
Graph Theory

1 Graphs and Subgraphs

Definition 1.1. A multigraph or just graph is an ordered pair G = (V,E),

consisting of a nonempty vertex set V of vertices and an edge set E of

edges such that each edge e ∈ E is assigned to an unordered pair {u, v} with

u, v ∈ V , possibly u = v, called endpoints of e.

For each edge e with endpoints u and v, abbreviated e = uv usually, we say

that e is incident with u and v, or that u, v are adjacent by e. The edge e

is called a link if u 6= v and a loop if u = v.

Let G = (V,E) be a multigraph, we usually write V = V (G) and E =

E(G). Sometimes vertices are called nodes/sites, edges are called connec-

tions/bonds. Each graph can be represented by a picture with dots and lines:

Each vertex is represented by a solid dot (or by a small circle sometimes), and

each edge e with endpoints u, v is represented by a line connecting u and v.

Two or more edges between two vertices u, v are called multiple edges. The

degree of a vertex v is

degG(v) = (number of links at v) + 2(number of loops at v).

A walk of length ℓ is a sequence of vertices and edges (not necessarily

distinct)

W = v0e1v1e2 . . . vℓ−1eℓvℓ

such that each edge ei is incident with vertices vi−1 and vi, 1 ≤ i ≤ ℓ, where

v0 is called the initial vertex and vℓ the terminal vertex. If v0 = vℓ, W

is called a closed walk. A trail is a walk whose edges are distinct. A path

is a walk whose vertices and edges are distinct, except the intial and terminal

vertices.

For instance, in Figure 1, the vertex-edge sequence v2e9v4e8v3e6v5 is a path,

but not closed. The sequence v4e8v3e6v5e7v3e2v2 is a trail, but not closed. The

1

sequence v4e8v3e6v5e7v3e3v6e5v5e7v3e6v5e12v4 is a closed walk. The closed paths

v1e1v2e2v3e8v4e10v1, v3e6v5e7v3, and the loop v6e4v6 are all cycles.

32
v

vv1

v

v v4 5

6e
e

e
e e e

e

e

e

e

e

e

1

2

3

47

8

9

10

11

12

5

6

Figure 1: A graph with multiple edges and loops

A subgraph of a graph G is graph H such that

V (H) ⊆ V (G), E(H) ⊆ E(G).

A graph is called connected if there exists a path connecting any two vertices,

otherwise, it is called disconnected. A maximal connected subgraph of G is

called a component. We denote

c(G) = number of connected components of G.

A cycle is a connected graph having degree 2 everywhere. The length of a

cycle is its number of edges. A loop is viewed as a cycle of length 1. Two edges

between two distinct vertices are viewed as a cycle of length 2.

Definition 1.2. A graph is said to be simple if there are no loops and no

multiple edges between two distinct vertices. A simple graph can be viewed as

an irreflexive and symmetric binary relation on its vertex set.

Let G = (V,E) be a graph with the vertex set V = {v1, v2, . . . , vn} and

the edge set E = {e1, e2, . . . , em}. The adjacency matrix of G is an n× n

matrix A(G) = [aij], whose (i, j)-entry is

aij = number of edges between vi and vj.

The incidence matrix of G is an n ×m matrix M(G) = [bij], whose (i, j)-

entry is

bij =

{

1 if vi is incident with ej,

0 if vi is not incident with ej.

2

Proposition 1.3. Every graph G has the relation
∑

v∈V (G)

degG(v) = 2|E(G)|.

Proof. Each edge contributes 2 in the sum of degrees over vertices. It follows

that the sum is twice of the number of edges.

An isomorphism from a graph G to a graph H is a pair of bijections

φ : V (G) → V (H), ψ : E(G) → E(H)

such that for each edge e ∈ E(G) and two vertices u, v ∈ V (G), e is incident

with u, v if and only if φ(e) is incident with vertices φ(u), φ(v), i.e.,

e = uv ⇐⇒ ψ(e) = φ(u)φ(v).

Whenever such a pair of bijections exists, we say that G is isomorphic to H.

Isomorphic graphs have the same number of vertices, the same number of edges,

and the same degree sequences. For instance, the graphs G and H in Figure 2

are isomorphic; an isomorphism φ is given by

φ(u1) = u′1, φ(u2) = u′2, φ(u3) = u′3,

φ(v1) = v′1, φ(v2) = v′2, φ(v3) = v′3.

H

u u u

v v v

1 2 3 u1

v

u3’

vu’2’1

’

1 2 3

v 2’3’

G

Figure 2: Isomorphic graphs G and H

A complete graph is a graph such that every pair of two distinct vertices

are adjacent. We denote by Kn the complete graph with n vertices.

A graph G = (V,E) is called bipartite if V can be partitioned into two

disjoint nonempty subsets V1, V2 such that each edge of G is between a vertex

3

in V1 and a vertex in V2. If every pair of vertices between V1 and V2 is an edge

of G, then G is called a complete bipartite graph. The complete bipartite

graph with m vertices in V1 and n vertices in V2 is denoted by Km,n.

Proposition 1.4. A graph G is bipartite if and only if every cycle of G has

even length.

Proof. We may assume that G is connected. If G is bipartite, then every edge of

G is between two disjoint nonempty sets V1 and V2. It follows that the sequence

of any cycle is alternating between V1 and V2. So the length of any cycle must

be even.

Conversely, if every cycle of G has even length, we show that G is bipartite.

Without loss of generality, we may assume that G is connected. Let d(u, v)

denote the distance (length of a shortest path) between two vertices u and v.

Fix a vertex v0. Let

V1 = {w ∈ V (G) : d(v0, w) is odd},

V2 = {w ∈ V (G) : d(v0, w) is even}.

We claim that there is no edge whose endpoints belong to V1.

Given two vertices u, v ∈ V1. Let P (v0, u) be a shortest path from v0 to u,

and Q(v0, v) a shortest path from v0 to v. Let v0, v1, . . . , vk be the common

vertices on P (v0, u) and Q(v0, v), starting from v0.

Since P (v0, u) and Q(v0, v) are shortest paths, the subpath P (v0, vk) of

P (v0, u) from v0 to vk must be shortest; so is the subpath Q(v0, vk) of Q(v0, v)

from v0 to vk. Then P (v0, vk) and Q(v0, vk) have the same length. Let P (vk, u)

denote the subpath of P (v0, u) from vk to u, andQ(vk, v) the subpath ofQ(v0, v)

from vk to v. It follows that the length of P (vk, u) and Q(vk, v) have the same

parity; that is, both are even or both are odd.

Now suppose there is an edge e adjacent with vertices u, v. Let P−1(vk, v)

denote the reversed path of P (vk, v), from v to vk. Then the closed path

P (vk, u)eP
−1(vk, v) is a cycle of odd length, a contradiction. Hence there is

no edge inside V1. Likewise, there is no edge inside V2. We see that G is bipar-

tite.

4

2 Euler Trail Problem

A trail in a graph G is called an Euler trail if it uses every edge exactly once.

An Euler tour is a closed Euler trail, and an Euler path is a non-closed

Euler trail.

Theorem 2.1. A connected graph has an Euler tour if and only if it has

even degree everywhere.

Proof. Let G be connected.

“⇒” Let W = v0e1v1e2v2 · · · envn be an Euler tour with v0 = vn. Fix a

vertex v ∈ V (G) and travel alongW . The number of times of moving toward v

equals the number of times of moving away from v.

Let v appear in W as vi1, . . . , vik . If v 6= v0 = vn, then deg(v) = 2k. If

v = v0 = vi1 = vik = vn with k ≥ 2, then deg(v) = 2(k − 1). This can also be

argued as follows: When one travels along the Euler tour and passes by a vertex

v, the person must come towards v through one edge and depart from v through

another edge. So the number of times coming towards v is the same number of

times departing from v. So the degree of v in G must be even.

“⇐” Let G have even degree at all vertices. Consider a longest trail P , whose

vertex-edge sequence is P = v0e1v1e2v2 · · · vn−1envn.

(a) We claim v0 = vn. Suppose v0 6= vn. Let G′ be the graph obtained

from G by removing all edges of P . If vn appears k times in the subtrail

P1 = v0e1v1 · · · en−1vn−1en without terminal vertex, then the degree of vn will

be reduced by 2k when the edges of P1 are removed (including one side of the

possible loop en if vn−1 = vn), and the degree of vn will be further reduced by

1 when the edge en is removed at vn. So the degree of vn in P is 2k + 1. Thus

the degree of vn in G′ is an odd number. This means that there is at least one

edge e in G′ adjacent to vn, say, vnev. Hence we can construct a longer trail

v0e1v1 · · · envnev, which is a contradiction.

(b) We claim that the longest trial uses every edge of G. Suppose there is an

edge e which is not used in a longest path P . If u or v is some vi, say, v = vi,

then

uev(vi)ei+1vi+1 · · · envn(v0)e1v1 · · · eivi

5

12
v0

1v

v2

3v

4v

v5

v7

v

v

v8

10

v6
v9v13

v11

Figure 3: A longest path in G that is not closed.

is a longer trail, which is a contradiction. If neither u nor v is in the trial P , there

is a shortest path ue′1u1e
′
2 · · · e

′
mum from u to P , where um = vj for some j. It

is clear that ue′1u1e
′
2 · · · e

′
mum does not contain any edge of v0e1v1e2v2 · · · envn.

Thus

ue′1u1e
′
2 · · · e

′
mumej+1vj+1ej+2 · · · envn(v0)e1v1 · · · ejvj

is a longer trail, which is again a contradiction.

u

v0 v1

v2

v3

v4

v5v6
v7

v8

9v

v

(a)

v

v0 v1

v2

v3

v4

v5v6
v7

v8

9v

u

(b)

Figure 4: A longest trail in G that uv is not used.

Corollary 2.2. A connected graph G has an Euler path from one vertex u

to another vertex v if and only if u, v have odd degree and other vertices

have even degree.

Proof. Let G′ be a graph obtained from G by adding a new edge e between u

and v. Then G′ has an Euler tour W ′ by Theorem 2.1. Thus W = W \ e for G
is an Euler path from u, v.

6

Conversely, if G has even degree for every vertex, then it has an Euler tour by

Theorem 2.1. Let G be a graph having exactly two vertices u, v of odd degree.

We add a new edge e between u and v to G to have graph G′. Then G′ has

even degree everywhere. Thus G′ has an Euler tour by Theorem 2.1. Remove

the edge e from the Euler tour for G′. We obtain an Euler path for G.

There is an algorithms to find an Euler tour or Euler trail in a graph.

Theorem 2.3. (Fleury’s Algorithm) Input: Graph G = (V,E).

Output: Euler tour, or non-closed Euler trail, or none of previous two.

STEP 1: If there are vertices of odd degree, choose such a vertex v. Otherwise,

choose any vertex v. Set SEQ = v.

STEP 2: If there is no edge remaining at the terminal vertex v of SEQ, STOP.

(SEQ forms an Euler trail. If v is the same as the initial vertex of SEQ,

it is an Euler tour.)

STEP 3: If there is exactly one edge e from v to another vertex w, then remove

ve from the graph, and go to STEP 5.

STEP 4: If there are two or more edges remaining at v, choose one of these

edges, say an edge e = vw, in such a way that the removal of e will not

disconnect the remaining graph, then remove e from the graph, and go

to STEP 5. If such an edge can not be selected, STOP. (There is neither

Euler tour nor Euler trail.)

STEP 5: Add ew to the end of SEQ, replace v by w, and return to STEP 2.

7

v v v v

vv v v

1 2 3 4

5678

e3 e4 e5e1 e2 e6

e9 e8 e
Figure 5: A graph with an Euler path.

7

Example 2.1. The vertex-edge sequence of an Euler trail for the graph in

Figure 5 is given as

SEQ = v2e3v7e2v1e1v8e9v7e8v6e5v4e6v5e7v6e4v3.

3 Hamilton Cycle Problem

A cycle in a graph is called a Hamilton cycle if it contains all vertices of

the graph. A Hamilton graph is graph containing a Hamilton cycle. A

Hamilton path is a non-closed path that visits every vertex exactly once.

Unfortunately, there is no simple necessary and sufficient condition to check

whether a graph contains a Hamilton cycle.

Theorem 3.1. Let G be a simple graph with |V (G)| = n ≥ 3. If for any

pair of non-adjacent vertices u, v ∈ V ,

degG(u) + degG(v) ≥ n, (1)

then G contains a Hamilton cycle.

Proof. Suppose the theorem is not true for some n ≥ 3. Fix such an n and

let G be a counterexample with |E(G)| as large as possible. Note that G is a

subgraph ofKn which contains obviously Hamilton cycles, and G 6= Kn. Adding

one edge of Kn that is not contained in G to the graph G, we obtain a graph

G′ which still satisfies obviously the degree condition (1). By the choice of G,

the graph G′ would contain a Hamilton cycle. This means that G must already

contain a Hamilton path with vertex sequence, say v1v2 . . . vn. Since G contains

no Hamilton cycle, the vertices v1, vn are not adjacent in G. We then have

degG(v1) + degG(vn) ≥ n.

Let V1, V2 ⊆ {v2, . . . , vn−1} be defined by

V1 = {vi : (v1, vi) ∈ E(G), i = 2, . . . , n− 1},

V2 = {vi : (vi, vn) ∈ E(G), i = 2, . . . , n− 1}.

Then |V1| = degG(v1), |V2| = degG(vn), and

|V1| + |V2| ≥ n, |V1 ∪ V2| ≤ n− 2.

8

iv v1 2

nvvn −1v j

v

It follows that

|V1 ∩ Vn| = |V1| + |V2| − |V1 ∪ V2| ≥ 2.

Let vi, vj ∈ V1 ∩ V2, i < j. Then v1vj, vivn ∈ E(G). Thus

v1v2 . . . vi−1vivnvn−1vn−2 . . . vj+1vjv1

is a Hamilton cycle of G.

4 Quotient Graphs

Let G = (V,E) be a graph. Let ∼ be an equivalence relation on V . The

quotient graph of G with respect to ∼ is a graph whose vertex set is the

quotient set V/∼ and two equivalence classes [u], [v] form an edge if and only if

uv forms an edge in G.

Example 4.1. Let G = (V,E), where V = {v1, v2, . . . , v8}, E is defined by

vivj ∈ E ⇔ |i− j| ≥ 3.

See Figure 6 (a). Let ∼ be a relation on V defined by

vi ∼ vj ⇔ 5 | (i− j).

Then ∼ is an equivalence relation. The quotient graph G/∼ is demonstrated in

Figure 6 (b).

Example 4.2. Let G = (V,E), where V = {v1, v2, . . . , v8}, E is defined by

vivj ∈ E ⇔ 3 ≤ |i− j| ≤ 5.

See Figure 7 (a). Let ∼ be a relation on V defined by

viR2vj ⇔ 6 | (i− j).

Then ∼ is an equivalence relation, and the quotient graph G/ ∼ is given in

Figure 7 (b).

9

2 v7

v6

v5

v3

v4

v

v1 v8

(a) G

81 6

v4 v5

v3v

v2v7

v v

(b) G/∼

Figure 6: Construction of a quotient graph

2

v1 v8

v3

v4 5v

v6

v7v

(a) G

v

7 v2v81

5v4

v63v

v v
(b) G/∼

Figure 7: Construction of a quotient graph

5 Trees

Definition 5.1. An acyclic graph (or forest) is a graph containing no cycles.

A tree is a connected acyclic graph.

Non-isomorphic trees up to six vertices are listed in Figure 8. It is a difficult

problem to construct all non-isomorphic trees. We don’t even know how to count

the number of non-isomorphic trees with n vertices. However, the number of

labeled trees with n vertices is nn−2.

A spanning subgraph of a graph G is a subgraph H such that

V (H) = V (G).

10

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 8: Non-isomorphic trees with up to six vertices

A maximal spanning subgraph without cycles is called a spanning forest. A

spanning tree is a connected spanning subgraph without cycles.

Theorem 5.2. Every connected graph contains a spanning tree.

Proof. Given a connected graph G with or without cycles. If G contains no

cycles, then G itself is a spanning tree. If G contains cycles, choose a cycle C of

G and remove one edge from C. We obtain a connected spanning subgraph G1.

If G1 still contains cycles, choose a cycle C1 of G1 and remove one edge from

C1 to obtain a connected spanning subgraph G2. Continue this procedure when

there are still cycles in the newly obtained spanning subgraph of G. Since the

number of edges is finite, we eventually obtain a connected spanning subgraph

containing no cycles. This final spanning subgraph is a spanning tree of G.

11

Theorem 5.3 (Edge-Vertex Tree Formula). For any tree T = (V,E),

|E| = |V | − 1. (2)

Proof. We apply induction on |E|. When |E| = 0, the tree T is a single-vertex

graph without edges; clearly, |E| = |V | − 1. Consider the case |E(T)| ≥ 1.

Choose an edge e = uv ∈ E(T) and remove it from T . We obtain two subtrees

T1, T2 of T ; see Figure 9. By induction, we have

T

e vu

1 T2

Figure 9: Subtrees T1, T2 of T by removing an edge e.

|E(T1)| = |V (T1)| − 1, |E(T2)| = |V (T2)| − 1.

It follows that

|E(T)| = |E(T1)| + |E(T2)| + 1

= |V (T1)| + |V (T2)| − 1 = |V (T)| − 1.

Corollary 5.4. Let G be a forest with c(G) connected components. Then

|E(G)| = |V (G)| − c(G). (3)

Proof. Note that each component of G is a tree. Applying the Tree Formula (2)

to each component of G, we obtain |E(G)| = |V (G)| − c(G).

Theorem 5.5 (Tree Characterizations). The following statements for a graph

G = (V,E) are equivalent.

(1) G is a tree.

(2) There exists a unique path from any vertex to any other vertex.

(3) G is connected, and the removal of any edge disconnects G.

12

(4) G contains no cycle and |E| = |V | − 1.

(5) G is connected and |E| = |V | − 1.

(6) For each edge e 6∈ E, G ∪ e contains exactly one cycle.

Proof. (1) ⇒ (2): Suppose that there are two paths from a vertex u to a vertex

v, say,

P = u0x1u1x2 . . . um−1xmum, Q = v0y1v1y2 . . . vn−1ynvn,

where u0 = v0 = u and um = vn = v. Then PQ−1 is a closed walk, and

subsequently contains a cycle. This is contradict to that G contains no cycles.

(2) ⇒ (3): The graph G is connected by definition. Choose an edge e = uv ∈
E and remove it fromG to haveG′ := G−e. SupposeG′ is still connected. Then

there is a path P from u to v. Thus G has two paths uv and P , a contradiction.

(3) ⇒ (4): Suppose G contains some cycles. Then the removal of any edge

from a cycle will not disconnect G; this is a contradiction. So G contains no

cycles. Since G is connected and contains no cycles, then by definition G is a

tree. Thus |E| = |V | − 1 by the tree formula (2).

(4) ⇒ (5): Since G contains no cycles, it follows from (3) that G has only one

component. That is G is connected and |E| = |V | − 1.

(5) ⇒ (6): Suppose G′ = G∪e is not a graph having exactly one cycle. Then

G′ may have no cycles or may have more than one cycle.

Case 1: If G′ has no cycles, then G′ is a tree because G′ is connected. Thus

1 ≤ c(G′) ≤ c(G) = 1. So c(G) = c(G′) = 1. Since G has no cycles, we have

|V | − |E| = c(G) = c(G′) = |V | − |E| − 1.

This is a contradiction.

Case 2: If G′ has more than one cycle, then G has some cycles. Removing

some edges from G to obtain a spanning tree T of G. Then |E(T)| = |V | − 1.

Thus |E| = |E(T)|. This is impossible because some edges have been removed

from G.

(6) ⇒ (1): It is clear that G contains no cycles; otherwise joining one edge

will result more cycles. It is also clear that G is connected; otherwise, joining an

edge between two components will not result any cycle. So G is a tree.

13

A leaf in a tree is a vertex of degree one. For a single-vertex tree, there is no

leaf. For trees with more than one vertex, we shall see that there must exist at

least two leaves.

Theorem 5.6. A tree with more than one vertex has at least two leaves.

First Proof. Suppose the theorem is not true. Let T = (V,E) be a tree with

|V | ≥ 2, having only one leaf or no leaves.

Case 1: If T has only one leaf, then T has |V | − 1 vertices of degree at least

two and one vertex of degree 1. Thus by the tree formula |E| = |V | − 1 and the

degree-sum formula, we have the contradiction

2(|V | − 1) = 2|E| =
∑

v∈V

deg(v) ≥ 2(|V | − 1) + 1.

Case 2: If T has no leaves, then the degree of every vertex is at least two.

We thus have the contradiction

2(|V | − 1) = 2|E| =
∑

v∈V

deg(v) ≥ 2|V |.

Second Proof. We make induction on the number of edges of trees with more

than one vertex. It is obviously true for a tree with only one edge. Let T = (V,E)

be a tree with two or more vertices. Choose an edge x = uv ∈ E and removed

it from T to obtain two subtrees Tu and Tv, where u is a vertex of Tu and v is

a vertex of Tv.

If both Tu and Tv have more than one vertex, then by induction both Tu and

Tv have at least two leaves. Then Tu must have a leaf other than u and Tv must

have a leaf other than v. Thus T has at least two leaves (two vertices of degree

1 other than u and v).

If Tu has the only vertex u and Tv has more than one vertex, then u is a leaf

of T and Tv has a leaf other than v. Thus T has at least two leaves. It is similar

when Tu has more than one vertex and Tv has the only vertex v.

If both Tu and Tv have only one vertex, then T is a tree with the only edge

uv; the vertices u and v are two leaves of T . �

14

6 Rooted Trees

A rooted tree is a tree T with a specified vertex v0, called the root of T ,

denoted by (T, v0). A vertex v of a rooted tree (T, v0) is called a vertex of level

k if the length of the unique path from the root v0 to the vertex v is k. The

largest level number of a rooted tree is called the height of the rooted tree.

A rooted tree can be described by a graph

level 0

level 1

level 2

level 3

0v

A rooted tree can be also described by a directed tree. This can be done by

adding an arrow to each edge from a vertex of level k to a vertex of level k + 1.

For instance, the rooted tree above can be drawn as a directed graph

level 3

level 0

level 1

level 2

v0

In this way a rooted tree can be characterized as a directed graph with a vertex

v0 such that ideg (v0) = 0 and ideg (v) = 1 for all other vertices v. If (u, v) is

an directed edge of a rooted tree from a vertex u to a vertex v, we say that u

is the parent of v or v a child of u. Every vertex except the root has exactly

one parent; a parent may have several children. If there is a unique directed

15

path from a vertex v to a vertex w, we say that v is an ancestor of w or w a

descendant of v.

A rooted tree is called a binary tree if each vertex has at most two children:

either a left child or a right child; both a left child and a right child; or no children

at all. Similarly, for m ≥ 2, an m-ary tree is a rooted tree that every parent

has at mostm children. The children of a parent can be labelled by the numbers

from {1, 2, . . . ,m}. If a parent has less than m children, we say that the ith

child is absent in case no child is labelled with i. For any vertex v of an m-ary

tree, we have odeg (v) ≤ m. An m-ary tree is called a regular m-ary tree

(or complete m-ary tree) if the out-degree is either m or 0 for all vertices.

A regular m-ary tree is called a full m-ary tree if all leaves are in the same

level.

Example 6.1. Find the number of vertices for a full m-ary tree of height h.

Solution.

1 +m +m2 + · · · +mh =
mh+1 − 1

m− 1
.

16

7 Labeled Trees

An ordered rooted tree is a rooted tree of which the vertices are labeled in

certain linear order.

Proposition 7.1 (Universal Address System for Rooted Tree). In-

put: A rooted tree. Output: A labeled rooted tree.

STEP 1. Assign 0 to the root.

STEP 2. Assign positive integers to the vertices in level 1, going from left to

right.

STEP 3. Let v be an interval vertex of level n ≥ 1. Let v1, v2, . . . , vk denote

children of v, going from left to right. If v is labeled ℓ, then label

v1, v2, . . . , vk as ℓ.1, ℓ.2, . . . , ℓ.k, respectively.

Example 7.1. Following example demonstrates this procedure.

0

2 31

1.3 2.2
1.1 1.2 1.4 2.1 3.1

3.2

3.2.1 3.2.22.2.32.2.22.2.11.3.31.3.21.3.1

17

Example 7.2. Polish Notations: [(7− a)/5] ∗ [(a + b) ↑ 3]

b

a a b

a ba7

7

35

+_

/

_ +

_

/

*

7 a a

5 3

+

18

Example 7.3. Consider a linearly ordered finite set Σ of alphabets. Then Σ∗

can be made into a rooted tree as follows:

(i) The empty word λ serves as the root.

(ii) For each word w ∈ Σ∗, the set of its children is

Cw = {wx : x ∈ Σ}.

Since Σ is linearly ordered, the elements of Cw can be linearly ordered as follows:

For x, y ∈ Σ,

wx < wy ⇔ x < y.

In doing so we obtain a rooted infinite tree Σ∗
w having the root w and the vertex

set

wΣ∗ = {wx : x ∈ Σ∗}.

For instance, for Σ = {a, b} with a < b, the rooted tree Σ∗
λ is

λ

abaaaabbaabaaaabaaaa abba abbb baaa baab baba babb bbaa bbab bbba bbbb

bbbbbababbaaabbabaaabaaa

ab ba bb

b

aa

a

abab

19

8 Tree Searching

Given a rooted tree (T, v0). In many occasions we need to visit every vertex

exactly once in a specified order. The process to visit vertices of a tree in a

specified order is called searching or performing a tree search. In some

other books this process is also called traversal.

Let (T0, v0) be a rooted tree with root v0. Let T1, T2, . . . , Tk denote the

subtrees of T0 with their roots at the children of v0, ordered from left to right as

follows:
v

T1 T2 T3 Tk

0

...

Preorder Search.

Visit the root v0 first. Then visit the vertices of T1 in preorder, the vertices

of T2 in preorder, and so on until the vertices of Tk are visited in preorder. We

summarize: visit a parent first then visit its children next.

Example 8.1. Find the linear order for the vertices of the tree below in peorder.

15

5

2

8

3

1

31 32302928272625242322

16 18

96 7

17141312

10 11

4

212019

Solution. 1, 2, 5, 12, 13, 22, 23, 6, 14, 24, 15, 16, 25, 26, 27, 3, 7, 8, 9, 17, 18,

28, 29, 30, 4, 10, 11, 19, 20, 31, 32, 21.

Postorder Searching. Let T1, T2, . . . , Tk be subtrees of the root v0. Visit the

vertices of T1, T2, . . ., Tk respectively in postorder first. Then visit the root v0

20

next. We summarize: visit children first then visit their parent

next.

Example 8.2. The linear order for the vertices of the tree above in postorder:

12, 22, 23, 13, 5, 24, 14, 15, 25, 26, 27, 16, 6, 2, 7, 8, 17, 28, 29, 30, 18, 9, 3, 10,

19, 31, 32, 20, 21, 11, 4, 1.

Inorder Search. For a binary rooted tree (T, v0), the descendants of the root

v0 can be divided into a left side rooted subtree TL and a right side rooted subtree

TR as follows:

R

v

T T

0

L

One can visit the vertices of the subtree TL in inorder first, then visit the root

v0 next, and then visit the vertices of the subtree TR in inorder last. This can

be summarized as visit a left child first, then visit the parent

next and the right child last.

Example 8.3. Find the linear order for the vertices of the binary rooted tree

below in preorder, postorder, and in inorder respectively.

3

9 10 11 12 13

7654

2

1

8

21

Solution.

Preorder: 1, 2, 4, 8, 9, 5, 10, 3, 6, 11, 12, 7, 13.

Postorder: 8, 9, 4, 10, 5, 2, 11, 12, 6, 13, 7, 3, 1.

Inorder: 8, 4, 9, 2, 10, 5, 1, 11, 6, 12, 3, 7, 13.

22

9 Depth-First Search

The three methods of visiting vertices of a rooted tree above have a common

feature: Each of them goes as far as it can go by following the edges of the tree

away from the root, then it backs up a bit and again goes as far as it can, and so

on. The strategy is so-called depth-first search (DFS). Let us give another

example of such strategy by finding a spanning tree of a connected graph.

Depth-First Search Algorithm. Input: Connected labeled graph G =

(V,E) with V = {v1, v2, . . . , vn}. Output: Rooted spanning tree (T, v1).

STEP 1. Assign v1 to a vertex variable v and initialize a rooted tree (T, v1)

consisting of just one vertex.

STEP 2. Select the smallest subscript i (2 ≤ i ≤ n) such that (v, vi) ∈ E and

vi has not been visited. If no such subscript is found, go to STEP 3. If

such subscript exists, attach the edge (v, vi) to T and assign vi to v,

then return to STEP 2.

STEP 3. If v = v1, STOP. The tree T is a spanning rooted tree.

STEP 4. If v 6= v1, then backtrack from v to its parent u, assign u to v and

return to STEP 2.

Example 9.1. A rooted spanning tree for the graph below by DFS Algorithm.

10

1 2 3

6
5

7

8 9

4

10

2

1

5

4
7

6 9

8

3

23

10 Breadth-First Search

Breadth-First Search (BFS) Algorithm. Input: Connected graphG =

(V,E) with V = {v1, v2, . . . , vn}. Output: Rooted spanning tree (T, v1).

STEP 1. Start with a sequence Q = v1 and initialize a rooted tree (T, v1) con-

sisting of just one vertex.

STEP 2. If Q is an empty sequence, then STOP.

STEP 3. If Q is nonempty, then delete the vertex v in the front of Q.

STEP 4. If there are vertices w (not yet visited) adjacent to v (the same v in

STEP 3), then attach all edges (v, w) to T , add all vertices w to the

end of Q, and return to STEP 2. If there are no vertices adjacent with

v that are not yet visited, then return to STEP 2.

Example 10.1. A rooted tree for the graph below by BFS Algorithm.

Solution. Q = 1 ⇒ Q = 2 ⇒ Q = 3, 5 ⇒ Q = 5 ⇒ Q = 4, 6, 7 ⇒
Q = 6, 7 ⇒ Q = 7 ⇒ Q = 9 ⇒ Q = 8, 10 ⇒ Q = 10 ⇒ Q = ∅.

10

1 2 3

6
5

7

8 9

4

2

10

1

3

4 6

8

9

7

5

24

11 Minimum Spanning Tree

A graph G = (V,E) together with a weight function w : E → R is called a

weighted graph. For each edge e ∈ E, the value w(e) is called the weight

of the edge e. The weight of G is the value

w(G) =
∑

e∈E

w(e).

If G is connected, then G contains a spanning tree. A minimum spanning

tree (MST) of a weighted graph G is a spanning tree whose weight is minimum

among all spanning trees. We introduce two algorithms to find a minimum

spanning tree for a connected weighted graph.

1

5 6

1

4 5 633

2 2

6

2

v5

v

4v v6

v3v

Theorem 11.1 (Kruskal’s Algorithm). Input: G = (V,E) with |V | = n,

w : E → R. Output: MST of G or no spanning tree.

STEP 1. Choose an edge e of G such that w(e) is smallest in E. Initialize a

spanning forest F consisting of this single edge e.

STEP 2. If |E(F)| = n− 1, STOP. (F is an MST of G.)

STEP 3. If |E(F)| < n− 1 and E \ E(F) = ∅, STOP. (No spanning tree)

STEP 4. If |E(F)| < n− 1 and E \ E(F) 6= ∅, then select an edge e 6∈ F such

that

w(e) = min{e′ 6∈ E(F) : F ∪ e′ has no cycle},

add e to F and return to STEP 2.

If {e 6∈ E(F) : F ∪ e has no cycle} = ∅, STOP. (No spanning tree)

25

Proof. Whenever G is disconnected, it is clear that the algorithm stops either

in STEP 3 or in the latter case of STEP 4 with conclusion of non-existence of

spanning tree. We assume that G is connected.

Let the edges of G be labeled as e1, e2, . . . , em and be linearly ordered as

w(e1) ≤ w(e2) ≤ · · · ≤ w(em).

Let F1 denote the forest consisting of the single edge e1. Let Fk denote the forest

obtained by the algorithm when the kth edge ek is inspected, where k ≥ 2, i.e.,

Fk =

{

Fk−1 if Fk−1 ∪ ek contains a cycle,

Fk−1 ∪ ek if Fk−1 ∪ ek contains no cycle.

We claim that Fk is contained in an MST for each k ≥ 1 by induction on k.

For k = 1, let e1 = uv. Let T0 be an MST. If e1 ∈ T0, nothing is to be proved.

If e1 6∈ T0, then T0 ∪ e1 contains a unique cycle C. Obviously,

w(e1) ≤ w(e) for all e ∈ E(C).

Let e be an edge of C other than e1. Then the tree T1 = (T0∪ e1)\ e is an MST

containing F1, since T1 has the weight

w(T1) = w(T0) + w(e1)− w(e) ≤ w(T0).

Assume that the forest Fk−1 is contained an MST Tk−1. Our aim is to con-

struct an MST Tk containing Fk. We divide the situation into two cases.

Case 1: ek 6∈ Fk. This means that ek is not selected at the time when ek is

inspected, i.e., Fk−1 ∪ ek contains a cycle. Then Fk = Fk−1. Thus Tk = Tk−1 is

an MST containing Fk.

Case 2: ek ∈ Fk. This means that ek is selected at the time when ek is

inspected, and Fk = Fk−1 ∪ ek. There are two subcases.

Subcase 1: ek ∈ Tk−1. Then Tk = Tk−1 is an MST containing Fk.

Subcase 2: ek 6∈ Tk−1. Then Tk−1 ∪ ek contains a unique cycle C. Clearly,

the cycle C is not contained in the forest Fk. So E(C \Fk) 6= ∅. We claim that

w(ek) ≤ w(e∗) for all e∗ ∈ E(C \ Fk).
Suppose there exists an edge e∗ ∈ E(C \ Fk) such that w(e∗) < w(ek).

Then e∗ has been inspected before ek and is not selected, so e∗ = ei for some

26

i < k. Thus Fi−1 ∪ ei contains a cycle. Of course, Fk−1 ∪ ei contains a cycle

by Fi−1 ⊆ Fk−1. Since ei = e∗ ∈ C ⊆ Tk−1 ∪ ek, we see that Fk−1 ∪ e∗ is

contained in Tk−1 ∪ ek. It follows that the cycle in Fk−1 ∪ e∗ must be the same

cycle C. So C is the unique cycle of Fi−1 ∪ ei. Since ek 6= ei = e∗, it follows

that ek ∈ Fi−1 ⊆ Fk−1, which is contradictory to ek 6∈ Fk−1.

Now we fix an edge e∗ ∈ E(C \ Fk) and define a tree Tk = (Tk−1 ∪ ek) \ e∗.
Since w(e∗) ≥ w(ek), we see that

w(Tk) = w(Tk−1) + w(ek)− w(e∗) ≤ w(Tk−1).

Hence Tk is an MST and it contains Fk = Fk−1 ∪ ek.

1

5 6

1

4 5 633

2 2

6

2

v5

v

4v v6

v3v

Theorem 11.2 (Prim’s Algorithm). Input: G = (V,E), |V | = n,

w : E → R. Output: An MST tree of G or no spanning tree.

STEP 1. Choose a vertex v0 of G. Initialize a subtree T consisting of v0.

STEP 2. If |V (T)| = n, STOP. (T is an MST of G.)

STEP 3. If |V (T)| < n and there is no edge from V (T) to V \ V (T), STOP.

(There is no spanning tree.)

STEP 4. If |V (T)| < n and there are edges from V (T) to V \ V (T), select an

edge e from V (T) to V \ V (T) such that

w(e) = min{w(x) : x = uv, u ∈ V (T), v ∈ V \ V (T)},

add the edge e with endpoints to T to have a subtree T = T ∪ e, and
return to STEP 2.

27

Proof. If G is disconnected, the algorithm stops in STEP 3 and there is no span-

ning tree. Assume that G is connected. It suffices to show that the subtrees

T , which are constructed in STEP 4, are always contained in some MSTs. We

proceed by induction on |V (T)|.
At the beginning when a vertex v0 is selected, |V (T)| = 1, it is obvious that

T = (v0, ∅) is contained in every MST. Assume that T is contained in an MST

T1 and |V (T)| < n. Let e∗ be an edge from V (T) to V \ V (T) such that

w(e∗) = min{w(e) : e = uv, u ∈ T), v 6∈ T}.

If e∗ ∈ T1, nothing is to be proved. If e
∗ 6∈ T1, then T1∪e∗ contains a unique cycle

C, and e∗ ∈ C. We must have w(e1) ≤ w(e∗) for all e1 ∈ C \ e∗. Otherwise, if
w(e1) > w(e∗) for an edge e1 ∈ C \ e∗, the spanning tree (T1 ∪ e

∗) \ e1 would
have weight

w(T1 ∪ e
∗ \ e1) = w(T1) + w(e)− w(e1) < w(T1).

This is contradictory to the minimality of T1.

Since the cycle C intersects the cut [V (T), V \ V (T)] (the set of all edges

between V (T) and V \ V (T)), the intersection E(C) ∩ [V (T), V \ V (T)] must

contain an edge e2 other than e
∗. Then w(e2) ≤ w(e∗) by the above argument.

The minimality of w(e∗) in [V (T), V \ V (T)] implies w(e2) = w(e∗). Thus the

spanning tree T2 = (T1 ∪ e
∗) \ e2 has weight

w(T2) = w(T1) + w(e∗)− w(e2) = w(T1).

Hence T2 is an MST and contains T ∪ e∗.

28

1

5 6

1

4 5 633

2 2

6

2

v5

v

4v v6

v3v

Example 11.1. Find a minimum spanning tree for the following graph.

1

3

78

9

13

17

14

6

16

18

4

10

15

11

12 5

2

8

9 3 6

4

5 2

a b

d e f

i

l n

c

g h j

m

p qo

k

r

Solution. (i) Using Kruskal’s Algorithm.

E(T) = {(d, e), (b, e), (f, j), (h, k), (l, p), (c, d), (d, h), (a, d), (i,m),

(l, o), (m, q), (e, i), (c, g), (i, j), (k, o), (n, r), (m, r)}.

(ii) Using Prim’s Algorithm.

E(T) = {(a, d), (d, e), (e, b), (d, c), (d, h), (h, k), (e, i), (i,m), (m, q),

(c, g), (i, j), (j, f), (m, l), (l, p), (l, o), (m, r), (r, n)}.

29

1

3

78

136

4

11

5

2

8

9 3 6

4

5 2

a b

d e f

i

l n

c

g h j

m

p qo

k

r

The weight of the minimum spanning tree is

w(T) = 1 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5

+6 + 6 + 7 + 8 + 8 + 9 + 11 + 13 = 97.

Example 11.2. Show that if a connected graph has distinct weights on its

edges then its minimum spanning tree is unique.

30

1

3

78

9

13

17

14

6

16

18

4

10

15

11

12 5

2

8

9 3 6

4

5 2

a b

d e f

i

l n

c

g h j

m

p qo

k

r

First Proof. Let G be a connected graph whose weight function has distinct

values on the edges. Suppose G has two distinct minimum spanning trees T1
and T2. Let e∗1 be the minimum weight edge of T1 among all edges not in T2,

and let e∗2 be the minimum weight edge of T2 among all edges not in T1, i.e.,

w(e∗1) = min{w(e1) : e1 ∈ E(T1 \ T2)},

w(e∗2) = min{w(e2) : e2 ∈ E(T2 \ T1)}.

Clearly, e∗1 6= e∗2. Then T1 ∪ e
∗
2 contains a unique cycle C1 and e

∗
2 ∈ C1; T2 ∪ e

∗
1

contains a unique cycle C2 and e
∗
1 ∈ C2. We have

w(e∗2) > w(e1) for all e1 ∈ T1 ∩ C1.

Otherwise, T ∗
1 = (T1 \ e1) ∪ e∗2 would be a spanning tree having weight smaller

than that of T1, which is a contradiction. Now, if there exists an edge e1 ∈
C1 \ e∗2 such that e1 6∈ E(T2), then e1 ∈ E(T1 \ T2), thus w(e∗1) < w(e1) <

w(e∗2); likewise, if there exists an edge e2 ∈ C2 \ e∗1 such that e2 6∈ E(T1), then

w(e∗2) < w(e2) < w(e∗1). We see that if both cases were valid, we would have

the contradiction w(e∗1) < w(e∗2) < w(e∗1).

Therefore we must have either e1 ∈ E(T2) for all e1 ∈ C1 \ e
∗
2, or, e2 ∈ E(T1)

for all e2 ∈ C2 \ e
∗
1. This means that either C1 is contained in T2, or C2 is

contained in T1, contradicting to that none of T1, T2 contains a cycle.

31

Suppose T1 6= T2. Let e
∗ be the smallest weight edge in T1∆T2, i.e.,

w(e∗) = min{w(e) : e ∈ (T1 \ T2) ∪ (T2 \ T1)}.

Without loss of generality, we may assume e∗ ∈ T1 \ T2. Then T2 ∪ e∗ contains
a unique cycle C. There exists at least one edge e′ ∈ C such that e′ 6∈ T1;

otherwise, C is contained in T1. Clearly, e′ 6= e∗ ∈ T1 and e
′ ∈ T2 \ T1. Thus

w(e′) > w(e∗) by the minimality of e∗ in T1∆T2. Hence T
′ = (T2 ∪ e∗) \ e′ is a

spanning tree and w(T ′) < w(T2), which is contradictory to the minimality of

w(T2).

Second Proof. It is true for connected graph without edge; the MST is the

single vertex and the minimum weight is zero. Consider a connected graph G

with some edges. Let e∗ be the edge of maximum weight in G. If e∗ is contained

in a cycle of G, then every MST of G is an MST of G \ e∗. By induction, the

MST for G\ e∗ is unique, so is for G. If e∗ is not on a cycle, i.e., e∗ is a bridge of

G, then e∗ must be contained in every MST of G. Let G1, G2 denote connected

components of G\e∗, and T ∗
1 , T

∗
2 the unique MSTs of G1, G2 respectively. Then

T ∗ = T ∗
1 ∪ T ∗

2 ∪ e∗ is a spanning tree of G.

Let T be an MST of G. Then T \ e∗ is decomposed into spanning trees T1, T2
of G1, G2 respectively. Clearly, w(T

∗
1) ≤ w(T1) and w(T

∗
2) ≤ w(T2). Then

w(T ∗) = w(T ∗
1) + w(T ∗

2) + w(e∗) ≤ w(T1) + w(T2) + w(e∗) = w(T).

The minimality of w(T) implies w(T ∗) = w(T). Consequently, w(T ∗
1) = w(T1)

and w(T ∗
2) = w(T2). By induction, T ∗

1 = T1 and T
∗
2 = T2. Hence T = T ∗, the

MST of G is unique.

Third Proof. Applying Two Facts:

(a) The minimum weight edge e0 must be used by any MST. Let F denote

the spanning forest consisting of the single edge e0.

(b) If F is a spanning forest whose edges are used by any MST, then the edge

e∗ such that

w(e∗) = min{e ∈ G : F ∪ e contains no cycle}

must be used by any MST.

32

12 Planar Graphs

Definition 12.1. A graph G is said to be planar if it can be drawn on a plane

in such a way that no two edges cross each other.

For instance, the complete graph K4, the bipartite complete graph K2,n, and

the cubic graph Q3 are planar. They can be drawn on a plane without crossing

edges; see Figure 10. However, by try-and-error, it seems that the complete

graph K5 and the complete bipartite graph K3,3 are not planar. We will prove

this fact rigorously by using the Euler Formula in Theorem 4.

(a) K4 (b) Q3 (c) K2,5

Figure 10: Planar Graphs

Planar graphs are important because in the design of circuits on a board we

wish to have no routes crossing each other, or to keep the crossing routes as

fewer as possible. Given a connected planar graph G and draw it on a plane

without crossing edges; the plane is divided into some regions (or faces) of

G; we denote by r(G) the number of regions. Strictly speaking, r may depend

on the ways of drawing G on the plane. Nevertheless, we will see that r(G)

is actually independent of the ways of drawing G on any plane. The relation

(a) K5 (b) K3,3

Figure 11: Nonplanar Graphs

33

between r(G) and the number of vertices and the number of edges of G are

related by the well-known Euler formula in the following theorem.

Theorem 12.2. (Euler Formula) If G is a connected planar multigraph with

v vertices, e edges, and r regions, then

v − e + r = 2. (4)

Proof. We prove the statement by induction on the number of edges. When

e = 0, the graph G must be a single vertex, and in this case the number of

regions is one. Obviously, v − e + r = 2.

Assume that the theorem is true for all connected planar graphs with k edges.

We consider a connected planar graph G with k+1 edges. The graph G may or

may not contain cycles. If G contains no cycle, then it is a tree. Thus e = v− 1

and r = 1, so v − e + r = 2. If G contains cycles, choose a cycle C and an

edge x ∈ C, remove x from G to obtain a new planar graph G′. Since x is on

a cycle, G′ is still connected and has the same vertices of G, but has k edges.

By induction we have v′ − e′ + r′ = 2. Note that x bounds two regions, one is

inside C and the other is outside C. So v′ = v, e′ = e− 1, r′ = r− 1. It follows

that v − e + r = 2.

Planar graphs can be equivalently described as graphs drawn on a sphere

without edges crossing each other. Note that the boundary of any polyhedron

is homeomorphic to a sphere. A polyhedron graph consists of vertices and

edges of a polyhedron, and is a planar graph. The first two graphs in Figure 10 are

polyhedron graphs, coming from the boundary of a tetrahedron and a cube. The

three graphs in Figure 12 are polyhedron graphs from octahedron, dodecahedron

and icosahedron, respectively.

For a connected planar graphG drawn on the plane, letD1, D2, . . . , Dr denote

the regions of G, and let e(Di) denote the number of edges bounding the region

Di. If one counts the edges along the boundary of each region of G, every edge

of G is counted exactly twice. This means that

r
∑

i=1

e(Di) = 2e(G). (5)

34

(a) Octahedron (b) Dodecahedron (c) Icosahedron

Figure 12: Regular Polyhedra

If G contains no multiple edges and loops, then e(Di) ≥ 3. We thus obtain

3r(G) ≤ 2e(G).

Combining the inequality and the Euler formula (4), we obtain the following

corollary.

Corollary 12.3. If G is a connected, simple, planar graph with v vertices

and e edges, then

e ≤ 3v − 6. (6)

Example 12.1. The complete graph K5 is not planar.

Proof. Notice that K5 has 5 vertices and
(

5
2

)

(= 10) edges. Suppose K5 is

planar. Then by Corollary 12.3, we have 10 ≤ 3 · 5− 6 = 9, a contradiction.

Example 12.2. The complete bipartite graph K3,3 is not planar.

Proof. Note that every region of a graph bounds a cycle. Since K3,3 is bipartite,

it has only cycles of even length. Since there is no cycles of length 2, every cycle

of K3,3 has length at least 4. Suppose K3,3 is a planar graph. Then every region

of K3,3 bounds at least 4 edges. By the equation (5), we have

4r ≤ 2e.

Combine this inequality and the Euler Formula (4). We obtain

e ≤ 2v − 4.

35

Since v(K3,3) = 6 and e(K3,3) = 9, we have 9 ≤ 2 · 6 − 4 = 8, which is a

contradiction. �

Example 12.3. The Petersen graph is not planar. See Figure 13.

Figure 13: Petersen Graph

Proof. Note that each cycle of the Petersen graph has at least 5 edges. So if it

is planar, then 5r ≤ 2e. It follows from the Euler formula that 3e ≤ 5v − 10.

However, the graph has 10 vertices and 15 edges. Thus 45 = 3 ·15 ≤ 5 ·10−10 =

40, a contradiction.

13 Classification of Regular Polyhedra

A polyhedron is said to be regular if all vertices have the same degree and all

faces have the same number of edges. Regular polyhedra are known asPlatonic

solids.

Theorem 13.1. Let k be the number of edges of a regular polyhedron at a

vertex, and l the number of edges bounding a face. Then

(k, l) ∈
{

(3, 3), (3, 4), (3, 5), (4, 3), (5, 3)
}

and (v, e, f) = (4, 6, 4), (8, 12, 6), (20, 30, 12).

Proof. Note that k ≥ 3, l ≥ 3, and

kv = 2e = lf, v − e + f = 2.

Then e = kv/2, f = kv/l. Put them into the Euler Formula to have

v − kv/2 + kv/l = 2, i.e.,
2l − kl + 2k

2l
v = 2.

36

Thus

v =
4l

2k + 2l − lk
, e =

kv

2
, f =

kv

l
.

For k = 3, we have v = 4l
6−l . Since l ≥ 3, there are three choices l = 3, 4, 5. It

follows that

(v, e, f) = (4, 6, 4), (8, 12, 6), (20, 30, 12).

For k = 4, we have v = 4l
8−2l . There is only one choice, i.e., l = 3. Thus

(v, e, f) = (6, 12, 8).

For k = 5, we have v = 4l
10−3l . There is only one choice, i.e., l = 3. We have

(v, e, f) = (12, 30, 20).

For k ≥ 6, we have v = 4l
2k+2l−kl . Since l ≥ 3, we see that

2k + 2l − kl = 2k − l(k − 2) ≤ 2k − 3(k − 2) = −k + 6 ≤ 0.

This means that there is no choice for v.

A spherical fullerene is a simple 3-regular planar graph whose faces are

only pentagons and hexagons. We shall see that every spherical fullerene has

exactly 12 pentagons.

Proposition 13.2. If a simple 3-regular planar graph has only pentagons

and hexagons, then the number of pentagons must be 12.

Let f5, f6 denote the number of pentagons and hexagons of a fullerene respec-

tively. The vertex-edge relation, the edge-face relation, and the Euler Formula

are stated by the equations

3v = 2e = 5f5 + 6f6, v − e + f5 + f6 = 2.

Then e = 3e/2 implies

5f5 + 6f6 = 3v, f5 + f6 = 2 + v/2.

Since 6f5 + 6f6 = 12 + 3v, we obtain f5 = 12. Thus

v = 20 + 2f6, e = 30 + 3f6, f5 = 12, f6 = n (free).

37

For each integer n ≥ 0, there exist crystal structures corresponding the the

fullerene with n hexagons. The buckyball (carbon sixty C60, football or soccer)

has a fullerene structure of f6 = 20. The buckyball has an extra property that

each pentagon is surrounded by 6 hexagons, and each hexagon is surrounded by

3 pentagons and 3 hexagons. This extra condition leads to the relation

5f5 = 3f6.

14 Matching

Let G = (V,E) be a bipartite graph, i.e., V = X∪Y , X∩Y = Ø, X 6= Ø 6= Y ,

and E(G) ⊂ X × Y . A matching of G is a subset of E(G) such that no two

edges share a common vertex in X or Y . A matching is called complete if

every vertex of X is an end vertex of an edges of the matching.

(a) Matching (b) Matching (c) Non-matching

Figure 14: Matchings and non-matching

Theorem 14.1. Let R be the binary relation on from X to Y for the the

bipartite graph G = (V,E) with V = X ∪ Y . Then G has a complete

matching if and only if for any A ⊆ X, |A| ≤ |R(A)|.

38

Proof. Let X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}. We construct a

network N = (V,A) as follows:

c(s, xi) = 1; c(yj, t) = 1; c(xi, yj) =M for (xi, yj) ∈ E

where M is an integer larger than |X|.
Note that G has a complete matching ⇐⇒ N has a maximal flow that uses

all edges (s, xi), 1 ≤ i ≤ m.

15 Markov Chain and Page Rank

Page rank is an analysis of measuring importance of objects connected or linked

such as web sites linked by hyperlinks. The system of objects linked in some

way is usually a directed graph (or digraph) G = (V,E) with vertex set V

and directed edge set E. Let V = {v1, v2, . . . , vn}. Mathematically, a page

rank is just a function r : V → [0, 1] determined by the digraph G such that
∑n

j=1 r(vj) = 1, the value r(vj) is the relative importance of the vertex vj.

Let ideg G(v) denote the in-degree of a vertex v in G and odeg G(v) the out-

degree. It is natural to assume that the importance of a vertex vj depends on

hyperlinks from each vertex vi to vj and the importance of vi. For each vertex

vi, the importance of vi to vj is proportional to r(vi), and this proportion is the

number of links from vi to vj out of all out links from vi. Thus we require

r(vj) =
n

∑

i=1, i6=j

min{odeg (vi), aij/odeg (vi)}r(vi), j = 1, . . . , n (7)

where aij is the number of links from vi to vj. We may assume that for each

site vi is linked to at least one site vj0 (i.e. odeg G(vi) > 0), and each site vj is

linked from at least one site vi0 (i.e. ideg G(vj) > 0). Let ri = r(vi) and

pij = min{odeg (vi), aij/odeg (vi)}.

We have the vector r = [r1, . . . , rn] and n× n matrix P = [pij]. We have

n
∑

j=1

pij = 1, i = 1, . . . , n.

39

The condition odeg G(vi) > 0 means that the page vi is lined to web site and

we only consider the ranks of web sites linked to the web system. The system of

PageRank equations becomes

r = rP. (8)

Theorem 15.1 (Fundamental Theorem of Markov Chain). Let P be the tran-

sition matrix of a Markov chain. Then there exists a unique stationary

distribution π, i.e., π = πP .

Proof. Given an initial distribution vector p0. The k step distribution is

pt = pt−1P = p0P
t, t ≥ 1.

Let 1 denote the vector of constant coordinates 1. Since P1 = 1, we see that

〈pt,1〉 = p0P
t1 = p01 = 〈p0,1〉 = 1.

So all pt are distributions for t ≥ 1. Consider the average distribution

at = (p0 + p1 + · · · + pt−1)/t = p0(I + P + · · · + P t−1)/t.

Note that at(P − I) = (pt − p0)/t→ 0 (t→ ∞) and

at[P − I,1] = [(pt − p0)/t, 1].

Recall rank(P − I) = n− 1. Let B denote the n× n submatrix of [P − I,1]

without its first column, and let ck denote the (n− 1)-dimensional vector from

(pk − p0)/k by deleting its first entry. Then rank(B) = n and akB = [ck, 1].

Thus

ak = [ck, 1]B
−1 → [0, 1]B−1 (k → ∞).

A Markov chain is a stochastic discrete model describing a sequence of

events in which the probability of each event depends only on the state attained

in the previous event. In the continuous case it known as Markov process.

It is named by the Russian mathematician Andrey Markov himself.

A discrete-time Markov chain (DTMC) is a sequence of random vari-

ables X0, X1, X2, . . ., satisfying the Markov property: the probability of

moving to the next state depends only on the present state and not on the

previous states. In math notation of conditional probability,

P (Xt = x |Xs = xs, s < t) = P (Xt = x |Xt−1 = xt−1).

40

The possible values of Xt form a countable set S, called the state space of the

chain. We usually assume S = {1, 2, . . . , n} or S = Z+ = {1, 2, . . .}.
Markov chains are often described by directed graphs, where at each time t

it is represented by a digraph whose vertex set is S and there is directed edges

from a state i to a state j if the the transition probability

p
(t,t+1)
ij = P{Xt+1 = j|Xt = i}

from state i to state j at time t is positive. The matrix P (t) = [pij(t)] is a

stochastic matrix, called the transition matrix at time t, whose row sums

are 1. We also have (s, t)-transition probability (from time s to time t)

p
(s,t)
ij = P{Xt = j|Xs = i}, s < t

and (s, t)-transition matrix P (s,t), P (t,t) = I. For s ≤ r ≤ t,

P{Xt = j|Xs = i} =
∑

k∈S

P{Xt = j|Xr = k}P{Xr = k|Xs = i}

This means that p
(s,t)
ij =

∑

k∈S p
(s,r)
ik p

(r,t)
kj . Then we have

P (s,t) = P (s,r)P (r,t), s ≤ r ≤ t.

The distribution of Xt is given by

P{Xt = j} =
∑

i∈S

P{Xt = j|Xt−1 = i}P{Xt−1 = i}.

Let pt = (P{Xt = j} : j ∈ S) denote a row vector index by S. Then

pt = pt−1P
(t−1,t) = p0P

(0,1)P (1,2) · · ·P (t−1,t).

A Markov chain is time-homogeneous if P (t−1,t) is a constant matrix P ,

independent of time t. From now on we assume all Markov chains are time-

homogeneous.

A set of distributions on the state space S is a simplex ∆ of Rn spanned

by the coordinate unit vectors e1, . . . , en. The transition matrix P acts on ∆.

A distribution π is stationary if π = πP , which is a left eigenvector with

eigenvalue 1 and lies in the simplex spanned by the coordinate

41

The period of a state j is the positive integer

dj = gcd{t ∈ Z+ : p
(t)
jj > 0}.

State j is aperiodic if dj = 1 and periodic if dj > 1.

The hitting time of an event A ⊆ S is the first time that the chain is in A,

i.e.,

TA = min{t ∈ Z+ : Xt ∈ A},

which is also a random variable. The hitting probability of A from state i is

hiA = P{TA <∞|X0 = i} = P

(∞
⋃

t=1

{Xt ∈ A|X0 = i}

)

.

The hitting probability of state j from state i is

hij = P{Tj < ∞|X0 = i} = P

(∞
⋃

t=1

{Xt = j|X0 = i}

)

,

and t-step hitting probability of state j from state i is the probability of

reaching state j from state i for the first time in t steps, i.e.,

h
(t)
ij = P{Tj = t|X0 = i} (t ≥ 1)

= P{X1 6= j, . . . , Xt−1 6= j,Xt = j|X0 = i}. (9)

Definition 15.2 (Recurrence and transience). A state j ∈ S of a discrete-

time Markov chain is recurrent (or persistent) if it returns to state j with

probability 1, i.e.,

hjj = P{Tj <∞|X0 = j} =

∞
∑

t=1

h
(t)
jj = 1.

If hjj < 1, the state j is said to be transient, i.e., it has positive probability of

never return to state j.

A state j is said to be accessible from a state i, denoted i → j, if there

exists an integer t ≥ 0 (depending on i and j) such that

p
(t)
ij = P (Xt = j|X0 = i} > 0,

42

A state i is said to communicate with a state j, denoted i ↔ j, if i → j

and j → i. Communication is an equivalence relation on the state space; the

equivalence classes are known as communication classes. A communicating

class is closed if the probability of leaving the class is zero. A Markov chain is

irreducible if it communicates from any state to any another state, i.e., there

is exactly one communicating class.

Definition 15.3 (Closed communication classes). A communication class C

for a Markov chain is said to be closed if it never leaves the class once get in,

i.e.,
∑

j∈C pij = 1 for all i ∈ C. If C has only finitely many elements then C

is closed if the submatrix of transition probabilities restricted to C has all row

sums equal to 1.

Theorem 15.4 (Hitting probability formula). The hitting probability hij from

a state i to a state j in a time-homogeneous discrete Markov chain is given

by the transition probabilities as follows:

hij = lim
T→∞

T
∑

t=1

p
(t)
ij

/(

1 +
T
∑

t=1

p
(t)
jj

)

.

In particular,

hjj =

{

∑∞
t=1 p

(t)
jj

/(

1 +
∑∞

t=1 p
(t)
jj

)

< 1 if
∑∞

t=1 p
(t)
jj <∞

1 if
∑∞

t=1 p
(t)
jj = ∞

Proof. The n-step transition probability can be written as

p
(t)
ij = P{Xt = j|X0 = i} =

t
∑

s=1

P{Xt = j, Tj = s|X0 = i}.

Note that Tj = s is equivalent to X1 6= j,X2 6= j, . . . , Xs−1 6= j,Xs = j. Then

P{Xt = j, Tj = s|X0 = i} =
P{Xt = j, Tj = s,X0 = i}

P{X0 = i}

=
P{Xt = j, Tj = s,X0 = i}

P{Tj = s,X0 = i}
·
P{Tj = s,X0 = i}

P{X0 = i}
= P{Xt = j|Tj = s,X0 = i}P{Tj = s|X0 = i}.

43

Since P{Xt = j|Tj = s,X0 = i} = P{Xt = j|Xs = j}, it follows that

P{Xt = j, Tj = s|X0 = i} = p
(t−s)
jj h

(s)
ij ;

consequently, p
(t)
ij =

∑t
s=1 p

(t−s)
jj h

(s)
ij . We have

T
∑

t=1

p
(t)
ij =

T
∑

t=1

t
∑

s=1

p
(t−s)
jj h

(s)
ij

=
T
∑

s=1

h
(s)
ij

T
∑

t=s

p
(t−s)
jj

=
T
∑

s=1

h
(s)
ij

T−s
∑

r=0

p
(r)
jj (10)

≤
T
∑

s=1

h
(s)
ij

T
∑

r=0

p
(r)
jj . (11)

Choose positive integers S ≤ T , we obtain from (10)

T
∑

t=1

p
(t)
ij ≥

S
∑

s=1

h
(s)
ij

T−s
∑

r=0

p
(r)
jj ≥

S
∑

s=1

h
(s)
ij

T−S
∑

r=0

p
(r)
jj . (12)

Divide both sides of (11) and (12) by
∑T

r=0 p
(r)
jj , we obtain

T
∑

s=1

h
(s)
ij ≥

∑T
t=1 p

(t)
ij

∑T
r=0 p

(r)
jj

≥
S
∑

s=1

h
(s)
ij ·

∑T−S
r=0 p

(r)
jj

∑T
r=0 p

(r)
jj

.

Note that
∑T−S

r=0 p
(r)
jj =

∑T
r=0 p

(r)
jj −

∑T
r=T−S+1 p

(r)
jj . We obtain

T
∑

s=1

h
(s)
ij ≥

∑T
t=1 p

(t)
ij

1 +
∑T

r=1 p
(t)
jj

≥
S
∑

s=1

h
(s)
ij

(

1−

∑T
r=T−S+1 p

(r)
jj

∑T
r=0 p

(r)
jj

)

. (13)

Case 1.
∑∞

t=0 p
(t)
jj = ∞. Then

∑T
r=T−S+1 p

(r)
jj

∑T
r=0 p

(r)
jj

≤
S

∑T
r=0 p

(r)
jj

→ 0 (T → ∞).

44

In (13), let T → ∞ first and S → ∞ next, we have

hij ≥

∑∞
t=1 p

(t)
ij

∑∞
r=0 p

(r)
jj

≥
S
∑

s=1

h
(s)
ij →

∞
∑

s=1

h
(s)
ij = hij (S → ∞).

Thus

hij =

∑∞
n=1 p

(n)
ij

1 +
∑∞

k=1 p
(k)
jj

.

Case 2.
∑∞

t=0 p
(t)
jj <∞. Take S = ⌊T/2⌋, then

∑T
r=T−S+1 p

(r)
jj

∑T
r=0 p

(r)
jj

=

∑T
r=⌈T/2⌉+1 p

(r)
jj

1 +
∑T

r=1 p
(r)
jj

→ 0 (T → ∞).

Let T → ∞ in (13), we have

hij ≥

∑∞
t=1 p

(t)
ij

1 +
∑∞

r=1 p
(r)
jj

≥ hij, i.e., hij =

∑∞
t=1 p

(t)
ij

1 +
∑∞

r=1 p
(r)
jj

.

In particular, hjj =
∑∞

t=1 p
(t)
jj

1+
∑∞

r=1 p
(r)
jj

< 1.

We see that hjj = 1 if and only if
∑∞

k=1 p
(k)
jj = ∞.

Corollary 15.5 (Recurrence and transience criterion 1). A state j is recurrent

(transient) if and only if
∑∞

t=1 p
(t)
jj = ∞ (<∞).

If a state i is recurrent and i → j, then j → i. In fact, suppose j 6→ i,

i.e., there is no directed path from j to i. Then there is a way (through a

directed path from i to j) leaving i and never return back to i. Thus hii < 1,

contradicting to that i is recurrent.

Theorem 15.6 (Recurrence is a class property). All states in a communica-

tion class are either all recurrent or all transient.

Proof. Let i, j be communicating states each other. There exist some positive

integers s, t such that p
(s)
ij , p

(t)
ji > 0. For each integer r ≥ 1, p

(s)
ij p

(r)
jj p

(t)
ji is the

45

probability of a closed directed walk of length s + r + t from i to itself. Then

∞
∑

u=1

p
(u)
ii ≥

∞
∑

r=1

p
(s+r+t)
ii ≥

∞
∑

r=1

p
(s)
ij p

(r)
jj p

(t)
ji = p

(s)
ij

(∞
∑

r=1

p
(r)
jj

)

p
(t)
ji . (14)

If state i is transient, i.e.,
∑∞

n=1 p
(n)
ii <∞, then

∑∞
m=1 p

(m)
jj <∞ by (14). Thus

state j is also transient.

For each communication class, if one of its state is transient, so are the others.

If no one is transient, then all states are recurrent.

Theorem 15.7 (Number of visits). Let Nj =
∑∞

n=1 1{Xn = j} denote the

total number of visits of state j.

(a) If state j recurrent, then state j is visited infinitely many times with

probability 1, i.e., P{Nj = ∞|X0 = j} = 1.

(b) If state j is transient, then Nj follows a geometric distribution

P{Nj = n} = q(1− q)n,

where q = P{Tj = ∞|X0 = j}, the probability that state j is never back.

Proof. Note that P{Nj ≥ 1|X0 = i} = hij, the hitting probability from state i

to state j. Then

P{Nj ≥ n|X0 = i} =
∞
∑

k=1

P{Nj ≥ n− 1|X0 = i}P{Tj = k|X0 = i}

= P{Nj ≥ n− 1|X0 = i}
∞
∑

k=1

P{Tj = k|X0 = i}

= P{Nj ≥ n− 1|X0 = i}hij = · · ·

= P{Nj ≥ 1|X0 = i}hn−1
ij = hnij.

It follows that

P{Nj = n|X0 = i} = P{Nj ≥ n|X0 = i} − P{Nj ≥ n + 1|X0 = i}

= hnij − hn+1
ij = (1− hij)h

n
ij.

In particular, P{Nj = n|X0 = j} = (1− hjj)h
n
jj.

46

Now if state j is recurrent, then hjj = 1, consequently, P{Nj = n|X0 = j} =

0 for n ≥ 0. It follows that P{Nj = ∞|X0 = j} = 1. If state j transient, i.e.,

hjj < 1, set q = 1− hjj, then P{Nj = n|X0 = j} = q(1− q)n.

Lemma 15.8. Let P be an n × n stochastic matrix whose row sum are 1.

Then rank(P − I) = n− 1 if and only if the digraph corresponding to P is

strongly connected.

Proof. Note that rank(I−P) ≤ n−1 since (I−P)1 = 0. Suppose rank(I−P) <
n − 1. Then there exists a nonzero vector u = (u1, . . . , un), independent of 1,

such that (I − P)u = 0. Let ui0 and uim be minimal and maximal values of

u1, . . . , un respectively. Consider a directed path i0i1 · · · im from i0 to im. There

exists an ik such that ui0 = · · · = uik < uik+1
. Then pikik+1

> 0. Thus

ui0 = uik =
n

∑

j=1

pikjuj >
n

∑

j=1

pikjui0 = ui0,

which is a contradiction. Hence rank(I − P) = n− 1.

Suppose the underlying graph is not strongly connected, i.e., there are at least

two strongly connected components. The components can be linearly arranged

as C0, C1, . . . , Cm such that if there exist states i ∈ Cα, j ∈ Cβ with p
(t)
ij > 0 for

some t ≥ 1 then then Cα is ahead of Cβ. So the matrix of P is blocked by the

partition C0, C1, . . . , Cm into an upper block-triangular matrix. Since DTMC is

connected, for each α there exist i ∈ Cα, j ∈ Cβ such that α < β and p
(t)
ij > 0

for some t ≥ 1

, choose one source component C0 and one sink component C1. Then p
(t)
ji = 0

for all i ∈ C0, j ∈ C1 and t ≥ 1.

47

Final Exam Review

Boolean Algebra definition and examples

How to write a given Boolean function as a Boolean expression

Logic gates and networks

Karnaugh maps for simplifying Boolean expressions

Minimum spanning tree (MST)

Kruskal’s algorithm and Prim’s algorithm for MST

Distinct weights imply the uniqueness of MST (proof of the fact)

Planar and non-planar graphs

Euler formula and Platonic polyhedra (five type such polyhedron graph)

Relation between the number of vertices and the number of edges

Relation between the number of edges and the number of faces (or regions)

Estimation using the length of cycles for non-planarity

Football graph and the planar graphs with only pentagons and hexagons

Depth first search for spanning tree

Breadth first search for spanning tree

Characterizations of trees

Tree formula and forest formula

Eulerian tour and Eulerian path

Fleury’s algorithm for finding an Eulerian tour or Eulerian path.

Hamilton tour and path

Degree-sum condition theorem and its generalization

Characterization of bipartite graphs

Quotient graphs

Permutations and combinations

Combination with repetition

Permutations of a multiset

Binomial and multinomial coefficients and theorems

Inclusion-exclusion principle

Pigeonhole principle

Linear recurrence relation

Characteristic equation

General solutions with distinct roots, and with equal roots

48

Divide and conquer method

xn = axn
2
+ b.

Application of recurrence relations

Transitive closure of binary relation, Warshall’s algorithm

Equivalence relation

Mathematical induction

Propositional logic

Modular integers

Finding all integer solutions for equation like ax + by = c for integers a, b, c.

Solving equation ax = b modulo n

(x = bu/d + kn/d with k ∈ Z, where d = au + bv = gcd(a, b)).

49

