence con-
ditions), USSR Computational Mathematics and Mathematical Physics, 6 (1966), pp. 1–50.

[46] A. S. Lewis, The mathematics of eigenvalue optimization, Math. Program., 97 (2003), pp. 155–
176. ISMP, 2003 (Copenhagen).

25

[47] E. Liberty, F. Woolfe, P. G. Martinsson, V. Rokhlin, and M. Tygert, Randomized algo-
rithms for the low-rank approximation of matrices, Proceedings of the National Academy
of Sciences, 104 (2007), pp. 20167–20172.

[48] S. Lintner and F. Malgouyres, Solving a variational image restoration model which involves
L8 constraints, Inverse Problems, 20 (2004), pp. 815–831.

[49] Y.-J. Liu, D. F. Sun, and K. C. Toh, An Implementable Proximal Point Algorithmic
Framework for Nuclear Norm Minimization, 2009. preprint, available at http://www.

optimization-online.org/DB_HTML/2009/07/2340.html.
[50] Z. Liu and L. Vandenberghe, Interior-point method for nuclear norm approximation with

application to system identification, submitted to Mathematical Programming, (2008).
[51] S. Ma, D. Goldfarb, and L. Chen, Fixed point and Bregman iterative methods for matrix

rank minimization, Mathematical Programming, (2009), p. to appear.
[52] P. Marcotte and J. H. Wu, On the convergence of projection methods: application to the

decomposition of affine variational inequalities, Journal of Optimization Theory and Ap-
plications, 85 (1995), pp. 347–362.

[53] P. G. Martinsson, V. Rokhlin, and M. Tygert, A randomized algorithm for the approxi-
mation of matrices, Department of Computer Science, Yale University, New Haven, CT,
Technical Report, 1361 (2006).

[54] M. Mesbahi and G. P. Papavassilopoulos, On the rank minimization problem over a positive
semidefinitelinear matrix inequality, IEEE Transactions on Automatic Control, 42 (1997),
pp. 239–243.

[55] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, An iterative regularization method
for total variation-based image restoration, Multiscale Model. Simul., 4 (2005), pp. 460–489
(electronic).

[56] S. Osher, Y. Mao, B. Dong, and W. Yin, Fast linearized Bregman iteration for compressive
sensing and sparse denoising, Communications in Mathematical Sciences, (2009).

[57] B. Recht, M. Fazel, and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization, submitted to SIAM Review, (2007).

[58] R. T. Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton Uni-
versity Press, Princeton, N.J., 1970.

[59] J. L. Starck, D. L. Donoho, and E. J. Candès, Astronomical image representation by the
curvelet transform, Astronomy and Astrophysics, 398 (2003), pp. 785–800.

[60] K. C. Toh, M. J. Todd, and R. H. Tütüncü, SDPT3 – a Matlab software package for
semidefinite-quadratic-linear programming, version 3.0, Web page http://www.math.nus.

edu.sg/mattohkc/sdpt3.html, (2001).
[61] K.-C. Toh and S. Yun, An accelerated proximal gradient algorithm for nuclear norm regular-

ized least squares problems, Preprint, (2009).
[62] C. Tomasi and T. Kanade, Shape and motion from image streams under orthography: a

factorization method, International Journal of Computer Vision, 9 (1992), pp. 137–154.
[63] P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and

variational inequalities., SIAM J. Control Optimiz., 29 (1991), pp. 119–138.
[64] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings,

SIAM J. Control Optimiz., 38 (2000), pp. 431–446.
[65] G.A. Watson, Characterization of the subdifferential of some matrix norms, Linear Algebra

and its Applications, 170 (1992), pp. 33–45.
[66] S. J. Wright, R. Nowak, and M. Figueiredo, Sparse reconstruction by separable approxi-

mation, IEEE Transactions on Signal Processing, 57 (2009), pp. 2479–2493.
[67] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, Bregman iterative algorithms for ℓ1-

minimization with applications to compressed sensing, SIAM J. Imaging Sci., 1 (2008),
pp. 143–168.

[68] D. L. Zhu and P. Marcotte, Co-coercivity and its role in the convergence of iterative schemes
for solving variational inequalities, SIAM Journal on Optimization, 6 (1996), pp. 714–726.

26

