Displacement Structure of Weighted Pseudoinverses *

Jianfeng Cai ${ }^{1}$ Yimin Wei ${ }^{2}$
${ }^{1}$ Institute of Mathematics, Fudan University, Shanghai, 200433,PR China.
${ }^{2}$ Department of Mathematics, Fudan University, Shanghai, 200433,PR China.
E-mail: ymwei@fudan.edu.cn

Abstract

Estimates for the rank of $A_{M N}^{\dagger} V-U A_{M N}^{\dagger}$ and more general displacement of $A_{M N}^{\dagger}$ are presented, where $A_{M N}^{\dagger}$ is the weighted pseudoinverse of a matrix A. The results are applied to the close-to-Toeplitz,close-to-Vandermonde and close-to-Cauchy matrices. We extend the results due to G. Heinig and F. Hellinger in 1994.

Keywords:displacement, weighted pseudoinverse, structured matrix
AMS subject classification:15A09,65F20

1 Introduction

The modern study of structured matrices was largely motivated by $[6,7]$, in which a basic concept of the displacement rank was introduced.If the rank of a matrix's displacement is small,fast algorithms for the matrix are available. If the $U V$-displacement of matrix A fulfills a Sylvester equation

$$
A U-V A=E,
$$

we call it Sylvester $U V$-displacement.If it fulfills a Stein equation

$$
A-V A U=E,
$$

we call it Stein $U V$-displacement.For example,a Toeplitz matrix T have Stein displacement $T-Z_{m}^{*} T Z_{n}=E$ and the rank of the displacement is 2,so fast algorithms have been constructed.For Sylvester and Stein displacement,if A is invertible, it is easy to show that the

[^0]rank of $V U$-displacement of A^{-1} is same to the rank of $U V$-displacement of A. In $[2,3,18]$ the $V U$-displacement of pseudoinverse and group inverse were discussed if A is not invertible.In our paper, we are interested in generalized inverses with as small as possible rank.

We present the representation of the weighted pseudoinverse $A_{M N}^{\dagger}$ of the matrix A.This means we study the so-called displacement $A_{M N}^{\dagger} V-U A_{M N}^{\dagger}$ or $A_{M N}^{\dagger}-U A_{M N}^{\dagger} V$ for structured matrix A.The detail of the weighted pseudoinverse and weighted linear least squares solution can be found in $[4,5,9,11-17]$.

Let $M \in C^{m \times m}, N \in C^{n \times n}$ be Hermitian positive definite matrices. We define the weighted inner product in C^{m} and C^{n} :

$$
\begin{aligned}
& (x, y)_{M}=y^{*} M x, \quad x, y \in C^{m} \\
& (x, y)_{N}=y^{*} N x, \quad x, y \in C^{n}
\end{aligned}
$$

So, the weighted conjugate transpose matrix $A^{\sharp}=N^{-1} A^{*} M$ of $A \in C^{m \times n}$ can be defined by

$$
(A x, y)_{M}=\left(x, A^{\sharp} y\right)_{N} \quad \forall x \in C^{m}, y \in C^{n} .
$$

The weighted pseudoinverse of $A \in C^{m \times n}$ is the unique solution $A_{M N}^{\dagger}[1]$ of the following four equations:

$$
A A_{M N}^{\dagger} A=A, \quad A_{M N}^{\dagger} A A_{M N}^{\dagger}=A_{M N}^{+}, \quad\left(A A_{M N}^{\dagger}\right)^{\sharp}=A A_{M N}^{\dagger}, \quad\left(A_{M N}^{\dagger} A\right)^{\sharp}=A_{M N}^{\dagger} A .
$$

From the weighted singular value decomposition (SVD)[10], we know that for any $m \times n$ matrix A with rank r, there exist two weighted unitary matrices $R \in C^{m \times m}, S \in C^{n \times n}$ such that

$$
A=R\left(\begin{array}{cc}
\Sigma & 0 \tag{1}\\
0 & 0
\end{array}\right) S^{*}
$$

and $R^{*} M R=I_{m}, S^{*} N^{-1} S=I_{n}$, where $\Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{r}\right)$ and $\sigma_{1} \geq \sigma_{2} \geq \cdots \sigma_{r}>0$ are nonzero eigenvalues of $A^{\sharp} A$. The weighted pseudoinverse $A_{M N}^{\dagger}$ has an explicit expression given by:

$$
A_{M N}^{\dagger}=N^{-1} S\left(\begin{array}{cc}
\Sigma^{-1} & 0 \tag{2}\\
0 & 0
\end{array}\right) R^{*} M
$$

We introduce

$$
Q_{(M N)} \equiv A_{M N}^{\dagger} A, \quad Q_{(M N) *} \equiv A A_{M N}^{\dagger}, \quad P_{(M N)} \equiv I_{n}-Q_{(M N)}, \quad P_{(M N) *} \equiv I_{m}-Q_{(M N) *}
$$

It is easy to show that

$$
\begin{gathered}
\operatorname{Im}\left(Q_{(M N)}\right)=\operatorname{Im}\left(A^{\sharp}\right)=\operatorname{Im}\left(A_{M N}^{\dagger}\right), \quad \operatorname{Im}\left(Q_{(M N) *}\right)=\operatorname{Im}(A) ; \\
\operatorname{Im}\left(P_{(M N)}\right)=\operatorname{Ker}(A), \quad \operatorname{Im}\left(P_{(M N) *}\right)=\operatorname{Ker}\left(A_{M N}^{\dagger}\right)=\operatorname{Ker}\left(A^{\sharp}\right) .
\end{gathered}
$$

2 Displacement structure for Sylvester displacement

At first, we discuss the Sylvester displacement structure of the weighted pseudoinverse $A_{M N}^{\dagger}$ of $A \in C^{m \times n}$.

Proposition 2.1. Let $A \in C^{m \times n}, U \in C^{n \times n}$ and $V \in^{m \times m}$, then

$$
\begin{equation*}
A_{M N}^{\dagger} V-U A_{M N}^{\dagger}=A_{M N}^{\dagger} V P_{(M N) *}-P_{(M N)} U A_{M N}^{\dagger}-A_{M N}^{\dagger}(A U-V A) A_{M N}^{\dagger} \tag{3}
\end{equation*}
$$

Proof. Since

$$
A_{M N}^{\dagger}(A U-V A) A_{M N}^{\dagger}=\left(I-P_{(M N)}\right) U A_{M N}^{\dagger}-A_{M N}^{\dagger} V\left(I-P_{(M N) *}\right)
$$

we can immediately draw the conclusion.
Lemma 2.1. The $V U$-displacement rank of $A_{M N}^{\dagger}$ satisfies the following estimate:

$$
\begin{equation*}
\operatorname{rank}\left(A_{M N}^{\dagger} V-U A_{M N}^{\dagger}\right) \leq \operatorname{rank}\left(Q_{(M N) *} V P_{(M N) *}\right)+\operatorname{rank}\left(P_{(M N)} U Q_{(M N)}\right)+\operatorname{rank}(A U-V A) \tag{4}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\operatorname{rank}\left(A_{M N}^{\dagger} V P_{(M N) *}\right) & =\operatorname{rank}\left(A_{M N}^{\dagger} V P_{(M N) *}\right)^{\sharp}=\operatorname{dim}\left[P_{(M N) *} V^{\sharp} \operatorname{Im}\left(A_{M N}^{\dagger}\right)^{\sharp}\right] \\
& =\operatorname{dim}\left[P_{(M N) *} V^{\sharp} \operatorname{Im}\left(Q_{(M N) *}\right)\right]=\operatorname{rank}\left(Q_{(M N) *} V P_{(M N) *}\right)^{\sharp} \\
& =\operatorname{rank}\left(Q_{(M N) *} V P_{(M N) *}\right) \\
\operatorname{rank}\left(P_{(M N)} U A_{M N}^{\dagger}\right) & =\operatorname{dim}\left[P_{(M N)} U I m\left(A_{M N}^{\dagger}\right)\right]=\operatorname{dim}\left[P_{(M N)} U \operatorname{Im}\left(Q_{(M N)}\right)\right] \\
& =\operatorname{rank}\left(P_{(M N)} U Q_{(M N)}\right)
\end{aligned}
$$

Taking these two into account, we obtain (4).
Proposition 2.2. Let $A \in C^{m \times n}, U \in C^{n \times n}$ and $V \in^{m \times m}$, then

$$
\begin{equation*}
\operatorname{rank}\left(P_{(M N)} U Q_{(M N)}\right)+\operatorname{rank}\left(Q_{(M N) *} V P_{(M N) *}\right) \leq \operatorname{rank}\left(A U^{\sharp}-V^{\sharp} A\right), \tag{5}
\end{equation*}
$$

where $U^{\sharp}=N^{-1} U^{*} N$ and $V^{\sharp}=M^{-1} V^{*} M$.
Proof. We set $F \equiv A U^{\sharp}-V^{\sharp} A$.Let

$$
A=R\left(\begin{array}{ll}
\Sigma & 0 \\
0 & 0
\end{array}\right) S^{*}
$$

be the weighted SVD of A.Partition

$$
R^{*} M V^{\sharp} R=\left(\begin{array}{cc}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right), \quad S^{*} U^{\sharp} N^{-1} S=\left(\begin{array}{cc}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{array}\right),
$$

where $U_{11}, V_{11} \in C^{r \times r}$ and $r=\operatorname{rank}(A)$.Therefore,

$$
R^{*} M F N^{-1} S=\left(\begin{array}{cc}
\Sigma U_{11}-V_{11} \Sigma & \Sigma U_{12} \\
V_{21} \Sigma & 0
\end{array}\right)
$$

Since

$$
Q_{(M N)} U^{\sharp} P_{(M N)}=N^{-1} S\left(\begin{array}{cc}
0 & U_{12} \\
0 & 0
\end{array}\right) S^{*}
$$

and

$$
P_{(M N) *} V^{\sharp} Q_{(M N) *}=R\left(\begin{array}{cc}
0 & 0 \\
V_{21} & 0
\end{array}\right) R^{*} M,
$$

it follows from [8] that

$$
\begin{aligned}
\operatorname{rank}(F) & =\operatorname{rank}\left(R^{*} M F N^{-1} S\right) \\
& \geq \operatorname{rank}\left(\Sigma U_{12}\right)+\operatorname{rank}\left(V_{21} \Sigma\right) \\
& =\operatorname{rank}\left(U_{12}\right)+\operatorname{rank}\left(V_{21}\right) \\
& =\operatorname{rank}\left(Q_{(M N)} U^{\sharp} P_{(M N)}\right)+\operatorname{rank}\left(P_{(M N) *} V^{\sharp} Q_{(M N) *}\right) \\
& =\operatorname{rank}\left(P_{(M N)} U Q_{(M N)}\right)+\operatorname{rank}\left(Q_{(M N) *} V P_{(M N) *}\right) .
\end{aligned}
$$

From Proposition 2.1,2.2 and Lemma 2.1,we conclude that
Theorem 2.1. Let $A \in C^{m \times n}$ and $A_{M N}^{\dagger}$ its weighted pseudoinverse. Then

$$
\begin{equation*}
\operatorname{rank}\left(A_{M N}^{\dagger} V-U A_{M N}^{\dagger}\right) \leq \operatorname{rank}(A U-V A)+\operatorname{rank}\left(A U^{\sharp}-V^{\sharp} A\right) \tag{6}
\end{equation*}
$$

Corollary 2.1. If U, V are both weighted self-adjoint $U=U^{\sharp}, V=V^{\sharp}$ or weighted unitary $U^{-1}=U^{\sharp}, V^{-1}=V^{\sharp}$, then

$$
\begin{equation*}
\operatorname{rank}\left(A_{M N}^{\dagger} V-U A_{M N}^{\dagger}\right) \leq 2 \operatorname{rank}(A U-V A) \tag{7}
\end{equation*}
$$

3 Displacement structure for generalized displacement

In order to generalize Theorem 2.1 we introduce a generalized displacement concept[2].Let $a=\left[a_{i j}\right]_{0}^{1}$ denote a nonsingular 2×2 matrix. We associate a with the polynomial in two variables

$$
a(\lambda, \mu)=\sum_{i, j=0}^{1} a_{i j} \lambda^{i} \mu^{j}
$$

and the linear fractional function

$$
f_{a}(\lambda)=\frac{a_{10}+a_{11} \lambda}{a_{00}+a_{01} \lambda} .
$$

For any fixed $U \in C^{n \times n}$ and $V \in C^{m \times m}$, the generalized (a, U, V) displacement of $A \in C^{m \times n}$ generated by $a(\lambda, \mu)$ is defined by

$$
a(V, U) A=\sum_{i, j=0}^{1} a_{i j} V^{i} A U^{j} .
$$

If

$$
a=d \equiv\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right],
$$

we just get Sylvester displacement that we have discussed in Section 2.If

$$
a=d \equiv\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],
$$

we get Stein displacement.
Lemma 3.1. $[2] \quad$ Let $a=\left[a_{i j}\right]_{0}^{1}, b=\left[b_{i j}\right]_{0}^{1}, c=\left[c_{i}\right]_{0}^{1}, d=\left[d_{i j}\right]_{0}^{1}$ be nonsingular 2×2 matrices such that

$$
\begin{equation*}
a=b^{T} d c, \tag{8}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(b_{00}+b_{01} \lambda\right)^{-1} a(\lambda, \mu)\left(c_{00}+c_{01} \mu\right)^{-1}=d\left(f_{b}(\lambda), f_{c}(\mu)\right) . \tag{9}
\end{equation*}
$$

Lemma 3.2. $[2] \quad$ Let $d=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$,then there exist 2×2 matrices b, c such that (8) holds and $b_{00}+b_{01} V$ and $c_{00}+c_{01} U$ are invertible.

Taken Lemma 3.1 and Lemma 3.2 together, we obtain the following
Proposition 3.1.[2] Let b and c be matrices satisfying the conditions in Lemma 3.2,then for $A \in C^{m \times n}$,

$$
a(V, U) A=\left(b_{00}+b_{01} V\right)\left[A f_{c}(U)-f_{b}(V) A\right]\left(c_{00}+c_{01} U\right) .
$$

The following is very important to generalize Theorem 2.1 for general (a, U, V) displacement.

Proposition 3.2.

(a) If $\phi=\left[\phi_{i j}\right]_{0}^{1}$ is nonsingular and $\phi_{00}+\phi_{01} U$ is invertible,then

$$
\operatorname{rank}\left(P_{(M N)} U Q_{(M N)}\right)=\operatorname{rank}\left(P_{(M N)} \tilde{U} Q_{(M N)}\right),
$$

where $\tilde{U} \equiv f_{\phi}(U)$.
(b) If $\psi=\left[\psi_{i j}\right]_{0}^{1}$ is nonsingular and $\psi_{00}+\psi_{01} V$,then

$$
\operatorname{rank}\left(Q_{(M N) *} V P_{(M N) *}\right)=\operatorname{rank}\left(Q_{(M N) *} \tilde{V} P_{(M N) *}\right),
$$

where $\tilde{V} \equiv f_{\psi}(V)$.
Proof. We define

$$
\mathcal{S}=\operatorname{Ker}(A) \cap \operatorname{Ker}\left(A U^{\sharp}\right) \quad, \quad \mathcal{S}_{1}=\operatorname{Ker}(A) \ominus \mathcal{S} .
$$

We show that $Q_{(M N)} U^{\sharp}$ is one-to-one on \mathcal{S}_{1}.If $Q_{(M N)} U^{\sharp} x=0$ and $x \in \mathcal{S}_{1}$, then $U^{\sharp} x \in$ $\operatorname{Ker}\left(Q_{(M N)}\right)=\operatorname{Ker}(A)$.That means $A U^{\sharp} x=0$.Noting that $x \in \operatorname{Ker}(A)$, we conclude $x \in$ \mathcal{S}.Thus $x=0$.

Furthermore, $Q_{(M N)} U^{\sharp} x=0$ for all $x \in \mathcal{S}$. Hence

$$
\begin{equation*}
\operatorname{rank}\left(P_{(M N)} U Q_{(M N)}\right)=\operatorname{rank}\left(Q_{(M N)} U^{\sharp} P_{(M N)}\right)=\operatorname{dim}\left(\mathcal{S}_{1}\right) . \tag{10}
\end{equation*}
$$

Analogously we define

$$
\tilde{\mathcal{S}}=\operatorname{Ker}(A) \cap \operatorname{Ker}\left(A \tilde{U}^{\sharp}\right) \quad, \quad \tilde{\mathcal{S}}_{1}=\operatorname{Ker}(A) \ominus \tilde{\mathcal{S}},
$$

and we will get

$$
\begin{equation*}
\operatorname{rank}\left(P_{(M N)} \tilde{U} Q_{(M N)}\right)=\operatorname{rank}\left(Q_{(M N)} \tilde{U}^{\sharp} P_{(M N)}\right)=\operatorname{dim}\left(\tilde{\mathcal{S}}_{1}\right) . \tag{11}
\end{equation*}
$$

Now we show that the invertible matrix $\bar{\phi}_{00}+\bar{\phi}_{01} U^{\sharp}$ bijectively maps \mathcal{S} onto $\tilde{\mathcal{S}}$. Suppose that $x \in \mathcal{S}$.Then $x, U^{\sharp} x \in \operatorname{Ker}(A)$.Hence $y \equiv\left(\bar{\phi}_{10}+\bar{\phi}_{11} U^{\sharp}\right) x$ and $z \equiv\left(\bar{\phi}_{00}+\bar{\phi}_{01} U^{\sharp}\right) x$ are all contained in $\operatorname{Ker}(A)$. Thus $y=\tilde{U}^{\sharp} z$ and we conclude that $z, \tilde{U}^{\sharp} z \in \operatorname{Ker}(A)$, which implies $z \in \tilde{\mathcal{S}}$. Convesely, with the same arguments we get $\left(\bar{\phi}_{00}+\bar{\phi}_{01} U^{\sharp}\right)^{-1} z \in \mathcal{S}$ for all $z \in \tilde{\mathcal{S}}$.

This implies

$$
\operatorname{dim}\left(\mathcal{S}_{1}\right)=\operatorname{dim}[\operatorname{Ker}(A)]-\operatorname{dim}(\mathcal{S})=\operatorname{dim}[\operatorname{Ker}(A)]-\operatorname{dim}(\tilde{\mathcal{S}})=\operatorname{dim}\left(\tilde{\mathcal{S}}_{1}\right)
$$

According to (10) and (11), we get assertion (a).
Assertion (b) is proved analogously.
Now we can generalize Theorem 2.1 for general (a, U, V) displacement.
Theorem 3.1. Let a, b be 2×2 nonsingular matrices, then

$$
\begin{equation*}
\left.\operatorname{rank}\left[a(U, V) A_{M N}^{\dagger}\right)\right] \leq \operatorname{rank}\left[a^{T}(V, U) A\right]+\operatorname{rank}\left[b\left(V^{\sharp}, U^{\sharp}\right) A\right] . \tag{12}
\end{equation*}
$$

Proof. According to Lemma 3.2 there exist 2×2 matrices w, x, y, z such that $w_{00}+w_{01} U$, $x_{00}+x_{01} V, y_{00}+y_{01} U, z_{00}+z_{01} V$ are invertible and

$$
\begin{aligned}
a & =w^{T} d z \\
b & =x^{*} d \bar{y}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \operatorname{rank}\left[a(U, V) A_{M N}^{\dagger}\right]-\operatorname{rank}\left[a^{T}(V, U) A\right] \\
= & \operatorname{rank}\left[f_{w}(U) A_{M N}^{\dagger}-A_{M N}^{\dagger} f_{z}(V)\right]-\operatorname{rank}\left[f_{z}(V) A-A f_{w}(U)\right] \\
\leq & \operatorname{rank}\left[P_{(M N)} f_{w}(U) Q_{(M N)}\right]+\operatorname{rank}\left[Q_{(M N) *} f_{z}(V) P_{(M N) *}\right] \\
= & \operatorname{rank}\left[P_{(M N)} f_{y}(U) Q_{(M N)}\right]+\operatorname{rank}\left[Q_{(M N) *} f_{x}(V) P_{(M N) *}\right] \\
\leq & \operatorname{rank}\left[f_{\bar{x}}\left(V^{\sharp}\right) A-A f_{\bar{y}\left(U^{\sharp}\right)}\right] \\
= & \operatorname{rank}\left[b\left(V^{\sharp}, U^{\sharp}\right) A\right] .
\end{aligned}
$$

Corollary 3.1. If U, V are weighted unitary or weighted self-adjoint matrix, then

$$
\begin{equation*}
\operatorname{rank}\left[a(U, V) A_{M N}^{\dagger}\right] \leq 2 \operatorname{rank}\left[a^{T}(V, U) A\right] \tag{13}
\end{equation*}
$$

Proof. Let

$$
b= \begin{cases}a^{T} & \text { if } U^{\sharp}=U, V^{\sharp}=V, \\ i a^{T} & \text { if } U^{\sharp}=U, V^{\sharp}=V^{-1}, \\ a^{T} i & \text { if } U^{\sharp}=U^{-1}, V^{\sharp}=V, \\ i a^{T} i & \text { if } U^{\sharp}=U^{-1}, V^{\sharp}=V^{-1},\end{cases}
$$

where i denote the matrix $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.We immediately obtain (13) from Theorem 3.1.

4 Computation of the displacement

For practical purpose it is important to know not only the displacement rank of $A_{M N}^{\dagger}$ but the explicit form of the displacement.For simplicity we restrict our explantation to the case of Sylvester displacement and to the case of a matrix A.

Our starting point is (3).
(1) If we know the full-rank decomposition (For many structured matrices, it is easy to get the decomposition.)

$$
A U-V A=G F^{*}=\sum_{i=1}^{r} g_{i} f_{i}^{*}
$$

we only need to compute the weighted least squares solutions $[1,15] A_{M N}^{\dagger} g_{i}$ and $f_{i}^{*} A_{M N}^{\dagger}$ to get

$$
A_{M N}^{\dagger}(A U-V A) A_{M N}^{\dagger}
$$

(2) For the purpose to get $A_{M N}^{\dagger} V P_{(M N) *}$, we start with another full-rank decomposition

$$
A^{\sharp} V-U A^{\sharp}=K L^{*} .
$$

We denote $C \equiv\left[\begin{array}{c}A^{*} M^{1 / 2} \\ L^{*} M^{-1 / 2}\end{array}\right]$. It is obvious that $\operatorname{Ker}(C) \subseteq M^{-1 / 2} \operatorname{Ker}\left(A^{*}\right)$, so we can find an orthonormal system of vectors w_{1}, \cdots, w_{p} forming a basis of the orthogonal complement of $\operatorname{Ker}(C)$ in $M^{-1 / 2} \operatorname{Ker}\left(A^{*}\right)$.If we introduce the matrix $W=\left[w_{1}, \cdots, w_{p}\right]$,then we have

$$
M^{-1 / 2} \operatorname{Ker}\left(A^{*}\right)=\operatorname{Ker}(C) \oplus \operatorname{Im}(W)
$$

Proposition 4.1. Let $R \equiv M^{-1 / 2} W W^{*} M^{1 / 2}$, then

$$
\begin{equation*}
R P_{(M N) *}=R \tag{14}
\end{equation*}
$$

Proof. It is obvious that

$$
\operatorname{Im}\left(R Q_{(M N) *}\right)=R \operatorname{Im}\left(Q_{(M N) *}\right)=R \operatorname{Im}(A)=\operatorname{Im}(R A)=\operatorname{Im}\left(M^{-1 / 2} W W^{*} M^{1 / 2} A\right)
$$

Noting that $\operatorname{Im}(W) \subseteq M^{-1 / 2} \operatorname{Ker}\left(A^{*}\right)$, we get

$$
A^{*} M^{1 / 2} W=0
$$

Hence, $W^{*} M^{1 / 2} A=0$. So, we conclude $R Q_{(M N) *}=0$. Taking $P_{(M N) *}=I_{m}-Q_{(M N) *}$ into account, we obtain (14).

Proposition 4.2. Let R be defined as Proposition 4.1, then

$$
\begin{equation*}
A_{M N}^{\dagger} V\left(I_{m}-R\right) P_{(M N) *}=0 \tag{15}
\end{equation*}
$$

Proof. In view of $\operatorname{Im}\left(P_{(M N) *}\right)=\operatorname{Ker}\left(A^{\sharp}\right)$,one can easily check

$$
\begin{aligned}
\operatorname{Im}\left[A_{M N}^{\dagger} V\left(I_{m}-R\right) P_{(M N) *}\right] & =A_{M N}^{\dagger} V M^{-1 / 2}\left(I_{m}-W W^{*}\right) M^{1 / 2} \operatorname{Ker}\left(A^{\sharp}\right) \\
& =A_{M N}^{\dagger} V M^{-1 / 2}\left(I_{m}-W W^{*}\right) M^{-1 / 2} \operatorname{Ker}\left(A^{*}\right) .
\end{aligned}
$$

For all $x \in M^{-1 / 2} \operatorname{Ker}\left(A^{*}\right)$, there exists a unique decomposition $x=y+z$ such that $y \in$ $\operatorname{Ker}(C)$ and $z \in \operatorname{Im}(W)$. Noting $W W^{*}$ is an orthogonal projection onto $\operatorname{Im}(W)$, we get $\left(I_{m}-W W^{*}\right)(y+z)=y \in \operatorname{Ker}(C)$.Hence

$$
\begin{equation*}
\operatorname{Im}\left[A_{M N}^{\dagger} V\left(I_{m}-R\right) P_{(M N) *}\right] \subseteq A_{M N}^{\dagger} V M^{-1 / 2} \operatorname{Ker}(C) \tag{16}
\end{equation*}
$$

Now we show $A_{M N}^{\dagger} V M^{1 / 2} \operatorname{Ker}(C)=0$.Surpose $x \in \operatorname{Ker}(C)$.Then

$$
A^{*} M^{1 / 2} x=0 \text { and } L^{*} M^{-1 / 2} x=0
$$

Hence,

$$
A^{\sharp} V M^{-1 / 2} x-U A^{\sharp} M^{-1 / 2} x=K L^{*} M^{-1 / 2} x=0 .
$$

Thus,

$$
A^{\sharp} V M^{-1 / 2} x=U A^{\sharp} M^{-1 / 2} x=U N^{-1} A^{*} M^{1 / 2} x=0 .
$$

So, we have $V M^{-1 / 2} x \in \operatorname{Ker}\left(A^{\sharp}\right)=\operatorname{Ker}\left(A_{M N}^{\dagger}\right)$.This means $A_{M N}^{\dagger} V M^{-1 / 2} \operatorname{Ker}(C)=0$.
Noting (16), we obtain (15).
According to Proposition 4.1 and 4.2 ,we have

$$
A_{M N}^{\dagger} V P_{(M N) *}=A_{M N}^{\dagger} V M^{-1 / 2} W W^{*} M^{1 / 2}
$$

(3) We proceed analogously for $P_{(M N)} U A_{M N}^{\dagger}$. Let $C_{*} \equiv\left[\begin{array}{l}A N^{-1 / 2} \\ K^{*} N^{1 / 2}\end{array}\right]$ and $S \equiv N^{-1 / 2} Z Z^{*} N^{1 / 2}$, where $Z=\left[z_{1}, \cdots, z_{q}\right]$ and z_{1}, \cdots, z_{q} is an orthonormal basis of the orthogonal complement of $\operatorname{Ker}\left(C_{*}\right)$ in $\operatorname{Ker}\left(A N^{-1 / 2}\right)$.The result obtained is

$$
P_{(M N)} U A_{M N}^{\dagger}=S U A_{M N}^{\dagger}=N^{-1 / 2} Z Z^{*} N^{1 / 2} U A_{M N}^{\dagger}
$$

In order to compute the displacement,one have to find $2 r$ weighted least squares solutions $A_{M N}^{\dagger} g_{i}$ and $f_{i}^{*} A_{M N}^{\dagger}$, where $r=\operatorname{rank}(A U-V A)$, and $p+q$ weighted least squares solutions $A_{M N}^{\dagger} V M^{-1 / 2} w_{i}(i=1, \cdots, p)$ and $z_{j}^{*} N^{1 / 2} U A_{M N}^{\dagger}(j=1, \cdots, q)$, where $p+q \leq \operatorname{rank}\left(A^{\sharp} V-\right.$ $\left.U A^{\sharp}\right)$ 。

5 Full rank matrices

In this section we consider a special case that A has full rank.If this condition is fulfilled, then $A_{M N}^{\dagger}$ has an explicit form given by $A_{M N}^{\dagger}=A^{\sharp}\left(A A^{\sharp}\right)^{-1}$ or $A_{M N}^{\dagger}=\left(A^{\sharp} A\right)^{-1} A^{\sharp}$.

We show that under the assumption made above one can find a more general estimate for the displacement rank.In fact,in the case under consideration the $U^{\sharp} V^{\sharp}$-displacement can be displaced by the $U^{\sharp} W^{\sharp}$-displacement for arbitrary $W \in C^{m \times m}$, or by the $W^{\sharp} V^{\sharp}$-displacement for arbitrary $W \in C^{n \times n}$. This is important for a series of applications.

We will start with Sylvester displacement as we have done in Section 2.Then we generalize it to the generalized displacement.

Proposition 5.1. Let $A, U, V, P_{(M N)}, P_{(M N) *}$ be defined as before and $W_{1} \in C^{n \times n}, W_{2} \in$ $C^{m \times m}$ are arbitrary, then

$$
\begin{aligned}
A_{M N}^{\dagger} V-U A_{M N}^{\dagger} & =\left(A^{\sharp} A+P_{(M N)}\right)^{-1}\left(A^{\sharp} V-W_{1} A^{\sharp}\right) P_{(M N) *} \\
& +P_{(M N)}\left(A^{\sharp} W_{2}-U A^{\sharp}\right)\left(A A^{\sharp}+P_{(M N) *}\right)^{-1}-A_{M N}^{\dagger}(A U-V A) A_{M N}^{\dagger} .
\end{aligned}
$$

Proof. By the weighted SVD, we have $P_{(M N)} A^{\sharp}=0$ and $A^{\sharp} P_{(M N) *}=0$.Hence,

$$
P_{(M N)} A^{\sharp} W_{2}\left(A A^{\sharp}+P_{(M N)} *\right)^{-1}=0 \quad \text { and } \quad\left(A^{\sharp} A+P_{(M N)}\right)^{-1} W_{1} A^{\sharp} P_{(M N) *}=0 .
$$

According to the weighted SVD, one can easily check that

$$
A_{M N}^{\dagger}=\left(A^{\sharp} A+P_{(M N)}\right)^{-1} A^{\sharp}=A^{\sharp}\left(A A^{\sharp}+P_{(M N) *}\right)^{-1} .
$$

Taking this into account and noting (3), we get the result.
We can immediately get the following two theorems through Proposition 5.1.
Theorem 5.1. Let $A \in C^{m \times n}$ be of row full rank and $m<n$, then for any arbitrary $W \in C^{m \times m}$,

$$
\begin{equation*}
\operatorname{rank}\left(A_{M N}^{\dagger} V-U A_{M N}^{\dagger}\right) \leq \operatorname{rank}(A U-V A)+\operatorname{rank}\left(A U^{\sharp}-W^{\sharp} A\right) \tag{17}
\end{equation*}
$$

Theorem 5.2. Let $A \in C^{m \times n}$ be of column full rank and $m>n$, then for any arbitrary $W \in C^{n \times n}$,

$$
\begin{equation*}
\operatorname{rank}\left(A_{M N}^{\dagger} V-U A_{M N}^{\dagger}\right) \leq \operatorname{rank}(A U-V A)+\operatorname{rank}\left(A W^{\sharp}-V^{\sharp} A\right) . \tag{18}
\end{equation*}
$$

Now we turn to the generalized displacement.
Theorem 5.3. Let $A \in C^{m \times n}$ be of full rank and $m<n$, let a, b be nonsingular 2×2 matrices, then for any arbitrary $W \in C^{m \times m}$,

$$
\begin{equation*}
\operatorname{rank}\left[a(U, V) A_{M N}^{\dagger}\right] \leq \operatorname{rank}\left[a^{T}(V, U) A\right]+\operatorname{rank}\left[b\left(W^{\sharp}, U^{\sharp}\right) A\right] . \tag{19}
\end{equation*}
$$

Proof. Under the assumptions there exist 2×2 matrices w and z such that $a=w^{T} d z$ and the matrices $w_{00}+w_{01} U$ and $z_{00}+z_{01} V$ are invertible. Furthermore,

$$
a(U, V) A_{M N}^{\dagger}=\left(w_{00}+w_{01} U\right)\left[A_{M N}^{\dagger} f_{z}(V)-f_{w}(U) A_{M N}^{\dagger}\right]\left(z_{00}+z_{01} V\right)
$$

together with

$$
A_{M N}^{\dagger} f_{z}(V)-f_{w}(U) A_{M N}^{\dagger}=-P_{(M N)} f_{w}(U) Q_{(M N)}-A_{M N}^{\dagger}\left[A f_{w}(U)-f_{z}(V) A\right] A_{M N}^{\dagger}
$$

implies

$$
\operatorname{rank}\left[a(U, V) A_{M N}^{\dagger}\right] \leq \operatorname{rank}\left[P_{(M N)} f_{w}(U) Q_{(M N)}\right]+\operatorname{rank}\left[A f_{w}(U)-f_{z}(V) A\right]
$$

Noting $a^{T}=-z^{T} d w$, we get

$$
\operatorname{rank}\left[A f_{w}(U)-f_{z}(V) A\right]=\operatorname{rank}\left[a^{T}(V, U) A\right]
$$

Under the assumptions there also exist 2×2 matrices x and y such that $a=x^{T} d y$ and the matrices $x_{00}+x_{01} W$ and $y_{00}+y_{01} U$ are invertible. Then

$$
\begin{aligned}
\operatorname{rank}\left[P_{(M N)} f_{w}(U) Q_{(M N)}\right] & =\operatorname{rank}\left[P_{(M N)} f_{y}(U) Q_{(M N)}\right] \\
& =\operatorname{rank}\left[P_{(M N)} f_{y}(U) Q_{(M N)}\right]+\operatorname{rank}\left[Q_{(M N) *} f_{x}(W) P_{(M N) *}\right] \\
& \leq \operatorname{rank}\left[A f_{\bar{y}}\left(U^{\sharp}\right)-f_{\bar{x}}\left(W^{\sharp}\right) A\right] \\
& =\operatorname{rank}\left[b\left(W^{\sharp}, U^{\sharp}\right) A\right] .
\end{aligned}
$$

The following theorem can be proved analogously.
Theorem 5.4. Let $A \in C^{m \times n}$ be of full column rank and $m>n$, let a, b be nonsingular 2×2 matrices, then for any arbitrary $W \in C^{n \times n}$,

$$
\begin{equation*}
\operatorname{rank}\left[a(U, V) A_{M N}^{\dagger}\right] \leq \operatorname{rank}\left[a^{T}(V, U) A\right]+\operatorname{rank}\left[b\left(V^{\sharp}, W^{\sharp}\right) A\right] . \tag{20}
\end{equation*}
$$

6 Applications

In this section we apply the theorems proved before to many classical structured matrices,including Toeplitz,Hankel,Cauchy and Vandermonde matrices.

6.1 Close-to-Toeplitz matrices

Close-to-Toeplitz matrices are a class of matrices whose $U V$-displacement ranks are small compared with the sizes of the matrices for U and V being (forward or backward) (block) shifts,including Toeplitz,Hankel matrices,more geneal block matrices with Toeplitz or Hankel blocks,and sums,products,and inverses of these matrices.

We consider the case

$$
U=Z_{n} \equiv\left[\begin{array}{cccc}
0 & & & \\
1 & 0 & & \\
& \ddots & \ddots & \\
& & 1 & 0
\end{array}\right] \in C^{n \times n}, \quad V=Z_{m}^{*}
$$

and let

$$
r_{+} \equiv \operatorname{rank}\left(A-Z_{m}^{*} A Z_{n}\right), r_{-} \equiv \operatorname{rank}\left(A-Z_{m} A Z_{n}^{*}\right) .
$$

Choosing

$$
a=b=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

in Theorem 3.1 and noting

$$
\operatorname{rank}\left(A-\left(Z_{m}^{*}\right)^{\sharp} A Z_{n}^{\sharp}\right)=\operatorname{rank}\left(M A N^{-1}-Z_{m} M A N^{-1} Z_{n}^{*}\right),
$$

we obtain the following
Theorem 6.1.1. Let $r_{M A N^{-1}}=\operatorname{rank}\left(M A N^{-1}-Z_{m} M A N^{-1} Z_{n}^{*}\right)$,then

$$
\operatorname{rank}\left(A_{M N}^{\dagger}-Z_{n} A_{M N}^{\dagger} Z_{m}^{*}\right) \leq r_{+}+r_{M A N^{-1}} .
$$

If the estimate of Theorem 6.1.1 is small for a close-to-matrices A, then it lead to the the famous representation formula of Gohberg-Semencul type of $A_{M N}^{\dagger}$:

$$
A_{M N}^{\dagger}=\sum_{k=1}^{r} L_{k} U_{k},
$$

where r is the displacement rank of $A_{M N}^{\dagger}$, i.e., $r_{+}+r_{M A N^{-1}}$ here.
The importance of the representations consists the fact that with their help weighted least squares solutions $A_{M N}^{\dagger}$ for a close-to-Toeplitz matrix A can be computed with the complexity $O((m+n) \log (m+n))$ if the FFT is applied.

Corollary 6.1.1.

$$
\operatorname{rank}\left(A^{\dagger}-Z_{n} A^{\dagger} Z_{m}^{*}\right) \leq r_{+}+r_{-} .
$$

Corollary 6.1.2. Let $r_{M}=\operatorname{rank}\left(M-Z_{m} M Z_{m}^{*}\right), r_{N}=\operatorname{rank}\left(N-Z_{n}^{*} N Z_{n}\right)$,then

$$
\operatorname{rank}\left(A_{M N}^{\dagger}-Z_{n} A_{M N}^{\dagger} Z_{m}^{*}\right) \leq 2 r_{+}+r_{M}+r_{N} .
$$

Proof. By [6],we have

$$
\operatorname{rank}\left(N-Z_{n}^{*} N Z_{n}\right)=\operatorname{rank}\left(N^{-1}-Z_{n} N^{-1} Z_{n}^{*}\right) .
$$

We immediately obtain the corollary by the following

$$
\begin{aligned}
& M A N^{-1}-Z_{m} M A N^{-1} Z_{n}^{*} \\
= & \left(M-Z_{m} M Z_{m}^{*}\right) A N^{-1}+Z_{m} M Z_{m}^{*} A\left(N^{-1}-Z_{n} N^{-1} Z_{n}^{*}\right)-Z_{m} M\left(A-Z_{m}^{*} A Z_{n}\right) N^{-1} Z_{n}^{*} .
\end{aligned}
$$

However, the estimate in Corollary 6.1.2 is not always small,but if we choose the weight matrices M, N such that r_{M}, r_{N} is very small compared to the size of A, then the rank of the $V U$-displacement of $A_{M N}^{\dagger}$ is also very small.For example, let M, N be Hermite positive definite Toeplitz matrices, then the displacement rank of the weighted pseudoinverse for a Toeplitz matrix is less than or equal to 8 through Corollary 6.1.2.

6.2 Close-to-Vandermonde matrices

Let $D(c)=\operatorname{diag}\left(c_{1}, \cdots, c_{m}\right)$.It is well known that the displacement $\operatorname{rank} r=\operatorname{rank}\left[\operatorname{Van}_{n}(c) Z_{n}-\right.$ $\left.D(c) \operatorname{Van}_{n}(c)\right]$ of a Vandermonde matrix $\operatorname{Van}_{n}(c)=\left[c_{i}^{j-1}\right]_{i=1, j=1}^{m, n}$ is equal to one,except for the trivial case $r=0$.Hence, an $m \times n$ matrix is said to be close-to-Vandermonde if,for certain $c \in C^{m}$, the displacement rank $\operatorname{rank}\left[A Z_{n}-D(c) A\right]$ is small compared with m and n.

We denote

$$
r \equiv \operatorname{rank}\left[A Z_{n}-D(c) A\right], \quad r^{\prime} \equiv \operatorname{rank}\left[A-D(c) A Z_{n}^{*}\right]
$$

It is easily to check that a close-to-Vandermonde matrix admits a representation

$$
\begin{equation*}
A=\sum_{i=1}^{r} D_{i} \operatorname{Van}_{n}(c) T_{i}+D_{0} \operatorname{Van}_{n}(c) \tag{21}
\end{equation*}
$$

where D_{i} are diagonal matrices and T_{i} are upper triangular Toeplitz matrices with zeros at the main diagonal.Note that the matrices D_{i} and T_{i} can be found via the full-rank decomposition of $A Z_{n}-D(c) A$, and D_{0} is related to the first column of A.

With the representation (21), we can show $r^{\prime} \leq r+1$ and in particular, if A is Vandermonde matrix, $r^{\prime}=r=1$.

Theorem 6.2.1. Let $r_{M A N^{-1}}=M A N^{-1}-D(c) M A N^{-1} Z_{n}^{*}$. Suppose that $c_{i} \in R$ or $\left|c_{i}\right|=1$ for all $i=1, \cdots, m$, then

$$
\operatorname{rank}\left[A_{M N}^{\dagger} D(c)-Z_{n} A_{M N}^{\dagger}\right] \leq r+r_{M A N^{-1}}
$$

Proof. \quad Set $b=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ if $c_{i} \in R$ and set $b=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ if $\left|c_{i}\right|=1$ in Theorem
3.1.Since

$$
\operatorname{rank}\left[A Z_{n}^{\sharp}-D(c)^{\sharp} A\right]=\operatorname{rank}\left[M A N^{-1} Z_{n}^{*}-D(c)^{*} M A N^{-1}\right]
$$

and

$$
\operatorname{rank}\left[A-D(c)^{\sharp} A Z_{n}^{\sharp}\right]=\operatorname{rank}\left[M A N^{-1}-D(c)^{*} M A N^{-1} Z_{n}^{*}\right],
$$

we immediately get the result.
We give the following corollary.

Corollary 6.2.1. Suppose that $c_{i} \in R$ or $\left|c_{i}\right|=1$ for all $i=1, \cdots, m$, then

$$
\operatorname{rank}\left[A^{\dagger} D(c)-Z_{n} A^{\dagger}\right] \leq r+r^{\prime} \leq 2 r+1
$$

Theorem 6.2.2. Let $r_{N}=\operatorname{rank}\left(N-Z_{n}^{*} N Z_{n}\right), r_{M}=\operatorname{rank}\left[M-D(c) M D(c)^{*}\right]$.Suppose that $\left|c_{i}\right|=1$ for all $i=1, \cdots, m$, then

$$
\operatorname{rank}\left[A_{M N}^{\dagger} D(c)-Z_{n} A_{M N}^{\dagger}\right] \leq 2 r+r_{M}+r_{N} .
$$

Proof. Since

$$
\begin{aligned}
& M A N^{-1}-D(c) M A N^{-1} Z_{n}^{*} \\
= & \left(M-D(c) M D(c)^{*}\right) A N^{-1}+D(c) M D(c)^{*} A\left(N^{-1}-Z_{n} N^{-1} Z_{n}^{*}\right) \\
& -D(c) M\left(A-D(c)^{*} A Z_{n}\right) N^{-1} Z_{n}^{*},
\end{aligned}
$$

noting $D(c)^{*}=D(c)^{-1}$ and by [6], we have

$$
\operatorname{rank}\left(N-Z_{n}^{*} N Z_{n}\right)=\operatorname{rank}\left(N^{-1}-Z_{n} N^{-1} Z_{n}^{*}\right),
$$

we obtain the theorem.
Theorem 6.2.3. Let $r_{N}^{\prime}=\operatorname{rank}\left(N Z_{n}-Z_{n}^{*} N\right), r_{M}^{\prime}=\operatorname{rank}[M D(c)-D(c) M]$.Suppose that $c_{i} \in R$ for all $i=1, \cdots, m$, then

$$
\operatorname{rank}\left[A_{M N}^{\dagger} D(c)-Z_{n} A_{M N}^{\dagger}\right] \leq 2 r+r_{M}^{\prime}+r_{N}^{\prime} .
$$

Proof. Set $b=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ in Theorem 3.1. Therefore,

$$
\begin{aligned}
\operatorname{rank}\left[A_{M N}^{\dagger} D(c)-Z_{n} A_{M N}^{\dagger}\right] & \leq r+\operatorname{rank}\left[A Z_{n}^{\sharp}-D(c)^{\sharp} A\right] \\
& =r+\operatorname{rank}\left[M A N^{-1} Z_{n}^{*}-D(c)^{*} M A N^{-1}\right] .
\end{aligned}
$$

Since

$$
\begin{aligned}
& M A N^{-1} Z_{n}^{*}-D(c)^{*} M A N^{-1} \\
= & \left(M D(c)-D(c)^{*} M\right) A N^{-1}+M A\left(N^{-1} Z_{n}^{*}-Z_{n} N^{-1}\right)+M\left(A Z_{n}-D(c) A\right) N^{-1},
\end{aligned}
$$

noting $D(c)^{*}=D(c)$ and

$$
\operatorname{rank}\left(N Z_{n}-Z_{n}^{*} N\right)=\operatorname{rank}\left(N^{-1} Z_{n}^{*}-Z_{n} N^{-1}\right),
$$

we obtain the theorem.

6.3 Generalized Cauchy matrices

Let U, V be diagonal matrices,

$$
U \equiv D(d)=\operatorname{diag}\left(d_{1}, \cdots, d_{n}\right) \quad, \quad V \equiv D(c)=\operatorname{diag}\left(c_{1}, \cdots, c_{m}\right) .
$$

A matrix A is said to be a generalized Cauchy matrix if for certain c and $d, \operatorname{rank}[A D(d)-$ $D(c) A]$ is small compared with m and n.In case $c_{i} \neq d_{j}$ for all i and j,it has an explicit form

$$
\begin{equation*}
A=\left[\frac{f_{i}^{*} g_{j}}{c_{i}-d_{j}}\right]_{i=1, j=1}^{m, n} \tag{22}
\end{equation*}
$$

where $f_{i}, g_{j} \in C^{r}$ and $r=\operatorname{rank}[A D(d)-D(c) A]$.
In particular, if $r=1, f_{1}=g_{1}=1, A$ is classical Cauchy Matrix.If $f_{1}=a=\left(a_{1}, \cdots, a_{m}\right)^{*}, f_{2}=$ $(-1, \cdots,-1)^{*}, g_{1}=(1, \cdots, 1)^{*}, g_{2}=b=\left(b_{1}, \cdots, b_{n}\right)^{*}, A$ is Loewner matrix, which has the form

$$
A=\left[\frac{a_{i}-b_{j}}{c_{i}-d_{j}}\right]_{i=1, j=1}^{m, n}
$$

We assume that $c_{i} \in R$ or $\left|c_{i}\right|=1$ for all i, and the same for d_{j}. In case $c \in R^{m}$, we have $D(c)^{*}=D(c)$;in case $\left|c_{i}\right|=1$, we have $D(c)^{*}=D(c)^{-1}$.

Theorem 6.3.1. Let $r_{M A N^{-1}}=\operatorname{rank}\left[M A N^{-1} D(d)-D(c) M A N^{-1}\right]$.Suppose that $c_{i} \in R$ or $\left|c_{i}\right|=1$ for all $i=1, \cdots, m$ and $d_{j} \in R$ or $\left|d_{j}\right|=1$ for all $j=1, \cdots, n$. Then

$$
\operatorname{rank}\left[A_{M N}^{\dagger} D(c)-D(d) A_{M N}^{\dagger}\right] \leq r+r_{M A N^{-1}}
$$

where $r=\operatorname{rank}[A D(d)-D(c) A]$.
Proof. Set

$$
b= \begin{cases}{\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad \text { if } c_{i} \in R, d_{i} \in R \text { or }\left|c_{i}\right|=1,\left|d_{i}\right|=1} \\
{\left[\begin{array}{cr}
0 & 1 \\
-1 & 0
\end{array}\right] \quad \text { if } c_{i} \in R,\left|d_{i}\right|=1 \text { or }\left|c_{i}\right|=1, d_{i} \in R}\end{cases}
$$

in Theorem 3.1,we immediately obtain the theorem.
Corollary 6.3.1. If $c_{i} \in R$ or $\left|c_{i}\right|=1$ for all i, and the same for d_{j}. Then

$$
\operatorname{rank}\left[A^{\dagger} D(c)-D(d) A^{\dagger}\right] \leq 2 r,
$$

where $r=\operatorname{rank}[A D(d)-D(c) A]$.
Corollary 6.3.2. Let $r_{M}=\operatorname{rank}[M D(c)-D(c) M], r_{N}=\operatorname{rank}[N D(d)-D(d) N]$.If $c_{i} \in R$ or $\left|c_{i}\right|=1$ for all i,and the same for d_{j}, then

$$
\operatorname{rank}\left[A_{M N}^{\dagger} D(c)-D(d) A_{M N}^{\dagger}\right] \leq 2 r+r_{M}+r_{N},
$$

where $r=\operatorname{rank}[A D(d)-D(c) A]$.
Proof. Since

$$
\begin{aligned}
& M A N^{-1} D(d)-D(c) M A N^{-1} \\
= & M A\left(N^{-1} D(d)-D(d) N^{-1}\right)+M(A D(d)-D(c) A) N^{-1}-(D(c) M-M D(c)) A N^{-1}
\end{aligned}
$$

and

$$
\operatorname{rank}\left[N^{-1} D(d)-D(d) N^{-1}\right]=\operatorname{rank}[N D(d)-D(d) N],
$$

we obtain

$$
r_{M A N^{-1}} \leq r+r_{N}+r_{M} .
$$

With Theorem 6.3.1, we conclude that $A_{M N}^{\dagger}$ has the form (22).It indicates that one can construct a fast algorithm to compute the weighted least squares solution $x=A_{M N}^{\dagger} y$ for a generalized Cauchy system if $r+r_{M A N^{-1}}$ is small.

6.4 Upper bound for full rank matrices

In the above subsections, we give displacement estimates of A by the displacement of weight matrices M and N.In this subsection, we give an upper bound of the displacement ranks independent of the displacement of weight matrices.At first,we consider the case that A has full column rank and the Sylvester displacement.

Our start point is (3).Assume $m>n$.Because A has full column rank,so (3) can be written into

$$
A_{M N}^{\dagger} V-U A_{M N}^{\dagger}=A_{M N}^{\dagger} V P_{(M N) *}-A_{M N}^{\dagger}(A U-V A) A_{M N}^{\dagger} .
$$

Set

$$
K \equiv A_{M N}^{\dagger} V P_{(M N) *} .
$$

We consider the system $K^{\sharp} x=0$.This system can be written into the form

$$
P_{(M N) *} V^{\sharp}\left(A_{M N}^{\dagger}\right)^{\sharp} x=0 .
$$

Since $\operatorname{Im}\left[\left(A_{M N}^{\dagger}\right)^{\dagger}\right]=\operatorname{Im}(A)$, we get

$$
\operatorname{rank}\left(P_{(M N) *} V^{\sharp} A\right)=\operatorname{rank}\left[P_{(M N) *} V^{\sharp}\left(A_{M N}^{\dagger}\right)^{\sharp}\right] .
$$

Hence, the dimension of the solution space of $K^{\sharp} x=0$ is equivalent to the dimension of the solution space of the following

$$
\begin{equation*}
P_{(M N) *} V^{\sharp} A x=0 . \tag{23}
\end{equation*}
$$

Now we consider another equation

$$
\begin{equation*}
\left(V^{\sharp} A-A W\right) x=0 \quad, \quad W \in C^{n \times n} . \tag{24}
\end{equation*}
$$

If x is a solution of (24),then

$$
V^{\sharp} A x=A W x \in \operatorname{Im}(A)=\operatorname{Ker}\left(P_{\left.(M N)_{*}\right)}\right) .
$$

It means the solution space of (24) is a subset of solution space of (23).Therefore, if we give a lower bound of the solution space's dimension of (24), let it be d, then $n-d$ is the upper bound of $\operatorname{rank}(K)$.In fact, if we set $W=A^{\dagger} V^{\sharp} A,(24)$ is changed into

$$
\left(I_{m}-A A^{\dagger}\right) V^{\sharp} A x=R\left[\begin{array}{cc}
0 & 0 \\
0 & I_{m-n}
\end{array}\right] R^{*} V^{\sharp} A x=0 .
$$

Then we obtain $d=n-(m-n)=2 n-m$,therefore,

$$
\operatorname{rank}(K) \leq n-(2 n-m)=m-n .
$$

We generalize it to the generalized displacement $a(U, V) A_{M N}^{\dagger}$. By Lemma 3.2,there exist nonsingular 2×2 matrices w and z such that $a=w^{T} d z$ and $w_{00}+w_{01} U$ and $z_{00}+z_{01} V$ are invertible.Then

$$
a(U, V) A_{M N}^{\dagger}=\left(w_{00}+w_{01} U\right)\left[A_{M N}^{\dagger} f_{z}(V)-f_{w}(U) A_{M N}^{\dagger}\right]\left(z_{00}+z_{01} V\right)
$$

Noting (3) and $P_{(M N)}=0$, we obtain

$$
A_{M N}^{\dagger} f_{z}(V)-f_{w}(U) A_{M N}^{\dagger}=A_{M N}^{\dagger} f_{z}(V) P_{(M N) *}-A_{M N}^{\dagger}\left[A f_{w}(U)-f_{z}(V) A\right] A_{M N}^{\dagger} .
$$

Because $\operatorname{rank}\left[A f_{w}(U)-f_{z}(V) A\right]=\operatorname{rank}\left[a^{T}(V, U) A\right]$,so

$$
\operatorname{rank}\left[a(U, V) A_{M N}^{\dagger}\right] \leq \operatorname{rank}\left[A_{M N}^{\dagger} f_{z}(V) P_{(M N) *}\right]+\operatorname{rank}\left[a^{T}(V, U) A\right] .
$$

Now we estimate the upper bound of $\operatorname{rank}\left[A_{M N}^{\dagger} f_{z}(V) P_{(M N) *}\right]$.In fact,

$$
\operatorname{rank}\left[A_{M N}^{\dagger} f_{z}(V) P_{(M N) *}\right]=\operatorname{rank}\left[Q_{(M N) *} f_{z}(V) P_{(M N) *}\right]=\operatorname{rank}\left[Q_{(M N) *} V P_{(M N) *}\right]=\operatorname{rank}(K)
$$

The same as the case for A has full row rank and $m<n$,we obtain

$$
\operatorname{rank}\left(P_{(M N)} U A_{M N}^{\dagger}\right) \leq n-m
$$

Theorem 6.4.1. Let $A \in C^{m \times n}$ be of full rank, then

$$
\operatorname{rank}\left[a(U, V) A_{M N}^{\dagger}\right] \leq \min \left\{m, n, \operatorname{rank}\left[a^{T}(V, U) A\right]+|m-n|\right\}
$$

The upper bound can be attained.For example,let T be a 20×12 full column rank Toeplitz matrix,

$$
a=(3,2,3,4,5,1,2,3,5,3,2,7)
$$

be the first row of T and

$$
b=(3,4,2,3,4,6,2,5,3,4,5,6,1,2,3,6,7,8,3,4)^{T}
$$

be the first column of T.The weight matrices

$$
M=\operatorname{diag}(1,2,7,5,6,2,4,3,4,6,4,8,4,2,2,5,6,2,5,4)
$$

and

$$
N=\operatorname{diag}(4,1,1,5,3,6,4,8,7,8,4,5)
$$

We obtain

$$
\operatorname{rank}\left(T_{M N}^{\dagger}-Z_{n} T_{M N}^{\dagger} Z_{m}^{*}\right)=10=\operatorname{rank}\left(T-Z_{m}^{*} T Z_{n}\right)+m-n
$$

References

[1] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications, Wiley, New York, 1974.
[2] G. Heinig and F. Hellinger, Displacement structure of pseudoinverses, Linear Algebra Appl., 197/198 (1994) 623-649.
[3] G. Heinig and F. Hellinger, Displacement structure of generalized inverse matrices, Linear Algebra Appl., 211 (1994) 67-83.
[4] M.E. Gulliksson, Xiaoqing Jin and Yimin Wei, Perturbation bound for constrained and weighted least squares problem, Linear Algebra Appl., 349 (2002) 221-232.
[5] M.E. Gulliksson, P.A. Wedin and Yimin Wei, Perturbation identities for regularized Tikhonov inverses and weighted pseudoinverse, BIT, 40 (2000) 513-523.
[6] T. Kailath, S.Y. Kung and M. Morf, Displacement rank of matrices and linear equations, J. Math. Anal. Appl., 68 (1979) 395-407.
[7] T. Kailath and A. Sayed, Displacement structure:Theory and Applications, SIAM Review, 37 (1995) 297-386.
[8] G. Marsaglia and G.P.H. Styan, Equalities and inequalities for ranks of matrices, Linear and Multilinear Algebra, 2 (1974) 269-292.
[9] V. Pan and R. Schreiber, An improved Newton iteration for the generalized inverse of a matrix with applications, SIAM J. on Sci. and Stat. Comput., 12 (1991) 1109-1131.
[10] C.F. Van Loan, Generalizing the singular value decomposition, SIAM J. Numer. Anal., 13 (1976) 76-83.
[11] Yimin Wei and Hebing Wu, Expression for the perturbation of the weighted MoorePenrose inverse, Comput. Math. Appl., 39 (2000) 13-18.
[12] Yimin Wei, Recurrent neural networks for computing weighted Moore-Penrose inverse, Appl. Math. Comput., 116 (2000) 279-287.
[13] Yimin Wei, Hebing Wu and Junyin Wei, Successive matrix squaring algorithm for parallel computing the weighted generalized inverse $A_{M N}^{+}$, Appl. Math Comput., 116 (2000) 289-296.
[14] Yimin Wei and Hebing Wu, The representation and approximation for the weighted Moore-Penrose inverse, Appl. Math. Comput., 121 (2001) 17-28.
[15] Yimin Wei and Guorong Wang, PCR algorithm for parallel computing minimumnorm (T) least-squares(S) solution of inconsistent linear linear equations, Appl. Math. Comput., 133 (2002) 547-557.
[16] Yimin Wei and Dingkun Wang, Condition numbers and perturbation of the weighted Moore-Penrose inverse and weighted linear least squares problems, Appl. Math. Comput., to appear.
[17] Yimin Wei and Michael Ng, Weighted Tikhonov filter matrices for ill-posed problems, submitted.
[18] Yimin Wei and Michael Ng, Displacement structure of group inverses, submitted.

[^0]: *This project is supported by National Natural Science Foundation of China and Doctoral Point Foundation of China.

