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Abstract. In infrared astronomy, an observed image from a chop and nod process can be
considered as the result of passing the original image through a highpass filter. Here we propose a
restoration algorithm which builds up a tight framelet system that has the highpass filter as one of the
framelet filters. Our approach reduces the solution of restoration problem to that of recovering the
missing coefficients of the original image in the tight framelet decomposition. The framelet approach
provides a natural setting to apply various sophisticated framelet denoising schemes to remove the
noise without reducing the intensity of major stars in the image. A proof of the convergence of
the algorithm based on convex analysis is also provided. Simulated and real images are tested to
illustrate the efficiency of our method over the projected Landweber method.
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1. Introduction. We start with a very brief introduction to the formation of
chopped and nodded images and refer the readers to the papers by Bertero et al. in
[2]–[5] for details. In ground-based astronomy at mid-infrared wavelengths (λ ≈ 5–
20µm), the weak astronomical signal f is corrupted by the overwhelming thermal
background produced by the atmosphere and the telescope. The observed signal s
from the direction (x, y) at time t on the detector plane is the superposition of the
weak signal f(x, y) together with a large time-varying background η(x, y, t) coming
from the atmosphere and telescope optics, i.e.,

s = f(x, y) + η(x, y, t).

To extract the celestial source f , we need to eliminate the effect of the background
η(x, y, t). A common approach called chop-and-nod is employed. Chopping refers to
the rapid modulation of the telescope beam between the target and an empty sky
area. Nodding refers to a second chopping sequence done with the telescope pointing
to an offset position. In essence, if the target position is (x, y) and the two sky areas
are (x, y + ∆) and (x, y−∆), the chopping and nodding techniques produce a second
difference of the observed signal s

−f(x, y −∆) + 2f(x, y)− f(x, y + ∆) + e, (1.1)
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where the quantity ∆ is called the chopping throw or chopping amplitude and e :=
−η(x, y − ∆, t′) + 2η(x, y, t) − η(x, y + ∆, t′′) with the time t′ and t′′ being close to
t. Under suitable assumptions [2], the term e can be modeled by a white Gaussian
process. One gets the so-called chopped and nodded image:

g(x, y) := −f(x, y −∆) + 2f(x, y)− f(x, y + ∆) + e. (1.2)

The effect of noise e to the accuracy of the restoration is discussed in Section 5. To
restore f , we need to solve the inversion problem (1.2) from g.

In this paper, we only consider the case when the chopping amplitude ∆ is an
integral multiple of the sampling distance in the detector plane, i.e. ∆ = K is an
integer. We remark that this assumption can be restrictive in some situations, see
[3, 5, 21]. We can write (1.2) in the following discrete form:

gj,m = −fj,m−K + 2fj,m − fj,m+K + ej,m (1.3)

where gj,m and fj,m are the samples of g(x, y) and f(x, y) respectively, and ej,m is
the samples of e at (j, m). For each j, let gj be the vector whose mth entry is given
by gj,m, m = 1, 2, . . . , N respectively; and fj be the vector with the nth entry given
by fj,n−K , n = 1, 2, . . . , N + 2K. Then (1.3) can be written in a matrix form:

gj = Afj + ej (1.4)

where the (m,n)th entry of A is given by A(m,n) = −δm,n + 2δm+K,n − δm+2K,n

with m = 1, 2, . . . , N ; n = 1, 2, . . . , N + 2K and δm,n = 0 if m 6= n and δn,n = 1. The
matrix A is called the imaging matrix.

Formulation (1.4) is similar to deconvolution problems except here that A is a
highpass filter instead of being a lowpass filter. One standard approach for deconvo-
lution problems is to find fj such that Afj ≈ gj (data-fitting) while requiring fj to
be smooth in certain sense (regularization). In [4], the projected Landweber method is
used to find the solution of (1.4). It is defined as follows:

f (n+1)
j = P+

[
f (n)
j + %AT (gj −Af (n)

j )
]
, n = 0, 1, . . . (1.5)

where P+ is the projection operator onto the set of non-negative vectors (since bright-
ness distribution of a celestial source must be non-negative) and % is a relaxation
parameter which satisfies 0 < % < 2/λ1 with λ1 being the largest eigenvalue of AT A.
For a detail discussion of the method, see [1, Chapter 6].

It was pointed out in [1, 4] that the projected Landweber method has a regular-
ization property, known as semiconvergence: the iterates f (n)

j first approach the true
image, but the noise will be amplified when n is larger than a certain threshold. Thus
a stopping criterion, called the discrepancy principle, is introduced in order to obtain
the best approximation of the required solution. However, due to the special structure
of the matrix A, the restored images always have some kinds of artifacts (see Figure
5.4 (b)).

In this paper, we introduce a tight frame method for solving (1.4). There are
many papers on using wavelet methods to solve inverse problems, and in particular,
deconvolution problems. One of the main ideas is to construct a wavelet or “wavelet
inspired” basis that can almost diagonalize the given operator. The underlying solu-
tion has a sparse expansion with respect to the chosen basis. The Wavelet-Vaguelette
decomposition proposed in [20, 22] and the deconvolution in mirror wavelet bases in

2



[28, 29] can both be viewed as examples of this strategy. Another approach is to apply
Galerkin-type methods to inverse problems using an appropriate, but fixed wavelet
basis (see e.g. [6, 13]). Again, the idea there is that if the given operator has a sparse
representation and the solution has a sparse expansion with respect to the wavelet
basis, then the inversion is reduced approximately to the inversion of a truncated
operator.

Recently, two new iterative thresholding ideas have been proposed in [10, 11, 12]
and [17, 24]. Instead of requiring the system to have an almost diagonal representation
of the operator, they only require that the underlying solution has a sparse expansion
with respect to a given orthonormal but not necessary wavelet basis or to a tight
frame system. The main idea of [17] is to expand the current iterate with respect to
the chosen orthonormal basis for a given algorithm such as the Landweber method.
Then a thresholding algorithm is applied to the coefficients of this expansion. The
results are then combined to form the next iterate. The algorithm of [17] is shown to
converge to the minimizer of certain cost functional. An essentially same algorithm
for inverting convolution operator acting on objects that are sparse in the wavelet
domain is given in [24].

The tight frame algorithm that we are going to propose for (1.4) is closer to
the approach in [10, 11, 12], where high-resolution image reconstruction or, more
generally, deconvolution problem with the convolution kernel being a lowpass filter are
considered. An analysis of the convergence and optimal property of these algorithms
are given in [10]. In fact, our algorithm in this paper is motivated by the ideas in
[10, 11, 12] to convert the deconvolution problem g = Af into an inpainting problem
in the transformed domain. To make use of the given data g for inpainting, one needs
to construct a tight frame system where the given convolution operator A corresponds
to one of the framelet masks of the system, say h. Then the convolution equation
g = Af can be viewed as giving us the framelet coefficients of f corresponding to the
given mask h. Hence the problem is to find the framelet coefficients of f corresponding
to the framelet masks other than h. In short, by choosing one of the framelet masks of
the system corresponding to A, the deconvolution problem is converted to the problem
of inpainting in the framelet domain—finding the missing framelet coefficients. This
is to be compared with inpainting in the image domain where we are given part of the
image and finding the missing part of the image. Here we iteratively regenerate the
missing framelet coefficients. The noise are removed by thresholding at each iteration.
We will see that this iterative algorithm converges and its limit satisfies certain optimal
properties. To make all these work, we need to build up a tight framelet system from
the A given in (1.4). This can be done by using the unitary extension principle of
[34]. We remark here that for our A, it is impossible to construct an orthonormal (or
non-redundant) wavelet system with A corresponds to one of the masks.

We note that since tight frames are redundant systems, so information lost along
one framelet direction can still be contained in, and hence, recovered from other
framelet directions. In fact, the redundancy not only helps in recovering the missing
framelet coefficients, it also helps in reducing artifacts introduced by the thresholding
denoising scheme built in the algorithm as pointed out in [14]. We further remark
that unlike the approaches in [6, 13, 20, 22, 28, 29], our approach does not attempt
to find a tight frame system under which the convolution operator can be sparsely
represented. Instead, similar to the approaches in [10, 11, 12, 17, 24], we only require
the underlying solution f to have a sparse representation under the tight frame system
we constructed. It is shown in [7, 8] that piecewise smooth functions with a few
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spikes do have sparse representations by compactly supported tight frame systems.
Hence, implicitly, we assume that f is piecewise smooth with possibly some spikes.
Furthermore, the fact that the limit minimizes a functional of `1 norm of framelet
coefficients is desirable in image restoration as have already been observed by many
researchers (see e.g. [10]).

Before getting into the technical details of our approach, we summarize the main
ideas in the followings:

1. Designing a tight framelet system: In view of (1.3), we consider the
chopped and nodded image g in (1.2) as the output obtained by passing the
true image f through the highpass filter:

(−1, 0, . . . , 0︸ ︷︷ ︸
K−1

, 2, 0, . . . , 0︸ ︷︷ ︸
K−1

,−1). (1.6)

We first design a tight framelet system from a multiresolution analysis that
has this chop-and-nod highpass filter (1.6) as one of the framelet masks. Then
g can be understood as framelet coefficients of f corresponding to the framelet
with (1.6) as the framelet mask. The restoration of f becomes the problem
of recovering the coefficients of other framelets and the coefficients of the
coarse level approximations (low frequency information) in the tight frame
representation of f .

2. Restoring the missing information in f : The missing coefficients of f
are found by an iterative procedure. The previous iterate is first decomposed
by a tight framelet decomposition. Then the missing coefficients of f are
approximated by the corresponding coefficients in the previous iterate and
combined with g in the tight framelet reconstruction algorithm to obtain a
new iterate. The tight framelet decomposition and reconstruction algorithms
are based on those given by [18]. We will see that the projected Landweber
method (1.5) with % = 1/16 is a simple version of our tight frame algorithm,
where no noise removal thresholding is done on any framelet coefficients. This
observation not only gives a new interpretation of the Landweber method, but
it also gives a platform to understand the method in terms of framelet theory
and multiresolution analysis.

3. Denoising by thresholding: In our tight frame algorithm, the denoising
is done by damping the framelet coefficients using a tight framelet denoising
scheme. The scheme can denoise part of the components in each iterate, and
leave other components intact. It is because our tight frame approach can
identify the precise components that needs to be denoised. In contrast, the
denoising scheme in [17, 24] is applied to every component of the iterate. As
it is shown in the numerical simulation, this step also helps to remove some
of the artifacts.

Since we have to restrict the solution onto the set of non-negative vectors due to
the physical meaning of f , the analysis in [10], which is based on framelet analysis,
cannot be applied here. In this paper, we give an entirely different approach from [10]
to prove the convergence of our framelet algorithm. The analysis uses the framework
of proximal forward-backward splitting proposed in [15] constructed under the theory
of convex analysis and optimization. It will be shown in our numerical tests that the
timing of our tight frame algorithm is higher than those of Landweber type methods
(see, e.g., [3, 5]) but is quite manageable. Our method can be used as a good post-
processing method to clean up these kinds of chopped and nodded infrared images.
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The outline of the paper is as follows. In Section 2, we give a brief review on
tight frames and design filters used in this paper. In Section 3, we give our iterative
algorithm. In Section 4, we prove the convergence of the algorithm. Results on
simulated and real images are presented in Section 5.

2. Tight Framelet Analysis. The chopped and nodded image g in (1.2) and
(1.3) can be viewed as the result of passing the original image f through a highpass
filter given in (1.6). Since we only have the highpass filter available to us, it only
can be a framelet mask. We therefore have to design a framelet system and its
associated multiresolution analysis with this given highpass filter. Here, we note that
the associated multiresolution analysis is important in order to have a fast algorithm
for the framelet transform, and the framelet transform is a necessity for any framelet
based algorithm. To this end, we will make use of the unitary extension principle
for tight frame constructions given in [34]. We also remark that there are no papers
that we are aware of on building a wavelet or framelet system and its associated
multiresolution analysis when one of the given wavelet or framelet masks is a highpass
filter.

We start with the basics of tight frames in Section 2.1 and their constructions
in Section 2.2. As can be seen in (1.4), the recovering of the chopped and nodded
images can be reduced to the restoration of one-dimensional signals (along every
fixed j in (1.4)). We therefore consider the univariate setting only. However, it is
straightforward to extend the analysis given here to the multivariate case.

2.1. Preliminaries on Tight Framelets. A system X ⊂ L2(R) is called a
tight frame of L2(R) if

f =
∑

h∈X

〈f, h〉h, ∀f ∈ L2(R). (2.1)

This is equivalent to

‖f‖22 =
∑

h∈X

|〈f, h〉|2, ∀f ∈ L2(R), (2.2)

where 〈·, ·〉 and ‖ · ‖2 = 〈·, ·〉1/2 are the inner product and norm of L2(R). It is clear
that an orthonormal basis is a tight frame, and a tight frame is a generalization of
orthonormal basis. A tight frame preserves the identities (2.1) and (2.2) which hold
for an arbitrary orthonormal basis of L2(R). But it sacrifices the orthonormality
and the linear independence of the system in order to get more flexibility. Therefore
tight frames can be redundant. This redundancy is often useful in image processing
applications such as denoising, see [16].

If X(Ψ) is the collection of the dilations and the shifts of a finite set Ψ ⊂ L2(R),
i.e.,

X(Ψ) = {2k/2ψ(2kx− j) : ψ ∈ Ψ, k, j ∈ Z},
then X(Ψ) is called a wavelet (or affine) system. In this case the elements in Ψ are
called the generators. When X(Ψ) is a tight frame for L2(R), then ψ ∈ Ψ are called
(tight) framelets.

A normal framelet construction starts with a refinable function. A compactly
supported function φ ∈ L2(R) is refinable (a scaling function) with a refinement mask
τφ if it satisfies

φ̂(2·) = τφφ̂.
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Here φ̂ is the Fourier transform of φ, and τφ is a trigonometric polynomial with
τφ(0) = 1, i.e., a refinement mask of a refinable function must be a lowpass filter.
One can define a multiresolution analysis from a given refinable function, we omit the
detailed discussion here and refer the readers to [19, 26].

For a given compactly supported refinable function, the construction of tight
framelet systems is to find a finite set Ψ that can be represented in the Fourier
domain as

ψ̂(2·) = τψφ̂

for some 2π-periodic τψ. The unitary extension principle of [34] says that the wavelet
system X(Ψ) generated by a finite set Ψ forms a tight frame in L2(R) provided that
the masks τφ and {τψ}ψ∈Ψ satisfy:

τφ(ω)τφ(ω + γπ) +
∑

ψ∈Ψ

τψ(ω)τψ(ω + γπ) = δγ,0, γ = 0, 1 (2.3)

for almost all ω in R. Practically, we require all masks to be trigonometric polyno-
mials. Thus, (2.3) together with the fact that τφ(0) = 1 imply that τψ(0) = 0 for all
ψ ∈ Ψ. Hence, {τψ}ψ∈Ψ must correspond to highpass filters. The sequences of Fourier
coefficients of τψ, as well as τψ itself, are called framelet masks. The construction of
framelets Ψ essentially is to design, for a given refinement mask τφ, framelet masks
{τψ}ψ∈Ψ such that (2.3) holds.

The unitary extension principle of [34] gives the flexibility in designing filters and
will be used here. A more general principle of construction tight framelets, the oblique
extension principle, was obtained recently in [18].

2.2. Filter Design. For any positive integer K, we need to design a set of
framelets Ψ such that the chop-and-nod highpass filter given in (1.6) is one of the
framelet masks (up to a constant factor). Note that the trigonometric polynomial
corresponding to this chop-and-nod highpass filter is sin2 (Kω/2). We have the fol-
lowing result:

Proposition 2.1. For an arbitrary odd number K, let τ2(ω) = sin2 (Kω/2) be
the given chop-and-nod highpass filter given in (1.6). Let

τ0(ω) = cos2
(
K

ω

2

)
and τ1(ω) = −√−2 sin

(
K

ω

2

)
cos

(
K

ω

2

)
.

Then, τ0, τ1, and τ2 satisfy (2.3). Furthermore,
1. the function

φ(x) =

{
1
K − |x|

K2 , if x ∈ [−K, K],
0, otherwise,

(2.4)

is the refinable function with the refinement mask τ0, and
2. ψ1 and ψ2, defined by

ψ̂1(2ω) = τ1(ω)φ̂(ω), ψ̂2(2ω) = τ2(ω)φ̂(ω), (2.5)

are tight framelets, i.e. X(Ψ), with Ψ = {ψ1, ψ2}, forms a tight frame of
L2(R).
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Proof. The proof is a straightforward extension of spline framelets given in [34].
For completeness, we give an outline of the proof here. First, the spline theory says
immediately that the refinable function corresponding to the mask τ0 is the piecewise
linear spline with 1/K at origin and 0 at ±K, i.e. φ(x) = 1

K − |x|
K2 for x ∈ [−K, K],

and 0, otherwise. Hence, φ ∈ L2(R) has a support [−K, K]. Secondly, we can check
directly that τ0, τ1, and τ2 satisfy (2.3). Therefore, X(Ψ) is a tight frame for L2(R)
by the unitary extension principle of [34].

The Fourier coefficients of the masks τ0, τ1 and τ2 are:

a =





1
4
, 0, . . . , 0︸ ︷︷ ︸

K−1

,
1
2
, 0, . . . , 0︸ ︷︷ ︸

K−1

,
1
4



 , (2.6)

b1 =



−

√
2

4
, 0, . . . , 0︸ ︷︷ ︸

2K−1

,

√
2

4



 , (2.7)

b2 =



−

1
4
, 0, . . . , 0︸ ︷︷ ︸

K−1

,
1
2
, 0, . . . , 0︸ ︷︷ ︸

K−1

,−1
4



 . (2.8)

Clearly b2 matches the chop-and-nod filter in (1.6). This, together with (2.4) and
(2.5), leads to

ψi = 2
∑

j∈Z
bi(j)φ(2 · −j), i = 1, 2.

Hence, the framelets are precisely the piecewise linear functions supported on [−K,K].
When K is even, the simple construction of the tight frame in Proposition 2.1

does not work. Nevertheless, the filter design for even K can be done similarly. Since
the real astronomical images we have are all obtained using odd K, we omit the
discussion for this case.

2.3. Matrix Form. To implement our algorithm, we need to convert the filters
to operators in matrix forms. For this, we need to consider boundary conditions, i.e.
assumptions of the true image outside the region of interest. For simplicity, we use
symmetric (reflective) extension here, see [32]. For other extensions, the derivation is
similar, see for example [9]. In fact, for our method, the difference between symmetric
and periodic boundary extensions is small.

For a given sequence h = {h(j)}J
j=−J , we let T (h) to be the M -by-M Toeplitz

matrix

T (h) :=




h(0) · · · h(−J) 0
...

. . . . . . h(−J)

h(J)
. . . . . . . . . h(−J)
. . . . . . . . .

...
0 h(J) · · · h(0)




,
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where M > 2J + 1. We also define two matrices:

T`(h) :=




h(1) h(2) · · · h(J − 1) h(J)
h(2) . . . . . . . . .

... . . . . . .

h(J − 1) . . . 0
h(J)

0J×(M−J−1)

0(M−J)×J 0(M−J)×(M−J−1)




,

and

Tr(h) =




0(M−J)×(M−J−1) 0(M−J)×J

0J×(M−J−1)

h(−J)
0 . . . h(−J + 1)

. . . . . .
...

. . . . . . . . . h(−2)
h(−J) h(−J + 1) · · · h(−2) h(−1)




.

They correspond to the symmetric boundary conditions on the left and on the right
respectively. Finally let S+(h) and S−(h) be

S+(h) = T`(h) + T (h) + Tr(h) and S−(h) = −T`(h) + T (h)− Tr(h).

For the masks a, b1 and b2 given in (2.6)–(2.8), their corresponding decomposition
(and respectively reconstruction) matrices are:

H0 = S+(a), H1 = S+(b1), H2 = S+(b2) (2.9)

(and

H̃0 = S+(a), H̃1 = S−(−b1), H̃2 = S+(b2).

respectively) with J = K and M = N + 2K. Clearly H̃i = HT
i = Hi for i = 0 and 2.

Since b1 is antisymmetric, H̃1 = HT
1 6= H1. Using (2.3), it is easy to verify that

H̃0H0 + H̃1H1 + H̃2H2 = I, (2.10)

where I is the identity.

3. Framelet Algorithm. In this section, we first show that Landweber method
with % = 1/16 is a framelet method with no thresholding. Then we introduce a
framelet thresholding scheme. Using that, we derive our main algorithm.

3.1. Landweber Algorithm. Notice that H2 defined by (2.9) and the imaging
matrix A in (1.4) are related by:

H2 =
1
4



∗
A
∗


 , (3.1)

where ∗ here denotes non-zero matrices of size K-by-(N + 2K), cf. (1.6) and (2.8).
Therefore, for any given f (n) we write

H̃2H2f (n) = H̃2ΛH2f (n) +
1
16

AT Af (n) (3.2)
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where

Λ = diag(1, · · · , 1︸ ︷︷ ︸
K

, 0, · · · , 0︸ ︷︷ ︸
N

, 1, · · · , 1︸ ︷︷ ︸
K

).

Replacing Af (n) in (3.2) by g and using (2.10), we obtain an iteration

f (n+1) = P+[H̃0H0f (n) + H̃1H1f (n) + (H̃2ΛH2f (n) +
1
16

AT g)]. (3.3)

The idea of the iteration (3.3) is as follows. We view the recovering of f as the
reconstruction of the finer level approximations of f from a given framelet coefficient
sequence H2f . Note that the major part of the sequence H2f is already given as
g. We need the sequences H0f and H1f , which we do not have. At the (n + 1)th
iteration of the algorithm, we use the corresponding coefficient sequences of f (n) to
approximate the missing ones. The first term in the right hand side of (3.3) represents
the approximation of the low-frequency components of f whereas the second term
improves its high frequency approximation. Finally P+[·] ensures that f (n+1) is a
nonnegative vector.

By (2.10), H̃0H0f (n) + H̃1H1f (n) = f (n)− H̃2H2f (n). Hence by (3.2), (3.3) can be
rewritten as

f (n+1) = P+[f (n) +
1
16

(AT g −AT Af (n))]. (3.4)

Comparing it with (1.5), we see that (3.3), which uses the tight frame approach, is
just a reformulation of the projected Landweber method with % = 1/16.

As a side product of our approach, this new formulation puts the Landweber
method within the multiresolution analysis framework and gives analytical represen-
tations of the chopped and nodded image g and the restored image f in terms of the
tight framelet systems. The analysis tells us that, at each iteration, the Landweber
method tries to improve the low resolution approximation and the missing framelet
coefficients of the true image, and it does so by combining the corresponding parts in
the previous iterate with the given chopped and nodded image.

In the next section, we will see that we denoise each f (n) by damping the framelet
coefficients using a framelet denoising scheme, see (3.10). By comparing (3.3) with
(3.10), we see that the framelet coefficients are not denoised at all in (3.3), which is
equivalent to (3.4). Our new framelet viewpoint allows us to incorporate more sophis-
ticated nonlinear denoising schemes to identify and remove the noise more accurately
than the Landweber method (3.4).

3.2. Framelet Denoising Scheme. Here we introduce the framelet denoising
scheme. We can use any reasonable framelet systems for our noise removal. For
simplicity, we just use the framelet system in Proposition 2.1 by choosing K to be 1.
Its masks are: α = { 1

4 , 1
2 , 1

4}, β1 = {−
√

2
4 , 0,

√
2

4 }, and β2 = {− 1
4 , 1

2 ,− 1
4}. They are

short masks, and hence will give a more efficient algorithm in noise suppression. To
perform a multi-level framelet decomposition without down sampling in noise removal,
we need the mask α at level `

α(`) =





1
4
, 0, · · · , 0︸ ︷︷ ︸

2(`−1)−1

,
1
2
, 0, · · · , 0︸ ︷︷ ︸

2(`−1)−1

,
1
4





.
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The masks β
(`)
1 and β

(`)
2 can be given similarly. Let

G
(`)
0 = S+(α(`)) and G

(`)
i = S+(β(`)

i ), i = 1, 2; ` = 1, 2, . . . . (3.5)

Then the multi-level decomposition matrix to level L for this tight framelet system is

G =




∏L−1
`=0 G

(L−`)
0

G
(L)
1

∏L−1
`=1 G

(L−`)
0

G
(L)
2

∏L−1
`=1 G

(L−`)
0

...
G

(1)
1

G
(1)
2




≡




GL

GH




, (3.6)

and the corresponding reconstruction matrix G̃ = GT . By the tight framelet theory
in [18], we have

G̃G = G̃LGL + G̃HGH = I. (3.7)

For an arbitrary f , the thresholding scheme D is given by the following formula:

D(f) = G̃LGLf + G̃HTuH
(GHf). (3.8)

Here,

TuH
((x1, . . . , xl, . . .)T ) = (tu1(x1), . . . , tul

(xl), . . .)T ,

with

uH = (u1, · · · , ul, · · · )T = (λL, · · · , λL︸ ︷︷ ︸
2(N+2K)

, · · · , λ`, · · · , λ`︸ ︷︷ ︸
2(N+2K)

, · · · , λ1, · · · , λ1︸ ︷︷ ︸
2(N+2K)

)T (3.9)

and tλ(x) being tλ(x) = sgn(x)max(|x| −λ, 0), which is referred to as the soft thresh-
olding. According to [23], the thresholding parameters λ` are chosen to be

λ` = 2−`/2κ
√

2 log(N + 2K)

where κ is the variance of the noise contained in f (n) estimated numerically by the
method given in [23]. Our thresholding denoising scheme in the framelet domain is
similar to that in the orthonormal wavelet domain [23]. As already pointed out by
many authors, see for examples [18, 29, 35], framelets give better denoising results.

3.3. Main Algorithm. By applying the thresholding scheme (3.8) on (3.3), we
have our main algorithm for 1D signals:

Algorithm 1.
(i) Let L be the number of framelet decomposition levels and f (0) be an initial

guess.
(ii) Iterate on n until convergence:

f (n+1) = P+

[
H̃0D(H0f (n)) + H̃1D(H1f (n)) + (H̃2ΛH2f (n) +

1
16

AT g)
]

,

(3.10)
where D is the soft-thresholding operator given in (3.8) and P+ is the pro-
jection operator onto the set P+ of nonnegative vectors defined by

P+ = {f : f ≥ 0 componentwise} .
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Both framelet masks in (2.6)–(2.8) and masks in previous subsection for denoising
have a total of 8 non-zero elements. Therefore the computational cost of the framelet
decomposition and reconstruction in (3.10) needs 16(L + 1)(N + 2K) multiplicative
operations, while the cost of applying D is O((N + 2K) log(N + 2K)). In contrast,
the projected Landweber method requires (5N + 6K) multiplicative operations per
iteration [2].

For 2D astronomical images, we first recall that the chop and nod process is a
1D process. In fact, in (1.4), we can restore the image columnwise for each fixed j.
Thus there is no need to change the restoration part of Algorithm 1 . More precisely,
we can still use the 1D tight framelet system {Hi, H̃i}2i=0 for 2D images. However,
to better capture the noise and artifacts in between the columns, we use a 2D noise
reduction scheme. More precisely, we replace G and G̃ by its 2D versions which can
be obtained easily by using tensor products. For example, for 2D image f expressed
as a matrix, the framelet decomposition of f gives the data: {GfGT } where G are
given in (3.6). The denoising scheme in 2D is

D(f) = G̃LGLfGT
LG̃T

L + G̃LTuLH
(GLfGT

H)G̃T
H

+G̃HTuHL
(GHfGT

L)G̃T
L + G̃HTuHH

(GHfGT
H)G̃T

H .

4. Analysis of Algorithm 1. In this section, we prove the convergence of
Algorithm 1. We also show that its limit satisfies a certain minimization property.
For simplicity, we give the 1D proof here. The proof can be extended to 2D images
easily. Our proof is based on the framework of proximal forward-backward splitting
proposed in [15] constructed under the theory of convex analysis and optimization.
We first show that our algorithm can be written as an alternate direction algorithm
for a minimization problem. Then we show that it converges.

4.1. An Equivalent Formulation. In the following, we partition any vector
x ∈ R(4L+3)(N+2K) into xT =

[
xT

H0
,xT

H1
,xT

H2

]
such that xH0 ,xH1 ∈ R(2L+1)(N+2K)

and xH2 ∈ RN+2K . Notice that by (3.1) we have

1
16

AT g =
1
4

[ ∗ AT ∗ ]



0
g/4
0


 = HT

2




0
g/4
0


 = H̃2




0
g/4
0


 .

Therefore, in matrix form, the iteration (3.10) can be rewritten into

f (n+1) = P+

[
H̃0G̃ H̃1G̃ H̃2

]



Tu(GH0f (n))
Tu(GH1f (n))

ΛH2f (n) +




0
g/4
0







, (4.1)

where

u ≡
[

uL

uH

]
=

[
0

uH

]
(4.2)

with uH given in (3.9) and by (3.8), uL is a zero vector in RN+2K . Denote



Tu(GH0f (n))
Tu(GH1f (n))

ΛH2f (n) +




0
g/4
0






≡ x(n) ≡



x(n)

H0

x(n)
H1

x(n)
H2


 ∈ R(4L+3)(N+2K). (4.3)
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We are going to show that each component here is a solution to a minimization
problem.

First, since the soft-thresholding is equivalent to a minimization procedure (cf.
[15, 33]), i.e.,

tµ(z) = arg min
y
{1
2
(z − y)2 + |µy|}, µ ≥ 0,

we have

Tu(z) = arg min
y
{1
2
‖z− y‖22 + ‖diag(u)y‖1}.

Therefore, {x(n)
Hi
}1i=0 are solutions of the following minimization problems:

x(n)
Hi

≡ Tu(GHif (n)) = arg min
y
{1
2
‖GHif (n) − y‖22 + ‖diag(u)y‖1}, i = 0, 1. (4.4)

Secondly, we can show that for an arbitrary vector x,

arg min
y∈C

{1
2
‖x− y‖22} = Λx +




0
g/4
0


 , (4.5)

where

C =



h ∈ RN+2K : (I − Λ)h =




0
g/4
0






 .

Indeed, for any vector z ∈ C, we have

‖x− z‖22 =
K∑

i=1

(xi − zi)2 +
N+K∑

i=K+1

(xi − zi)2 +
N+2K∑

i=N+K+1

(xi − zi)2

=
K∑

i=1

(xi − zi)2 +
N+K∑

i=K+1

(xi − gi−K/4)2 +
N+2K∑

i=N+K+1

(xi − zi)2

≥
N+K∑

i=K+1

(xi − gi−K/4)2 =

∥∥∥∥∥∥
x−


Λx +




0
g/4
0







∥∥∥∥∥∥

2

2

.

Equation (4.5) shows that x(n)
H2

is the solution of the minimization problem:

x(n)
H2

≡ ΛH2f (n) +




0
g/4
0


 = arg min

y∈C
{1
2
‖H2f (n) − y‖22}. (4.6)

Define the indicator function ιC for the closed convex set C by

ιC(h) =

{
0, h ∈ C,
+∞, h 6∈ C. (4.7)
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Equation (4.6) can be rewritten as

x(n)
H2

= arg min
y
{1
2
‖H2f (n) − y‖22 + ιC(y)}. (4.8)

Denote

B =




GH0

GH1

H2


 . (4.9)

By (4.4) and (4.8), x(n) can be written as the solution of the minimization problem:

x(n) = arg min
x
{1
2
‖Bf (n)−x‖22 + ‖diag(u)xH0‖1 + ‖diag(u)xH1‖1 + ιC(xH2)}. (4.10)

Substituting (4.3) into (4.1), we obtain

f (n+1) = P+

{[
H̃0G̃ H̃1G̃ H̃2

]
x(n)

}
= P+[BT x(n)].

By the definition of P+, f (n+1) is the solution of

f (n+1) = arg min
f
{1
2
‖BT x(n) − f‖22 + ιP+(f)}, (4.11)

where ιP+ is the indicator function of P+ defined similar to (4.7). Combining (4.10)
and (4.11), we can rewrite our iteration (3.10) in Algorithm 1 as
{

x(n) = arg minx{ 1
2‖Bf (n) − x‖22 + ‖diag(u)xH0‖1 + ‖diag(u)xH1‖1 + ιC(xH2)},

f (n+1) = arg minf{ 1
2‖BT x(n) − f‖22 + ιP+(f)}.

(4.12)

4.2. Convergence. To prove the convergence of the iteration (4.12), we recall
the definitions of Moreau’s proximal operator and Moreau’s envelope originally intro-
duced in [30, 31]. For any convex and lower semi-continuous function ξ, the proximal
operator is defined by

proxξ(f) ≡ arg min
h
{1
2
‖f − h‖22 + ξ(h)}. (4.13)

The Moreau’s envelope, which is a convex and differentiable function, is defined by

1ξ(f) ≡ min
h
{1
2
‖f − h‖22 + ξ(h)}. (4.14)

By Lemma 2.5 in [15], the gradient of the envelope 1ξ is given by

∇(1ξ(f)) = f − proxξ(f). (4.15)

Define

ϕ(x) ≡ ‖diag(u)xH0‖1 + ‖diag(u)xH1‖1 + ιC(xH2).

By (4.12) and (4.13), we obtain

f (n+1) = proxιP+
(BT x(n)) = proxιP+

(BT proxϕ(Bf (n))).
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Since by (2.10) and (3.7), BT B = I, we have

f (n+1) = proxιP+
(f (n) −BT Bf (n) + BT proxϕ(Bf (n)))

= proxιP+
(f (n) −BT (Bf (n) − proxϕ(Bf (n)))).

By (4.15) and the chain rule (as ∇ is the gradient with respect to f (n)),

∇(1ϕ(Bf (n))) = BT (Bf (n) − proxϕ(Bf (n)))). (4.16)

Therefore,

f (n+1) = proxιP+
(f (n) −∇(1ϕ(Bf (n)))). (4.17)

Thus we see that (3.10) in Algorithm 1, which is equivalent to (4.12), is equivalent to
(4.17).

Let F1(f) ≡ ιP+(f), and F2(f) ≡ 1ϕ(Bf). Then (4.17) becomes

f (n+1) = proxF1
(f (n) −∇F2(f (n))).

This iteration is the proximal forward-backward splitting in [15] for the minimization
problem

min
f
{F1(f) + F2(f)},

which is equivalent to minf∈P+ F2(f). By (4.14), it is further equivalent to

min
f∈P+

{
min

x∈{x:xH2∈C}
{1
2
‖Bf − x‖22 + ‖diag(u)xH0‖1 + ‖diag(u)xH1‖1}

}
. (4.18)

We now show that the iteration (4.17), which is equivalent to Algorithm 1, converges
to a minimizer of (4.18). For this, we need the following result of [15], which is stated
here in the finite dimensional case.

Proposition 4.1. Consider the minimization problem minf∈R(N+2K){F1(f) +
F2(f)}, where F1 is a convex and lower semi-continuous function, and F2 is a convex
and differentiable function with a 1/ν-Lipschitz continuous gradient. Let 0 < µ < 2ν,
then for any initial guess f (0), the iteration

f (n+1) = proxF1
(f (n) − µ∇F2(f (n)))

converges to a minimizer of F1(f) + F2(f) whenever a minimizer exists.
We first verify that the conditions on F1 and F2 are satisfied.
Lemma 4.2. F1(f) ≡ ιP+(f) is a convex and lower semi-continuous function, and

F2(f) ≡ 1ϕ(Bf) is a convex and differentiable function with a 1-Lipschitz continuous
gradient.

Proof. First, since P+ is a closed and convex set, ιP+(f) is a convex and lower
semi-continuous function. Furthermore, since ϕ is lower semi-continuous and convex,
by Lemma 2.5 in [15] the envelope function 1ϕ(·) is always convex and differentiable;
hence 1ϕ(Bf) is convex and differentiable. Next, we show the 1/ν-Lipshitz continuity
of ∇(1ϕ(Bf (n))). For this, we note that by Lemma 2.4 in [15], the inequality

‖(f − proxξ(f))− (h− proxξ(h))‖2 ≤ ‖f − h‖2
14



holds for any convex and lower semi-continuous ξ. Hence by (4.16),

‖∇(1ϕ(Bf))−∇(1ϕ(Bh))‖2 = ‖BT (Bf − proxϕ(Bf))−BT (Bh− proxϕ(Bh))‖2
≤ ‖BT ‖2‖(Bf − proxϕ(Bf))− (Bh− proxϕ(Bh))‖2
≤ ‖BT ‖2‖B(f − h)‖2 ≤ ‖BT ‖2‖B‖2‖f − h‖2
= ‖f − h‖2.

The last equality comes from the identity BT B = I hence ‖BT ‖2 = ‖B‖2 = 1. Here
the Lipshitz constant 1/ν = 1 and hence ν = 1.

To show the convergence, it remains to prove the existence of a minimizer.
Theorem 4.3. If K and N are relatively prime, then (4.18) has a minimizer.

The proof of this theorem is long, so we put it in the appendix. We remark that the
requirement on K and N can always be achieved by adjusting K or N . Now we state
our convergence theorem.

Theorem 4.4. When K and N are relatively prime, Algorithm 1 converges to a
minimizer of (4.18) for arbitrary initial guess f (0).

Proof. By Lemma 4.2, both F1 and F2 satisfy the conditions in Theorem 4.1.
Moreover, by Theorem 4.3, when K and N are relatively prime, a minimizer of
minf{F1(f) + F2(f)} exists. Therefore, by Theorem 4.1, (4.17) converges to a min-
imizer of (4.18) for any initial guess. As we have already shown, Algorithm 1 is
equivalent to (4.17), therefore Algorithm 1 converges to a minimizer of (4.18) for any
initial guess f (0).

In (4.18), since part of the vector x is exactly the given data g, the term ‖Bf−x‖22
reflects the closeness of the solution Af to the given data g. Since Bf is the framelet
(packet) coefficients of f , the terms also reflects the closeness of the framelet packet
coefficients to x. The `1 norm of framelet (packet) coefficients are closely related to
the Besov norm of f (see e.g. [8, 25] ). Hence the term

1
2
‖Bf − x‖22 + ‖diag(u)xH0‖1 + ‖diag(u)xH1‖1

in (4.18) balances the closeness of the data and smoothness of the underlying solution.

5. Numerical Results. In this section, we test Algorithm 1 against the pro-
jected Landweber method for 1D and 2D examples. For comparison, we also include
the algorithms developed in [3, 5]. We have used the following two error measures
proposed in [2]:

1. the relative restoration error (RRE)

ςn :=
‖ [

f (n) + mean(f∗ − f (n))
]− f∗‖2

‖f∗‖2 ,

2. the relative discrepancy error (RDE):

εn :=
‖Af (n) − g‖2

‖g‖2 .

Here f∗ is the true signal and f (n) is the nth iterate. In [2], RRE is used for synthetic
data while RDE is for real data. For comparison, for synthetic data, we will also
give ςOR,n, which is the RRE computed by restricting both f∗ and f (n) onto the
observation region (OR), i.e. the support of g.
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Table 5.1
Results for Example 1 by adding white noise with a varying standard derivation σ.

Projected Landweber Algorithm in [5] Algorithm in [3] Algorithm 1
Method

σ ςn ςOR,n ςn ςOR,n ςn ςOR,n ςn ςOR,n

0.01 0.1862 0.2409 0.6967 0.0438 0.6968 0.0344 0.0437 0.0235
0.02 0.1921 0.2423 0.6983 0.0557 0.6986 0.0506 0.0496 0.0334
0.04 0.2170 0.2561 0.7020 0.1035 0.7024 0.1148 0.1175 0.1018

Table 5.2
Results for Example 2 by adding white noise with a varying standard derivation σ.

Projected Landweber Algorithm in [5] Algorithm in [3] Algorithm 1
Method

σ ςn ςOR,n ςn ςOR,n ςn ςOR,n ςn ςOR,n

0.01 0.2094 0.1558 0.3031 0.1968 0.3632 0.2724 0.0291 0.0224
0.02 0.2223 0.1635 0.3039 0.1975 0.3634 0.2733 0.0368 0.0255
0.04 0.2514 0.1848 0.3080 0.2052 0.3647 0.2767 0.0682 0.0420

For synthetic data we stop the iteration when ςn reaches its minimum value. For
real data, we stop the iteration when |εn+1− εn| < 10−3. This stopping criterion was
used in [3, 5]. The initial guess for all algorithms is set to be zero. For Algorithm 1,
the number of decomposition level L in (3.6) is 5 in all experiments.

We first test three 1D examples, the first two of which are given in [2]. In all
three examples, N = 128 and K = 37. The true object f∗ has 202 points and the
observation region lies between point 38 and point 165.
Example 1. The true object consists of two narrow Gaussian functions (simulating
two bright stars over a black background), one inside and one outside the observation
region (see Figure 5.1(a)).
Example 2. The true object consists of one narrow Gaussian function (simulating a
bright star) over a smooth background (see Figure 5.2(a)).
Example 3. The true object consists of two narrow Gaussian functions (simulating two
bright stars with different intensities) over a smooth background (see Figure 5.3(a)).

White Gaussian noise with standard deviations σ = 0.01, 0.02, and 0.04 are added
to the chopped and nodded signals (see Figures 5.1(b)–5.3(b)). The results for these
three examples are tabulated in Tables 5.1–5.3. In all three examples, we can see the
significant improvement of our method over the projected Landweber method and
those in [3, 5]. We remark that the algorithm in [3] (resp. [5]) assumes the signal f∗

lives on [K +1, N +K] and imposes the periodic (resp. Dirichlet) boundary condition
at K + 1 to N + K. In contrast, we assume the Neumann boundary condition for
the signal at indices 1 and N + 2K. We show the visual results in Figures 5.1–
5.3. Table 5.4 shows the numbers of iterations and the CPU time for generating the
corresponding results listed in Tables 5.1–5.3. The CPU time is the average time of
100 runs of the algorithms on a 2.16 GHz Pentium-IV Dell Laptop. We see that the
timing of our algorithm is higher than those of Landweber type methods but is quite
manageable. Our method can be used as a good post-processing method to clean up
these kinds of infrared images.

Finally we consider a real 2D image obtained from United Kingdom Infra-Red
Telescope [2]. The results are given in Figure 5.4. It is clear from the figures that our
results have much less noise.
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Table 5.3
Results for Example 3 by adding white noise with a varying standard derivation σ.

Projected Landweber Algorithm in [5] Algorithm in [3] Algorithm 1
Method

σ ςn ςOR,n ςn ςOR,n ςn ςOR,n ςn ςOR,n

0.01 0.2124 0.1568 0.3072 0.1982 0.3925 0.3074 0.0508 0.0396
0.02 0.2254 0.1644 0.3080 0.1988 0.3929 0.3085 0.0695 0.0507
0.04 0.2547 0.1857 0.3120 0.2065 0.3944 0.3121 0.0894 0.0548

Table 5.4
Required numbers of iterations and the CPU time (in second) of four algorithms for three

examples.

Projected Landweber Algorithm in [5] Algorithm in [3] Algorithm 1
Method

σ Itr CPU time Itr CPU time Itr CPU time Itr CPU time
Example 1

0.01 148 0.0227 6 0.0009 4 0.0003 904 4.0630
0.02 64 0.0095 6 0.0009 4 0.0005 650 2.9234
0.04 39 0.0059 5 0.0008 3 0.0003 546 2.4531

Example 2
0.01 48 0.0073 7 0.0011 3 0.0003 928 4.1656
0.02 38 0.0056 7 0.0010 3 0.0004 771 3.4693
0.04 25 0.0033 6 0.0008 3 0.0003 582 2.6312

Example 3
0.01 48 0.0077 7 0.0011 3 0.0005 906 4.1172
0.02 38 0.0058 7 0.0009 3 0.0005 669 3.2010
0.04 25 0.0036 6 0.0010 3 0.0003 445 2.0625

6. Appendix. In this appendix, we prove Theorem 4.3, i.e., the existence of a
minimizer of (4.18). Notice that (4.18) is equivalent to

min
f∈P+

F2(f), (6.1)

where

F2(f) ≡ 1ϕ(Bf) = min
x
{1
2
‖Bf − x‖22 + ‖diag(u)xH0‖1 + ‖diag(u)xH1‖1 + ιC(xH2)}.

Instead of considering the above minimization problem, we consider the following
minimization problem first:

min
f∈W

F2(f), (6.2)

where W =
{
w : wT 1 = 0

}
and 1 is the vector of all ones. We will then prove the

existence of a minimizer of (6.2). Then we show that the existence of a minimizer of
(6.2) implies the existence of a minimizer of (6.1). This concludes that (4.18) has a
minimizer.

To start, we need the following lemma on the eigenvalues and eigenvectors of the
matrices appearing in the matrix B in (4.9). In what follows, the discrete cosine
transform (DCT) matrix refers to the DCT matrix of the type II in [27].

Lemma 6.1. The eigenvalues γi of the matrix H0 in (2.9) is given by

γi = cos2
iKπ

2(N + 2K)
, i = 0, 1, · · · , N + 2K − 1, (6.3)

and the corresponding eigenvectors are the columns of the discrete cosine transform
(DCT) matrix. The eigenvalues γ

(`)
i of the matrices G

(`)
0 in (3.5) are given by

γ
(`)
i = cos2

i2`−1π

2(N + 2K)
, i = 0, 1, · · · , N + 2K − 1,
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Fig. 5.1. Example 1. (a) Original signal, (b) chopped and nodded signal with Gaussian noise
of standard deviation 0.02, (c) result by the projected Landweber method (64 iterations); (d) result
by the algorithm in [5] (6 iterations); (e) result by the algorithm in [3] (4 iterations); and (f) result
by Algorithm 1 (650iterations).

and the corresponding eigenvectors are also columns of the DCT matrix.
Proof. By the definition of H0 and Lemma 3.1 in [32], the matrix H0 can be

diagonalized by the DCT matrix. By the formula (3.3) in [32], after calculation, we
can see that the eigenvalues of H0 are given exactly by (6.3). Since G

(`)
0 are special

cases of H0 with K = 2`−1, the statements for G
(`)
0 can be proved similarly.

The following lemma shows the existence of a minimizer of (6.2).
Lemma 6.2. If K and N are relatively prime, then (6.2) has a minimizer.
Proof. Since F2(f) is lower semi-continuous and convex, in order to prove the

existence of a minimizer of (6.2), by Theorem 2.5.1(ii) in [36], it suffices to show that
F2 is coercive in W, i.e., if w ∈ W is such that ‖w‖2 →∞, then F2(w) →∞.

Let w ∈ W, we define

x∗ ≡ arg min
x
{1
2
‖Bw − x‖22 + ‖diag(u)xH0‖1 + ‖diag(u)xH1‖1 + ιC(xH2)}.

Then by the definition of B in (4.9) and (4.4),

x∗H0
= arg min

xH0

{1
2
‖GH0w − xH0‖22 + ‖diag(u)xH0‖1} = Tu(GH0w).

By (4.2), we have

F2(w) ≡ 1
2
‖Bw − x∗‖22 + ‖diag(u)x∗H0

‖1 + ‖diag(u)x∗H1
‖1 + ιC(x∗H2

)

≥ ‖diag(u)x∗H0
‖1 = ‖diag(uH)TuH

(GHH0w)‖1.
Let λm and λM be the smallest and largest entries in uH respectively. Then

F2(w) ≥ λm‖GHH0w‖1 − λmλM (N + 2K) ≥ λm‖GHH0w‖2 − λmλM (N + 2K).
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Fig. 5.2. Example 2. (a) Original signal, (b) chopped and nodded signal with Gaussian noise
of standard deviation 0.02, (c) result by the projected Landweber method (38 iterations); (d) result
by the algorithm in [5] (7 iterations); (e) result by the algorithm in [3] (3 iterations); and (f) result
by Algorithm 1 (771 iterations).

Denote v = H0w. By (3.7), we obtain

F2(w) ≥ λm‖GHv‖2 − λmλM (N + 2K)

= λm

√
vT GT

HGHv − λmλM (N + 2K)

= λm

√
vT (I −GT

LGL)v − λmλM (N + 2K). (6.4)

In order to estimate
√

vT (I −GT
LGL)v, we need to consider the eigenvalues and

eigenvectors of

I −GT
LGL = I −

L∏

`=1

(G(`)
0 )T

L−1∏

`=0

G
(L−`)
0 .

By Lemma 6.1, all the matrices G
(`)
0 can be diagonalized by the DCT matrix. There-

fore, the matrix I − GT
LGL can be diagonalized by the DCT matrix too, and the

eigenvalues are given by

1−
L∏

`=0

(γ(`)
i )2,

which, by Lemma 6.1, equals to 0 if and only if i = 0. Therefore, the null space of
I −GT

LGL is of dimension 1. It can be verified straightforwardly that

(I −GT
LGL)1 = 0.
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Fig. 5.3. Example 3. (a) Original signal, (b) chopped and nodded signal with Gaussian noise
of standard deviation 0.02, (c) result by the projected Landweber method (38 iterations); (d) result
by the algorithm in [5] (7 iterations); (e) result by the algorithm in [3] (3 iterations); and (f) result
by Algorithm 1 (669 iterations).

(a) (b) (c)

Fig. 5.4. K = 37 and N = 128. (a) The chopped and nodded image g; (b) result from the
projected Landweber method (241 iterations and εn = 0.000993); and (c) result from Algorithm 1
(202 iterations and εn = 0.000994).

Hence, the subspace spanned by 1 is the null space of I −GT
LGL. It implies that

wT (I −GT
LGL)w ≥ σ‖w‖22, ∀w ∈ W, (6.5)

where σ is the second smallest eigenvalue of I −GT
LGL.

On the other hand, by (6.3), the eigenvalues of H0 are γi = cos2 θi, where

θi ≡ iKπ

2(N + 2K)
=

π

2
iK

N + 2K
, i = 0, 1, · · · , N + 2K − 1.

If K and N are relatively prime, then θi cannot be odd integral multiple of π
2 . There-
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fore, H0 is nonsingular, and the smallest eigenvalues

γ = min
i

γi > 0. (6.6)

Furthermore, when K and N are relatively prime, θi cannot be even integral multiple
of π

2 unless i = 0. It implies that 1 is a simple eigenvalue of H0. It is easy to verify
that 1 is the corresponding eigenvector. Therefore, W is an invariant subspace of H0,
i.e, v = H0w is also in W. Hence, by (6.5), we obtain

vT (I −GT
LGL)v ≥ σ‖v‖22.

This together with (6.4), (6.6) and the definition of v imply that

F2(w) ≥ λm

√
σ‖v‖2 − λmλM (N + 2K) = λm

√
σ‖H0w‖2 − λmλM (N + 2K)

≥ λm

√
σγ‖w‖2 − λmλM (N + 2K).

Thus, F2(w) goes to infinity when ‖w‖2 goes to infinity. It means that F2 is coercive
in W. Hence a minimizer of (6.2) exists by Theorem 2.5.1(ii) in [36].

Next we show that the existence of a minimizer of (6.2) implies the existence of
a minimizer of (6.1).

Lemma 6.3. Assume that a minimizer of (6.2) exists. Then a minimizer of (6.1)
also exists.

Proof. First, we observe that if the identity

F2(f + c1) = F2(f), ∀c ∈ R (6.7)

holds for every f , then the conclusion follows immediately. Indeed, let w∗ ∈ W be a
minimizer of (6.2), i.e. F2(w) ≥ F2(w∗) for all w ∈ W. Let p∗+ = w∗ + ρ1, where
ρ is the absolute value of the smallest entry of w∗. It is obvious that p∗+ ∈ P+. For
any p+ ∈ P+, we orthogonally decompose it into p+ = w + δ1, where w ∈ W. Then,

F2(p+) = F2(w + δ1) = F2(w) ≥ F2(w∗) = F2(w∗ + ρ1) = F2(p∗+),

which implies that p∗+ is a minimizer of F2(f) in P+, i.e., a minimizer of (6.1).
Next, we verify the equality (6.7). For this, we first define

E
(L)
0 (y) ≡ min

x
(L)
H0

{1
2
‖y − x(L)

H0
‖22 + ‖diag(uL)x(L)

H0
‖1},

and

E
(H)
0 (y) ≡ min

x
(H)
H0

{1
2
‖y − x(H)

H0
‖22 + ‖diag(uH)x(H)

H0
‖1}.

By (4.2), uL is a zero vector. Therefore, E
(L)
0 (y) = 0 for all y. Define

E1(y) ≡ min
y
{1
2
‖y − xH1‖22 + ‖diag(u)xH1‖1}

and

E2(y) ≡ min
y
{1
2
‖y − xH2‖22 + ιC(xH2)}.
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Since the minimization of each term in

1
2
‖Bf − x‖22 + ‖diag(u)xH0‖1 + ‖diag(u)xH1‖1 + ιC(xH2)

is independent, we have

F2(f) = E
(L)
0 (GLH0f) + E

(H)
0 (GHH0f) + E1(GH1f) + E2(H2f).

By direct calculation, one has

H01 = 1, H11 = 0, H21 = 0, GH1 = 0.

This leads to

GHH0(f + c1) = GHH0f , GH1(f + c1) = GH1f , H2(f + c1) = H2f ,

for all c ∈ R. Hence

F2(f + c1) = E
(L)
0 (GLH0(f + c1)) + E

(H)
0 (GHH0(f + c1))

+E1(GH1(f + c1)) + E2(GH2(f + c1))
= E

(H)
0 (GHH0f) + E1(GH1f) + E2(GH2f)

= E
(L)
0 (GLH0f) + E

(H)
0 (GHH0f) + E1(GH1f) + E1(GH2f) = F2(f),

which completes the proof of (6.7)
Combining Lemmas 6.2 and 6.3, we obtain Theorem 4.3.
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