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Abstract

We establish theoretical recovery guarantees of FIHT for multi-dimensional spectrally sparse
signal reconstruction problems, which are straightforward extensions of what we have proved for
one-dimensional signals in [1]. Assume the underlying multi-dimensional spectrally sparse signal
is of model order r and total dimensionN . We show that O(r2 log2(N)) number of measurements
are sufficient for FIHT with resampling initialization to achieve reliable reconstruction provided
the signal satisfies the incoherence property.

1 Recovery Guarantees

Without loss of generality, we discuss the three-dimensional setting. Recall that a three-dimensional
array X ∈ CN1×N2×N3 is spectrally sparse if

X (l1, l2, l3) =
r∑

k=1

dky
l1
k z

l2
k w

l3
k , ∀ (l1, l2, l3) ∈ [N1]× [N2]× [N3]

with

yk = exp(2πıf1k − τ1k), zk = exp(2πıf2k − τ2k), and wk = exp(2πıf3k − τ3k)

for frequency triples fk = (f1k, f2k, f3k) ∈ [0, 1)3 and dampling factor triples τk = (τ1k, τ2k, τ3k) ∈
R3

+. Concatenating the columns of X, we get a signal x of length N1N2N3. Define N = N1N2N3.
We form a three-fold Hankel matrix Hx, which has Vandermonde decomposition in the form Hx =
ELDE

T
R, where the k-th columns (1 ≤ k ≤ r) of EL and ER are given by

E
(:,k)
L =

{
yl1k z

l2
k w

l3
k , (l1, l2, l3) ∈ [p1]× [p2]× [p3]

}
,

E
(:,k)
R =

{
yl1k z

l2
k w

l3
k , (l1, l2, l3) ∈ [q1]× [q2]× [q3]

}
,
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where pi + qi = Ni + 1 for 1 ≤ i ≤ 3 and D = diag(d1, · · · , dr) is a diagonal matrix. It can be
verified that if all dk’s are non-zeros and there exists i, 1 ≤ i ≤ 3, such that all fik’s are distinct,
Hx is a rank r matrix. The incoherence property is defined similarly.

Definition 1. The rank r three-fold Hankel matrix Hx with the Vandermonde decomposition Hx =
ELDE

T
R is said to be µ0-incoherent if there exists a numerical constant µ0 > 0 such that

σmin(E∗LEL) ≥ p1p2p3

µ0
, σmin(E∗RER) ≥ q1q2q3

µ0
.

From [3, Thm. 1], in the undamping case, if the minimum wrap-around distance between the
frequencies {fik}rk=1 is greater than about 2

Ni
for 1 ≤ i ≤ 3, this property can be satisfied. Let

Hx = UΣV ∗ be the reduced SVD of Hx and PU (·) and PV (·) respectively be the orthogonal
projections onto the subspaces spanned by U and V . The following lemma follows directly from
Def. 1.

Lemma 1. Let Hx = UΣV ∗ = ELDE
T
R. Define cs = max{N1

p1
N2
p2

N3
p3
, N1
q1

N2
q2

N3
q3
}. Assume Hx is

µ0 incoherent, then ∥∥∥U (i,:)
∥∥∥2
≤ µ0csr

N
and

∥∥∥V (j,:)
∥∥∥2
≤ µ0csr

N
, (1)

‖PU (Ha)‖2F ≤
µ0csr

N
and ‖PV (Ha)‖2F ≤

µ0csr

N
, (2)

where {Ha}N−1
a=0 forms an orthonormal basis of the three-fold Hankel matrices.

Proof. The proof of (2) can be found in [2]. We include the proof here to be self-contained. We
only prove the left inequalities of (1) and (2) as the right ones can be similarly established. Since
U ∈ C(p1p2p3)×r and El ∈ C(p1p2p3)×r spans the same subspace and U is orthogonal, there exists
an orthonormal matrix Q ∈ Cr×r such that U = EL(E∗LEL)−1/2Q. So∥∥∥U (i,:)

∥∥∥2
=
∥∥∥e∗iEL(E∗LEL)−1/2

∥∥∥2
≤ ‖e∗iEL‖

2
∥∥(E∗LEL)−1

∥∥ ≤ µ0r

p1p2p3
≤ µ0csr

N

and

‖PU (Ha)‖2F = ‖UU∗Ha‖2F =
∥∥EL(E∗LEL)−1E∗LHa

∥∥2

F
≤
‖E∗LHa‖2F
σmin(E∗LEL)

≤ µ0r

p1p2p3
≤ µ0csr

N
,

where we have used the fact that Ha has at most one nonzero element in every row and every
column and it only has wa nonzero entries of magnitude 1/

√
wa and the magnitudes of the entries

of EL is bounded above by one for both the damped and undamped case.

1.1 Initialization via One Step Hard Thresholding

Our first initial guess is L0 = p−1Tr(HPΩ(x)), which is obtained by truncating the three-fold Hankel
matrix constructed from m observed entries of x. The following lemma which is of independent
interest bounds the deviation of L0 from Hx.
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Lemma 2. Assume Hx is µ0-incoherent. Then there exists a universal constant C > 0 such that

‖L0 −Hx‖ ≤ C
√
µ0csr log(N)

m
‖Hx‖

with probability at least 1−N−2.

The following theoretical recovery guarantee can be established for FIHT based on this lemma.

Theorem 1 (Guarantee I). Assume Hx is µ0-incoherent. Let 0 < ε0 <
1
10 be a numerical constant

and ν = 10ε0 < 1. Then with probability at least 1 − 3N−2, the iterates generated by FIHT with
the initial guess L0 = p−1Tr(HPΩ(x)) satisfy

‖xl − x‖ ≤ νl‖L0 −Hx‖F ,

provided

m ≥ C max
{
ε−2

0 µ0cs, (1 + ε0)ε−1
0 µ

1/2
0 c1/2

s

}
κrN1/2 log3/2(N)

for some universal constant C > 0, where κ = σmax(Hx)
σmin(Hx) denotes the condition number of Hx.

Remark 1. Since Hx = ELDE
T
R, we have

κ ≤ σmax(EL)

σmin(EL)
· maxk |dk|

mink |dk|
· σmax(ER)

σmin(ER)
.

It follows from [3, Thm. 1] that σmax(EL) (resp. σmax(ER)) and σmin(EL) (resp. σmin(ER)) are
both proportional to

√
p1p2p3 (resp.

√
q1q2q3) when the frequencies of x are well separated. Thus

the condition number of Hx is essentially proportional to the dynamical range maxk |dk|/mink |dk|.
Since the number of measurements required in Thm. 1 is proportional to cs, it makes sense to

set pi to be about the same as qi for 1 ≤ i ≤ 3.

1.2 Initialization via Resampling and Trimming

To eliminate the dependence on
√
N , we investigate another initialization procedure via resampling

and trimming. The following lemma provides an estimation of the approximation accuracy of the
initial guess returned by the Alg. 3.

Lemma 3. Assume Hx is µ0-incoherent. Then with probability at least 1−(2L+1)N−2, the output
of Alg. 3 satisfies

‖L̃L −Hx‖F ≤
(

5

6

)L σmin(Hx)

256κ2

provided m̂ ≥ Cµ0csκ
6r2 log(N) for some universal constant C > 0.

We can obtain the following recovery guarantee for FIHT with L0 being the output of Alg. 3.

Theorem 2 (Guarantee II). Assume Hx is µ0-incoherent. Let 0 < ε0 <
1
10 and L =

⌈
6 log

(√
N log(N)

16ε0

)⌉
.

Define ν = 10ε0 < 1. Then with probability at least 1 − (2L+ 3)N−2, the iterates generated by
FIHT with L0 = L̃L (the output of Alg. 3) satisfies

‖xl − x‖ ≤ νl‖L0 −Hx‖F ,
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provided

m ≥ Cµ0csκ
6r2 log(N) log

(√
N log(N)

16ε0

)
for some universal constant C > 0.

2 Proofs

We first introduce several new variables and notation. Recall that H is an which maps a vector to a
three-fold Hankel matrix and H∗ is the adjoint of H. Moreover, D2 = H∗H = diag(w0, · · · , wN−1)
is a diagonal operator which multiply the a-th entry of a vector by the number of nonzero elements
in Ha. Define G = HD−1. Then the adjoint of G is given by G∗ = D−1H∗. It can be easily verified
that G and G∗ have the following properties:

• G∗G = I, ‖G‖ = 1 and ‖G∗‖ ≤ 1;

• Gz =
∑N−1

a=0 zaHa,∀z ∈ CN ;

• G∗Z = {〈Z,Ha〉}N−1
a=0 , ∀Z ∈ C(p1p2p3)×(q1q2q3).

Notice that the iteration of FIHT can be written in a compact form

xl+1 = H†TrPSlH(xl + p−1PΩ(x− xl)). (3)

So if we define y = Dx and yl = Dxl, the following iteration can be established for yl

yl+1 = G∗TrPSlG(yl + p−1PΩ(y − yl)) (4)

since PΩ and D−1 commute with each other. For ease of exposition, we will prove the lemmas and
theorems in terms of yl and y but note that the results in terms of xl and x follow immediately
since Hx = Gy and

‖xl − x‖ =
∥∥D−1(yl − y)

∥∥ ≤ ‖yl − y‖ . (5)

The following supplementary results from the literature but using our notation will be used
repeatedly in the proofs of the main results.

Lemma 4 ( [4, Proposition 3.3]). Under the sampling with replacement model, the maximum
number of repetitions of any entry in Ω is less than 8 log(N) with probability at least 1 − N−2

provided N ≥ 9.

Lemma 5 ( [2, Lemma 3]). Let U ∈ C(p1p2p3)×r and V ∈ C(q1q2q3)×r be two orthogonal matrices
which satisfy

‖PU (Ha)‖2F ≤
µcsr

N
and ‖PV (Ha)‖2F ≤

µcsr

N
.

Then

‖PSGG∗PS − p−1PSGPΩG∗PS‖ ≤
√

32µcsr log(N)

m
(6)

holds with probability at least 1−N−2 provided that

m ≥ 32µcsr log(N).
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Lemma 6 ( [6, Lemma 4.1]). Let Ll = UlΣlV
∗
l be another rank r matrix and Sl be the tangent

space of the rank r matrix manifold at Ll. Then

‖(I − PSl)(Ll − Gy)‖F ≤
‖Ll − Gy‖2F
σmin(Gy)

, ‖PSl − PS‖ ≤
2‖Ll − Gy‖F
σmin(Gy)

.

Lemma 7 ( [5, Theorem 1.6]). Consider a finite sequence {Zk} of independent, random matrices
with dimensions d1 × d2. Assume that each random matrix satisfies

E (Zk) = 0 and ‖Zk‖ ≤ R almost surely.

Define

σ2 := max

{∥∥∥∥∥∑
k

E (ZkZ
∗
k)

∥∥∥∥∥ ,
∥∥∥∥∥∑

k

E (Z∗kZk)

∥∥∥∥∥
}
.

Then for all t ≥ 0,

P

{∥∥∥∥∥∑
k

Zk

∥∥∥∥∥ ≥ t
}
≤ (d1 + d2) exp

(
−t2/2

σ2 +Rt/3

)
.

2.1 Local Convergence

We begin with a deterministic convergence result which characterizes the “basin of attraction” for
FIHT. If the initial guess is located in this attraction region, FIHT will converge linearly to the
underlying true solution.

Theorem 3. Assume 0 < ε0 <
1
10 and the following conditions

‖PΩ‖ ≤ 8 log(N), (7)

‖PSGG∗PS − p−1PSGPΩG∗PS‖ ≤ ε0, (8)

‖L0 − Gy‖F
σmin(Gy)

≤ p1/2ε0

16 log(N)(1 + ε0)
(9)

are satisfied. Then the iterate yl in (4) satisfies ‖yl − y‖ ≤ νl‖L0 − Gy‖F with ν = 10ε0 < 1.

The proof of Thm. 3 makes use of the restricted isometry property of PΩ(·) on Sl when Ll is in
a small neighborhood of Gy.

Lemma 8. Suppose (7), (8) hold and

‖Ll − Gy‖F
σmin(Gy)

≤ p1/2ε0

16 log(N)(1 + ε0)
. (10)

Then we have
‖PΩG∗PSl‖ ≤ 8 log(N)(1 + ε0)p1/2 (11)

and
‖PSlGG

∗PSl − p
−1PSlGPΩG∗PSl‖ ≤ 4ε0. (12)
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Proof. Since ‖PSGPΩ‖ = ‖(PSGPΩ)∗‖ = ‖PΩG∗PS‖, for any Z ∈ C(p1p2p3)×(q1q2q3),

‖PΩG∗PS(Z)‖2 = 〈PΩG∗PS(Z),PΩG∗PS(Z)〉
≤ 8 log(N)〈G∗PS(Z),PΩG∗PS(Z)〉
= 8 log(N)〈Z,PSGPΩG∗PS(Z)〉
≤ 8 log(N)(1 + ε0)p‖Z‖2F

where the first inequality follows from (7) and the second inequality follows from (8). So it follows
that ‖PSGPΩ‖ = ‖PΩG∗PS‖ ≤

√
8 log(N)(1 + ε0)p and

‖PΩG∗PSl‖ ≤ ‖PΩG∗(PSl − PS)‖+ ‖PΩG∗PS‖

≤ 8 log(N)
2‖Ll − Gy‖F
σmin(Gy)

+ ‖PΩG∗PS‖

≤ 8 log(N)
p1/2ε0

8 log(N)(1 + ε0)
+
√

8 log(N)(1 + ε0)p

≤ 8 log(N)(1 + ε0)p1/2,

where the second inequality follows from (7) and Lem. 6, the third inequality follows from (10).
Finally,

‖PSlGG
∗PSl − p

−1PSlGPΩG∗PSl‖
≤ ‖PSGG∗PS − p−1PSGPΩG∗PS‖+ ‖(PS − PSl)GG

∗PSl‖+ ‖PSGG∗(PS − PSl)‖
+ ‖p−1(PS − PSl)GPΩG∗PSl‖+ ‖p−1PSGPΩG∗(PS − PSl)‖

≤ ε0 +
4‖Ll − Gy‖
σmin(Gy)

+ p−1 · 2‖Ll − Gy‖
σmin(Gy)

· (‖PΩG∗PSl‖+ ‖PSGPΩ‖)

≤ 4ε0,

which completes the proof of (12).

Proof of Theorem 3. First note that Ll+1 = Tr(Wl), where

Wl = PSlH(xl + p−1PΩ(x− xl))
= PSlG(yl + p−1PΩ(y − yl)).

So we have

‖Ll+1 − Gy‖F ≤ ‖Wl −Ll+1‖F + ‖Wl − Gy‖F ≤ 2‖Wl − Gy‖F
= 2‖PSlG(yl + p−1PΩ(y − yl))− Gy‖F
≤ 2‖PSlGy − Gy‖F + 2‖(PSlG − p

−1PSlGPΩ)(yl − y)‖F
= 2‖(I − PSl)(Ll − Gy)‖F + 2‖(PSlGG

∗ − p−1PSlGPΩG∗)(Ll − Gy)‖F
≤ 2‖(I − PSl)(Ll − Gy)‖F + 2‖(PSlGG

∗PSl − p
−1PSlGPΩG∗PSl)(Ll − Gy)‖F

+ 2‖PSlGG
∗(I − PSl)(Ll − Gy)‖F + 2p−1‖PSlGPΩG∗(I − PSl)(Ll − Gy)‖F ,

:= I1 + I2 + I3 + I4,
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where the second inequality comes from the fact that Ll+1 is the best rank r approximation to Wl,
the second equality follows from (I − PSl)Ll = 0, yl = G∗Ll and G∗G = I.

Let us first assume (10) holds. Then the application of Lem. 6 gives

I1 + I3 + I4 ≤
(

4‖Ll − Gy‖F
σmin(Gy)

+ 2p−1‖PΩG∗PSl‖
‖Ll − Gy‖F
σmin(Gy)

)
‖Ll − Gy‖F

≤ 2ε0‖Ll − Gy‖F ,

where the last inequality follows from (8), (11) and the fact ‖PSlGPΩ‖ = ‖PΩG∗PSl‖. Moreover,
(12) implies

I2 ≤ 8ε0‖Ll − Gy‖F .

Therefore putting the bounds for I1, I2, I3, and I4 together gives

‖Ll+1 − Gy‖F ≤ ν‖Ll − Gy‖F ,

where ν = 10ε0 < 1. Since (10) holds for l = 0 by the assumption of Thm. 3 and ‖Ll − Gy‖F is a
contractive sequence, (10) holds for all l ≥ 0. Thus

‖yl − y‖ = ‖G∗(Ll − Gy)‖ ≤ ‖Ll − Gy‖F ≤ ν
l ‖L0 − Gy‖F ,

where we have utilized the facts yl = G∗Ll, G∗G = I and ‖G∗‖ ≤ 1.

2.2 Proofs of Lemma 2 and Theorem 1

Proof of Lemma 2. Recall that L0 = Tr(p−1HPΩ(x)) = Tr(p−1GPΩ(y)) and Hx = Gy. Let us first
bound

∥∥p−1GPΩ(y)− Gy
∥∥. Since p = m

N , we have

p−1GPΩ(y)− Gy =
m∑
k=1

(
N

m
yakHak −

1

m
Gy
)

:=
m∑
k=1

Zak .

Because each ak is drawn uniformly from {0, · · · , N − 1}, it is trivial that E (Zak) = 0. Moreover,
we have

E
(
ZakZ

∗
ak

)
= E

(
N2

m2
|yak |

2HakH
∗
ak

)
− 1

m2
(Gy)(Gy)∗

=
N

m2

N−1∑
a=0

|ya|2HaH
∗
a −

1

m2
(Gy)(Gy)∗

=
N

m2
C − 1

m2
(Gy)(Gy)∗,

where C is a diagonal matrix which corresponds to the diagonal part of (Gy)(Gy)∗. Therefore∥∥∥∥∥E
(

m∑
k=1

ZakZ
∗
ak

)∥∥∥∥∥ ≤ N

m
‖C‖ ≤ N

m
‖Gy‖22→∞ ,
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where ‖Gy‖2→∞ denotes the maximum row `2 norm of Gy. Similarly we can get∥∥∥∥∥E
(

m∑
k=1

Z∗akZak

)∥∥∥∥∥ ≤ N

m
‖(Gy)∗‖22→∞ .

The definition of Ha implies ‖Ha‖ ≤ 1√
wa

. So

‖Zak‖ ≤
N

m
|yak | ‖Hak‖+

1

m

N−1∑
a=0

|ya| ‖Ha‖ ≤
2N

m

∥∥D−1y
∥∥
∞ .

By matrix Bernstein inequality in Lem. 7, one can show that there exists a universal constant C > 0
such that∥∥∥∥∥

m∑
k=1

Zak

∥∥∥∥∥ ≤ C
(√

N log(N)

m
max {‖Gy‖2→∞ , ‖(Gy)∗‖2→∞}+

N log(N)

m

∥∥D−1y
∥∥
∞

)

with probability at least 1−N−2. Consequently on the same event we have

‖L0 − Gy‖ ≤
∥∥L0 − p−1GPΩ(y)

∥∥+
∥∥p−1GPΩ(y)− Gy

∥∥ ≤ 2
∥∥p−1GPΩ(y)− Gy

∥∥
≤ C

(√
N log(N)

m
max {‖Gy‖2→∞ , ‖(Gy)∗‖2→∞}+

N log(N)

m

∥∥D−1y
∥∥
∞

)
. (13)

Thus it only remains to bound max {‖Gy‖2→∞ , ‖(Gy)∗‖2→∞} and
∥∥D−1y

∥∥
∞ in terms of ‖Gy‖.

From Gy = Hx = UΣV ∗ = ELDE
T
R, we get

‖Gy‖22→∞ = max
i
‖e∗i (Gy)‖2 = max

i
‖e∗iUΣV ∗‖2 ≤ max

i
‖e∗iU‖2‖Σ‖2

= max
i

∥∥∥U (i,:)
∥∥∥2
‖Gy‖22 ≤

µ0csr

N
‖Gy‖22, (14)

where the last inequality follows from Lem. 1. Similarly we also have

‖(Gy)∗‖22→∞ ≤
µ0csr

N
‖Gy‖22. (15)

The infinity norm of D−1y can be bounded as follows∥∥D−1y
∥∥
∞ = ‖Gy‖∞ = max

i,j
|e∗i (Gy)ej | ≤ max

i,j
‖e∗iEL‖ ‖D‖

∥∥ET
Rej

∥∥
≤ r ‖D‖ ≤ r

∥∥∥E†L∥∥∥ ‖Gy‖ ∥∥∥(ET
R)†
∥∥∥ ≤ µ0csr

N
‖Gy‖ , (16)

where the last inequality follows from the µ0-incoherence of Gy.
Finally inserting (14), (15) and (16) into (13) gives

‖L0 − Gy‖ ≤ C
√
µ0csr log(N)

m
‖Gy‖

provided m ≥ µ0csr log(N).
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Proof of Theorem 1. Following from (5), we only need to verify when the three conditions in Thm. 3
are satisfied. Lemma 4 implies (7) holds with probability at least 1 − N−2. Lemmas 1 and 5
guarantees (8) is true with probability at least 1−N−2 if m ≥ Cε−2

0 µ0csr log(N) for a sufficiently
large numerical constant C > 0. Similarly (9) can be satisfied with probability at least 1 −
N−2 if m ≥ C(1 + ε0)ε−1

0 µ
1/2
0 c

1/2
s κrN1/2 log3/2(N) following Lem. 2 and the fact ‖L0 − Gy‖F ≤√

2r ‖L0 − Gy‖, where κ denotes the condition number of Gy. Taking an upper bound on the
number of measurements completes the proof of Thm. 1.

2.3 Proofs of Lemma 3 and Theorem 2

The proof of Lem. 3 relies on the following estimation of
∥∥∥PŜlG (p̂−1P

Ω̂l+1
− I

)
G∗
(
PU − PÛl

)∥∥∥,

which is a generalization of the asymmetric restricted isometry property [6] from matrix completion
to low rank Hankel matrix completion.

Lemma 9. Assume there exists a numerical constant µ such that

‖P
Ûl
Ha‖2F ≤

µcsr

N
, ‖P

V̂l
Ha‖2F ≤

µcsr

N
, (17)

and
‖PUHa‖2F ≤

µcsr

N
, ‖PVHa‖2F ≤

µcsr

N
. (18)

for all 0 ≤ a ≤ N−1. Let Ω̂l+1 = {ak | k = 1, · · · , m̂} be a set of indices sampled with replacement.
If P

Ω̂l+1
is independent of U , V , Ûl and V̂l, then

∥∥∥PŜlG (I − p̂−1P
Ω̂l+1

)
G∗
(
PU − PÛl

)∥∥∥ ≤√160µcsr log(N)

m̂

with probability at least 1−N−2 provided

m̂ ≥ 125

18
µcsr log(N).

Proof. Since for any Z ∈ C(p1p2p3)×(q1q2q3)

PŜlGPΩ̂l+1
G∗
(
PU − PÛl

)
(Z) =

m̂∑
k=1

〈
Z,
(
PU − PÛl

)
(Hak)

〉
PSl(Hak),

we can rewrite PŜlGPΩ̂l+1
G∗
(
PU − PÛl

)
as

PŜlGPΩ̂l+1
G∗
(
PU − PÛl

)
=

m̂∑
k=1

PSl(Hak)⊗
(
PU − PÛl

)
(Hak).

Define the random operator

Rak = PŜl(Hak)⊗
(
PU − PÛl

)
(Hak)− 1

N
PŜlGG

∗
(
PU − PÛl

)
.
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Then it is easy to see that E (Rak) = 0. By assumption, for any 0 ≤ a ≤ N − 1,

‖PŜl (Ha) ‖2F ≤ ‖PÛl
(Ha) ‖2F + ‖P

V̂l
(Ha) ‖2F ≤

2µcsr

N
.

So

‖Rak‖ ≤
∥∥∥PŜl (Hak)

∥∥∥
F

∥∥∥(PU − PÛl

)
(Hak)

∥∥∥
F

+
1

N

∥∥∥PŜlGG∗ (PU − PÛl

)∥∥∥ ≤ 5µcsr

N
.

Next let us bound
∥∥E(RakR∗ak)

∥∥ as follows

∥∥E(RakR
∗
ak

)
∥∥ =

∥∥∥∥E(∥∥∥(PU − PÛl

)
(Hak)

∥∥∥2

F
PŜl (Hak)⊗ PŜl (Hak)

)
− 1

N2
PŜlGG

∗
(
PU − PÛl

)2
GG∗PŜl

∥∥∥∥
≤
∥∥∥∥E(∥∥∥(PU − PÛl

)
(Hak)

∥∥∥2

F
PŜl (Hak)⊗ PŜl (Hak)

)∥∥∥∥+
4

N2

≤ 4µcsr

N

∥∥∥E(PŜl (Hak)⊗ PŜl (Hak)
)∥∥∥+

4

N2

=
4µcsr

N2

∥∥∥PŜlGG∗PŜl∥∥∥+
4

N2

≤ 8µcsr

N2
.

This implies ∥∥∥∥∥E
(

m̂∑
k=1

RakR
∗
ak

)∥∥∥∥∥ ≤
m̂∑
k=1

∥∥E(RakR
∗
ak

)
∥∥ ≤ 8µcsrm̂

N2
.

We can similarly obtain ∥∥∥∥∥E
(

m̂∑
k=1

R∗akRak

)∥∥∥∥∥ ≤ 12µcsrm̂

N2
.

So the application of the matrix Bernstein inequality in Lem. 7 gives

P

{∥∥∥∥∥
m̂∑
k=1

Rak

∥∥∥∥∥ ≥ t
}
≤ 2(p1p2p3)(q1q2q3) · exp

(
−t2/2

12µcsm̂r
N2 + 5µcsr

N t/3

)
.

If t ≤ 24m̂
5N , then

P

{∥∥∥∥∥
m̂∑
k=1

Rak

∥∥∥∥∥ ≥ t
}
≤ 2(p1p2p3)(q1q2q3) · exp

(
−t2/2
20µcsm̂r
N2

)
≤ N2exp

(
−t2/2

20µcsm̂r
N2

)
.

Setting t =
√

160µcsm̂r log(N)
N2 gives

P

{∥∥∥∥∥
m̂∑
k=1

Rak

∥∥∥∥∥ ≥ t
}
≤ N−2.

10



The condition t ≤ 24m̂
5N implies m̂ ≥ 125

18 µcsr log(N). The proof is complete because

N

m̂

m̂∑
k=1

Rak = PŜlG
(
p̂−1P

Ω̂l+1
− I

)
G∗
(
PU − PÛl

)
.

The following lemma from [6] will also be used in the proof of Lem. 3.

Lemma 10. Let L̃l = ŨlΣ̃lṼ
∗
l and Gy = UΣV ∗ be two rank r matrices which satisfy∥∥∥L̃l − Gy∥∥∥

F
≤ σmin(Gy)

10
√

2
.

Assume
∥∥U (i,:)

∥∥2 ≤ µ0csr
N and

∥∥V (j,:)
∥∥2 ≤ µ0csr

N . Then the matrix L̂l = Trimµ0(L̃l) = ÛlΣ̂lV̂
∗
l

returned by Alg. 4 satisfies∥∥∥L̂l − Gy∥∥∥
F
≤ 8κ

∥∥∥L̃l − Gy∥∥∥
F

and max

{∥∥∥Û (i,:)
∥∥∥2
,
∥∥∥V̂ (j,:)

∥∥∥2
}
≤ 100µ0csr

81N
,

where κ denotes the condition number of Gy.

Proof of Lemma 3. Let us first assume that∥∥∥L̃l − Gy∥∥∥
F
≤ σmin(Gy)

256κ2
. (19)

Then the application of Lem. 10 implies that∥∥∥L̂l − Gy∥∥∥
F
≤ 8κ

∥∥∥L̃l − Gy∥∥∥
F

and max

{∥∥∥Û (i,:)
∥∥∥2
,
∥∥∥V̂ (j,:)

∥∥∥2
}
≤ 100µ0csr

81N
(20)

by noting that
∥∥U (i,:)

∥∥2 ≤ µ0csr
N and

∥∥V (j,:)
∥∥2 ≤ µ0csr

N following from Lem. 1. Moreover, direct
calculation gives ∥∥∥PÛl

Ha

∥∥∥2

F
=
∥∥∥Û∗l Ha

∥∥∥2

F
=

1

|Γa|
∑
i∈Γa

∥∥∥∥(Ûl)(i,:)
∥∥∥∥2

2

≤ 100µ0csr

81N
, (21)

where Γa is the set of row indices for non-zero entries in Ha with cardinality |Γa| = wa. Similarly,∥∥∥PV̂l
Ha

∥∥∥2

F
≤ 100µ0csr

81N
. (22)

Recall that y = Dx and Gy = Hx. Define ŷl = Dx̂l. Then ŷl = G∗L̂l and

PŜlH
(
x̂l + p̂−1PΩl+1

(x− x̂l)
)

= PSlG
(
ŷl + p̂−1PΩl+1

(y − ŷl)
)
.

11



Consequently,

‖L̃l+1 − Gy‖F ≤ 2
∥∥∥PSlG (ŷl + p̂−1P

Ω̂l+1
(y − ŷl)

)
− Gy

∥∥∥
F

≤ 2
∥∥∥PŜlGy − Gy∥∥∥F + 2

∥∥∥(PŜlG − p̂−1PŜlGPΩ̂l+1

)
(ŷl − y)

∥∥∥
F

= 2
∥∥∥(I − PŜl)Gy∥∥∥F + 2

∥∥∥(PŜlGG∗ − p̂−1PŜlGPΩ̂l+1
G∗
)(
L̂l − Gy

)∥∥∥
F

≤ 2
∥∥∥(I − PŜl)(L̂l − Gy)∥∥∥F + 2

∥∥∥(PŜlGG∗PŜl − p̂−1PŜlGPΩ̂l+1
G∗PŜl

)(
L̂l − Gy

)∥∥∥
F

+ 2
∥∥∥PŜlG (I − p̂−1P

Ω̂l+1

)
G∗
(
I − PŜl

)
(L̂l − Gy)

∥∥∥
F

:= I5 + I6 + I7.

The first item I5 can be bounded as

I5 ≤
2
∥∥∥L̂l − Gy∥∥∥2

F

σmin(Gy)
≤ 1

2

∥∥∥L̃l − Gy∥∥∥
F
,

which follows from Lem. 6, the left inequality of (20) and the assumption (19). The application of
Lem. 5 together with (21) and (22) implies

I6 ≤ 2

√
3200µ0csr log(N)

81m̂

∥∥∥L̂l − Gy∥∥∥
F
≤ 16κ

√
3200µ0csr log(N)

81m̂

∥∥∥L̃l − Gy∥∥∥
F

with probability at least 1−N2. To bound I7, first note that(
I − PŜl

)(
L̂l − Gy

)
=
(
I − PŜl

)
(−Gy) =

(
I − ÛlÛ∗l

)
(−Gy)

(
I − V̂lV̂ ∗l

)
=
(
UU∗ − ÛlÛ∗l

)(
L̂l − Gy

)(
I − V̂lV̂ ∗l

)
=
(
PU − PÛl

)(
I − P

V̂l

)(
L̂l − Gy

)
.

Therefore

I7 = 2
∥∥∥PŜlG (I − p̂−1P

Ω̂l+1

)
G∗
(
I − PŜl

)(
PU − PÛl

)(
I − P

V̂l

)(
L̂l − Gy

)∥∥∥
F

≤ 2
∥∥∥PŜlG (I − p̂−1P

Ω̂l+1

)
G∗
(
I − PŜl

)(
PU − PÛl

)∥∥∥∥∥∥L̂l − Gy∥∥∥
F

≤ 16κ

√
16000µ0csr log(N)

81m̂

∥∥∥L̃l − Gy∥∥∥
F

with probability at least 1−N2, where the last inequality follows from Lem. 9 and the left inequality
of (20). Putting the bounds for I5, I6 and I7 together gives

‖L̃l+1 − Gy‖F ≤

(
1

2
+ 326κ

√
µ0csr log(N)

m̂

)∥∥∥L̃l − Gy∥∥∥
F
≤ 5

6

∥∥∥L̃l − Gy∥∥∥
F

with probability at least 1− 2N−2 provided m̂ ≥ Cµ0csκ
2r log(N) for a sufficiently large universal

constant C. Clearly on the same event, (19) also holds for the (l + 1)-th iteration.
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Since L̃0 = Tr
(
p̂−1HPΩ0 (x)

)
, (19) is valid for l = 0 with probability at least 1−N2 provides

m̂ ≥ Cµ0csκ
6r2 log(N)

for some numerical constant C > 0. Taking the upper bound on the number of measurements
completes the proof of Lem. 3 by noting Hx = Gy.

Proof of Theorem 2. The third condition (9) in Thm. 3 can be satisfied with probability at least

1− (2L+ 1)N−2 if we take L =
⌈
6 log

(√
N log(N)

16ε0

)⌉
. So the theorem can be proved by combining

this result together with Lems. 4 and 5.
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