
LINEARIZED BREGMAN ITERATIONS FOR FRAME-BASED
IMAGE DEBLURRING

JIAN-FENG CAI∗, STANLEY OSHER† , AND ZUOWEI SHEN‡

Abstract. Real images usually have sparse approximations under some tight frame systems
derived from framelets, an oversampled discrete (window) cosine, or a Fourier transform. In this
paper, we propose a method for image deblurring in tight frame domains. It is reduced to finding
a sparse solution of a system of linear equations whose coefficient matrix is rectangular. Then, a
modified version of the linearized Bregman iteration proposed and analyzed in [10,11,44,51] can be
applied. Numerical examples show that the method is very simple to implement, robust to noise,
and effective for image deblurring.
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1. Introduction. Image deblurring is a fundamental problem in image process-
ing, since many real life problems can be modeled as deblurring problems; see, for
instance, [20]. This paper proposes a deblurring algorithm by modifying the linearized
Bregman iteration given and analyzed in [10,11,23,44,51].

For simplicity of notation, we shall denote images as vectors in RN by concatenat-
ing their columns. Let f ∈ RN be the underlying image. Then the observed blurred
image g ∈ RN is given by

g = Bf + n, (1.1)

where n ∈ RN is a vector of noise and B ∈ RN×N is a linear blurring operator. This
problem is ill-posed due to the large condition number of the matrix B. Any small
perturbation on the observed blurred image g may cause the direct solution B−1g to
be very far away from the original image f ; see, for instance, [2, 49]. This is a widely
studied subject, and there are many different approaches.

One of the main ideas is to find the solution that minimizes some cost functionals;
see [20] and its references. The simplest method is Tikhonov regularization, which
minimizes an energy consisting of a data fidelity term and an `2 norm regularization
term. When B is a convolution, one can solve the problem in the Fourier domain. In
this case, the method is called a Wiener filter [1]. This is a linear method, and the
edges of restored image are usually smeared. To overcome this, a regularization based
on total variation (TV) was proposed by Rudin, Osher, and Fatemi in [47]; it is well
known as the ROF model. Due to its virtue of preserving edges, it is widely used in
the many applications of image processing, such as blind deconvolution, inpainting
and superresolution; see [20] for an overview. However, it is well known that TV
yields staircasing (see [28, 42]); hence these TV-based methods do not preserve the

∗Temasek Laboratories, National University of Singapore, 2 Science Drive 2, Singapore 117543.
Email: tslcaij@nus.edu.sg. Research supported by the Wavelets and Information Processing Pro-
gramme under a grant from DSTA, Singapore.

†Department of Mathematics, UCLA, 520 Portola Plaza, Los Angeles, CA 90095, USA.
Email:sjo@math.ucla.edu. Research partially supported by ONR grant N000140710810, and by U.S.
Department of Defense.

‡Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore
117543. Email: matzuows@nus.edu.sg. Research supported in part by Grant R-146-000-113-112 at
the National University of Singapore.

1



2 JIAN-FENG CAI, STANLEY OSHER, AND ZUOWEI SHEN

fine structures, details, and textures. To avoid these drawbacks, nonlocal methods
were proposed for denoising in, e.g. [5, 48], and then extended to deblurring in [6].
Also, Bregman iteration, introduced to image science in [43], was shown to improve
TV-based blind deconvolution in [35, 40, 41]. Recently, inspired by graph theory,
a nonlocal TV regularization was invented in [32] and applied to image deblurring
in [38]. We will compare the algorithm given in this paper with deblurring algorithms
based on the nonlocal operator in [38]. As a consequence, it also gives comparisons
with other algorithms in [1, 6, 47], as they are already compared with the nonlocal
operator approach in [38]. The experiments in [38] were recently redone using the
split Bregman approach of [33] rather than gradient descent, with apparently better
results. Our comparisons here were taken with the original results in [38].

Another approach for deblurring is the wavelet-based method. This approach is
based on the fact that most real images usually have sparse approximations under
some tight frame systems, which include, for example, translation invariant orthonor-
mal wavelets (see, e.g., [22]), discrete Fourier transforms, Gabor transforms, oversam-
pled discrete cosine transforms, discrete local cosine transforms (see, e.g., [24, 39]),
framelets (see, e.g., [26, 46]), and curvelets (see, e.g., [13]). One can solve (1.1) in a
tight frame domain that has a sparse approximation of the underlying solution. The
redundancy of systems leads to robust signal representation in which partial loss of
the data can be tolerated without adverse effects. In order to obtain the sparse ap-
proximation, we minimize the weighted `1 norm of the tight frame coefficients. This
is a relatively new approach in this well-studied subject. There are a few papers on
solving inverse problems, in particular deblurring problems, by using the fact that
the underlying image has a sparse approximation in a certain transform domain; see,
for instance, [4, 7, 12, 16–18, 25, 27, 31]. In [7, 12, 16–18], the deconvolution problem is
converted to an inpainting problem in a frame domain by designing a tight wavelet
frame system via the unitary extension principle of [46], with the convolution ker-
nel being one of the masks of the tight frames. We further note that the approach
taken by [27] can be understood as solving a Lagrange relaxed minimization problem
in frame domains. Some numerical comparisons of the approach here and these two
approaches are given.

In this paper, we use a modified version of the linearized Bregman iteration in
[10, 11, 23, 44, 51], which is very efficient in finding a sparse solution of a system of
underdetermined linear equations, to solve the deblurring problem (1.1) in a tight
frame domain. The algorithm given in this paper solves the deblurring problem
directly in the frame domain, and there is no need to construct a tight frame system
so that one of the masks is the given blurring kernel. It is, in particular, useful when
it is impossible to construct a tight frame system with the blurring kernel as one of
the masks.

The rest of the paper is organized as follows. In Section 2, we modify the linearized
Bregman iteration in order to suit image deblurring for invertible B. Then we extend
the results to noninvertible B in Section 3. Section 4 is devoted to algorithms and
numerical experiments.

2. Frame-based deblurring. We start with a short review of the linearized
Bregman iteration given and analyzed in [10,11,23,44,51]. Then, we reformulate the
linearized Bregman iteration from the frame point of view. This, in turn, leads to our
modified algorithm to solve (1.1) in frame domain.

2.1. Linearized Bregman iteration. Iterative algorithms involving Bregman
distance were introduced to image and signal processing by [14,15] and by many other
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authors. See [43] for an overview. In [43], a Bregman iteration was proposed for the
nondifferentiable TV energy for image restoration. Then, in [51], it was shown to
be remarkably successful for `1 norm minimization problems in compressive sensing.
To further improve the performance of the Bregman iteration, a linearized Bregman
iteration was invented in [23]; see also [51]. More details and an improvement called
“kicking” of the linearized Bregman iteration was described in [44], and a rigorous
theory was given in [10, 11]. Recently, a new type of iteration based on Bregman
distance, called split Bregman iteration, was introduced in [33], which extended the
utility of the Bregman iteration and the linearized Bregman iteration to minimizations
of more general `1-based regularizations including TV, Besov norms, and sums of such
things. Wavelet-based denoising using the Bregman iteration was introduced in [50],
and it was further extended by using translation invariant wavelets in [37]. Here we
focus on the linearized Bregman iteration.

Let A be an N × M , M ≥ N , surjective matrix. The aim of the linearized
Bregman iteration is to find an approximation of a solution of Au = g that has a
minimal `1 norm among all the solutions, i.e., to approximately solve

min
u∈RM

{‖u‖1 : Au = g} . (2.1)

The iteration is
{

vk+1 = vk −AT (Auk − g),
uk+1 = δTµ(vk+1),

(2.2)

where u0 = v0 = 0, and

Tµ(w) := [tµ(w1), tµ(w2), . . . , tµ(wM )]T (2.3)

with

tµ(ξ) =

{
0 if |ξ| ≤ µ,

sgn(ξ)(|ξ| − µ) if |ξ| > µ.
(2.4)

Iteration (2.2) is very simple to program, involving only matrix-vector multi-
plications and scalar shrinkages. It was applied to basis pursuit problems arising
in compressed sensing in [11, 44]. The algorithm works based on the facts that the
matrix-vector multiplications have fast algorithms in most applications in compressed
sensing and the solution is sparse. The shrinkage operator makes the solution sparse
and removes noises. Hence, this algorithm converges to a sparse solution and is robust
to noise.

It is proven in [11] that, if {uk}k∈N generated by (2.2) converges, its limit is the
unique solution of (2.5), which is given below. It was also shown in [11] that the limit
of (2.2) becomes a solution of the basis pursuit problem (2.1) as µ →∞. Furthermore,
it was shown in [11] that the corresponding linearized Bregman iteration converges
when a smoothed `1 norm is used. However, the convergence of the sequence {uk}k∈N
of (2.2) is given in [10]. We summarize the above results from [10,11] into the following
proposition. Throughout this paper, the notation ‖ · ‖ is always used for the `2 norm
and ‖ · ‖1 for the `1 norm of vectors.

Proposition 2.1. Assume that A ∈ RN×M , M ≥ N , is surjective. Then the
sequence {uk}k∈N generated by (2.2) with 0 < δ < 1

‖AAT ‖ converges to the unique
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solution of

min
u∈RM

{
µ‖u‖1 +

1
2δ
‖u‖2 : Au = g

}
. (2.5)

Furthermore, when µ →∞, the limit of (2.2) tends to the solution of (2.1) that has
a minimal `2 norm among all the solutions of (2.1).

In addition, for general A, the following lemma was proved in [10].
Lemma 2.2. Let A ∈ RN×M , M ≥ N , be any matrix. Assume that 0 < δ <

1
‖AAT ‖ . Then, the sequences {uk}k∈N and {vk}k∈N generated by (2.2) are bounded,
and

lim
k→∞

AT (Auk − g) = 0.

Proposition 2.1 does not reveal the convergence speed of the linearized Bregman
iteration (2.2). In fact, the convergence speed depends on the condition number of
A, as shown in [11] by a smoothed version of (2.2). Here the condition number of

A is defined by cond(A) =
√

λ1(AAT )
λN (AAT )

, where λ1(AAT ) and λN (AAT ) are the first
(maximum) and Nth (minimum) eigenvalues of the symmetric positive definite matrix
AAT , respectively. A smaller condition number of A leads to a faster convergence;
see [11] for details.

In some applications of compressed sensing, A is usually a rectangular matrix
consisting of partial rows of a fast transform matrix such as discrete cosine transform.
In this case, AAT = I. In (2.2), since v0 = 0 is in the range of AT , by induction, vk

is in the range of AT . Therefore, we can write vk = AT gk. By substituting this into
(2.2), we obtain

AT gk+1 = AT gk −AT (Auk − g).

Since A is surjective, this leads to that the linearized Bregman iteration (2.2) is
equivalent to

{
gk+1 = gk + (g −Auk),
uk+1 = δTµ(AT gk+1),

(2.6)

where u0 = g0 = 0. Formulation (2.6) leads to the following explanation: The first
step is to add the error of the constraint Au = g to the current data gk to get the
new data gk+1. The second step can be divided into two substeps. The first sub-
step derives the minimal `2 norm solution AT gk+1 of the equation Au = gk+1 by
using AAT = I. This substep removes part of the noise contained in the kernel of A.
The second substep shrinks the minimal `2 norm solution by applying the shrinkage
operator. This substep removes noise as well. Furthermore, this step, together with
the first step of updating the residues, keeps big entries and removes small entries from
the solution. Altogether, the linearized Bregman iteration leads to a sparse limit and
is robust to noise.

2.2. Modified linearized Bregman iteration. In this subsection, we modify
(2.6) to accelerate its convergence in the case of AAT 6= I. When AAT 6= I, but
A is still surjective, i.e., AAT is positive definite, the minimal `2 norm solution of
Au = gk+1 is given by A†gk+1, where A† = AT (AAT )−1. Notice that A† is the
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pseudoinverse of A. Therefore, we modify iteration (2.6) by replacing AT gk+1 in
(2.6) by A†gk+1. This leads to the following modified iteration:

{
gk+1 = gk + (g −Auk),
uk+1 = δTµ(A†gk+1),

(2.7)

where u0 = g0 = 0. Notice that (2.7) is not the same as (2.6) if AAT 6= I. At each
iteration, the second step shrinks the minimum `2 norm solution. This makes the
solution sparse and removes noises. This also introduces the errors to the minimal
`2 solution. The first step is to correct it by updating the residues generated from
the second step. The following theorem says that this simple iteration converges to a
sparse solution of the original equation Au = g.

Theorem 2.3. Assume that A ∈ RN×M , M ≥ N , is surjective. Then the
sequence {uk}k∈N generated by iteration (2.7) with 0 < δ < 1 converges to the unique
solution of (2.5), or, equivalently,

min
u∈RM

{
µ‖u‖1 +

1
2δ
‖u−A†g‖2 : Au = g

}
. (2.8)

Furthermore, as µ → ∞, the limit of (2.7) is the solution of (2.1) that is closest to
the minimal `2 norm solution of Au = g among all the solutions of (2.1).

Proof. The theorem is proven by applying Proposition 2.1. By multiplying both
sides of the first equation in (2.7) by A†, we obtain

{
A†gk+1 = A†gk + A†(g −Auk),
uk+1 = δTµ(A†gk+1).

Let vk+1 = A†gk+1. Then, the above formulation leads to
{

vk+1 = vk −AT (AAT )−1(Auk − g),
uk+1 = δTµ(vk+1),

(2.9)

where u0 = v0 = 0. This is the linearized Bregman iteration (2.2) for the system of
linear equations

(AAT )−1/2Au = (AAT )−1/2g. (2.10)

In fact, by replacing A and g in (2.2) by (AAT )−1/2A and (AAT )−1/2g, respectively,
we obtain (2.9).

Since (2.7) leads to the linearized Bregman iteration for (2.10), Proposition 2.1
can be applied to prove the convergence of (2.7). Because A is surjective, the matrix
(AAT )−1/2A is rectangular and surjective. We have

‖((AAT )−1/2A
)(

(AAT )−1/2A
)T ‖2 = ‖((AAT )−1/2A

)T (
(AAT )−1/2A

)‖2
= ‖AT (AAT )−1A‖2 = 1.

Therefore, with 0 < δ < 1, Proposition 2.1 guarantees the convergence of (2.7) to the
solution of

min
u∈RM

{
µ‖u‖1 +

1
2δ
‖u‖2 : (AAT )−1/2Au = (AAT )−1/2g

}
. (2.11)
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Because (AAT )−1/2 is invertible, (2.10) is equivalent to Au = g; hence (2.11) is
equivalent to (2.5).

It remains to show the equivalence between (2.5) and (2.8). Note that A†A is a
projection. The equality in (2.8) simply follows from

‖u‖22 = ‖A†Au‖22 + ‖(I −A†A)u‖22 = ‖A†g‖22 + ‖u−A†g‖22 (2.12)

and the fact that ‖A†g‖22 is a constant.
Here we make some remarks. First, the system of linear equations (2.10) is

actually a “preconditioned” version of the system of linear equations Au = g. As a
result, the condition number of the matrix (AAT )−1/2A is one, since all the eigenvalues
of AT (AAT )−1A are one. Hence, it can be used when the condition number of A is
large, since the convergence rate depends on the condition number of the coefficient
matrix as shown in [11] by a smoothed version.

Second, the term 1
2‖u− A†g‖22 in (2.8) is the distance from u to the minimal `2

norm solution A†g of Au = g. Therefore, the modified linearized Bregman iteration
(2.7) leads to a solution that is less sparse than if there were no quadratic term. This is
particularly useful in frame-based image restorations, as shown in [7,12,16–18,27,31].

Finally, the modified linearized Bregman iteration (2.7) is very cheap whenever
there is a fast algorithm for finding the minimal `2 norm solution of Au = g. However,
this is not true in general. In the next section, we will discuss how to make it happen
for the image deblurring in frame domain.

2.3. Deblurring with full rank blurring matrix. In this subsection, we
apply the linearized Bregman iteration (2.7) to the frame-based image deblurring.
Recall that the column vectors of

A := [a1, . . . ,aM ] ∈ RN×M

form a frame in RN if there exist two positive numbers a and b such that

a‖h‖22 ≤
M∑

i=1

|〈h,ai〉|2 ≤ b‖h‖22 ∀ h ∈ RN . (2.13)

It is obvious that A is a frame if and only if it is surjective. When a = b = 1, the
column vectors of A form a tight frame, for which (2.13) is equivalent to

AAT = I.

When N = M , then A is a basis in RN . When N < M , the system is redundant,
since the rank of A is N . In this case, for a given vector g, there are infinitely many
representations of g that correspond to solutions of Au = g. Among all the solutions,
the one u∗ = AT (AAT )−1g, called the canonical coefficients of g, has a minimal `2
norm. However, in many applications, it is more important to find coefficients u of
the vector g that minimize the `1 norm. Frame-based imaging restorations are widely
used, and they can be found in, e.g., [7, 12,16–18,27,30,31].

Now we turn to the deblurring problem (1.1). In this section, we assume that the
blurring matrix B is invertible. We solve (1.1) in a tight frame domain. Let F be
an N × M matrix whose column vectors form a tight frame in RN , i.e., FFT = I.
Further, we assume that the underlying solution f has a sparse approximation under
F . Then, in the tight frame domain, (1.1) becomes

g = BFu + n, where Fu = f . (2.14)
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We start our discussion with the simple case when n = 0. Then the model (2.14)
becomes

BFu = g. (2.15)

Since f has a sparse approximation under F , we would like to find a sparse solution
of (2.15), i.e., to solve

min
u∈RM

{‖u‖1 : BFu = g} . (2.16)

Write A = BF . Because B is invertible and F is a tight frame, the matrix A is rectan-
gular and surjective. Hence the column vectors of A form a frame in RN . Therefore,
we use the modified linearized Bregman iteration (2.7) to solve the deblurring prob-
lem. Since AAT = BF (BF )T = BBT , the pseudoinverse is A† = AT (AAT )−1 =
FT BT (BBT )−1.

It is generally hard to find (BBT )−1 because usually B has a bad condition
number. We use a symmetric positive definite, invertible matrix P to approximate it,
i.e., P ≈ (BBT )−1. Then, the modified linearized Bregman iteration for the frame-
based deblurring becomes

{
gk+1 = gk + (g −BFuk),
uk+1 = δTµ(FT BT Pgk+1),

(2.17)

where u0 = g0 = 0, and P is a symmetric positive definite matrix. In the first step,
we update the data by adding the error of BFu = g into the current data gk to get
the data gk+1; in the second step, we threshold the coefficient FT BT Pgk+1, which
approximates FT BT (BB)−1gk+1, the minimal `2 norm solution of BFu = gk+1.

Applying Proposition 2.1, we have the following result for (2.17).
Theorem 2.4. Assume that P is symmetric positive definite, F is a tight frame,

and B is invertible. Let δ be such that 0 < δ < 1
‖BT PB‖ . Then the sequence {uk}k∈N

generated by iteration (2.17) converges to the unique solution of

min
u∈RM

{
µ‖u‖1 +

1
2δ
‖u‖2 : BFu = g

}
, (2.18)

Furthermore, as µ → ∞, the limit of (2.17) is the solution of (2.16) that has a
minimum `2 norm among all the solutions of (2.18).

Proof. Because P is symmetric positive definite, its square root P 1/2 exists.
Similar to the proof of Theorem 2.3, the linearized Bregman iteration (2.2) for the
system of linear equations

P 1/2BFu = P 1/2g (2.19)

is, by replacing A and g in (2.2) by P 1/2BF and P 1/2g, respectively,
{

vk+1 = vk − FT BT P (BFuk − g),
uk+1 = δTµ(vk+1),

where u0 = v0 = 0. Since v0 = 0 is in the range of FT BT P , by induction, vk

is also in the range of FT BT P . Let vk = FT BT Pgk. Then, one derives (2.17).
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By the assumptions, the matrix P 1/2BF is rectangular and surjective. By apply-
ing Proposition 2.1 and the invertibility of P 1/2, (2.17) converges to the unique so-
lution of (2.18) provided that 0 < δ < 1

‖(P 1/2BF )(P 1/2BF )T ‖ , which is satisfied by

‖(P 1/2BF )(P 1/2BF )T ‖ = ‖P 1/2BBT P 1/2‖ = ‖BT PB‖.
Again, in the above theorem, the system of linear equations (2.19) is a “pre-

conditioned” version of BFu = g. Since P ≈ (BBT )−1, and the condition num-
ber of (P 1/2BF )(P 1/2BF )T = P 1/2BBT P 1/2 equals the square root of the ratio
of the maximum to the minimum eigenvalues of PBBT , the condition number of
(P 1/2BF )(P 1/2BF )T is close to 1. On the other hand, since B is ill-conditioned, the
matrix (BF )(BF )T = BBT has a large condition number. Therefore, iteration (2.17)
converges faster than the original linearized Bregman iteration (2.2) with A = BF .

The choice of P can be done, for example, as follows. The blurring operator B
is usually a convolution operator from RN to RN , and it is a Toeplitz-like or block-
Toeplitz-like matrix with a suitable boundary condition. Hence, B can be efficiently
approximated by a circulant matrix or a fast transform (e.g., the discrete cosine trans-
form (DCT)) based matrix C; see, e.g., [19, 36]. This means that we use convolution
matrices with circular or Neumann boundary conditions to approximate B. Therefore,
P = (CCT )−1 is a good approximation for (BBT )−1. In order for the approximation
to be numerically stable and robust to noise, we choose P = (CCT +θGGT )−1, where
θ is a small positive number and G is the identity or a difference matrix with a circular
or Neumann boundary condition. To make sure that P is well defined, we require
that either C is invertible or Ker(CCT ) ∩ Ker(GGT ) = {0}. Here Ker denotes the
kernel space of a matrix. Notice that (CCT + θGGT )−1h for any h can be computed
efficiently by fast Fourier transforms (FFTs) or DCTs; see [19]. This enables iteration
(2.17) to be implemented quickly.

Since B is invertible, we have

‖u‖2 = ‖FT Fu‖2 + ‖(I − FT F )u‖2 = ‖FT B−1g‖2 + ‖(I − FT F )u‖2. (2.20)

This implies that (2.18) is equivalent to

min
u∈RM

{
µ‖u‖1 +

1
2δ
‖(I − FT F )u‖2 : BFu = g

}
. (2.21)

Therefore, by Theorem 2.4, the modified iteration (2.17) converges to the solution of
(2.18). The first term in (2.18), µ‖u‖1, is to penalize the `1 norm of u. This keeps
the solution u sparse. The second term is to penalize the distance of u to the range of
F , so it makes u close to its canonical tight frame coefficient. By the theory in [3,34],
the weighted `1 norm of the canonical coefficient is related to the Besov norm of the
underlying solution when F is a tight wavelet frame (or so-called framelet) system.
Therefore, these two terms together balance the sparsity of the tight frame coefficient
and the regularity (the smoothness) of the underlying solution that has the same
flavor of the algorithm given in [7, 8, 12].

Similar to the linearized Bregman iteration (2.6), iteration (2.17) is robust to
noise. Indeed, there are two procedures in (2.17) to suppress the noise. In the first
step of (2.17), we add the error of the equation BFu = g to the current data gk to
obtain the new data gk+1. The second step consists of two substeps. The first substep
is to get Pgk+1. If we choose P = (CCT + θGGT )−1, then Pgk+1 is a solution of

Pgk+1 = arg min
f∈RN

{
‖gk+1 − CCT f‖2(CCT )−1 + θ‖GT f‖22

}
,
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where ‖a‖2(CCT )−1 = aT (CCT )−1a is a weighted norm. Therefore, this sub-step is to
solve the approximated deblurring problem CCT f = gk+1 with a Tikhonov regular-
ization. Hence, this substep can remove noise. The second substep is the shrinkage
of FT BT Pgk+1, the approximated minimal `2 norm solution of BFu = gk+1. The
purpose is to keep big entries and remove small entries to keep the solution sparse.
Therefore, this substep removes noise as well.

In summary, iteration (2.17) is robust to noise due to the noise removals embed-
ded. Therefore, when the data g contains noise, i.e., n 6= 0, we can still use algorithm
(2.17) but stop it before it converges. The stopping criteria is important. If we stop
the iteration early, the details and the edges may not be recovered well; if we stop
it late, the artifacts caused by the noise show up. A natural choice of the stopping
criteria is that we stop the iteration whenever

‖g −BFuk‖2 / σ2, (2.22)

where σ2 is the variance of the noise n. With this stopping criteria, we get deblurred
images before the artifacts show up, as pointed in [43]. We remark that, given a noisy
blurred image, σ2 can be estimated by, for example, the method in [29].

3. Generalization to noninvertible blurring matrices. When the blurring
matrix B is not invertible, then the matrix A = BF is not surjective; hence the results
presented in the previous section are not applicable. In this section, we show that
iterations (2.2), (2.7), and (2.17) can be applied to the case that the matrix A is no
longer surjective to find a (weighted) least square solution with sparsity. Therefore,
even when B is not invertible, we can still use the linearized Bregman iterations to
find a (weighted) least square solution with sparsity. Although it is motivated by the
deblurring when the blurring matrix B is not invertible, it extends to many other
general settings, i.e., to finding a sparse solution of the least square problem. In the
first part of this section, we will extend (2.1) to the case that A is not a surjection, and
the second part of this section is devoted to the deblurring for noninvertible blurring
matrices.

3.1. Least Square Solutions. As before, we first assume that there is no noise
in g, i.e., n = 0, and we need to solve Au = g. However, when A is not surjective,
there may not necessarily exist a solution for the system of linear equations Au = g.
Alternatively, it is natural to minimize the square error ‖Au − g‖2. Since A is a
rectangular matrix, there are infinitely many solutions of

min
u∈RM

‖Au− g‖2. (3.1)

Among all the solutions of (3.1), the minimal `2 norm solution u∗ := A†g, which is
generally not sparse, is commonly used. Note that here A† is the pseudoinverse of
A and is not AT (AAT )−1 since (AAT )−1 does not exist. However, in our deblurring
problem, we would like to find a sparse solution of (3.1). This leads to a minimal `1
norm solution of (3.1), i.e., to solving

min
u∈RM

{‖u‖1 : u = arg min
u∈RM

‖Au− g‖2}. (3.2)

Notice that, when A is surjective, (3.2) is equivalent to (2.1).
It is interesting to know that, in order to solve (3.2), we are still able to use the

linearized Bregman iteration (2.2). The next theorem says that Proposition 2.1 still
holds for an arbitrary A.
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Theorem 3.1. Let A ∈ RN×M , M ≥ N , be an arbitrary matrix. Then the
sequence {uk}k∈N generated by (2.2) with 0 < δ < 1

‖AAT ‖ converges to the unique
solution of

min
u∈RM

{
µ‖u‖1 +

1
2δ
‖u‖2 : u = arg min

u∈RM
‖Au− g‖2

}
. (3.3)

Furthermore, when µ →∞, the limit of (2.2) tends to the solution of (3.2) that has
a minimal `2 norm among all the solutions of (3.2).

Proof. Since the least square problem (3.1) is equivalent to solving the system of
linear equations AT Au = AT g, the minimization problem (3.3) is equivalent to

min
u∈RM

{
µ‖u‖1 +

1
2δ
‖u‖2 : AT Au = AT g

}
. (3.4)

The set of all of the solutions of AT Au = AT g is a nonempty convex set. Since the
energy µ‖u‖1 + 1

2δ‖u‖2 is strongly convex, the solution of (3.4) is unique. Denote the
unique solution by u∗µ. Therefore, we need only to prove that {uk}k∈N converges to
u∗µ.

By Lemma 2.2, the sequence {uk}k∈N is bounded. Hence, there exists at least one
convergent subsequence. We prove the first part of the theorem, i.e., {uk}k∈N con-
verges to the solution of (3.3), by showing that each convergent subsequence converges
to u∗µ. By the uniqueness of u∗µ, we conclude that limk→∞ uk = u∗µ. Let {uki}i∈N
be an arbitrary convergent subsequence. Let ũ := limi→∞ uki . Next we show that
ũ = u∗µ.

Since v0 = u0 = 0, by summing up the first equation of (2.2) from 0 to k, we
have

vk = AT gk, where gk =
k−1∑

j=0

(g −Auj). (3.5)

We decompose gk into the direct sum of

gk = gk
Ker(AT ) + gk

Ran(A), (3.6)

where gk
Ker(AT ) is in the kernel of AT , and gk

Ran(A) is in the range of A. It is obvious
that these two components are orthogonal to each other. Moreover, since {AT gk}k∈N
is bounded by Lemma 2.2 and AT is one-to-one from Ran(A) to RM , we have that
{gk

Ran(A)}k∈N is bounded, i.e.,

‖gk
Ran(A)‖ ≤ C ∀k. (3.7)

Since Tµ(vk) is the solution of the minimization problem minu
1
2‖vk−u‖22+µ‖u‖1,

the first order optimality condition yields that

vk − Tµ(vk) ∈ ∂µ‖uk‖1, (3.8)

where ∂ denotes the subdifferential. Furthermore, the second equation of (2.2) gives
Tµ(vk) = 1

δu
k, which leads to

vk =
1
δ
uk + (vk − Tµ(vk)). (3.9)
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Define H(u) = µ‖u‖1 + 1
2δ‖u‖2. Equations (3.8) and (3.9) imply that vk ∈ ∂H(uk)

for all k. This, together with the convexity of H(u), leads to

H(uki) ≤ H(u∗µ)− 〈u∗µ − uki ,vki〉.
By (3.5) and (3.6), we have

H(uki) ≤ H(u∗µ)− 〈u∗µ − uki , AT (gki

Ker(AT )
+ gki

Ran(A))〉
= H(u∗µ)− 〈A(u∗µ − uki),gki

Ran(A)〉. (3.10)

Next, we estimate the second term of the right-hand side of (3.10). By the
Cauchy-Schwarz inequality and (3.7), we have

|〈A(u∗µ − uki),gki

Ran(A)〉| ≤ ‖A(u∗µ − uki)‖‖gki

Ran(A)‖ ≤ C‖A(u∗µ − uki)‖. (3.11)

By Lemma 2.2, limk→∞AT (Auk−g) = 0. Hence, limk→∞Auk = gRan(A). Similarly,
since AT Au∗µ = AT g, we have Au∗µ = gRan(A). Therefore, limi→∞Auki = Aũ =
gRan(A) = Au∗µ. Hence, limi→∞ ‖A(u∗µ − uki)‖ = 0. In view of (3.11), we have
limi→∞ |〈A(u∗µ − uki),gki

Ran(A)〉| = 0.
Thus, (3.10) gives H(ũ) = limi→∞H(uki) ≤ H(u∗µ). This, together with AT Aũ =

AT g and the uniqueness of u∗µ, implies that ũ = u∗µ.
The proof of the second part of the theorem, i.e., the limit of (2.2) tends to the

solution of (3.2), is essentially the same as that of the corresponding result of [11] (see
the proof of Theorem 4.4 in [11]), and we omit the details here.

3.2. Deblurring with noninvertible blurring matrices. Now we turn to the
deblurring problem (1.1) with noninvertible B. Again, we solve it in the coefficient
domain of a tight frame F , where we assume that there is a sparse approximation of
the underlying image. Then (1.1) is transferred to (2.14). However, in the case of
non-invertible B, the matrix A = BF is no longer surjective. Therefore, there may not
necessarily exist a solution of BFu = g. Hence there may not exist a solution of (2.16)
either. This means that we cannot recover the image by solving (2.16). Alternatively,
we find a sparse solution of the weighted least square solution of BFu = g. It reaches
the minimization problem

min
u∈RM

{
‖u‖1 : u = arg min

u∈RM
‖BFu− g‖2P

}
, (3.12)

where ‖ · ‖P is a weighted seminorm defined by

‖a‖P =
√

aT Pa (3.13)

for a symmetric positive definite matrix P . Once again, we remark that, when B is
invertible, (3.12) is equivalent to (2.16).

We use the modified iteration (2.17) to solve (3.12). As before, the matrix P also
serves as a preconditioner. Since A† = AT (AAT )† = FT BT (BBT )†, and it is generally
hard to find (BBT )†, the matrix P is to approximate (BBT )†, i.e., P ≈ (BBT )†. By
applying Theorem 3.1, we have the following theorem.

Theorem 3.2. Assume that P is symmetric positive definite and F is a tight
frame. Let δ be such that 0 < δ < 1

‖BT PB‖ . Then the sequence {uk}k∈N generated by
iteration (2.17) converges to the unique solution of

min
u∈RM

{
µ‖u‖1 +

1
2δ
‖u‖2 : u = arg min

u∈RM
‖BFu− g‖2P

}
. (3.14)
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Furthermore, as µ → ∞, the limit of (2.17) is the solution of (3.12) that has a
minimal `2 norm among all the solutions of (3.12).

Proof. Following the proof of Theorem 2.4, iteration (2.17) is the linearized Breg-
man iteration (2.2) for the system of linear equations

P 1/2BFu = P 1/2g.

Since ‖(P 1/2BF )(P 1/2BF )T ‖ = ‖P 1/2BBT P 1/2‖ = ‖BT PB‖, 0 < δ < 1
‖BT PB‖

implies 0 < δ < 1
‖(P 1/2BF )(P 1/2BF )T ‖ . Therefore, by Theorem 3.1, with 0 < δ <

1
‖BT PB‖ , {uk}k∈N converges to the solution of

min
u∈RM

{
µ‖u‖1 +

1
2δ
‖u‖2 : u = arg min

u∈RM
‖P 1/2BFu− P 1/2g‖2

}
. (3.15)

By the definition of the weighted `2 norm in (3.13), (3.15) is equivalent to (3.14).

4. Numerical experiments. In this section, we illustrate the effectiveness of
the frame-based deblurring algorithm by experiments. We start with an algorithm
based on iteration (2.17), and then we give simulation results. The comparisons with
other methods are given at the end.

4.1. Algorithms. Our objective here is to design a simple and relatively fast
tight frame-based algorithm that is, hopefully, also efficient in deblurring. The first
algorithm is essentially based on (2.17).

Algorithm 1 (Frame-Based Deblurring Algorithm).
1. Set u0 = 0 and g0 = 0.
2. Iterate

{
gk+1 = gk + (g −BFuk),
uk+1 = δTµ(FT BT Pgk+1),

(4.1)

until

‖g −BFuk‖2 ≤ σ2, (4.2)

where σ2 is the estimated variance of the noise.
3. Set f̃ = Fuk as the deblurred image.

As has been discussed, this algorithm converges whether the blurring matrix B
is invertible or not.

To make everything simple, we use the simplest tight frame F system generated
from the filters of the piecewise linear B-spline framelet derived in [46] by applying
the unitary extension principle of [46] in numerical simulations and comparisons. The
three filters are

h0 =
1
4
[1, 2, 1], h1 =

√
2

4
[−1, 0, 1], h2 =

1
4
[−1, 2,−1].

There is a standard way to generate an N ×M matrix F whose columns form a tight
frame corresponding to a set of given framelet filters. Furthermore, the matrix F is
the synthesis (or reconstruction) operator and FT is the analysis (or decomposition)
operator of the underlying tight framelet system. We omit the details here, since
the details can be found in [8]. We finally remark that one may choose other tight
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framelets constructed in [26, 46], but our experiments show that the simple filters as
given above from piecewise linear spline tight framelets are already good enough to
illustrate the effectiveness of the frame-based deblurring algorithms. This fact, by
itself, already shows the power of the algorithm proposed here.

Throughout the experiments, the level of the framelet decomposition is 4. The
preconditioner is chosen as P = (CCT +θGGT )−1, where C is either a circulant matrix
for an asymmetric kernel or a DCT-based preconditioner matrix for a symmetric kernel
(see [19, 36]), G is the first order difference matrix, and θ is a parameter depending
on the image, the noise level, and the algorithm.

As shown in the numerical simulations, this algorithm restores the main features of
images first, and it adds details from the residues as the iteration continues. This leads
to the question of the stopping criteria. As iteration (4.1) converges, the noise level
in the residues becomes relatively high. Hence, while continuing the iteration adds
the details, noise also comes in. When the iteration is stopped early, the features are
not restored well; when it is stopped late, the artifacts caused by the noise come out.
One has to carefully balance getting more small features and making the artifacts at
a low level. In Algorithm 1, a natural criteria (4.2) is used. But it still depends on the
exactness of the noise level estimation which can be tedious sometimes. In the spirit
of the simplicity of our algorithm, we build in a simple postprocessing procedure to
remove possible artifacts from noise instead of carefully estimating the stopping point
of the iteration. We use a bilateral filter [48] as a post processing procedure to remove
possible artifacts. The bilateral filter is chosen, because it is edge-preserving, simple
to implement, and efficient at removing the artifacts generated by noise. Furthermore,
the bilateral filters have the same nonlocal flavor as those approaches in [38], whose
numerical results will be compared here.

Recall that given an image x, the bilateral filter outputs the filtered image y =
L(x) defined by its entry as

y[i, j] =
1

w[i, j]

∑
p,q

Gσs(
√
|i− p|2 + |j − q|2)Gσr (|f [i, j]− f [p, q]|)f [p, q], (4.3)

where Gσs and Gσr are the Gaussian functions with variance σs and σr respectively,
and

w[i, j] =
∑
p,q

Gσs(
√
|i− p|2 + |j − q|2)Gσr (|f [i, j]− f [p, q]|).

In fact, the code of [45] provided in [21] for a bilateral filter, which we use in the
postprocessing, is indeed very efficient. It takes less than half a second in one run.
Altogether, we have the following algorithm.

Algorithm 2 (Frame-Based Deblurring Algorithm + Bilateral Filter).
1. Set u0 = 0 and g0 = 0.
2. Iterate as (4.1) until (4.2) is satisfied.
3. Set f̃ = L(Fuk), where L is the bilateral filter operator defined in (4.3), as

the deblurred image.

4.2. Simulations. We first demonstrate the performance of Algorithms 1 and
2. Figures 4.1, 4.2, and 4.3 give the results of the noisy blurred image and deblurred
image by Algorithms 1 and 2. The blurring kernels are a 7 × 7 disk kernel, a 9 × 15
motion kernel, and a 15× 15 Gaussian kernel with σb = 2, respectively. As shown in
the figures, both Algorithms 1 and 2 produce good results. They are effective, since
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(a) Noise σ = 2 (b) 11 iters, 27.6dB (c) 9 iters, 28.3dB

(d) Noise σ = 5 (e) 6 iters, 25.5dB (f) 5 iters, 25.9dB

(g) Noise σ = 10 (h) 6 iters, 24.3dB (i) 4 iters, 24.6dB

Noisy Blurred Image Algorithm 1 Algorithm 2

Fig. 4.1. Deblurring results of Algorithms 1 and 2 for 256× 256 cameraman image convolved
by a 7× 7 disk kernel generated by the MATLAB command fspecial(’disk’,3) and contaminated
by a Gaussian white noise of variance σ2.

the deblurred image is given in a few steps of iterations. Note that at each iteration,
only two fast transforms (FFTs or DCTs), two convolutions, and one tight frame
decomposition and reconstruction are used. It is also shown that both algorithms are
robust to noise; e.g., when the noise is as high as σ = 10, it still gives good restorations.
By comparing these two algorithms, it is clear that Algorithm 2 performs better than
Algorithm 1 as the restored images by Algorithm 2 have higher peak signal to noise
ratios (PSNRs) than those by Algorithm 1. Moreover, there are fewer artifacts in the
images as expected by Algorithm 2. Recall that the PSNR is defined by 20 log10

255×N

‖f−f̃‖2
with f and f̃ being the original and restored images, respectively.

In the iteration in Algorithms 1 and 2, small entries of the frame coefficients
are thresholded by a very large thresholding. This leads to only big enough entries
coming out in each step. Hence, it is expected that edges will come out first and stay
as the iteration continues in Algorithms 1 and 2; i.e., the main features of images
are restored first, and details are added in as the iteration continues. This is exactly
shown in Figure 4.4, where intermediate iteration steps of the iteration in Algorithm
1 are plotted. We see that edges come first and stay as the iteration goes on, and
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(a) Noise σ = 2 (b) 31 iters, 26.7dB (c) 31 iters, 26.9dB

(d) Noise σ = 5 (e) 12 iters, 24.5dB (f) 14 iters, 25.2dB

(g) Noise σ = 10 (h) 6 iters, 23.2dB (i) 6 iters, 23.6dB

Noisy Blurred Image Algorithm 1 Algorithm 2

Fig. 4.2. Deblurring results of Algorithms 1 and 2 for 256× 256 cameraman image convolved
by a 9 × 15 motion kernel generated by the MATLAB command fspecial(’motion’,15,30) and
contaminated by a Gaussian white noise of variance σ2.

the details of the underlying image are added in as the iteration runs. Therefore, we
can stop the iteration whenever enough details are recovered. As the main objective
in image deblurring is recovering edges, this shows that the iteration in Algorithm
1 (hence Algorithm 2) takes this as the first priority. As a side product, Algorithm
1 (hence Algorithm 2) can be robust to noise. When the noise level is low, more
details can be obtained by iterating more steps. When the noise level is high, one can
stop the iteration early, while it still restores edges without much loss. This explains
why the number of steps of the iteration decreases as the noise level increases in our
experiments.

Next, we apply our methods to a real image in Figure 4.5. The blurring kernel is
estimated from two different images taken by a shaking camera on the same scene by
the method in [9]. With the estimated blurring kernel, Algorithm 1 is applied. Though
there are errors in the estimated kernel, Algorithm 1 gives a very good result for the
real image. Moreover, the numbers of iterations are very small: it takes only 14, 16,
and 17 steps of the iterations for the three channels of the color image respectively.
Since the recovered images are already very good, the postprocessing is not needed.
Hence Algorithm 2 is not required in this case.
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(a) Noise σ = 2 (b) 12 iters, 25.4dB (c) 11 iters, 25.6dB

(d) Noise σ = 5 (e) 6 iters, 24.6dB (f) 6 iters, 24.8dB

(g) Noise σ = 10 (h) 5 iters, 23.8dB (i) 5 iters, 24.1dB

Noisy Blurred Image Algorithm 1 Algorithm 2

Fig. 4.3. Deblurring results of Algorithms 1 and 2 for 256 × 256 cameraman image
convolved by a 15 × 15 Gaussian kernel of σb = 2 generated by the MATLAB command
fspecial(’Gaussian’,15,2) and contaminated by a Gaussian white noise of variance σ2.

4.3. Comparison with Wavelet-Based Methods. In this subsection, we
compare Algorithms 1 and 2 with other wavelet-based algorithms. The compared
algorithms seek sparse approximations of images under frame systems for linear in-
verse problems. Rather than solving constrained minimization (2.16) or (3.12) with
a proper stopping criteria as done in this paper, the algorithms to be compared solve
Lagrangian relaxed minimization problems, i.e., minimize energies consisting of a data
fidelity term and a regularization term.

The first algorithm to which we compare our method is the iterative thresholding
method in [27], which extends the results in [25] from orthonormal systems to frames.
It solves

min
u∈RN

1
2
‖BFu− g‖22 + λ‖u‖1

by the iteration

uk+1 = Tλ(uk + FT BT (g −BFuk)). (4.4)

We compare this iteration with ours in Figure 4.7. The parameter λ is chosen such
that the error ‖BF ũ− g‖22 ≈ σ2, where ũ is the limit of (4.4) and σ2 is the variance
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Fig. 4.4. Intermediate iteration steps of the iteration in Algorithm 1 for the image deblurring
with noise σ = 2. The top row contains the 2nd, 5th, and 8th iteration steps for the restored image
in Figure 4.1. The middle row contains the 5th, 10th, and 15th iteration steps for the restored image
in Figure 4.2. The bottom row contains the 2th, 5th, and 8th iteration steps for the restored image
in Figure 4.3.

of the noise. When ‖uk+1 − uk‖2/‖g‖2 ≤ 10−5, the iteration is stopped. It takes
thousands of iterations for the convergence of (4.4), while Algorithms 1 and 2 are
stopped in, generally, tens of iterations. The performances of Algorithms 1 and 2 are
also better than those of (4.4) in terms of PSNRs of the deblurred images.

Some intermediate steps of the iteration in Algorithm 1, and iteration (4.4), are
shown in Figure 4.8. It shows that edges at earlier steps are already sharp by Algo-
rithm 1, and the iteration adds the details in as it continues. However, for (4.4), edges
at earlier steps are blurred, and edges become sharp until enough steps of iteration
are performed. Therefore, Algorithm 1 gains more flexibility in the sense that one can
stop it whenever enough features are obtained. The same is also true for Algorithm
2, since it is essentially Algorithm 1 followed by a bilateral filter.

Another frame based algorithm that we compare ours with is the deblurring algo-
rithm in [7,12,16–18], where the deconvolution problem is converted to an inpainting
problem in a frame domain by designing a tight wavelet frame system via the unitary
extension principle of [46], with the convolution kernel being one of the masks of the
tight frames. For this, we design a tight wavelet frame system from the convolution
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Fig. 4.5. The results of Algorithm 1 applied to real images. The top row is the estimated
blurring kernel from the bottom left blurred image by the method in [9]. On the bottom row, the left
is a real image taken from a shaking camera, and the right is the restored image by Algorithm 1.
The numbers of iterations are 14, 16, and 17 for the RGB channels, respectively.

kernel. For the comparison, we choose the convolution kernel to be

h0 =
1
4

[
1
2
, 1, 1, 1,

1
2

]
, (4.5)

which arises in high-resolution image restoration [17, 18]. From this kernel, we con-
struct a framelet system with the low-pass filters being h0 by the unitary extension
principle [46]. Then a tight frame F is constructed by the method described in [8].
The iteration is

fk+1 = FTλFT

(
HT

0 g +
r∑

i=1

HT
i Hifk

)
, (4.6)

where Hi is the filtering matrix for the filter hi; see [8]. It was proven in [12,16] that
the tight frame coefficient uk := TλFT (HT

0 g+
∑r

i=1 HT
i Hifk) converges to a solution

of

min
u∈RN

1
2
‖BFu− g‖22 + ‖(I − FT F )u‖22 + λ‖u‖1.

We show the comparison results in Figure 4.6. Algorithms 1 and 2 take far fewer
iterations, and the restored images by Algorithms 1 and 2 are slightly better than
those by (4.6) in terms of PSNRs.
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(a) Noise σ = 2 (b) 8 iters, 29.7dB (c) 8 iters, 29.8dB (d) 316 iters, 29.0dB

(e) Noise σ = 5 (f) 5 iters, 27.7dB (g) 5 iters, 27.8dB (h) 164 iters, 27.4dB

(i) Noise σ = 10 (j) 4 iters, 26.4dB (k) 4 iters, 26.4dB (l) 103 iters, 22.4dB

Noisy Blurred Image Algorithm 1 Algorithm 2 Iteration (4.6)

Fig. 4.6. Comparison of Algorithms 1 and 2 with iteration (4.6).

We also show the intermediate iteration steps of the iteration in Algorithm 1, and
iteration (4.6), in Figure 4.9. Again, Algorithm 1 restores and keeps edges at earlier
steps, while details and small features are recovered step by step. On the other hand,
iteration (4.6) does not get sharp edges at earlier steps. It takes a lot of steps of the
iteration to restore sharp edges.

4.4. Comparisons with Nonlocal and Other Variational Methods. The
second set of algorithms which we compare ours with is the most recent deblurring
method based on nonlocal operators together with other variational methods based
on PDE approach. In particular, we compare Algorithms 1 and 2 with the deblurring
algorithms [38] using nonlocal operators. As a consequence, it also leads to com-
parisons with other variational algorithms as they are already compared in [38] that
include nonlocal means deblurring [6] and TV (ROF model) [47]. The settings used
here are exactly the same as those in [38]. The blurring kernels are Gaussians and
a box average, which are considered to be hard. Examples of restored images by
Algorithms 1 and 2 and the SNR values are shown in Figure 4.10.

Following [38], instead of using the PSNR as before, we use the signal to noise
ratio (SNR) to measure the quality of the restored images. Recall that the SNR is
defined by 20 log10

‖f−f̄‖2
‖f−f̃‖2

with f , f̄ , and f̃ being the original image, its mean values,
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(a) Noise σ = 2 (b) 101 iters, 22.4dB (c) 101 iters, 22.8dB (d) 1721 iters, 22.0dB

(e) Noise σ = 5 (f) 24 iters, 20.3dB (g) 24 iters, 20.9dB (h) 1825 iters, 19.4dB

(i) Noise σ = 10 (j) 10 iters, 18.9dB (k) 10 iters, 19.4dB (l) 1809 iters, 17.7dB

Noisy Blurred Image Algorithm 1 Algorithm 2 Iteration (4.4)

Fig. 4.7. Comparison of Algorithms 1 and 2 with algorithm (4.4) proposed in [27]. The blurring
kernel is a motion blur generated by the MATLAB command fspecial(’motion’,15,30).

Fig. 4.8. Comparison of intermediate iteration steps of the iteration in Algorithm 1 with
iteration (4.4) for the image deblurring in Fig 4.7 with σ = 2. The top row shows the 10th, 20th,
and 50th iteration steps of the iteration in Algorithm 1. The bottom row shows the 10th, 100th, and
1000th iteration steps of (4.4).

and the restored images, respectively. The SNR results are summarized in Table 4.1,
where the SNR values are averages of 10 runs. The corresponding deblurring results
by other PDE-based algorithms for the same blurring kernel and the same level of
noise are shown in Table 4.2, which is provided by Table II in [38]. These tables show
that both Algorithms 1 and 2 perform better in terms of SNR than the ROF model
in [47] and are comparable to the most advanced nonlocal algorithms.

In summary, while our algorithm is simple and fast, its performance is compa-
rable to the benchmark algorithms known in the literature. The keys to make the
algorithms work are: (a) the linearized Bregman iteration, which restores the main
features of images first and adds details as the iteration continues, (b) the tight frames,
whose redundancy makes the sparse approximation more robust, and (c) the precon-
ditioning techniques, which accelerate the convergence. We further remark that here
we choose only the simplest redundant tight framelet system. It can be expected that
performance can be even better when more adaptive frame systems are used. Since
our aim here is to make the implementation simple, we forgo further tune-ups of the
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Fig. 4.9. Comparison of intermediate iteration steps of the iteration in Algorithm 1 with
iteration (4.6) for the image deblurring in Fig 4.6 with σ = 2. The top row shows the 2nd, 4th, and
6th iteration steps of the iteration in Algorithm 1. The bottom row shows the 5th, 50th, and 150th
iteration steps of (4.6).

Image Shape Barbara Cameraman
Blur kernel Gaussian σb = 2 Gaussian σb = 1 9× 9 box average

noise σ = 10 σ = 5 σ = 3
Algorithm 1 16.19 12.10 13.25
Algorithm 2 18.45 12.11 13.58

Table 4.1
SNR results in dB of Algorithms 1 and 2. The results are averages of 10 runs.

implementations. However, this does not prevent us from foreseeing the potential of
the algorithms provided here.

4.5. Split Bregman iteration deblurring. Instead of finding a sparsest frame
coefficient solution of the deblurring problem in the frame domain as in (2.15) and
(4.4), one may find the sparsest canonical frame coefficient solution. This amounts to
solving the following problem:

min
f∈RM

1
2
‖Bf − g‖22 + µ‖FT f‖1. (4.7)

Since the weighted norm of canonical frame coefficients links the function norm of
the underlying image, it gives a smoother solution. The hard part is that the thresh-
olding cannot keep the resulting frame coefficients canonical. It turns out that the
split Bregman iteration in [33] is very handy here. The basic idea is to transfer the
unconstrained minimization (4.7) to a constrained one as follows:





min
f∈RM

1
2
‖Bf − g‖22 + µ‖u‖1

s.t. u = FT f .
(4.8)
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(a) Noise σ = 10, Gaus-
sian kernel σb = 2

(b) 16 iters, snr 16.21dB (c) 16 iters, snr 18.61dB

(d) Noise σ = 5, Gaus-
sian kernel σb = 1

(e) 12 iters, snr 12.11dB (f) 12 iters, snr 12.12dB

(g) Noise σ = 3, 9 × 9
box average kernel

(h) 15 iters, snr 13.28dB (i) 15 iters, snr 13.63dB

Noisy Blurred Image Algorithm 1 Algorithm 2

Fig. 4.10. The restored shape, Barbara, and cameraman images (from top to bottom) by Algo-
rithms 1 and 2. The settings are the same as those in [38].

Then, an inexact Bregman iteration algorithm is applied. This is the splitting Breg-
man algorithm. It generates a sequence by, starting from f0 = 0, u0 = 0, and b0 = 0,





fk+1 = arg min
f∈RM

λ

2
‖FT f − (uk − bk)‖22 +

1
2
‖Bf − g‖22,

uk+1 = arg min
u∈RN

λ

2
‖u− (FT fk+1 + bk)‖22 + µ‖u‖1,

bk+1 = bk + (FT fk+1 − uk+1).

(4.9)

In each iteration, the first two steps can be repeated several times before the third step
is performed. Notice that the second step is cheap to compute, since it is reduced to
a soft-thresholding. However, it is hard to find the solution of the first step, because
it is equivalent to solving the system of linear equations

fk+1 = (λI + BT B)−1[λF (uk − bk) + BT g].

Since BT B is a convolution, we can use circulant preconditioned conjugate gradient
(PCG) to solve it efficiently; see [19]. We compare the linearized Bregman deblurring
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Image Shape Barbara Cameraman
Blur kernel Gaussian σb = 2 Gaussian σb = 1 9× 9 box average

noise σ = 10 σ = 5 σ = 3
Wiener filter [1] 13.20 10.57 11.29

ROF [47] 14.22 10.71 12.34
Nonlocal means deblur (NL-means) [6] 16.19 12.09 12.43
Nonlocal total variation (NLTV) [38] 17.53 11.95 12.75

Wiener + NLTV [38] 20.19 12.45 13.50
Table 4.2

SNR results in dB of other algorithms. The results are copied from Table II in [38].

(a) Noise σ = 3, 9 × 9
box average kernel

(b) 15 iters, 25.85dB (c) 34 iters, 25.58dB

Noisy Blurred Image Algorithm 2 Split Bregman (4.9)

Fig. 4.11. Comparison of Algorithm 2 and the split Bregman iteration (4.9).

(Algorithm 2) with the split Bregman iteration (4.9). For simplicity, we use the
circular boundary condition in B such that the first step in (4.9) can be solved by two
FFTs. As pointed out in [33], the algorithm can still give a good result even when
the constraint in (4.8) is satisfied with a low accuracy. Therefore, we stop the split
Bregman iteration early when ‖FT fk−uk‖2/‖g‖2 < 10−3. The comparison results are
shown in Figure 4.11. Algorithm 2 and iteration (4.9) produce comparable results,
although Algorithm 2 takes fewer steps to converge. Since the splitting Bregman
iteration and its corresponding model (4.7) are not the focus of this paper, we give
only a brief discussion here. A comprehensive study of model (4.7) and the analysis
of the splitting Bregman iteration (4.9) will be given in a forthcoming paper.
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