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Abstract

In this paper, we consider using total variation (TV) minimization to recover signals whose gradients

have a sparse support, from a small number of measurements. We establish a proof for the performance

guarantee of TV minimization in recovering one-dimensional signal with sparse gradient support. This

answers the open question of proving the fidelity of TV minimization in such a setting. We have shown

that, when the number of Gaussian measurements M &
√

NK logN , the TV minimization guarantees

the exact recovery of any signal of size N with at most K nonzero gradients with high probability; when

M .
√

NK, the TV minimization cannot find the original signal with a moderate probability. Last

but not least, when M grows linearly with the signal dimension, we will also show that the recoverable

sparsity K grows linearly with the signal dimension as well.

1 Introduction

Compressed sensing has recently gained a lot of attention in many applications, because it enables acquiring

sparse signals from a much smaller number of samples than the ambient dimension of signal. Compressed

sensing takes advantage of the fact that most signals of interest in practice are sparse: there are only a few

nonzero or big elements when the signals are represented over a certain dictionary such as wavelet basis. For

these types of sparse or compressible signals, compressed sensing theory [7, 13] has established that a small

number of nonadaptive measurements are often sufficient to efficiently recover them under methods such as

ℓ1-minimization [6–8, 13].

To begin with, let us assume that x̄ ∈ R
N is a one-dimensional (compared with 2-dimensional images

and 3-dimensional videos) signal vector of N elements, and has no more than K (K < N) nonzero elements.
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In compressed sensing, we sample x̄ using M (M < N) linear projections

y = Ax̄,

where A is an M × N measuring matrix and y is an M × 1 measurement vector. Knowing A and the

measurement y, ℓ1 minimization is often used to recover the sparse x̄:

min
x

‖x‖1 subject to y = Ax. (1)

It has been shown that under suitable conditions on the measuring matrix A, it is guaranteed that the original

x̄ is the unique solution to ℓ1-minimization (1). In fact, if A satisfies the so-called restricted isometry property

(RIP), then the solution of (1) matches exactly with the original signal [4, 7, 16]. When noise is presented

and/or the signal is not exactly but approximately sparse, a variant of (1) leads to a solution that does not

deviate too much from the original signal [4]. Various results concerning the perfect and stable reconstruction

of the original signal by solving (1) have been established via the restricted isometry condition, the null space

condition and the exact recovery principle in [7, 9, 13–16,19, 25, 45, 47].

The results above hold true only for sparse signals, and they can be extended to signals that are synthe-

sized by a linear combination of few atoms in a (redundant) dictionary with incoherent atoms [36]. However,

there are numerous practical examples in which a signal of interest does not fall into the category in the

aforementioned theoretical work. One such an example is signal that has a sparse gradient (i.e., the signal is

piecewise constant), which arises frequently from imaging. Images with little detail are usually modelled as

piecewise constant functions. For simplicity, we assume that x̄ ∈ R
N is a vector representing one-dimensional

piecewise constant signal. Let Dx̄ be its finite difference defined by [Dx̄]i = x̄i+1− x̄i for i = 1, 2, . . . , N − 1.

Since x̄ is piecewise constant, we must have that Dx̄ is sparse. Assume that Dx̄ has only K (K < N)

nonzero entries. Let y = Ax̄ ∈ R
M be M linear samples of x̄. Then, to recover x̄, one usually solves

min
x

‖Dx‖1 subject to y = Ax. (2)

The regularization term ‖Dx‖1 is called the total variation (TV) of x. When x̄ ∈ R
Nd

is generated from

d-dimensional signals, we only need to replace D by the concatenation of directional finite differences, and

‖Dx‖1 is the anisotropic TV of x.

TV regularization has been used extensively in the literature for decades in imaging sciences [2,26,38,39]
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and other related fields [10,42]. The minimization problem (2) has the same form as the minimization in the

analysis-based compressed sensing in [5]. However, the perfect/stable reconstruction result in [5] can not be

applied to (2), as the rows of D do not form a frame (D has a nontrivial null space and a large condition

number). Furthermore, the analysis in cosparse analysis model [29,30] and other ℓ1 analysis models [17,22,23]

cannot be applied directly as well. Despite the great importance of the TV minimization in applications,

rigorous proofs of conditions of successfully recovering signal by using the TV minimization have only recently

been established [31,32]. To establish such conditions, [31,32] first transformed d-dimensional (d ≥ 2) signals

with sparse gradients into signals compressible over the Haar orthogonal wavelet basis. Then a modified

restricted isometry condition, which takes into account the Haar orthogonal wavelet transformation, was

established for the matrix A such that (2) offers a stable recovery of x. However, it is noted in [31, 32]

that establishing conditions for successfully recovering one-dimensional (namely d=1) signal vector remains

an open problem. This is partially due to the fact that small TV of a one-dimensional signal does not

necessarily imply fast decay of its Haar wavelet coefficients. In fact, TV minimization for 1-dimensional

signal plays a very important role in signal processing, for example, in soil moisture monitoring [44]. It

should be noted that some applications change an image into a one-dimensional signal and adapt the finite

difference operator [30, 39, 41].

In this paper, we establish the proof for performance guarantees of TV minimization in recovering one-

dimensional signal with sparse gradient support. This partially answers the open problem of proving the

fidelity of total variation minimization in such a setting [31]. We will prove the following results.

1. When M &
√
NK logN , the TV minimization (2) finds the original signal with overwhelming proba-

bility.

2. When M .
√
NK, the TV minimization (2) fails to find some signals with sparse gradient with a

moderate probability.

3. When M grows linearly with N , the recoverable threshold of K can grow linearly with N as well.

Moreover, in this case, the recovery is robust to noisy data and non-exactly but approximately sparse

signals.

Compared with [31, 32], our results do not use the restricted isometry condition, but directly work on the

null space condition of the measuring matrix A. To establish the null space condition of interest, we use

“Escape through the Mesh” theorem [11,21,37,40] to estimate the Gaussian width [21,37] of a cone specified

by the null space condition. We further extend our results to TV minimization for higher dimensional
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signals. For d ≥ 2, we have obtained performance bounds for TV minimization comparable to results

in [31, 32]. In [12], an average-case phase transition was calculated for an approximate message passing

(AMP) algorithm using the a total variation denoiser, through evaluating the asymptotic minimax Mean

Square Error (MSE) for a separate denoising problem using total variation regularizer. Experimental results

have shown excellent agreements between the phase transition curves calculated for the AMP algorithm

in [12], and the empirical performance of convex programming based total variation minimization approach.

However, the phase transition bounds in [12] rely on two key assumptions: the density evolution for the

AMP algorithm is correct; and the convex programming based total variation minimization indeed has the

same phase transition as the AMP algorithm. These two assumptions remain to be proved for total variation

minimization. The recent work [33] by Oymak et al. interestingly shows that the minimax MSE derived

in [12] is related to the expectation of the square of the distance between a Gaussian vector and the λ-scaled

subdifferential of ‖Dx‖1 at x, for some optimized λ > 0. However, it is not clear whether that expectation

is equal to the Gaussian width for TV minimization studied in this paper, which is instead equal to the

expectation of the square of the distance between a Gaussian vector and the conic hull of the subdifferential

of ‖Dx‖1. In addition, compared with [12], our results discuss worst-case performance guarantees which

are uniformly true for all the possible supports for the signal gradient. The average-case phase transition

results from [12] are mainly for the case when M/N and K/N approach a nonzero constant, and it is

not straightforward to extend them to worst-case performance bounds for K not growing linearly with the

problem dimension.

After our paper was submitted, there have been some recent works on sample complexity bounds for TV

minimization, including [35] and [24]. [35] discusses the performance of total variation under non-uniformly

chosen Fourier measurements, and has discovered that the performance of total variation under such mea-

surements not only depends on the chosen Fourier measurements, but also on the signal structure, namely

how far apart the nonzero signal gradients are from each other. This observation of TV minimization perfor-

mance depending on the signal structure beyond signal gradient sparsity, is consistent with our worst-case

result from a particular gradient support pattern, and also consistent with our worst-case and average-case

simulation results, albeit we are discussing random Gaussian measurements. [24] also studies the performance

of TV minimization using the tool of Gaussian width, which is also used in our paper. Our work shows that

for any α > 0 such that M = αN , the recoverable sparsity K of Dx can grow linearly with the problem

dimension N . In comparison, [24] gives performance bounds on K when M/N = α is bigger than a nonzero

constant. More precisely, for K = 1, the result in [24] needs M ≥ (1− 1/π)N , while our result requires only
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M &
√
N logN and is optimal up to a logarithm factor.

The rest of this paper is organized as follows. In Section 2, we present main theorems of this paper,

and then these theorems are proved in Sections 3 and 4 respectively. In Section 5, numerical experiments

are performed to demonstrate our results in the main theorems. In Section 6, we extend our results to TV

minimization for multidimensional signals. Section 7 concludes our paper and discusses future directions.

2 Main Results

In this section, we establish the main result of this paper on the performance guarantee of TV minimization

in recovering one-dimensional signal with sparse gradient support.

Let D ∈ R
(N−1)×N be a discrete gradient operator defined as

D =




−1 1

. . .
. . .

−1 1



.

Note that here a Neumann boundary condition is used in the discrete gradient operator. One can impose

other boundary conditions such as zero and periodic boundary conditions, and our results in the paper can

be extended to those cases without too much difficulty.

We will first assume that x̄ has a sparse gradient, i.e.,

K = ‖Dx̄‖0 < N, (3)

where ‖ ·‖0 is the number of nonzero elements of a vector. We would like to recover x̄ from its linear samples

y = Ax̄ ∈ R
M , where A ∈ R

M×N is a random Gaussian matrix whose entries are independently drawn

from the standard normal distribution. If we recover x by finding the solution to “argmin ‖Dx‖0 subject

to y = Ax”, then one can show that we will need at least (2K + 1) measurements to guarantee recovering

any signal with K-sparse gradient. However, minimizing ‖Dx‖0 is computationally challenging. Instead, to

recover x̄ from y, we often solve the convex optimization problem (2).

Our main results of this paper are Theorems 2.1 and 2.2 below. In Theorem 2.1, we will prove: when

the number of measurements M &
√
NK logN , the TV minimization (2) guarantees the exact recovery of

any signal of size N with at most K nonzero gradients with high probability; when M .
√
NK, the TV
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minimization (2) cannot find the original signal with a moderate probability. Throughout the paper, we will

use C0, C1, . . . for constants that are independent of N,M,K. To save notations, the same Ci in different

theorems and lemmas may refer to different constants.

Theorem 2.1. Let A ∈ R
M×N be a random Gaussian matrix whose entries follow independently the standard

normal distribution. Let x̂ be a solution of (2) with data y = Ax̄.

(a). There exist positive constants C1, C2, C3, C4 > 0 such that, with probability at least 1− C1e
−C2

√
M ,

x̂ = x̄, ∀ x̄ satisfying ‖Dx̄‖0 ≤ K,

provided

M ≥ C3

√
NK(logN + C4).

(b). For any 0 < η < 1, there exist positive constants C̃0, C̃1 and a universal positive constant C̃2 such that

the following statement holds. Let K ≥ C̃0 and (K + 1) < N/4. There exists infinitely many x̄ ∈ R
N

with ‖Dx̄‖0 = K such that, with probability at least 1− η,

x̂ 6= x̄

provided

M ≤ C̃1

√
NK − C̃2.

Though the above result works for any K and N , the bound M &
√
NK logN that guarantees the

perfect recovery can be refined to M & K for large M that grows linearly with N . Moreover, the perfect

recovery result for noiseless data and exactly sparse signal can be extended to noisy data and non-exactly

but approximately sparse signals. More precisely, we assume y = Ax̄ + ǫ, where ǫ is a noise and satisfies

‖ǫ‖2 ≤ ǫ; besides, suppose that Dx̄ is not necessarily exactly but approximately sparse, in particular,

min|K|≤K ‖(Dx̄)Kc‖1 is small (note that min|K|≤K ‖(Dx̄)Kc‖1 is the error of the best K-term approximation

of the gradient). In this case, we let the recovered signal be a solution x̂ of the following optimization

problem

min
x

‖Dx‖1 subject to ‖Ax− y‖2 ≤ ǫ. (4)

Our second main theorem is as follows.
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Theorem 2.2. Let A ∈ R
M×N be a random Gaussian matrix whose entries follow independently the standard

normal distribution. Let x̂ be a solution of (4) with the data y satisfying ‖Ax̄ − y‖2 ≤ ǫ. Then, for any

constant 0 < α < 1, there exist positive constants δ, C0, C1, C2, C3 such that the following statement holds

true. Let M = αN and K = δN . Then, with probability at least 1− C0e
−C1N ,

‖x̄− x̂‖2 ≤ C2

min|K|≤K ‖(Dx̄)Kc‖1√
N

+ C3
ǫ√
N

, (5)

The term min|K|≤K ‖(Dx̄)Kc‖1 in (5) is simply the error of the best K-sparse approximation to Dx̄. In

other words, if we choose K0 to be the set of indices of the largest K components of Dx̄ in absolute value,

then it is obvious that ‖(Dx̄) − (Dx̄)K0‖1 = min|K|≤K ‖(Dx̄)Kc‖1. Therefore, our result in Theorem 2.2

shows that, even if Dx̄ is not exactly sparse, the error of the solution to (4) is only a multiple of the best K

sparse approximation error.

3 Proof of Theorem 2.1

In this section, we prove Theorem 2.1 on the performance guarantee of TV minimization in recovering

one-dimensional signal with sparse gradient support. Our proof uses “Escape through the Mesh” theorem

[21,37,40] for the bound of M for the successful recovery, and the bound of M for the unsuccessful recovery

is proved by a theorem from [1]. In both proofs, Gaussian width plays a fundamental role.

3.1 Bound for successful recovery

In this section, we give the bound of M for the successful recovery, i.e., we provide a proof of Part (a) of

Theorem 2.1. Our proof is based on the null space property (c.f. Lemma 3.1 below) and the “escape through

the mesh” theorem [21] (c.f. Theorem 3.2 below).

Lemma 3.1. Let A ∈ R
M×N . Let x̂ be a solution of (2) with data y = Ax̄. Then,

x̂ = x̄, ∀ x̄ s.t. ‖Dx̄‖0 ≤ K

if and only if the following condition holds: for every nonzero vector z in the null space of A (namely Az = 0,

z 6= 0),

‖(Dz)K‖1 < ‖(Dz)Kc‖1, ∀ K ⊂ {1, 2, . . . , N − 1}, s.t. |K| ≤ K. (6)
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Proof. We omit the detailed proof of this lemma, since it is very similar to the proof of null space conditions

for ℓ1 minimization; see, for example, [40, 47].

Theorem 3.2 (Escape through the mesh [21]). Let S be a subset of the unit Euclidean sphere in R
N . Let

Y be a random (N −M)-dimensional subspace of RN , distributed uniformly in the Grassmanian with respect

to the Haar measure. Assume that w(S) < (
√
M − 1

2
√
M
), where

w(S) = E

(
sup
x∈S

〈x, g〉
)
, (7)

with the entries of g ∈ R
N following independently the standard normal distribution and E being the expec-

tation, is the Gaussian width of the set S. Then

P (Y
⋂

S = ∅) > 1− 3.5 exp

(
− (

√
M − 1/(2

√
M))− w(S)

18

)
.

In order to use Theorem 3.2 to prove Part (a) of Theorem 2.1, we use S be the intersection of the unit

Euclidean sphere and the set that violates (6), i.e.,

S = {x : ‖x‖2 = 1, and ∃K ⊂ {1, 2, . . . , N} s.t. |K| ≤ K, ‖(Dx)K‖1 ≥ ‖(Dx)Kc‖1}. (8)

In the following, we estimate the Gaussian width w(S) of S. We will prove that an upper bound of w(S) is

O
(
(NK)

1
4 · log 1

2 N
)
and a lower bound is O

(
(NK)

1
4

)
. Therefore, our estimation is quite tight as the the

lower bound and upper bound are in the same order up to a log factor. The results are summarized into the

following theorem.

Theorem 3.3. The Gaussian width w(S) with S defined in (8) satisfies

√
2

π



1− K+1
N

2 +
√

K
N

(NK)
1
4 − 2(NK)−

1
4



 ≤ w(S) ≤ 2
5
4 (2

√
5 +

√
10)(NK)

1
4 ·
√
log(2N).

Proof. We estimate the upper bound first. For any x ∈ S, we have that

‖(Dx)Kc‖1 ≤ ‖(Dx)K‖1 ≤
√
K‖(Dx)K‖2 ≤

√
K‖Dx‖2 ≤ 2

√
K‖x‖2 = 2

√
K,
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which implies ‖Dx‖1 ≤ 4
√
K. Therefore

S ⊂ S̃ := {x : ‖x‖2 ≤ 1, ‖Dx‖1 ≤ 4
√
K}.

and further w(S) ≤ w
(
S̃
)
. We thus instead estimate an upper bound of w

(
S̃
)
.

We temporarily assume that N = 2L. For any x ∈ S̃, we decompose x according to a Haar wavelet

transform as

x = ẑ(1) + . . .+ ẑ(L) + ŷ(L), (9)

where

ẑ(ℓ) = z(ℓ) ⊗ [1 . . . 1︸ ︷︷ ︸
2ℓ−1

−1 . . . − 1︸ ︷︷ ︸
2ℓ−1

], z(ℓ) = [z
(ℓ)
1 z

(ℓ)
2 . . . z

(ℓ)

N/2ℓ
]

and

ŷ(ℓ) = y(ℓ) ⊗ [1 1 . . . 1︸ ︷︷ ︸
2ℓ

], y(ℓ) = [y
(ℓ)
1 . . . y

(ℓ)

N/2ℓ
].

Here ⊗ is the Kronecker product, i.e., a⊗ b := [a1b a2b . . . anb]. The decomposition (9) is done recursively

as follows. We first define y(0) = ŷ(0) = x. Then, at level ℓ, we decompose ŷ(ℓ) as

ŷ(ℓ) = ŷ(ℓ+1) + ẑ(ℓ+1),

where

y
(ℓ+1)
i =

y
(ℓ)
2i−1 + y

(ℓ)
2i

2
, and z

(ℓ+1)
i =

y
(ℓ)
2i−1 − y

(ℓ)
2i

2
.

The decomposition (9) possesses the following properties.

(a) Components in decomposition (9) are orthogonal to each others. Consequently,

‖x‖22 = ‖ẑ(1)‖22 + ‖ẑ(2)‖22 + . . .+ ‖ẑ(L)‖22 + ‖ŷ(L)‖22 =

L∑

ℓ=1

(
2ℓ‖z(ℓ)‖22

)
+ 2L‖y‖22.

Since x ∈ S̃ implies ‖x‖22 ≤ 1, we have

L∑

ℓ=1

(
2ℓ‖z(ℓ)‖22

)
+ 2L‖y(L)‖22 ≤ 1. (10)
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(b) By direct calculation, we have

‖Dŷ(ℓ)‖1 =

N/2ℓ−1∑

i=1

|y(ℓ)i+1 − y
(ℓ)
i | =

N/2ℓ−1∑

i=1

∣∣∣∣∣
y
(ℓ−1)
2i+1 + y

(ℓ−1)
2i+2

2
− y

(ℓ−1)
2i−1 + y

(ℓ−1)
2i

2

∣∣∣∣∣

=

N/2ℓ−1∑

i=1

∣∣∣∣∣
y
(ℓ−1)
2i+2 − y

(ℓ−1)
2i+1

2
+
(
y
(ℓ−1)
2i+1 − y

(ℓ−1)
2i

)
+

y
(ℓ−1)
2i − y

(ℓ−1)
2i−1

2

∣∣∣∣∣

≤
N/2ℓ−1∑

i=1

(∣∣∣∣∣
y
(ℓ−1)
2i+2 − y

(ℓ−1)
2i+1

2

∣∣∣∣∣+
∣∣∣y(ℓ−1)

2i+1 − y
(ℓ−1)
2i

∣∣∣+
∣∣∣∣∣
y
(ℓ−1)
2i − y

(ℓ−1)
2i−1

2

∣∣∣∣∣

)

≤
N/2ℓ−1−1∑

i=1

|y(ℓ−1)
i+1 − y

(ℓ−1)
i | = ‖Dŷ(ℓ−1)‖1,

which implies

‖z(ℓ)‖1 ≤ ‖Dy(ℓ−1)‖1/2 = ‖Dŷ(ℓ−1)‖1/2 ≤ 2
√
K. (11)

Now we are ready to estimate an upper bound of w
(
S̃
)
. Let g be a vector whose entries are i.i.d. Gaussian

random variables with mean 0 and variance 1. Since (10) implies ‖z(ℓ)‖2 ≤
√
2−ℓ, we have, by Cauchy-

Schwartz inequality, ‖z(ℓ)‖1 ≤
√
N/2ℓ‖z(ℓ)‖2 ≤ 2−ℓ

√
N . This together with (11) implies that ‖z(ℓ)‖1 ≤

min{2−ℓ
√
N, 2

√
K}. Then,

〈ẑ(ℓ), g〉 = 〈z(ℓ), g(ℓ)〉 ≤ ‖z(ℓ)‖1‖g(ℓ)‖∞, (12)

where g(ℓ) = [g
(ℓ)
1 g

(ℓ)
2 . . . g

(ℓ)

N/2ℓ
] with g

(ℓ)
i =

∑2ℓ−1

j=1 (gj+(i−1)2ℓ − gj+2ℓ−1+(i−1)2ℓ). Since the components in

g(ℓ) are i.i.d. random Gaussian variables with mean 0 and variance 2ℓ, it follows from [18, Proposition 8.1]

that

E
(
‖g(ℓ)‖∞

)
≤

√
2ℓ
√
2 log(2N/2ℓ) (13)

Combining (12) and (13) leads to

E
(
sup

x∈S̃〈ẑℓ, g〉
)
≤ E

(
sup

x∈S̃ ‖ẑℓ‖1‖g(ℓ)‖∞
)
≤ min{2−ℓ

√
N, 2

√
K} · E

(
‖g(ℓ)‖∞

)

≤ min{
√
2−ℓN, 2

√
2ℓK} ·

√
2 log(2N/2ℓ).

(14)

This together with (9) implies that

w
(
S̃
)
= E

(
sup

x∈S̃〈x, g〉
)
≤
√
2/π +

∑L
ℓ=1 min{

√
2−ℓN, 2

√
2ℓK} ·

√
2 log (2N/2ℓ).

Here
√
2/π is an upper bound of the expectation of |〈ŷ(L), g〉| with ŷ(L) = c1 and |c| ≤ 1/

√
N . Now we
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estimate the constant
∑L

ℓ=1 min{
√
2−ℓN, 2

√
2ℓK} ·

√
2 log (2N/2ℓ). Let L0 be the maximum integer that

satisfies
√
2−L0N ≥ 2

√
2L0K, namely, 2L0 ≤

√
N/K/2 ≤ 2L0+1. It is obvious that min{

√
2−ℓN, 2

√
2ℓK} =

2
√
2ℓK if ℓ ≤ L0 and min{

√
2−ℓN, 2

√
2ℓK} =

√
2−ℓN otherwise. Therefore, if N > 1 and K > 1, then

L∑

ℓ=1

(
min{

√
2−ℓN, 2

√
2ℓK} ·

√
2 log (2N/2ℓ)

)

≤
√
2 logN

(
2
√
K
∑L0

ℓ=1 2
ℓ
2 +

√
N
∑L

ℓ=L0+1 2
− ℓ

2

)

=
√
2 logN

(
2
√
2
√
K

2L0/2 − 1√
2− 1

+
√
N2−

L0+1
2

1− 2−
L−L0

2

1− 2−
1
2

)

≤
√
2 logN

(
2
(
2 +

√
2
)√

K2L0/2 + (2 +
√
2)
√

N2−(L0+1)
)
−
√
2/π

≤
√
2 logN

(
2(2 +

√
2)
√
K

√√
N/K/2 + (2 +

√
2)

√
N/(

√
N/K/2)

)

−
√
2/π

=
(
8 + 4

√
2
)
(NK)1/4

√
logN −

√
2/π.

(15)

Finally, we get

w(S) ≤ w
(
S̃
)
≤
(
8 + 4

√
2
)
(NK)

1
4

√
logN.

When N is not in the form of 2L, we can extend x ∈ S̃ to x̃ of size Ñ = 2L ≤ 2N by padding zeros. Then,

‖x̃‖2 ≤ 1 and ‖Dx̃‖1 ≤ 4
√
K + 1 ≤ 4

√
K̃ with K̃ = 25K/16. Furthermore, 〈x, g〉 = 〈x̃, g̃〉, where g̃ is a

Gaussian vector of size Ñ . Altogether, we have

w(S) ≤ w
(
S̃
)
≤ (8 + 4

√
2)(ÑK̃)

1
4 ·
√
log Ñ

≤ 2
5
4 (2

√
5 +

√
10)(NK)

1
4 ·
√
log(2N)

Let us estimate the lower bound of w(S). Let g ∈ R
N be fixed. Let L̃ be a positive number that is to be

determined later. We partition g as

g = [g1, . . . , gH , gH+1],

where H = ⌊(N −max{K + 1, L̃})/L̃⌋ and g1, . . . , gH ∈ R
L̃ and gH+1 is the remaining entries of g. Let a

be a vector that has the same size as gH+1. Since the length of gH+1 is larger than K + 1, we can define

a = [0, . . . , 0, (−1)0, (−1)1, (−1)2, . . . , (−1)K−1] (16)
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Therefore, the support K0 of Da has a cardinality K. Define

z = [νs11 . . . νsH1 µa], (17)

where si = sgn(〈gi,1〉) for i = 1, . . . , H , and µ and ν are positive numbers to be determined later. Therefore,

we have ‖z‖2 = (ν2HL̃+ µ2K)1/2. In order ‖z‖2 = 1, we need

ν2HL̃+ µ2K = 1. (18)

Moreover, from the construction, ‖(Dz)K0‖1 = (2K − 1)µ, and ‖(Dz)Kc
0
‖1 ≤ (2H − 1)ν ≤ (2N/L̃)ν. In

order that z ∈ S, we should have

(2K − 1)µ ≥ 2νN/L̃. (19)

We pick

µ = 1/
√
2K ·

√
2N

N +HL̃
, ν = 1/

√
2N ·

√
2N

N +HL̃
, L = ⌈2

√
N/K⌉. (20)

Then, both (18) and (19) are satisfied, and hence z ∈ S. Therefore,

w(S) = E

(
sup
x∈S

〈x, g〉
)

≥ E
(
ν
∑H

i=1 |〈gi,1〉|+ µ〈gH+1,a〉
)
= νH · E(|〈g1,1〉|) + µE(〈gH+1,a〉)

= νH · E(|〈g1,1〉|) ≥
√

2N

N +HL̃
·H/

√
2N ·

√
2
√
N/K

√
2/π ≥ H ·

√
2/π(NK)−

1
4 .

(21)

It remains to find a lower bound of H . If L̃ ≥ K +1, then H ≥ (N − L̃)/L̃− 1 = N/L̃− 2 ≥ N/(2
√
N/K +

1)− 2 ≥
√
NK/(2 +

√
K/N)− 2, otherwise, H ≥ (N −K − 1)/L̃− 1 ≥ (N −K − 1)/(2

√
N/K + 1)− 1 ≥

(1− (K + 1)/N)/(2 +
√
K/N) ·

√
NK − 1. Therefore,

H ≥ 1− K+1
N

2 +
√
K/N

√
NK − 2. (22)

Now we are ready for the proof of Part (a) of Theorem 2.1.

Proof of Part (a) of Theorem 2.1. Let Y be the null space of A. Then Y satisfies the random model in

Theorem 3.2 [6, 37, 40]. Besides, S in (8) is a subset of the unit Euclidean ball. Now, if we choose M ≥

2C2
3

√
NK log(2N) with C3 = 2

5
4 (2

√
5 +

√
10), then, by Theorem 3.3, w(S) ≤

√
M/2 <

√
M − 1

2
√
M
. This

12



together with Theorem 3.2 implies that the probability Y⋂S = ∅ is larger than

1− 3.5e−
√

M− 1
2
√

M
−w(S)

18 = 1− 3.5e
1

36
√

M e−
√

M−w(S)
18 ≥ 1− 3.5e

1
36 e−

(1−1/
√

2)
√

M
18 ≡ 1− C1e

−C2

√
M .

According to Lemma 3.1, Y⋂S = ∅ leads to x̂ = x̄ for all x̄ satisfying ‖Dx̄‖0 ≤ K, which concludes the

proof.

3.2 Bound for unsuccessful recovery

In this section, we give the bound of M for the failure of (2) in recovery of x̄ with ‖Dx̄‖0 ≤ K, i.e., we prove

Part (b) of Theorem 2.1. Our argument uses a result in [1] (c.f. Theorem 3.4 below) and the lower bound

of the Gaussian width of the descent cone for (2).

To describe the success of convex optimization for linear inverse problems, [1] introduced the descent

cone (applied to (2)) as follows

D(x) = ∪τ>0{z | ‖D(x+ τz)‖1 ≤ ‖D(x)‖1}.

To measure the success rate, one may use the Gaussian width w(D(x) ∩ S
N−1), where S

N−1 is the unit

Euclidean sphere in R
N .

Theorem 3.4 (A corollary of Proposition 10.1 and Theorem II in [1]). Fix a tolerance η ∈ (0, 1). Let

x̄ ∈ R
N be a fixed vector. Suppose A ∈ R

M×N has independent standard normal entries and y = Ax̄. Set

the quantity aη = 4
√
log(4/η). Then, as long as M ≤ w2(D(x̄)∩S

N−1)− aη
√
N , x̄ is not a solution of (2)

with probability at least 1− η.

Now let us prove Part (b) of Theorem 2.1.

Proof of Part (b) of Theorem 2.1. For a fixed x̄ ∈ R
N with gradient support K0 := supp(Dx̄) satisfying

|K0| ≤ K, it is easy to check that the descent cone is

D(x̄) = {z | ∃ τ > 0, s.t. τ‖(Dz)cK0
‖1 + ‖(D(x̄+ τz))K0‖1 ≤ ‖(Dx̄)K0‖1}.

We shall estimate a lower bound of the Gaussian width w(D(x̄) ∩ S
N−1), by using a similar argument from

the proof of the lower bound in Theorem 3.3.

13



Choose x̄ such that its gradient support K0 = {N − K,N − K + 1, . . . , N − 1} and sgn((Dx̄)K0) =

[−1, 1,−1, 1, . . .]T . In other words, components of x̄ keep constant until N −K and then they decrease and

increase alternatively. Define z by (16), (17), and (20). It can be seen that sgn((Dx̄)K0) = −sgn((Dz)K0 ),

and, consequently, for a sufficiently small τ > 0, we have ‖(D(x̄ + τz))K0‖1 = ‖D(x̄)K0‖1 − τ‖(Dz)K0‖1.

This together with (18) and (19) implies that z ∈ D(x̄)∩S
N−1. An estimation similar to (21) and (22) leads

to

w2(D(x̄) ∩ S
N−1) ≥ 2

π

(
3

10
(NK)

1
4 − 2(NK)−

1
4

)2

≥ 9
√
K

50π

√
N − 12

5π
,

provided K + 1 ≤ N/4. Therefore, if K is large enough such that aη < 9
√
K

50π , then by Theorem 3.4, as long

as M ≤
(

9
50π − aη√

K

)√
KN − 12

5π , (2) fails to find x̄ with probability larger than 1− η.

4 Proof of Theorem 2.2

This section is to prove Theorem 2.2. We first present some necessary lemmas, and then the main proof is

brought in Section 4.3.

4.1 Balanced Condition

In this subsection, we prove the balanced condition for ‖Dx‖1 stated as in below.

Lemma 4.1 (Balanced Condition). Let A ∈ R
M×N be a random Gaussian matrix whose entries are drawn

from independent standard normal distributions. Then, for any constant 0 < α < 1 and 0 < C < 1, there

exist positive constants δ, C0, and C1 such that the following statement holds true, with probability at least

1 − C0e
−C1N : For all subsets K ⊆ {1, 2, ..., N − 1} with cardinality |K| ≤ δN , and for every nonzero vector

x in the null space of A (namely Ax = 0, x 6= 0) with M = αN ,

‖(Dx)K‖1 < C‖(Dx)Kc‖1, (23)

where Kc = {1, 2, ..., N − 1} \ K.

To prove this lemma, we need several lemmas.

Lemma 4.2. Let H ∈ R
N×(N−M) be a random matrix whose entries follow independent standard Gaussian

distributions. Then for any C0 > 0, γ > 0 and α > 0, there exists δ > 0 and C1, C2 > 0, such that, for

14



M = αN ,

P

(
∀‖z‖2 = 1 and |K| ≤ δN, ‖(DHz)K‖1 ≤ C0γ

2
N

)
≥ 1− C1e

−C2N . (24)

Proof. For a fixed |K| ≤ δN , there exists a set K′ satisfying |K′| ≤ 2δN such that, for any z satisfying

‖z‖2 = 1,

‖(DHz)K‖1 ≤ 2‖(Hz)K′‖1 = 2‖HK′z‖1 ≤ 2
√
2δN‖HK′z‖2 ≤ 2

√
2δN‖HK′‖2, (25)

where HK′ are the rows of H indexed by K′. From [43, Corollary 5.35], we know that, for any θ > 0,

P
(
‖HK′‖2 ≤ (1 + θ)(

√
2δ +

√
1− α)

√
N
)
≥ 1− 2 · exp(−θ2(2δ + 1− α+ 2

√
2δ(1− α))N/2).

Let x = Hz. Then, together with (25), we get

P
(
‖(Dx)K‖1 ≤ 2(1 + θ)(2δ +

√
2δ(1− α))N

)
≥ 1− 2 · exp(−θ2(2δ + 1− α+ 2

√
2δ(1− α))N/2).

Therefore, the uniform probability

P
(
∀ ‖z‖2 = 1 and |K| ≤ δN, ‖(Dx)K‖1 ≤ 2(1 + θ)(2δ +

√
2δ(1− α))N

)
≥

1− 2 ·
(
N

δN

)
· exp(−θ2(2δ + 1− α+ 2

√
2δ(1− α))N/2)

By Stirling’s formula,

(
N

δN

)
=

N !

((1− δ)N)!(δN)!
≤

e√
2π

√
2πN

(
N
e

)N

√
2π(1− δ)N

(
(1−δ)N

e

)(1−δ)N √
2πδN

(
δN
e

)δN

≤ e

π
√
N

1√
δ(1− δ)

(
1

(δ)δ(1− δ)1−δ

)N

Since the function δ log(1/δ) + (1− δ) log(1/(1− δ)) ≤ log 2, we choose θ =
√

2 log 2
1−α and therefore

δ log(1/δ) + (1− δ) log(1/(1− δ)) ≤ log 2 = θ2(1 − α)/2 < θ2(2δ + 1− α+ 2
√
2δ(1− α))/2.

As 2(1 + θ)(2δ +
√
2δ(1− α)) → 0 when δ → 0, we can choose a small δ > 0 such that 2(1 + θ)(2δ +

√
2δ(1− α)) ≤ C0γ

2 , and we obtain (24).

Lemma 4.3. Let H ∈ R
N×(N−M) be a random matrix whose entries follow independent standard Gaussian
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distributions N (0, 1). Then for any α > 0, there exists C0, C1, C2 > 0, such that, for M = αN ,

P (∀ ‖z‖2 = 1, ‖DHz‖1 ≤ C0N) ≥ 1− C1e
−C2N . (26)

Proof. By [43, Corollary 5.35], for any θ > 0, we have

P (‖H‖2 ≤ (1 + θ)(1 +
√
1− α)

√
N) ≥ 1− 2 · exp(−θ2(2− α+ 2

√
1− α)N/2),

Moreover,

‖DHz‖1 ≤ 2‖Hz‖1 ≤ 2
√
N‖Hz‖2 ≤ 2

√
N‖H‖2

Therefore,

P
(
∀ ‖z‖2 = 1, ‖DHz‖1 ≤ 2(1 + θ)(1 +

√
1− α)N

)
≥ 1− 2 · exp(−θ2(2− α+ 2

√
1− α)N/2).

Lemma 4.4. Let H ∈ R
N×(N−M) be a random matrix whose entries follow independent standard Gaussian

distributions N (0, 1). Then, for any 0 < α < 1, there exist constants γ > 0, C0 > 0, and C1 > 0, such that,

for M = αN ,

P (∀ ‖z‖2 = 1, ‖DHz‖1 ≥ γN) ≥ 1− C0e
−C1N . (27)

Proof. For any fixed z ∈ R
N−M satisfying ‖z‖2 = 1, x = Hz is a random vector whose entries follows

independent standard normal distribution. Then y := DHz follows a multivariate Gaussian N (0,
√
DDT ),

and its probability density function is

f(y) =
1√

(2π)N−1 · det(DDT )
exp(−yT (DDT )−1y/2) =

1√
(2π)N−1N

exp(−yT (DDT )−1y/2),

where we have used the fact that det(DDT ) = N . Since DDT is symmetric positive definite, we have

exp(−yT (DDT )−1y/2) ≤ 1. Thus, f(y) ≤ 1√
(2π)N−1N

. Let θ be a positive number determined later. We
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have, by Markov inequality,

P (‖Dx‖ ≤ γN) =P

(
N−1∑

i=1

|yi| ≤ γN

)
= P

(
−θ

N−1∑

i=1

|yi| ≥ −θγN

)

=P



e
−θ

N−1∑
i=1

|yi| ≥ e−θγN



 ≤ eθγN ·E(e−θ
∑N−1

i=1 |yi|).

The expectation can be estimated from below

E(e−θ
∑N−1

i=1 |yi|) =

∫ +∞

−∞
. . .

∫ +∞

−∞
e−θ

∑N−1
i=1 |yi|f(y)dy1 . . . dyN−1

≤ 1√
(2π)N−1N

∫ +∞

−∞
. . .

∫ +∞

−∞
e−θ

∑N−1
i=1 |yi|dy1 . . . dyN−1

=
1√

(2π)N−1N

(∫ +∞

−∞
e−θ|y1|dy1

)N−1

=
1√

(2π)N−1N

(∫ 0

−∞
eθy1dy1 +

∫ +∞

0

e−θy1dy1

)N−1

=
1√

(2π)N−1N

(
2

θ

)N−1

from which we derive

P (‖Dx‖1 ≤ γN) ≤ eθγN
1√

(2π)N−1N

(
2

θ

)N−1

.

Choosing θ = 1/γ yields

P (‖Dx‖1 ≤ γN) ≤ e√
N

·
(

2γe√
2π

)N−1

. (28)

Now we let z vary on the sphere {z| ‖z‖2 = 1}. We cover the sphere with ǫ-net, where ǫ = C2γ, C2 > 0

are constants we will choose later. ǫ-net is a finite set V = {v1, ...,vL} on {z| ‖z‖2 = 1} such that every

point z from {z| ‖z‖2 = 1}, there is a vl ∈ V such that ‖z− vl‖2 ≤ ǫ. It is known that the size of the ǫ-net

can be taken no bigger than (1 + 2
ǫ )

N−M [27]. For any z such that ‖z‖2 = 1, there exists a point v0 (we

change the subscript numbering for V to index the order) in V such that ‖z− v0‖2 , ǫ1 ≤ ǫ. Let z1 denote

z−v0, then ‖z1− ǫ1v1‖2 , ǫ2 ≤ ǫ1ǫ ≤ ǫ2 for some v1 in V . Repeating this process, we have z =
∑

j≥0 ǫjvj ,

where ǫ0 = 1, ǫj ≤ ǫj and vj ∈ V . Then

‖D(Hz)‖1 = ‖D
∑

j≥0

(ǫjHvj)‖1 ≥ ‖(D(Hv0)‖1 −
∑

j≥1

ǫj‖D(Hvj)‖1

≥ ‖(D(Hv0)‖1 −
∑

j≥1

ǫj‖D(Hvj)‖1 ≥ γN − ǫ

1− ǫ
× C3N ≥

(
γ − C2C3γ

1− C2C3γ

)
N

(29)

where the first inequality follows from the triangle inequality, and the last second inequality follows from
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Lemma 4.3. Furthermore, the probability that (29) fails is at most C4e
−C5N . If we choose C2 such that

C2C3 = 1
3 , then, when γ < 1, we have

P
(
∀ ‖z‖2 = 1, ‖DHz‖1 ≥ γ

2
N
)
≥ 1− C4e

−C5N − P,

where P =
(
1 + 2

ǫ

)N−M · e√
N

·
(

2γe√
2π

)N−1

. Let 1 > µ > 1− α be a constant. We then have

P =

(
1 +

2

C2γ

)(1−α)N
√
2π
2γ√
N

·
(

2γe√
2π

)N

=

√
2π
2γ√
N

(
2e√
2π

)N

γ(1−µ)N

(
γ

µ
1−α +

2

C2
γ

µ
1−α−1

)(1−α)N

≤
√
2π
2γ√
N

(
2e√
2π

)N

γ(1−µ)N

(
1 +

2

C2

)(1−α)N

=

√
2π
2γ√
N

[(
2e√
2π

) 1
1−µ

γ

(
1 +

2

C2

) 1−α
1−µ

](1−µ)N

≡
√
2π
2γ√
N

(C6γ)
(1−µ)N

,

Therefore, by choosing γ such that C7 ≡ C6γ < 1 and defining C8 ≡
√
2π
2γ , we obtain

P
(
∀ ‖z‖2 = 1, ‖DHz‖1 ≥

γ

2
N
)
≥ 1− C4e

−C5N − C8√
N

C
(1−µ)N
7 .

By choosing proper positive constants C0 and C1, we have C4e
−C5N + C8√

N
C

(1−µ)N
7 ≤ C0e

−C1N , which

concludes the proof.

We are now ready to prove Lemma 4.1.

Proof of Lemma 4.1. It is well known that the distribution of vectors in the null space of A is the same

as x = Hz, where H ∈ R
N×(N−M) is a random Gaussian matrix [6, 45]. Notice that the C‖(Dx)Kc‖1 >

‖(Dx)K‖1 is invariant of the length of x. Therefore, we can fix the length of x (consequently z). Without

loss of generality, we consider ‖z‖2 = 1. By Lemma 4.4, we can find a γ such that, with overwhelming

probability,

‖Dx‖1 ≥ γN. (30)

Fixing this γ, by Lemma 4.2, we can find δ > 0 such that, with overwhelming probability,

‖(Dx)K‖1 ≤ Cγ

2
N. (31)

Altogether, we have C‖Dx‖1 ≥ 2‖(Dx)K‖1 > (1 + C)‖(Dx)K‖1, which implies C‖(Dx)Kc‖1 > ‖(Dx)K‖1.
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The probability that (30) or (31) fails is at most C0e
−C1N .

4.2 Almost Euclidean Property

Lemma 4.5 (Almost Euclidean Property). Suppose that the measurement matrix A is an M × N matrix

having i.i.d. standard zero mean Gaussian elements. For any constant 0 < α < 1, there exists constants

β > 0, C0 > 0, and C1 > 1, such that the following statement holds true, with probability at least 1−C0e
−C1N :

For every nonzero vector x in the null space of A (namely Ax = 0, x 6= 0) with M = αN ,

‖Dx‖1 ≥ β
√
N‖x‖2. (32)

Proof. The distribution of vectors in the null space of A is the same as x = Hz, where H ∈ R
N×(M−N) is a

random Gaussian matrix. Because (32) is invariant of scales, we assume ‖z‖2 = 1 without loss of generality.

By Lemma 4.4, there exists a constant γ > 0, such that, with overwhelming probability,

‖Dx‖1 ≥ γN. (33)

Since x follows an independent Gaussian distribution, then, with probability at least 1− 2e−θ2N ,

‖x‖2 ≤ (1 + θ)
√
N. (34)

When both (33) and (34) happens, we have (32) with β = γ/(1+θ). The probability that (33) or (34) fails is

at most 2e−θ2N +C2e
−C3N , which can be bounded by C0e

−C1N for some positive constants C0 and C1.

4.3 Proof of Theorem 2.2

Proof of Theorem 2.2. Let 0 < C < 1 and 0 < α < 1 be given and δ be the constant δ found in Lemma 4.1.

Let K ⊆ {1, 2, ..., N − 1} be a minimizer of min|K|≤δN ‖(Dx̄)Kc‖1. Let w = x̄ − x̂, and we decompose it

orthogonally as w = w1 +w2, where w1 and w2 are in the null space of A and the range of AT respectively.

Then, we have

‖x̄− x̂‖2 ≤ ‖w1‖2 + ‖w2‖2. (35)
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Since w2 is in the range of AT ,

‖w2‖2 ≤ 1

σmin(AT )
‖Aw2‖2 =

1

σmin(AT )
‖Aw‖2 ≤ 1

σmin(AT )
(‖Ax̄−y‖2+‖Ax̂−y‖2) ≤

2

σmin(AT )
ǫ. (36)

Since w1 is in the kernel of A, by Lemma 4.5, we have

‖w1‖2 ≤ 1

β
√
N

‖Dw1‖1 (37)

with overwhelming probability. Let us estimate ‖Dw1‖1. The minimality of ‖Dx̂‖1 implies

‖(Dx̄)Kc‖1 + ‖(Dx̄)K‖1 = ‖Dx̄‖1 ≥ ‖Dx̂‖1 = ‖Dx̄+Dw‖1 = ‖(Dx̄+Dw)K‖1 + ‖(Dx̄+Dw)Kc‖1

≥ ‖(Dx̄)K‖1 − ‖(Dw)K‖1 + ‖(Dw)Kc‖1 − ‖(Dx̄)Kc‖1,

which leads to

2‖(Dx̄)Kc‖1 + ‖(Dw)K‖1 ≥ ‖(Dw)Kc‖1.

Therefore,

2‖(Dx̄)Kc‖1+‖(Dw1)K‖1 + ‖(Dw2)K‖1

≥ 2‖(Dx̄)Kc‖1 + ‖(Dw)K‖1 ≥ ‖(Dw)Kc‖1 ≥ ‖(Dw1)Kc‖1 − ‖(Dw2)Kc‖1,

and thus

‖(Dw1)Kc‖1 ≤ 2‖(Dx̄)Kc‖1 + ‖Dw2‖1 + ‖(Dw1)K‖1 ≤ 2‖(Dx̄)Kc‖1 + 2‖w2‖1 + ‖(Dw1)K‖1

≤ 2‖(Dx̄)Kc‖1 +
4

σmin(AT )

√
Nǫ+ ‖(Dw1)K‖1.

(38)

Moreover, by Lemma 4.1,

‖(Dw1)K‖1 ≤ C‖(Dw1)Kc‖1

with overwhelming probability. This together with (38) implies

‖(Dw1)K‖1 ≤ 2C‖(Dx̄)Kc‖1 +
4C

σmin(AT )

√
Nǫ+ C‖(Dw1)K‖1

and further

‖(Dw1)K‖1 ≤ 2C

1− C
‖(Dx̄)Kc‖1 +

4C

(1 − C)σmin(AT )

√
Nǫ.
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Substituting it into (38) again yields

‖(Dw1)Kc‖1 ≤ (2 +
2C

1− C
)‖(Dx̄)Kc‖1 +

(
4

σmin(AT )
+

4C

(1 − C)σmin(AT )

)√
Nǫ

=
2

1− C
‖(Dx̄)Kc‖1 +

4

(1− C)σmin(AT )

√
Nǫ.

We obtain

‖Dw1‖1 = ‖(Dw1)K‖1 + ‖(Dw1)Kc‖1 ≤
2(1 + C)

(1− C)
‖(Dx̄)Kc‖1 +

4(1 + C)

(1 − C)σmin(AT )

√
Nǫ. (39)

Finally, combine (35), (36), (37), and (39) and get

‖x̄− x̂‖2 ≤
(
2(1 + C)

β(1 − C)

) ‖(Dx̄)Kc‖1√
N

+

(
2 +

4(1 + C)

β(1− C)

)
ǫ

σmin(AT )
.

To conclude the proof, we use the well-known fact that the minimum non-zero singular values of an M ×N

Gaussian random matrix is the order of
√
N −

√
M = (1−√

α)
√
N . By [43, Corollary 5.35], the probability

that σmin(A
T ) < 1−√

α
2

√
N is at most 2e−(1−√

α)2N/8. The probabilities that other analysis above fails are

all in the form of C0e
−C1N , whose sum is again in the form of C0e

−C1N with some other positive constants

C0 and C1.

5 Numerical experiments

In this section, we demonstrate empirical bounds under different settings ofM , N , andK, through numerical

experiments.

We generate the true signal x̄ ∈ R
N with K-sparse gradient as follows. The entries of x̄ keep to be 1 from

x̄1 through x̄N−K , and then the values of x̄N−K+1 through x̄N alternate between −1 and 1. The entries of

A ∈ R
M×N are drawn from i.i.d. standard normal distribution. The minimization (2) are solved by the split

Bregman algorithm [3, 20]. For one set of parameters (M,N,K), we test the TV compressed sensing with

100 realizations of A, and plot the rate of successful recovery. The results are shown in Figure 1. Figure

1(a) demonstrates the successful recovery rate when we fix K = 5 and variate M and N . It shows that

the recovery threshold of M is of the order
√
N , which is evidenced by the fact that the threshold bound

doubles when N quadruples (e.g. the threshold bound is about 150 and 300 respectively when N is 1000

and 4000 respectively). This confirms our result in Theorem 2.1 up to a logarithm factor. In Figure 1(b),
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(b) N = 1000 is fixed.
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(c) M = 0.2 ∗N is fixed.

Figure 1: Simulation results when x̄ is fixed and particularly chosen.
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(a) K = 5 is fixed.

Figure 2: Simulation results when the support of Dx̄ is distributed uniformly at random.

we fix N = 1000 and test different M and K. We see that the phase transition happens at the narrow band

centered at O(
√
NK), which also supports our result in Theorem 2.1 up to a log factor. In Figure 1(c), we

fix M = 0.2N and let K and N change. It can be seen clearly that the maximum K that guarantees the

exact recovery is proportional to N , which verifies the result of noiseless case in Theorem 2.2.

The experiments above are for a specific signal, which reflects the performance of TV-CS in the worst

case. Next we demonstrate the average performance of TV-CS. We generate the true signal x̄ ∈ R
N by a

±1-valued signal, whose support of gradient Dx̄ is chosen randomly according to the uniform distribution.

All other settings are the same as those in the previous paragraph. Fig. 2(a) depicts the success rate with

different pairs of (M,N) while K = 5 is fixed. We see that the values of M for phase transition increases

very slowly with respect to N , compared to Fig. 1(a). By a further numerical examination, we find that

a logarithmic function fits M for phase transition against N very well. This indicates that the recovery

threshold of M for average signals is likely to follow typical bound O(K log(N/K)) in compressed sensing.
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6 Extensions to Multidimensional Signals

In this section, we extend our results from one-dimensional signal to d-dimensional (d ≥ 2, for example d = 2

for image and d = 3 for videos) signal vectors, and get results that are comparable to those in [31, 32].

In particular, let X̄ ∈ R
Nd

be a multi-indexed vector that is from a d-dimensional signal. Let A ∈ R
M×Nd

be a measurement matrix whose elements are i.i.d. Gaussian random variables, and Y = AX̄ be its

corresponding measurements of X̄. Define DX̄ be the discrete gradient of X̄. Assume that DX̄ contains

at most K nonzero entries. In order to recover X̄, similar to (2), we solve the following minimization

min
X

‖DX‖1, subject to AX = Y . (40)

In the remaining of this section, we prove that a solution X̂ of (40) is exactly the original X̄ with high

probability, as long as

M ≥





C1K log3 N, if d = 2,

C2K logN, if d > 2,

where C1 > 0 and C2 > 0 are two constants depending on d. Note that ‖DX‖1 in (40) is the anisotropic

TV. Our proof can be generalized to isotropic TV without too much difficulty, since the anisotropic and

isometric TV’s are equivalent and their ratio is in [1,
√
2].

We will use the same architecture as in the proof of Part (a) of Theorem 2.1. Similar to Lemma 3.1, a

sufficient condition for the original X̄ being the unique solution of (40) is the following null space condition

‖(DX)K‖1 < ‖(DX)Kc‖1 ∀K ∈ [N ]d × [d] s.t. |K| ≤ K. (41)

Here we have used [N ] = {1, . . . , N}. Different from one-dimensional case, this null space condition (41) is

only a sufficient condition for higher dimensional signals. Then, using Theorem 3.2, (41) holds true with

overwhelming probability if the Gaussian width satisfies w(S(d)) <
√
M − 1

2
√
M
, where

S(d) = {X ∈ R
Nd

: ‖X‖2 = 1, and ‖(DX)K‖1 ≥ ‖(DX)Kc‖1 ∃K ⊂ [N ]d × [d] s.t. |K| ≤ K}.
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Given any vector X ∈ S(d), we have

‖DX‖1 = ‖(DX)Kc‖1 + ‖(DX)K‖1 ≤ 2‖(DX)K‖1 ≤ 2
√
K‖(DX)K‖2

≤ 2
√
K‖DX‖2 ≤ 4

√
d
√
K‖X‖2 = 4

√
d
√
K.

We have used the fact that ‖DX‖2 ≤ 2
√
d‖X‖2. Therefore,

S(d) ⊂ S̃(d) := {X ∈ R
Nd

: ‖X‖2 ≤ 1, ‖DX‖1 ≤ 4
√
d
√
K}.

In the following, we estimate the Gaussian width of S̃(d). Similar to one-dimensional signal, we consider

only the case where N = 2L, and the Gaussian width for other N is the same order. For any X ∈ S̃(d), we

decompose X according to a Haar transform for d-tuple indexed vector as

X =
∑L

ℓ=1

∑
i∈{0,1}d\0 Ẑ

(ℓ,i) + Ŷ (L), (42)

where Ẑ(ℓ,i) = Z(ℓ,i) ⊗ H(i) ⊗ 12ℓ−1 with Z(ℓ,i) ∈ R
(N/2ℓ)d , Ŷ (L) = Y (L) ⊗ 1N with Y (L) ∈ R, and

i ∈ {0, 1}d is a multi-index. Furthermore, here 1n ∈ R
nd

is the d-tuple indexed vector whose entries are

all 1, and ⊗ is the Kronecker product, i.e., A⊗B is the block d-tuple indexed vector whose (j1, j2, . . . , jd)

block is Aj1j2...jdB. Moreover, H(i) ∈ R
2d is the (scaled) Haar filter defined by H

(i)
j1j2...jd

=
∏d

k=1 h
(ik)
jk

with

h(0) = [h
(0)
0 h

(0)
1 ]T = [1 1]T and h(1) = [h

(1)
0 h

(1)
1 ]T = [1 − 1]T . In particular, we have H(0) = 12.

The decomposition (42) is done recursively as follows. We first define Y (0) = Ŷ (0) = X. At level ℓ, we

decompose Y (ℓ) as

Ŷ (ℓ) =
∑

i∈{0,1}d\0 Ẑ
(ℓ+1,i) + Ŷ (ℓ+1),

where

Y
(ℓ+1)
k =

∑
j∈{0,1}d H

(0)
j Y

(ℓ)
2k−j

2d
=

∑
j∈{0,1}d Y

(ℓ)
2k−j

2d
, Z

(ℓ+1,i)
k =

∑
j∈{0,1}d H

(i)
j Y

(ℓ)
2k−j

2d
.

The decomposition (42) has the following properties.

• Obviously, components in decomposition (42) are orthogonal to each others. Consequently,

‖X‖22 =
∑L

ℓ=1

∑
i∈{0,1}d\0 ‖Ẑ(ℓ,i)‖22 + ‖Ŷ (L)‖22

=
∑L

ℓ=1

(
2dℓ
∑

i∈{0,1}d\0 ‖Z(ℓ,i)‖22
)
+ 2dL‖Y (L)‖22.
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Since X ∈ S̃(d) implies ‖X‖22 ≤ 1, we have

∑L
ℓ=1

(
2dℓ
∑

i∈{0,1}d\0 ‖Z(ℓ,i)‖22
)
+ 2dL‖Y (L)‖22 ≤ 1 (43)

• It can be shown that

‖DŶ (ℓ)‖1 ≤ ‖DŶ (ℓ−1)‖1 (44)

and, consequently,

‖DŶ (ℓ)‖1 ≤ ‖DX‖1 ≤ 4
√
d
√
K. (45)

Indeed, let Di be the difference matrix along the i-th dimension. Then, similar to the one-dimensional

case, one can show that

‖DiŶ
(ℓ)‖1 = 2ℓ(d−1)‖DiY

(ℓ)‖1 ≤ 2ℓ(d−1) · 2

2d
‖DiY

(ℓ−1)‖1

= 2ℓ(d−1) · 2

2d
1

2(ℓ−1)(d−1)
‖DiŶ

(ℓ−1)‖1 = ‖DiŶ
(ℓ−1)‖1.

Summing over i yields (44).

• Furthermore, for any vector G, we have

∑

i∈{0,1}d\0
〈G, Ẑ(ℓ,i)〉 ≤

√
d2d+1

√
K

2(ℓ−1)(d−1)
‖G̃(ℓ−1)‖∞, (46)

where G̃(ℓ−1) ∈ R
(N/2ℓ−1)d is a d-tuple indexed signal whose i-th entry is the sum of the entries of G

on the i-th block of size 2ℓ−1 × 2ℓ−1. Eq. (46) is shown as follows. We have

∑

i∈{0,1}d\0
〈G, Ẑ(ℓ,i)〉 =

∑

i∈{0,1}d\0
〈G̃(ℓ−1),Z(ℓ,i) ⊗H(i)〉 ≤ ‖G̃(ℓ−1)‖∞ ·

∥∥∥
∑

i∈{0,1}d\0 Z
(ℓ,i) ⊗H(i)

∥∥∥
1

≤ ‖G̃(ℓ−1)‖∞ ·∑j∈{0,1}d

∥∥∥
∑

i∈{0,1}d\0H
(i)
j Z(ℓ,i)

∥∥∥
1

≤ ‖G̃(ℓ−1)‖∞ · 2d∑i∈{0,1}d\0
∥∥Z(ℓ,i)

∥∥
1
,

(47)

where we have used the fact that |H(i)
j | = 1 for all indices i and j. Define H(i\k) ∈ R

2d−1

and

H
(i\k)
j1...jk−1jk+1...jd

=
∏d

p=1,p6=k h
(ip)
jp

with h(0) = [1 1]T , h(1) = [1 − 1]T . For any fixed ĩ = (̃i1, . . . , ĩd) ∈

{0, 1}d \ 0, there exists a k0 such that ĩk0 = 1. Since 〈H(i\k0),H(j\k0)〉 = 2d−1
∏

k 6=k0
δikjk with δij
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being 1 if i = j and 0 otherwise, we have

∑
i∈{0,1}d, ik0=1

∑
j∈{0,1}d H

i\k0

j H
ĩ\k0

j = 2d−1,

and thus

Z(ℓ,ĩ) = 1
2d−1

∑
j∈{0,1}d−1

(
H

(ĩ\k0)
j

∑
i∈{0,1}d, ik0=1 H

(i\k0)
j Z(ℓ,i)

)
,

which leads to

‖Z(ℓ,ĩ)‖1 ≤ 1
2d−1

∑
j∈{0,1}d−1

∥∥∥H(ĩ\k0)
j

∑
i∈{0,1}d, ik0=1 H

(i\k0)
j Z(ℓ,i)

∥∥∥
1

= 1
2d−1

∑
j∈{0,1}d−1

∥∥∥
∑

i∈{0,1}d, ik0=1 H
(i\k0)
j Z(ℓ,i)

∥∥∥
1
.

(48)

In the following, we estimate the last term. Let Dk be the difference along the k-th direction. We have

that DkH
(i) = 2H(i\k) if ik = 1 and DkH

(i) = 0 if ik = 0. Note that, for any d-tuple indexed vector

a, we have

∥∥∥D
(∑

i∈{0,1}d aiH
(i) ⊗ 12ℓ−1

)∥∥∥
1
= 2(d−1)(ℓ−1)

∑d
k=1

∥∥∥
∑

i∈{0,1}d aiDkH
(i)
∥∥∥
1

= 2 · 2(d−1)(ℓ−1)
∑d

k=1

∥∥∥
∑

i∈{0,1}d, ik=1 aiH
(i\k)

∥∥∥
1

This together with (45) and the definition Ẑ(ℓ,i) = Z(ℓ,i)⊗H(i)⊗12ℓ−1 implies (defining Z(ℓ,0) = Y (ℓ)

and Ẑ(ℓ,0) = Ŷ (ℓ))

4
√
d
√
K ≥ ‖DŶ (ℓ−1)‖1 =

∥∥∥D
(
Ŷ (ℓ) +

∑
i∈{0,1}d\0 Ẑ

(ℓ,i)
)∥∥∥

1

≥∑p∈[N/2ℓ]d

∥∥∥D
(∑

i∈{0,1}d Z
(ℓ,i)
p H(i) ⊗ 12ℓ−1

)∥∥∥
1

= 2 · 2(d−1)(ℓ−1)
∑d

k=1

∑
p∈[N/2ℓ]d

∥∥∥
∑

i∈{0,1}d, ik=1 Z
(ℓ,i)
p H(i\k)

∥∥∥
1

= 2 · 2(d−1)(ℓ−1)
∑d

k=1

∑
j∈{0,1}d−1

∥∥∥
∑

i∈{0,1}d, ik=1 H
(i\k)
j Z(ℓ,i)

∥∥∥
1

and therefore

∑d
k=1

∑
j∈{0,1}d−1

∥∥∥
∑

i∈{0,1}d, ik=1 H
(i\k)
j Z(ℓ,i)

∥∥∥
1
≤ 2

√
d

2(d−1)(ℓ−1)

√
K. (49)
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Let n(i) be the number of 1’s in i. By combining (48) and (49), we obtain

∑

ĩ∈{0,1}d\0

∥∥∥Z(ℓ,ĩ)
∥∥∥
1
=

d∑

p=1

∑

ĩ:n(ĩ)=p

∥∥∥Z(ℓ,ĩ)
∥∥∥
1
=

d∑

p=1

d∑

k=1

∑

ĩ:̃ik=1,n(ĩ)=p

∥∥∥Z(ℓ,ĩ)
∥∥∥
1

≤ 1

2d−1

d∑

p=1

d∑

k=1

∑

ĩ:̃ik=1,n(ĩ)=p

∑

j∈{0,1}d−1

∥∥∥∥∥∥

∑

i∈{0,1}d, ik=1

H
(i\k)
j Z(ℓ,i)

∥∥∥∥∥∥
1

≤ 1

2d−1

d∑

p=1

(
d− 1

p− 1

)
2
√
d

2(d−1)(ℓ−1)

√
K =

2
√
d

2(d−1)(ℓ−1)

√
K,

(50)

which combined with (47) yields (46).

Now we are ready to estimate the Gaussian width of S̃(d). Let G be a vector whose entries are i.i.d.

Gaussian random variables with mean 0 and variance 1. The same argument in one dimensional cases leads

to

E(‖G̃(ℓ)‖∞) ≤
√
2
√
2dℓ log (2Nd/2dℓ)

which implies

E


sup

∑

i∈{0,1}d\0
〈G, Ẑ(ℓ,i)〉


 ≤

√
d2d+1

√
K

2(ℓ−1)(d−1)
E(‖G̃(ℓ−1)‖∞)

≤
√
2
√
d2d+1

√
K

2(ℓ−1)(d−1)

√
2d(ℓ−1) log

(
2Nd/2d(ℓ−1)

)

≤
√
2
√
d2d+1

√
K

2(ℓ−1)(d−1)

√
2d(ℓ−1) log (2Nd)

=
√
2
√
d2d+1

√
K2(ℓ−1)(1−d

2 )
√
log (2Nd).

Moreover,

E
(
sup〈G, Ŷ (L)〉

)
= E

(
supY (L)G̃(L)

)
≤ sup |Y (L)|E

(
|G̃(L)|

)
≤
√

1

2dL

√
2dL
√
2/π =

√
2/π.
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Therefore,

E

(
sup

X∈S̃(d)

〈G,X〉
)

=

L−1∑

ℓ=1

E



sup
∑

i∈{0,1}d\0
〈G, Ẑ(ℓ,i)〉



+ E
(
sup〈G, Ŷ (L)〉

)

≤
√
2
√
d2d+1

√
K
√
log (2Nd)

L−1∑

ℓ=1

2(ℓ−1)(1−d
2 ) +

√
2/π

≤





√
2
√
d2d+1

√
K
√
log (2Nd) log2 N +

√
2/π if d = 2,

√
2
√
d2d+1

√
K
√
log (2Nd) 1

1−21−
d
2
+
√
2/π if d > 2

We require the Gaussian width is about
√
M , where M is the number of measurement. So, we have

M ∼






K log3 N if d = 2

K logN if d > 2.

7 Conclusion

In this paper, we prove the performance guarantee of total variation (TV) minimization in recovering sparse-

gradient one-dimensional signal. The almost Euclidean property of subspaces [25, 46, 47] is used to extend

our results to proving the stability of TV minimization for signals with approximately sparse gradients or

under noisy measurements. Our results can also be extended to TV minimization for multidimensional

signals. Stability of TV minimization has also been established for one-dimensional signal vectors with large

M and K.

Our current results work only for the Gaussian ensemble of measurement matrices. One future direction

is to extend our results to general deterministic and random measurement matrices, such as partial Fourier

matrices, and random Bernoulli matrices. Another direction we would like to pursue is to establish the

stability of TV minimization when K is small by using Gaussian width [34]. Finally, we are also interested

in extending the result to general CS analysis model. Current results (e.g. [28]) usually assume that the

analysis operator has a small condition number. Though the finite difference matrix D has a bad condition

number, our analysis in this paper still can get linear growth of the TV recovery threshold when the number

of measurements is linear to the signal size. We expect that our analysis can be applied to general CS analysis

models to get recovery thresholds that are independent of the condition number of the analysis operator.
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