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Abstract

Recently, a powerful two-phase method for restoring images corrupted with high level impulse
noise has been developed. The main drawback of the method is the computational efficiency of the
second phase which requires the minimization of a non-smooth objective functional. However,
it was pointed out in [Chan, Ho, Leung, and Nikolova, Proc. ICIP 2005, pp. 125–128] that
the non-smooth data-fitting term in the functional can be deleted since the restoration in the
second phase is applied to noisy pixels only. In this paper, we study the analytic properties of
the resulting new functional F . We show that F , which is defined in terms of edge-preserving
potential functions ϕα, inherits many nice properties from ϕα, including the first and second
order Lipschitz continuity, strong convexity, and positive definiteness of its Hessian. Moreover,
we use these results to establish the convergence of optimization methods applied to F . In
particular, we prove the global convergence of some conjugate gradient-type methods and of a
recently proposed low complexity quasi-Newton algorithm. Numerical experiments are given to
illustrate the convergence and efficiency of the two methods.
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1 Introduction

Image denoising is a typical inverse problem and is hard to solve. We must use some a priori knowledge
about the images and noises in the denoising procedure. For the images, the usual assumption
is that they consist of edges and homogeneous regions, which yields the popular edge-preserving
regularization functionals [2, 4, 11, 17]. For the noises, there are several models. The most commonly
used one is the Gaussian noise model, in which every pixel is affected by the noise. Another one is
the impulse noise model, in which only a portion of the pixels is contaminated by the noise and
information on the true value of the pixels are completely lost. The impulse noise is caused by
malfunctioning pixels in camera sensors, faulty memory locations in hardware, or transmission in a
noisy channel, see [5, p. 90 and p. 330] for instance. The impulse noise can be further categorized
in two types: the salt-and-pepper noise, for which the noisy pixels can take only the maximal and
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minimal pixel values; and the random-valued impulse noise, for which the noisy pixels can take any
random values between the maximal and the minimal pixel values. In both types of noise, the noisy
pixels are assumed to be randomly distributed in the image.

There are many methods for restoring images corrupted by impulse noise, some of which are
based on nonlinear digital filters [1]. The median filter was once the most popular nonlinear filter
for removing impulse noise, because of its good denoising power [5, pp. 90–94] and computational
efficiency [18]. However, its performance is not good when the noise level is high since some details
and edges of the original image appear smeared in the restored one [26]. Several remedies have been
proposed, such as the adaptive [19], the multi-state [12] and homogeneity information based [27]
median filters. They first locate possible noisy candidates and then replace them with median values
or their variants. They can detect the noisy pixels even at a high noise level. However, they can not
restore such pixels satisfactorily because they do not take into account local image features such as
the possible presence of edges. Hence details and edges are not recovered well, especially when the
noise level is high.

Recently, a different technique based on a variational framework has been proposed in [24] to deal
with impulse noise. Variational methods based on the minimization of edge-preserving regularization
functionals have already been used in [4, 11, 29] to preserve the edges and the details in images
corrupted by Gaussian noise. However, these methods fail in the presence of impulse noise, because
they alter all pixels in the image, including uncorrupted ones. In the variational method proposed
in [24], the restored image was defined as the minimizer of a cost function which includes a non-
smooth `1 data-fitting term. It was shown that the method involves an implicit detection of the
pixels contaminated by impulse noise and it preserves edges during denoising. However, in order to
detect large noisy connected regions, it requires a greater weight of the regularization term in the
cost function. This causes the distortion of some pixels near edges.

In [8], Chan et al. proposed a two-phase method which combines the variational method [24] with
the adaptive median filter method (AMF) [19], thereby avoiding the drawbacks of these methods.
More precisely, the noise candidates are first identified by AMF; then these noise candidates are
restored by minimizing an objective functional G with an `1 data-fitting term and a regularization
term involving an edge-preserving potential function ϕα(t), see (2). Since the edges are preserved for
the noise candidates and other pixels are left unchanged, the two-phase scheme out-performs previous
methods by a great margin: salt-and-pepper noise with noise ratio as high as 90% can be cleaned
quite efficiently, see [8] or Figures 3 and 4 in Section 5. With slight modification, the scheme also
applies to random-valued impulse noise with noise level as high as 60% [10, 14]. Recently, it has been
applied to problems in segmentation and inpainting, see [21].

The main drawback of the 2-phase method is its computational efficiency. The minimization of
G is difficult as it contains a nonsmooth `1 data-fitting term. The relaxation method proposed in
[8, 10, 24] is convergent but slow. Using probability arguments, we will show here that the relaxation
method converges fast only if the noise level is low. To improve the computational efficiency, it was
proposed in [9] to drop the non-smooth `1 data-fitting term in G, as it is not needed in the 2-phase
method, where only noisy pixels are restored in the minimization. The quality of the restored images
is not affected by minimizing the new functional, see numerical results in [9, 6, 14] and the results in
Section 5.

In this paper we first study the analytical properties of the new functional F which is obtained from
G by dropping the `1 data-fitting term (see (9)). In particular, we prove that F inherits many nice and
useful properties from the edge-preserving potential function ϕα, such as the first and second order
Lipschitz continuity, convexity, strong convexity, and positive definiteness and uniform boundedness
of the second order derivatives. Then we apply these results to show the global convergence of two
methods for the minimization of F : a conjugate gradient type method [6, 28] and a low-complexity
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quasi-Newton method, recently introduced in [3, 15]. Finally, we show by numerical experiences that
these methods can improve the efficiency of 2-phase denoising algorithms.

The outline of this paper is as follows. In Section 2, we give a brief review of the two-phase
method in [8, 10], and show that the relaxation method used there is efficient only when the noise
level is low. In Section 3, we prove that the new cost function F inherits many important regularity
properties from ϕα. In Section 4, we use the results of Section 3 to establish the global convergence
of two minimization methods applied to F . In Section 5, we test the efficiency of the two methods
when compared to the relaxation method in [8, 10]. Conclusions are given in the final section.

2 The Two-Phase Method

In [8], a two-phase scheme for detecting and removing salt-and-pepper noise is proposed. In the first
phase, the noisy pixels are detected by the adaptive median filter (AMF) [19]. Then in the second
phase, they are restored by the variational method in [24]. Let us recall the two-phase scheme here.

Let x be the true image with M -by-N pixels. For each (i, j) ∈ A := {1, . . . , M} × {1, . . . , N},
let xi,j be the gray level of x at pixel location (i, j) and Vi,j be the neighborhood of (i, j), i.e.,
Vi,j = {(i, j − 1), (i, j + 1), (i − 1, j), (i + 1, j)}. Let [smin, smax] be the dynamic range of x, i.e. all
xi,j ∈ [smin, smax]. Denote by y the observed noisy image of x contaminated by the salt-and-pepper
noise. Then the gray level of y at pixel (i, j) is

yi,j =





xi,j , with probability 1− r,

smin, with probability p,

smax, with probability q,

(1)

where r = p+ q is the noise level. The following is the two-phase scheme to get a denoised image u∗:

1. (Noise detection): Denote by ỹ the image obtained by applying AMF to the noisy image y.
Since noisy pixels either take the value smin or smax, we define the noise candidate set as

N := {(i, j) ∈ A : ỹi,j 6= yi,j and yi,j = smin or smax} .

2. (Restoration): If a pixel (i, j) 6∈ N , it is detected as uncorrupted. Hence we naturally keep its
original value, i.e., we set u∗i,j = yi,j . Otherwise, if (i, j) ∈ N , then yi,j must be restored. In
addition, if (m,n) ∈ Vi,j \ N , we set u∗m,n = ym,n; and if (m,n) ∈ Vi,j ∩ N , then we restore
ym,n. The restoration of all yi,j is done by minimizing the functional:

G(u) =
∑

(i,j)∈N



|ui,j − yi,j |+ β

2


 ∑

(m,n)∈Vi,j\N
2 · ϕα(ui,j − ym,n)

+
∑

(m,n)∈Vi,j∩N
ϕα(ui,j − um,n)






 (2)

where β is the regularization parameter and ϕα is an even edge-preserving potential function
with parameter α.

Since the right hand side of (2) involves only ui,j , (i, j) ∈ N , the vectors u and u∗ are assumed to
have entries ui,j and u∗i,j with (i, j) restricted to N , i.e. u, u∗ ∈ R|N |. To explain the extra factor “2”
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in the second summation in (2), consider a pair of neighbors (i, j) and (m,n), one of which belongs
to N , say (i, j) ∈ N , while the other does not, say (m,n) 6∈ N . Since ϕα is an even function and the
summation is only over (i, j) ∈ N , the factor “2” comes from

ϕα(ui,j − ym,n) + ϕα(ym,n − ui,j) = 2 · ϕα(ui,j − ym,n).

See also (16) in Section 3. Examples of edge-preserving potential functions are:

ϕα(t) =
√

α + t2, α > 0, (3)
ϕα(t) = |t|α, 1 < α ≤ 2, (4)
ϕα(t) = log(cosh(αt)), (5)
ϕα(t) = |t|/α− log(1 + |t|/α), (6)

ϕα(t) =
{

t2/(2α), if |t| ≤ α,
|t| − α/2, if |t| > α,

(7)

see [2, 4, 11, 17, 8]. The parameter α should be chosen such that ϕα(t) approximates |t| for t away
from zero, see [11]. In the following, we use ϕ′α to denote the derivative of ϕα.

We note that N obtained in the noise detection phase in general is different from the true noise
set:

Nt := {(i, j) : yi,j 6= xi,j in (1)}. (8)

However, for salt-and-pepper noise, AMF is a very excellent noise detector and for images like those
we tested in Section 5, the difference between N and Nt is usually less than 0.1% even for noise level
r as high as 90%.

The two-phase schemes in [8, 10] both require the minimization of the functional (2) in the second
phase, and it was done by a relaxation based method working on the residuals zi,j = ui,j − yi,j ,
(i, j) ∈ N . The use of such method was first proposed in [24]. It is sketched here below:

Algorithm 1 Relaxation method for minimizing (2)

1. Set zij = 0 for each (i, j) ∈ N.

2. Iterate on k = 1, 2, · · · until convergence:
For each (i, j) ∈ N, consider G(u) as a 1D function of zij only, where zi,j = ui,j −
yi,j, and use the following three steps to compute its minimizer z

(k)
i,j :

i. Calculate

ξ
(k)
i,j = β

∑

(m,n)∈Vi,j\N
ϕ′α(yi,j − ym,n) + β

∑

(m,n)∈Vi,j∩N
ϕ′α(yi,j − zm,n − ym,n),

where zm,n are the latest updates.

ii. If |ξ(k)
i,j | ≤ 1, set z

(k)
i,j = 0. Otherwise, solve for z

(k)
i,j in the 1-D nonlinear

equation:

sign(ξ(k)
i,j ) =β

∑

(m,n)∈Vi,j\N
ϕ′α(z(k)

i,j + yi,j − ym,n)

+ β
∑

(m,n)∈Vi,j∩N
ϕ′α(z(k)

i,j + yi,j − zm,n − ym,n).
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(a) (b) (c) (d)

Figure 1: Pixels in N are labeled black while pixels not in N are labeled white.

iii. Update zi,j to be z
(k)
i,j .

One can see that Algorithm 1 is a Gauss-Seidel type method where for each pixel (i, j) ∈ N , we
just minimize G with respect to the unknown variable zi,j and fix all other unknown variables to their
latest computed values. It was shown in [24] that, under suitable assumptions on ϕα, the method
converges. The 1-D nonlinear equations in Step 2(ii) can be solved by Newton’s method. In [7], we
have derived a formula for finding an initial guess for the Newton method that always guarantees
convergence.

If a noise candidate (i, j) ∈ N is surrounded by pixels not in N , see for example Figure 1(a), then
the indeterminate zi,j appears in only one nonlinear equation. Hence in Step 2 above, we can obtain
the required value of zi,j , and hence of ui,j , after 1 iteration. However, if noise candidates form a
connected set, like those in Figure 1(b)–(d), then we need more iterations to find the required value
of zi,j because the unknowns are coupled together. Clearly, the smaller such connected sets are, the
faster the convergence of Algorithm 1 will be. In the extreme case when all the noise candidates are
disconnected from each other, Algorithm 1 converges in one iteration.

Intuitively, if the noise level r increases, there will be more and larger connected sets of noise
candidates. This is proven formally below. Since the noise candidate set N will change according to
the noise detector used in phase 1, we prove the lemma for the true noise set Nt defined in (8).

Lemma 1 Let the noise level be r and consider a noisy pixel (i, j) ∈ Nt far enough from the boundary.
Let pn be the probability that (i, j) is in a connected set consisting of n pixels in Nt. Then

pn = nrn−1
∑

S
(1− r)vS ,

where the summation is taken over all possible shapes S of sets consisting of n connected pixels in
Nt, and vS is the number of neighboring pixels of S.

Proof: Assume that the noisy pixel (i, j) ∈ Nt is far enough from the boundary such that any shape
S containing (i, j) does not touch the boundary. Then,

pn =
∑

S
prob((i, j) ∈ S|(i, j) ∈ Nt) =

∑

S

prob((i, j) ∈ Nt, (i, j) ∈ S)
prob((i, j) ∈ Nt)

=
∑

S

nrn(1− r)vS

r
,

since pixel (i, j) has n possible positions in a set consisting of n connected pixels in Nt, and the
probability of such set to appear is rn(1− r)vS .

We remark that for small n, it is not a serious requirement on (i, j) to be far from the boundary
such that S containing (i, j) does not touch the boundary. This is because the number of pixels that
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Figure 2: Probability for a noisy pixel to be in a connected set of n noisy pixels.

do not satisfy this is very small compared to the total number of pixels. By the lemma, we can easily
get that

p1 = (1− r)4, p2 = 4r(1− r)6, p3 = r2(12(1− r)7 + 6(1− r)8).

We draw the proportion of p1, p2, p3, 1 − p1 − p2 − p3 in Figure 2 for different noise levels. As
expected, the probability that a noisy pixel is in a small connected set is very large when the noise
level is small. For example, when r = 30%, the proportion of noisy pixels in connected subsets
consisting only of n = 1 noisy pixel is about 24%, in those consisting of n = 2, n = 3 and n > 3 noisy
pixels are about 14%, 12% and 50%, respectively. Since N approximates Nt, Lemma 1 suggests that
the relaxation method for the minimization of (2) converges fast when the noise level is low, but slow
when the noise level becomes high. This fact has been verified numerically in [8, 10]. See also Section
5. There is a need to find better minimization algorithms for (2) for high noise level.

3 Properties of the New Functional

One main difficulties in minimizing (2) is that it contains the data-fitting term |ui,j − yi,j | which is
not continuously differentiable. It has already been observed in [9] that this term is not needed in
the two-phase method. It is needed only in the original method in [24] where one wants to detect
and restore noisy pixels simultaneously. Since the positions of the noisy pixels are not known a priori
there, the term is required so that the restored values will not deviate too much from the observed
values. Without this term, the minimizer will just be the zero vector.

However, in the two-phase method [8, 10], where the noise candidates are already detected at the
first phase, there is no need to use the data-fitting term in the minimization in the second phase. This
is because, in phase 2, the data-fitting is done exactly for uncorrupted pixels: u∗i,j = yi,j if (i, j) /∈ N ;
and the restoration is done only on noise candidates. In fact, we observed already in [8, 10] that the
minimum of (2) is independent of the regularization parameter β if it is large enough. Thus in [9],
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we proposed to remove the data-fitting term and minimize the following new functional:

F(u) =
∑

(i,j)∈N


 ∑

(m,n)∈Vi,j\N
2 ϕα(ui,j − ym,n) +

∑

(m,n)∈Vi,j∩N
ϕα(ui,j − um,n)


 (9)

in the second phase of the two-phase method. The resulting restored images are basically the same
as those obtained by using G in (2), see numerical results in [9, 6, 14] and also those in Section 5.

Clearly, the regularity of F now depends only on ϕα. If ϕα is smooth, then there are many methods
for minimizing F . For instance, in [9] and [6] we have used the Newton continuation method and
a conjugate gradient type method, respectively. The aim of this section is to study some important
analytical properties of F . They will be used in Section 4 to establish the global convergence of
CG-type [6, 28] and NSLQN [3, 15] optimization methods in minimizing F . We remark that there
is no convergence proof for the Newton continuation method used in [9]; and the convergence of
the conjugate gradient type method in [6] was proved under the strong assumption ϕ′′α(t) > 0. The
results of this section will allow us to establish a convergence theorem for CG-type methods under
weaker assumptions.

The following properties of F have already been proven in [6]. We recall that a function f(x) is
coercive if f(x) →∞ when ‖x‖ → ∞.

Proposition 1 If ϕα is respectively continuously differentiable, convex, strictly convex, or coercive,
then the functional F is respectively continuously differentiable, convex, strictly convex, or coercive.

In [6], we also proved that the global minimizer of F exists and satisfies the maximum principle:

Proposition 2 If ϕα(t) is even, continuous and strictly increasing w.r.t. |t|, then the global mini-
mum of F exists, and any global minimizer u∗ is in the dynamic range, i.e., u∗i,j ∈ [smin, smax] for
all (i, j) ∈ N .

Thus, the minimization of F is stable, and there is no need to restrict the iterants to be in the dynamic
range during the minimization of F . We remark that ϕα in (3)–(7) all satisfy the assumptions of the
proposition.

In many optimization methods to minimize a functional f , the first (or second) order Lipschitz
continuity or the strong convexity of f are sufficient conditions for global convergence [13, 25]. How-
ever, these properties, which involve the gradient or the Hessian of f , are generally difficult to verify.
In the following two subsections, we show that for our functional F , these properties are inherited
from those of ϕα, which are easier to verify.

3.1 The Hessian of the New Functional

We first show that the boundedness and positive definiteness of the Hessian∇2F(u) of F are inherited
from the boundedness and positiveness of the second order derivative of ϕα.

Proposition 3 Suppose that ϕα is even and ϕ′′α exists.

(a) If ϕ′′α is bounded, then ∇2F(u) is bounded independently of the dimension of the Hessian.

(b) If ϕ′′α(t) is a nonnegative (resp. positive) function, then ∇2F(u) is positive semi-definite (resp.
positive definite).
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Proof: Let H := ∇2F(u), i.e. H[(i,j),(m,n)] = ∂2F(u)
∂ui,j∂um,n

, (i, j), (m,n) ∈ N . Then by (9), its entries
are

H[(i,j),(i,j)] = 2
∑

(m,n)∈Vi,j\N
ϕ′′α(ui,j − ym,n) + 2

∑

(m,n)∈Vi,j∩N
ϕ′′α(ui,j − um,n), (10)

and

H[(i,j),(m,n)] =
{ −2ϕ′′α(ui,j − um,n), if (m,n) ∈ Vi,j ,

0, otherwise. (11)

Clearly H is a symmetric matrix. Define the matrix

W[(i,j),(m,n)] =





8, if (m,n) = (i, j),
−2, if (m,n) ∈ Vi,j ,
0, otherwise,

(12)

i.e. W is obtained by letting ϕ′′α(ui,j − ym,n) = 1 and ϕ′′α(ui,j − um,n) = 1 in (10) and (11). By (12),
it is easy to see that W is a principal submatrix of the NM -by-NM matrix −2∆, where ∆ is the
2-D discrete Laplacian.

In order to verify (a), let Mα be a scalar such that Mα ≥ ϕ′′α(t) ≥ −Mα for all t. It is easy to show
that the matrix MαW −H has non-negative diagonals and non-positive off diagonals. Moreover, it
is diagonally dominant. Hence it is positive semi-definite. Therefore

vT Hv ≤ MαvT Wv ≤ Mαλmax(W ) ≤ 2Mαλmax(−∆) ≤ 16Mα,

where v is any normalized vector. Analogously, vT Hv ≥ −16Mα. Therefore, ‖H‖ ≤ 16Mα.
To verify (b), first let ϕ′′α ≥ mα ≥ 0. Proceeding as above, we observe that H −mαW is positive

semi-definite and hence

λmin(H) = wT Hw ≥ mαwT Ww ≥ mαλmin(W ), (13)

where w is the normalized eigenvector of H corresponding to its minimal eigenvalue λmin(H). Thus
H is positive semi-definite since λmin(W ) ≥ 2λmin(−∆) ≥ 0.

Next consider the case ϕ′′α > 0 in (−∞,∞). Let mα be the minimal value of ϕ′′α in (10) and (11)
for all (i, j) and (m,n), then mα > 0 and (13) still holds. Therefore H is positive definite provided
that λmin(W ) > 0. This is the case if we impose zero, i.e. Dirichlet, boundary conditions on u in
(9). In fact, with this imposition, ∆ is the 2-D Laplacian with Dirichlet boundary conditions, hence
−∆ is positive definite. Therefore, we have λmin(W ) > 0 since W is a principal submatrix of −2∆.
Note that in our experiments in Section 5, we instead impose symmetric, i.e. Neumann, boundary
conditions, for they usually give better restored images, see [22]. Then ∆ is the 2D Laplacian with
Neumann boundary conditions and hence λmin(−∆) = 0. However, since W is a principal submatrix
of −2∆, and the pixels detected as non-noise in the first step act as Dirichlet boundary conditions,
W is in fact equal to −2 times a Laplacian with mixed Neumann and Dirichlet boundary conditions.
It follows that W and hence H are still positive definite. In fact, we can show that rigorously. It
suffices to show that wT Ww 6= 0 in (13). Since W is a principal submatrix of −2∆, with a suitable
permutation of the indices, we can write wT Ww = −[wT ,0]∆[wT ,0]T . Note however that

xT Wx = −[xT ,0]∆[xT ,0]T > 0 (14)

for any nonzero vector x, as the null vector of −∆ with Neumann boundary condition is the constant
vector. Thus λmin(H) ≥ mαwT Ww > 0.

Next we show that F is second order Lipschitz continuous if ϕα is. For this we need the following
Lemma, where ‖ · ‖ denotes the 2-norm and | · | denotes taking the absolute value of the entries in
the matrix or the vector.
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Lemma 2 Consider two square matrices A and B. If |A| ≤ |B| entry-wise, then ‖A‖ ≤ ‖|B|‖.

Proof: We can find a unit vector w0 such that ‖A‖ = ‖Aw0‖. Therefore,

‖A‖ = ‖Aw0‖ ≤ ‖|A||w0|‖ ≤ ‖|B||w0|‖ ≤ max
‖w‖=1

‖|B|w‖ = ‖|B|‖.

Proposition 4 Suppose that ϕα is even and is second order Lipschitz continuous with Lipschitz
constant ρ1, i.e.,

|ϕ′′α(t1)− ϕ′′α(t2)| ≤ ρ1|t1 − t2|,
then F is also second order Lipschitz continuous with Lipschitz constant 32ρ1, i.e.,

‖∇2F(u)−∇2F(v)‖ ≤ 32ρ1‖u− v‖.

Proof: Define D := ∇2F(u)−∇2F(v). Then, for (i, j) ∈ N ,

|D[(i,j),(i,j)]| ≤ 2
∑

(m,n)∈Vi,j\N
|ϕ′′α(ui,j − ym,n)− ϕ′′α(vi,j − ym,n)|

+2
∑

(m,n)∈Vi,j∩N
|ϕ′′α(ui,j − um,n)− ϕ′′α(vi,j − vm,n)|

≤ 2ρ1

∑

(m,n)∈Vi,j\N
|ui,j − vi,j |+ 2ρ1

∑

(m,n)∈Vi,j∩N
(|ui,j − vi,j |+ |um,n − vm,n|)

≤ 2ρ1‖u− v‖∞|W[(i,j),(i,j)]|.

Similarly, if (i, j), (m,n) ∈ N , (i, j) 6= (m,n), then

|D[(i,j),(m,n)]| ≤ 2ρ1‖u− v‖∞|W[(i,j),(m,n)]|.

Therefore, by Lemma 2

‖D‖ ≤ 2ρ1‖|W |‖‖u− v‖∞ ≤ 32ρ1‖u− v‖∞ ≤ 32ρ1‖u− v‖.

3.2 The Gradient of the New Functional

In this subsection, we show that the strong convexity and the first order Lipschitz continuity of F
can be inherited from ϕα too. To this end, we first obtain some compact formulas for F(u), ∇F(u)
and ∇2F(u). Note that F(u) in (9) is the restriction of the following regularization functional onto
the noise candidate set N : ∑

(i,j)∈A

∑

(m,n)∈Vi,j

ϕα(ui,j − um,n),

where A is the set of all pixels, see [8]. Hence F(u) can be rewritten as

F(u) =
∑

(i,j)∈A

∑

(m,n)∈Vi,j

ϕα(zi,j − zm,n)−
∑

(i,j)/∈N

∑

(m,n)∈Vi,j\N
ϕα(yi,j − ym,n), (15)
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with

zk,l =
{

uk,l, if (k, l) ∈ N ,
yk,l, if (k, l) /∈ N .

Recall that Vi,j is the set of the four neighboring pixels of (i, j). We are going to write the first
summation in (15) as the sum of four numbers {f`}4`=1, where each f` is the first summation in (15)
summed over just one of the neighboring pixels of (i, j). More precisely, if f1 corresponds to the pixel
(i + 1, j), then

f1 :=
∑

(i,j)∈A
ϕα(zi,j − zi+1,j) =

∑

(i,j)∈A





ϕα(ui,j − ui+1,j), if (i, j) ∈ N and (i + 1, j) ∈ N ,
ϕα(ui,j − yi+1,j), if (i, j) ∈ N and (i + 1, j) /∈ N ,
ϕα(yi,j − ui+1,j), if (i, j) /∈ N and (i + 1, j) ∈ N ,
ϕα(yi,j − yi+1,j), if (i, j) /∈ N and (i + 1, j) /∈ N .

(16)

Notice that if ϕ(t) is an even function, then we have two terms of the form ϕ(u·,·−y·,·) in (16), which
explains again why there is the extra factor “2” for such terms in (2) and (9).

If we define the matrix G1 and the vector b1 by

(G1)[(i,j),(m,n)] =





1, if (m,n) = (i, j) ∈ N ,
−1, if (i, j) ∈ N and (m,n) = (i + 1, j) ∈ N ,
−1, if (i, j) /∈ N and (m,n) = (i + 1, j) ∈ N ,
0, otherwise,

and

(b1)(i,j) =





yi+1,j , if (i, j) ∈ N and (i + 1, j) /∈ N ,
−yi,j , if (i, j) /∈ N and (i + 1, j) ∈ N ,
0, otherwise;

for (i, j) ∈ A and (m,n) ∈ N , then we can rewrite f1 in (16) as

f1 =
∑

(i,j)∈A
ϕα([G1u− b1]i,j) +

∑

(i,j) 6∈N

∑

(i+1,j)/∈N
ϕα(yi,j − yi+1,j)−

∑

(i,j) 6∈N

∑

(i+1,j)/∈N
ϕα(0).

We can define {G`}4`=2 and {b`}4`=2 similarly to obtain {f`}4`=2 for the other pixels in Vi,j .
Putting f` back into (15) and using the notation ϕα([w1, w2, · · · ]T ) := [ϕα(w1), ϕα(w2), · · · ]T , we

obtain a compact formula for F(u):

F(u) =
4∑

`=1

ϕα(G`u− b`)T 1−
∑

(i,j)/∈N

∑

(m,n)∈Vi,j\N
ϕα(0)

= ϕα(Gu− b)T 1−
∑

(i,j)/∈N

∑

(m,n)∈Vi,j\N
ϕα(0),

where 1 is the vector of all ones, G = [GT
1 , GT

2 , GT
3 , GT

4 ]T and b = [bT
1 ,bT

2 ,bT
3 ,bT

4 ]T . Therefore

∇F(u) = GT ϕ′α(Gu− b), (17)

and
∇2F(u) = GT diag(ϕ′′α(Gu− b))G.

Note that the above formula for ∇2F(u) and (12) imply the following interesting identity:

W = ∇2F(u)
∣∣
ϕ′′α≡1

= GT G. (18)

With all these preparations, we are now ready to establish the first order Lipschitz continuity and
the strong convexity of F .
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Proposition 5 Let ϕα be convex and first order Lipschitz continuous with Lipschitz constant ρ2,
i.e.,

|ϕ′α(t1)− ϕ′α(t2)| ≤ ρ2|t1 − t2|, (19)

then
‖∇F(u)−∇F(v)‖2 ≤ 16ρ2(∇F(u)−∇F(v))T (u− v). (20)

Proof: The representation of ∇F in (17) implies

‖∇F(u)−∇F(v)‖2 = ‖GT ϕ′α(Gu− b)−GT ϕ′α(Gv − b)‖2 = ΦT GGT Φ,

where we have defined Φ = ϕ′α(Gu−b)−ϕ′α(Gv−b). Note that by (18), λmax(GGT ) = λmax(GT G) =
λmax(W ) ≤ 16. Combining the convexity condition (ϕ′α(t1)−ϕ′α(t2))(t1−t2) ≥ 0 with (19), we obtain
the inequality

(ϕ′α(t1)− ϕ′α(t2))2 ≤ ρ2(ϕ′α(t1)− ϕ′α(t2))(t1 − t2)

which implies

‖∇F(u)−∇F(v)‖2 ≤ 16ΦT Φ ≤ 16ρ2ΦT G(u− v) = 16ρ2(GT Φ)T (u− v)
= 16ρ2(∇F(u)−∇F(v))T (u− v).

Since F is convex, (20) also follows if F has continuous second order derivatives which are bounded
in a convex set containing u and v (see for example, Proposition 3.4 in [15]). Proposition 5 shows
how our special F allows us to obtain the same result by the weaker condition (19). By the Cauchy-
Schwartz inequality, we have the following corollary.

Corollary 1 If ϕα is convex and first order Lipschitz continuous with Lipschitz constant ρ2, i.e.
(19) holds, then F is also first order Lipschitz continuous with Lipschitz constant 16ρ2, i.e.,

‖∇F(u)−∇F(v)‖ ≤ 16ρ2‖u− v‖.
Proposition 6 If ϕα is strongly convex, i.e., there exists a positive constant c > 0 such that

(ϕ′α(t1)− ϕ′α(t2))(t1 − t2) ≥ c(t1 − t2)2,

then the functional F is also strongly convex, i.e., there exists a positive constant c1 > 0 such that

(∇F(u)−∇F(v))T (u− v) ≥ c1‖u− v‖2.
Proof: By using (17) and the strong convexity of ϕα, we get

(∇F(u)−∇F(v))T (u− v) = [ϕ′α(Gu− b)− ϕ′α(Gv − b)]T G(u− v)
= [ϕ′α(Gu− b)− ϕ′α(Gv − b)]T [(Gu− b)− (Gv − b)]
≥ c(u− v)T GT G(u− v).

Using (18) and (14), we then have

(∇F(u)−∇F(v))T (u− v) ≥ c(u− v)T W (u− v) ≥ cλmin(W )‖u− v‖2,
where cλmin(W ) > 0.

In Table 1, we give the properties of F that are inherited from the potential functions ϕα given
in (3)–(7). Strong convexity of F may not hold for many potential functions in the whole domain
R|N |, but it may hold if we restrict the domain onto a bounded set. In fact, many optimization
methods work in a level set and the level set of our F is bounded due to the coercivity. Therefore,
it is meaningful to test the strong convexity of F on bounded sets.
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Table 1: Properties of F .

Convexity Lipschitz Strong Uniformly Positive

and Continuity Convexity in Bounded Definite

Coercivity First Second Bounded Sets Hessian Hessian√
α + t2 X X X X X X
|t|α X – – X – –

log(cosh(αt)) X X X X X X
|t|/α− log(1 + |t|/α) X X X X X X{
t2/(2α), if |t| ≤ α,
|t| − α/2, if |t| > α,

X X – – – –

4 Minimization of the New Functional

The results established in the previous section are useful in proving the convergence of optimization
methods applied to F . In this section, we show, in particular, that a conjugate gradient (CG) type
method [6, 28] and a low-complexity quasi-Newton method [3, 15] are globally convergent.

4.1 A Conjugate Gradient Type Method

The minimization of F in [6] was done by an efficient CG method [28] where the line search rule is
replaced by a predetermined step length formula. We briefly describe the method here.

Algorithm 2 Conjugate gradient (CG) method without line search to minimize f(x).

1. Choose an initial guess x0 and set d0 = −g0 where g0 = ∇f(x0).

2. For k = 0, 1, 2, · · ·
(a) dk = −gk + γkdk−1, where gk = ∇f(xk),

(b) xk+1 = xk + αkdk, where αk = −δgT
k dk/dT

k Qkdk, Qk is any symmetric positive
definite matrix and δ is some fixed positive parameter depending on Qk.

Some well-known formulae for γk are:

γFR
k =

‖gk‖2
‖gk−1‖2 (Fletcher-Reeves), (21)

γPR
k =

gT
k (gk − gk−1)
‖gk−1‖2 (Polak-Ribière), (22)

γHS
k =

gT
k (gk − gk−1)

dT
k−1(gk − gk−1)

(Hestenes-Stiefel), (23)

γCD
k =

‖gk‖2
−dT

k−1gk−1
(The Conjugate Descent Method), (24)

γDY
k =

‖gk‖2
dT

k−1(gk − gk−1)
(Dai-Yuan), (25)

see [28] for references therein.
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In [6], we proved the convergence of this CG method for minimizing F under the assumption that
ϕ′′α > 0. Using the results in Section 3, we show that the assumption can be relaxed, and hence the
method can be applied to more ϕα. We start with the convergence theorem stated in [28] for general
functions f(x).

Theorem 1 Let {xk} be the sequence generated by Algorithm 2. If there exists a neighborhood Ω of
the bounded level set Υ = {x|f(x) ≤ f(x0)} such that ∇f is Lipschitz continuous on Ω, then for the
choice of γk in (24) and (22), lim infk→∞ ‖∇f(xk)‖ → 0. If f is strongly convex in Ω, then the same
conclusion holds for (21), (23), and (25).

Applying the theorem to our F , we have the following global convergence result.

Theorem 2 Let ϕα be even, convex, continuously differentiable and strictly increasing in |t|. Let
{uk} be the sequence generated by applying Algorithm 2 to F .

1. If ϕα is first order Lipschitz continuous, then there exists a subsequence of {uk} converging to
a global minimizer u∗ of F for the choice of γk in (24) and (22).

2. If ϕα is strongly convex in every bounded set, then there exists a subsequence of {uk} converging
to a global minimizer u∗ of F for the choice of γk in (21), (23) and (25).

Moreover, the entries of u∗ are all in the range [smin, smax].

Proof: By Proposition 2, the global minimum exists. It is easy to verify that ϕα is coercive. Hence,
by Proposition 1, F is is differentiable, convex and coercive. Therefore, any stationary point of F is
a global minimizer of F , see [25, Theorem 2.5]. Moreover, the level set Υ = {u|F(u) ≤ F(u0)} is a
bounded set.

We construct the neighborhood Ω of Υ required in Theorem 1 as follows. Let (u0)i,j be an
arbitrary component of u0, and

z = max
{
|(u0)i,j |, max

(m,n)∈Vi,j

|(u0)(m,n)|
}

.

Then we define a new vector w by replacing the entry (u0)i,j by wi,j = 1 + 3z. Then, for any
neighbors v of (u0)i,j , we have

|(u0)i,j − v| < 1 + (|v| − v) + |(u0)i,j |+ |v|
= 1 + |(u0)i,j |+ 2|v| − v ≤ 1 + 3z − v = |wi,j − v|,

and consequently, F(u0) < F(w). Therefore, Υ ⊆ Ω := {u | F(u) < F(w)}. By the continuity of
ϕα, Ω is an open set, hence is a neighborhood of Υ. Moreover, Ω is bounded because of the coercivity.

If ϕα is first order Lipschitz continuous, then ∇F is Lipschitz continuous by Corollary 1. If
ϕα is strongly convex in every bounded set, then F is strongly convex in the bounded set Ω by
Proposition 6. Therefore, in both cases, lim infk→∞ ‖∇F(uk)‖ = 0 by Theorem 1, which means that
a subsequence of {uk} converges to a stationary point u∗ of F , which is a global minimizer of F .
Moreover because of the maximum principle in Proposition 2, the entries of u∗ are all in the range
of [smin, smax].

By Theorem 2, Algorithm 2 applied to F with (3), (5), (6) and (7) is globally convergent with
γk given by (24) and (22); and when applied to F with (3), (4), (5) and (6), it is global convergent
with γk given by (21), (23) and (25). In comparison, in [6], we can only get the convergence results
for (3), (5) and (6) under the stronger assumption ϕ′′α > 0.
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4.2 A Low-complexity Quasi-Newton Method

BFGS is one of the most efficient quasi-Newton methods [13, 25] for minimization. However, it is
not practical for large scale problems because O(n2) operations and memories are required for each
iteration, where n is the number of unknowns. In comparison, Algorithm 2 requires O(n) operations
per iteration. In [3, 15], a low complexity method, called LQN method, was proposed by projecting
the BFGS Hessian onto a matrix algebra LU which contains matrices that can be diagonalized by a
given unitary matrix U . The non-secant version of LQN is given below.

Algorithm 3 NSLQN: Non-Secant version of LQN method for minimizing f(x):

1. Set x0 and an initial H0 which has to be positive definite (f.i. H0 = I).

2. For k = 0, 1, 2, . . ., do while ∇f(xk) 6= 0:

(a) Compute the eigenvalues of the matrix P(Hk), ‖P(Hk) − Hk‖F ≤ ‖X − Hk‖F,
for all X ∈ LU, which is the orthogonal projection in Frobenius norm of Hk

onto LU.

(b) dk = −P(Hk)−1∇f(xk).

(c) xk+1 = xk + λkdk, where λk is a step length defined by the Armijo-Goldstein
line search [13].

(d) sk = xk+1 − xk, yk = ∇f(xk+1)−∇f(xk), and

Hk+1 = P(Hk) +
ykyT

k

yT
k sk

− P(Hk)sksT
kP(Hk)

sT
kP(Hk)sk

.

We remark that if zk is the vector of the eigenvalues of P(Hk), i.e. P(Hk) = Ud(zk)U∗, where
d(v) := diag(v1, . . . , vn), then zk satisfies the identity

zk = zk−1 +
1

yT
k−1sk−1

|U∗yk−1|2 − 1
zT

k−1|U∗sk−1|2
d(zk−1)2|U∗sk−1|2

where |v| := (|v1|, . . . , |vn|). So, we need not compute the eigenvalues of P(Hk) from scratch. In
fact, they can be obtained via the above identity from the eigenvalues of P(Hk−1) with a number
of operations proportional to the cost of matrix-vector products involving the matrix U . It is then
clear that the computational complexity of the method depends on the choice of U . Some common
choices are the Fourier, Hartley, cosine, and sine transform matrices [3, 15, 16], and Steps 2 (a) and
(b) will then require O(n log n) operations.

The convergence of the algorithm has been established in [15]:

Theorem 3 Let {xk} be the sequence generated by Algorithm 3. If the level set Υ = {x|f(x) ≤
f(x0)} is bounded and

‖yk‖2
yT

k sk
≤ c, k = 0, 1, 2, . . . (26)

for some c, then lim infk→∞ ‖∇f(xk)‖ = 0.

Using results in Section 3 and Theorem 3, we can easily prove the global convergence of Algorithm
3 when f is equal to the functional F in (9).
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Theorem 4 Let {uk} be the sequence generated by Algorithm 3 applied to F . If the potential func-
tion ϕα(t) is even, convex, first order Lipschitz continuous and strictly increasing w.r.t. |t|, then a
subsequence of {uk} converges to a global minimizer u∗ of F . Moreover, the entries of u∗ are all in
the range of [smin, smax].

Proof: As we have been seen in the proof of Theorem 2, the level set Υ = {u|F(u) ≤ F(u0)} is
bounded and any stationary point of F is a global minimizer of F . By Proposition 5, (26) is verified.
Therefore, lim infk→∞ ‖∇F(uk)‖ = 0, and a subsequence of {uk} converges to a stationary point u∗

of F . By Proposition 2, the entries of u∗ are all in [smin, smax].
We remark that the potential functions (3), (5), (6) and (7) satisfy the conditions of Theorem 4,

whereas (4) does not. Also the convergence results here are valid for all matrix algebra LU . Clearly
how fast the method converges depends on how well P(Hk) approximates the Hessian ∇2F(uk), and
this in turns depends on the choice of U again.

5 Numerical Experiments

In this section, we test the three algorithms (Algorithms 1–3) discussed in the paper. Note that
Algorithm 1, the relaxation method, is applied to the old functional G in (2), whereas the CG and
NSLQN methods are applied to the new functional F in (9). As pointed out in [8], Algorithm 1 is
robust with respect to the regularization parameter β. Hence we fix β = 10 for Algorithm 1. In
Algorithm 2, we define γk according to (22), and Qk is chosen to be the identity matrix I. For
Algorithm 3, we use the simplest matrix algebra—the algebra of all diagonal matrices, i.e. U = I.
Hence P(H) = diag(H) for all H, i.e. we approximate the Hessian by the diagonal part of Hk. The
algorithm thus requires O(n) operations per iteration.

We remark that both Algorithms 2 and 3 are globally convergent according to Theorems 2 and
4, so we use the output of AMF method (the noise detector in phase 1) as our initial guess for phase
2. In contrast, Algorithm 1 is only local convergent. Therefore we use the initial guess derived in [7]
to guarantee convergence.

We test the following two potential functions in our experiments: ϕα(t) =
√

t2 + α with α = 100
[6], and the Huber function

ϕα(t) =
{

t2/(2α), if |t| ≤ α,
|t| − α/2, if |t| > α,

with α = 10. The stopping criteria of the minimization are

‖uk − uk−1‖
‖uk‖ ≤ 10−4 and

|F(uk)−F(uk−1)|
F(uk)

≤ 10−4.

We assess the restoration performance by using the peak signal to noise ratio (PSNR) defined as

PSNR = 10 log10

2552

1
MN

∑
i, j(u

∗
i, j − xi, j)2

,

where u∗i, j and xi, j are the pixel values of the restored image and of the original image, respectively
(see [5]). In order to test the speed of the algorithms more fairly, the experiments are repeated for
10 different noise samples of each image and the average of the 10 results is given in the tables.

Tables 2–3 show the time required by the algorithms for restoring 512-by-512 images contaminated
by salt-and-pepper noise with different noise levels. We can see from the tables that CG or NSLQN
methods are faster than the relaxation method especially when the noise level is high; the relaxation
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method has a comparable performance only when the noise level is low, a fact proven in Lemma 1.
Moreover the restored results are basically the same either we minimize G or F . Figure 3 shows the
restoration results obtained by applying Algorithms 1–3 to the Lena image corrupted with 70% and
90% salt-and-pepper noise, and Figure 4 shows the results for four other images corrupted with 70%
salt-and-pepper noise. The corresponding PSNR values are listed there.

Table 2: Performance of salt-and-pepper denoising algorithms with potential function
√

t2 + α.

Noise Relaxation CG NSLQNImage
Level Time PSNR Time PSNR Time PSNR
30% 30.7 36.4 48.6 36.5 42.7 36.6
50% 61.4 32.9 56.0 33.0 62.1 33.0
70% 127 29.7 80.2 29.8 89.0 29.8Lena
90% 452 25.4 139 25.4 142 25.4

Bridge 246 24.9 86.1 24.9 90.6 24.9
Goldhill 123 29.8 55.8 29.8 59.6 29.8
Barbara 127 24.6 72.8 24.7 75.7 24.7
Boat

70%

116 27.9 73.9 28.0 79.5 28.0

Table 3: Performance of salt-and-pepper denoising algorithms with Huber’s potential function.

Noise Relaxation CG NSLQNImage
Level Time PSNR Time PSNR Time PSNR
30% 40.7 35.7 33.4 36.2 34.7 36.1
50% 68.0 32.4 54.7 32.7 57.2 32.7
70% 135 29.3 81.5 29.5 88.9 29.5Lena
90% 364 25.1 141 25.2 155 25.2

Bridge 207 24.8 111 24.8 113 24.8
Goldhill 132 29.7 58.4 29.8 69.7 29.8
Barbara 118 24.5 79.7 24.6 86.3 24.6
Boat

70%

119 27.8 86.8 27.9 90.9 27.9

6 Conclusions

In this paper, we have studied the analytical properties of the functional F given in (9), and we
have used them to show the convergence of conjugate gradient-type and non-secant LQN methods
when minimizing F . The minimization of F is required by 2-phase impulse denoising algorithms,
and has been implemented, until now, via a 1D relaxation method. Here, we have proved both
theoretically and by experiments that such method becomes slow when the noise level is high. The
numerical experiments in Section 5 show that, in this case, the above CG and NSLQN methods are
good alternatives to the relaxation method.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Restoration of the image Lena via Algorithms 1, 2 and 3, where ϕα(t) =
√

t2 + 100. From
left to right: the noisy image and the restorations obtained by minimizing G with the relaxation
method (Algorithm 1), minimizing F with the conjugant gradient method (Algorithms 2), and mini-
mizing F with the quasi-Newton method (Algorithm 3) respectively. On the first row, the noise ratio
is 70%, and the PSNRs are 6.7dB, 29.7dB, 29.8dB and 29.8dB. On the second row, the noise ratio is
90%, and the PSNRs are 5.6dB, 25.4dB, 25.4dB and 25.4dB.

References

[1] J. Astola and P. Kuosmanen, Fundamentals of Nonlinear Digital Filtering. Boca Raton, CRC,
1997.

[2] M. Black and A. Rangarajan, “On the unification of line processes, outlier rejection, and robust
statistics with applications to early vision,” International Journal of Computer Vision, 19 (1996),
pp. 57–91.

[3] A. Bortoletti, C. Di Fiore, S. Fanelli, and P. Zellini, “A new class of quasi-Newtonian methods
for optimal learning in MLP-networks,” IEEE Transactions on Neural Networks, 14 (2003), pp.
263–273.

[4] C. Bouman and K. Sauer, “On discontinuity-adaptive smoothness priors in computer vision,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 17 (1995), pp. 576–586.

[5] A. Bovik, Handbook of Image and Video Processing, Academic Press, 2000.

[6] J. F. Cai, R. H. Chan, and B. Morini, “Minimization of an edge-preserving regularization func-
tional by conjugate gradient type methods”, Image Processing Based on Partial Differential

17



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Restoration of the images (from left to right) bridge, goldhill, barbara and boat obtained
by minimizing F with quasi-Newton method (Algorithm 3) and potential function

√
t2 + 100. On

the top row there are the noisy images corrupted by 70% salt-and-pepper noise, and on the bottom
row there are the corresponding restorations. The PSNRs of the restored images are 24.9dB, 29.8dB,
24.7dB and 28.0dB respectively.

Equations: Proceedings of the International Conference on PDE-Based Image Processing and
Related Inverse Problems, CMA, Oslo, August 8–12, 2005, Springer Berlin Heidelberg, 2007,
pp. 109–122.

[7] R. H. Chan, C.-W. Ho, and M. Nikolova, “Convergence of Newton’s method for a minimization
problem in impulse noise removal”, Journal of Computational Mathematics, 22 (2004), pp. 168–
177.

[8] R. H. Chan, C. W. Ho, and M. Nikolova, “Salt-and-pepper noise removal by median-type
noise detector and edge-preserving regularization,” IEEE Transactions on Image Processing,
14 (2005), pp. 1479–1485.

[9] R. H. Chan, C. W. Ho, C. Y. Leung, and M. Nikolova, “Minimization of detail-preserving regu-
larization functional by Newton’s method with continuation,” Proceedings of IEEE International
Conference on Image Processing, Genova, Italy, 2005, pp. 125–128.

[10] R. H. Chan, C. Hu, and M. Nikolova, “An iterative procedure for removing random-valued
impulse noise,” IEEE Signal Proc. Letters, 11 (2004), pp. 921–924.
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