Week 11-12: Special Counting Sequences

April 17, 2019

We have considered several special counting sequences. For instance, the sequence n ! counts the number of permutations of an n-set; the sequence D_{n} counts the number of derangements of an n-set; and the Fibonacci sequence f_{n} counts the pairs of rabbits.

1 Catalan Numbers

Definition 1.1. The Catalan sequence is the sequence

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}, \quad n \geq 0
$$

The number C_{n} is called the nth Catalan number. The first few Catalan numbers are

$$
C_{0}=1, \quad C_{1}=1, \quad C_{2}=2, \quad C_{3}=5, \quad C_{4}=14, \quad C_{5}=42
$$

Theorem 1.2. The number of words $a_{1} a_{2} \ldots a_{2 n}$ of length $2 n$ having exactly n positive ones +1 's and exactly n negative ones -1 's and satisfying

$$
\begin{equation*}
a_{1}+a_{2}+\cdots+a_{i} \geq 0 \quad \text { for all } \quad 1 \leq i \leq 2 n \tag{1}
\end{equation*}
$$

equals the nth Catalan number

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}, \quad n \geq 0
$$

Proof. We call a word of length $2 n$ with exactly n positive ones +1 's and n negative ones -1 's acceptable if it satisfies (1) and unacceptable otherwise. Let A_{n} denote the set of acceptable words, and U_{n} the set of unacceptable words
of length $2 n$. Then $A_{n} \cup U_{n}$ is the set of words of length $2 n$ with exactly n positive ones and exactly n negative ones, and

$$
\left|A_{n}\right|+\left|U_{n}\right|=\binom{2 n}{n}=\frac{(2 n)!}{n!n!}
$$

Let S_{n} denote the set of words of length $2 n$ with exactly $n+1$ ones and $n-1$ negative ones.

We define a map $f: U_{n} \rightarrow S_{n}$ as follows: For each word $a_{1} a_{2} \ldots a_{2 n}$ in U_{n}, since the word is unacceptable there is a smallest integer k such that

$$
a_{1}+a_{2}+\cdots+a_{k}<0
$$

Since the number k is smallest, we have $k \geq 1, a_{1}+a_{2}+\cdots+a_{k-1}=0$, and $a_{k}=-1$ (we assume $a_{0}=0$). Note that the integer k must be an odd number. Now switch the signs of the first k terms in the word $a_{1} a_{2} \ldots a_{2 n}$ to obtain a new word $a_{1}^{\prime} a_{2}^{\prime} \ldots a_{k}^{\prime} a_{k+1} \ldots a_{2 n}$, where

$$
a_{1}^{\prime}=-a_{1}, \quad a_{2}^{\prime}=-a_{2}, \quad \ldots, \quad a_{k}^{\prime}=-a_{k}
$$

The new word $a_{1}^{\prime} a_{2}^{\prime} \ldots a_{k}^{\prime} a_{k+1} \ldots a_{2 n}$ has $n+1$ positive ones and $n-1$ negative ones. We then define

$$
f\left(a_{1} a_{2} \ldots a_{2 n}\right)=a_{1}^{\prime} a_{2}^{\prime} \ldots a_{k}^{\prime} a_{k+1} \ldots a_{2 n} .
$$

We define another map $g: S_{n} \rightarrow U_{n}$ as follows: For each word $a_{1}^{\prime} a_{2}^{\prime} \ldots a_{2 n}^{\prime}$ in S_{n}, the word has exactly $n+1$ positive ones and exactly $n-1$ negatives ones. There is a smallest integer k such that

$$
a_{1}^{\prime}+a_{2}^{\prime}+\cdots+a_{k}^{\prime}>0 .
$$

Then $k \geq 1, a_{1}^{\prime}+a_{2}^{\prime}+\cdots+a_{k-1}^{\prime}=0$, and $a_{k}^{\prime}=1$ (we assume $a_{0}=1$). Switch the signs of the first k terms in $a_{1}^{\prime} a_{2}^{\prime} \ldots a_{2 n}^{\prime}$ to obtain a new word $a_{1} a_{2} \ldots a_{k} a_{k+1}^{\prime} \ldots a_{2 n}^{\prime}$, where

$$
a_{1}=-a_{1}^{\prime}, \quad a_{2}=-a_{2}^{\prime}, \quad \ldots, \quad a_{k}=-a_{k}^{\prime}
$$

The word $a_{1} a_{2} \ldots a_{k} a_{k+1}^{\prime} \ldots a_{2 n}^{\prime}$ has exactly n ones and exactly n negative ones, and is unacceptable because $a_{1}+a_{2}+\cdots+a_{k}<0$. We set

$$
g\left(a_{1}^{\prime} a_{2}^{\prime} \ldots a_{2 n}^{\prime}\right)=a_{1} a_{2} \ldots a_{k} a_{k+1}^{\prime} \ldots a_{2 n}^{\prime}
$$

Now it is easy to see that the maps f and g are inverses each other. Hence

$$
\left|U_{n}\right|=\left|S_{n}\right|=\binom{2 n}{n+1}=\frac{(2 n)!}{(n+1)!(n-1)!}
$$

It follows from $\left|A_{n}\right|+\left|U_{n}\right|=(2 n)!/(n!n!)$ that

$$
\begin{aligned}
\left|A_{n}\right| & =\frac{(2 n)!}{n!n!}-\frac{(2 n)!}{(n+1)!(n-1)!} \\
& =\frac{(2 n)!}{n!(n-1)!}\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =\frac{(2 n)!}{n!(n-1)!} \cdot \frac{1}{n(n+1)} \\
& =\frac{1}{n+1}\binom{2 n}{n}
\end{aligned}
$$

Corollary 1.3. The number of nondecreasing lattice paths from $(0,0)$ to (n, n) and above the straight line $x=y$ is equal to the nth Catalan number

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}, \quad n \geq 0
$$

Proof. Viewing the +1 as a unit move upward and -1 as a unit move to the right, then each word of length $2 n$ with exactly n positive ones (+1 's) and n negative ones (-1 's) can be interpreted as a nondecreasing lattice path from $(0,0)$ to (n, n) and above the straight line $x=y$.

Example 1.1. There are $2 n$ people line to get into theater. Admission is 50 cents. Of the 2 n people, n have a 50 cent piece and n have a 1 dollar bill. Assume the box office at the theater begin with empty cash register. In how many ways can the people line up so that whenever a person with a dollar bill buys a ticket and the box office has a 50 cent piece in order to make change?

If the $2 n$ people are considered indistinguishable, then the answer is the Catalan number

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n} .
$$

If the $2 n$ people are consider distinguishable, then the answer is

$$
\frac{1}{n+1}\binom{2 n}{n} \cdot n!n!=\frac{(2 n)!}{n+1}
$$

2 Difference Sequences and Stirling Numbers

Definition 2.1. The first order difference sequence (or just difference sequence) of a sequence $a=\left(a_{n} ; n \geq 0\right)$ is the sequence $\Delta a=\left(\Delta a_{n} ; n \geq 0\right)$ defined by

$$
\Delta a_{n}:=(\Delta a)_{n}=a_{n+1}-a_{n}, \quad n \geq 0
$$

Example 2.1. The difference sequence of the sequence $3^{n}(n \geq 0)$ is the sequence

$$
\Delta 3^{n}=3^{n+1}-3^{n}=2 \times 3^{n}, \quad n \geq 0
$$

The difference sequence of 2×3^{n} is

$$
\Delta\left(2 \times 3^{n}\right)=2 \times 3^{n+1}-2 \times 3^{n}=2^{2} \times 3^{n}, \quad n \geq 0
$$

The difference sequence $\Delta\left(\Delta a_{n} ; n \geq 0\right)$ of the sequence $\left(\Delta a_{n} ; n \geq 0\right)$ is called the second order difference sequence of $\left(a_{n} ; n \geq 0\right)$, and is denoted by ($\Delta^{2} a_{n} ; n \geq 0$). More specifically,

$$
\begin{aligned}
\Delta^{2} a_{n}=\left(\Delta^{2} a\right)_{n}: & =\Delta\left(\Delta a_{n}\right)=\Delta a_{n+1}-\Delta a_{n} \\
& =\left(a_{n+2}-a_{n+1}\right)-\left(a_{n+1}-a_{n}\right) \\
& =a_{n+2}-2 a_{n+1}+a_{n}
\end{aligned}
$$

Similarly, the $p \mathbf{t h}$ order difference sequence $\left(\Delta^{p} a_{n} ; n \geq 0\right)$ of $\left(a_{n} ; n \geq 0\right)$ is the difference sequence $\Delta\left(\Delta^{p-1} a_{n} ; n \geq 0\right)$ of the sequence $\left(\Delta^{p-1} a_{n} ; n \geq 0\right)$, namely,

$$
\Delta^{p} a_{n}=\left(\Delta^{p} a\right)_{n}:=\Delta\left(\Delta^{p-1} a_{n}\right)=\Delta^{p-1} a_{n+1}-\Delta^{p-1} a_{n}, \quad n \geq 0
$$

We define the 0 th order difference sequence $\left(\Delta^{0} a_{n} ; n \geq 0\right)$ to be the sequence itself, namely,

$$
\Delta^{0} a_{n}=\left(\Delta^{0} a\right)_{n}:=a_{n}, \quad n \geq 0
$$

To avoid the cumbersome on notations of the higher order difference sequences, we view each sequence ($a_{n} ; n \geq 0$) as a function

$$
f:\{0,1,2, \ldots\} \rightarrow \mathbb{C}, \quad f(n)=a_{n}, \quad n \geq 0 .
$$

Let S_{∞} denote the vector space of functions defined on the set $\mathbb{N}=\{0,1,2, \ldots\}$ of nonnegative integers. Then S_{∞} is a vector space under the ordinary addition and scalar multiplication of functions. Now the difference operator Δ is a linear function from S_{∞} to itself. For each $f \in S_{\infty}, \Delta f$ is the sequence defined by

$$
(\Delta f)(n)=f(n+1)-f(n), \quad n \geq 0 .
$$

Lemma 2.2. The operator $\Delta: S_{\infty} \rightarrow S_{\infty}$ is a linear map.
Proof. Given sequences $f, g \in S_{\infty}$ and numbers α, β. We have

$$
\begin{aligned}
\Delta(\alpha f+\beta g)(n) & =(\alpha f+\beta g)(n+1)-(\alpha f+\beta g)(n) \\
& =\alpha[f(n+1)-f(n)]+\beta[g(n+1)-g(n)] \\
& =\alpha(\Delta f)(n)+\beta(\Delta g)(n) \\
& =(\alpha \Delta f+\beta \Delta g)(n), \quad n \geq 0 .
\end{aligned}
$$

This means that $\Delta(\alpha f+\beta g)=\alpha \Delta f+\beta \Delta g$.
Theorem 2.3. For each sequence $f \in S_{\infty}$, the pth order difference sequence $\Delta^{p} f$ has the form

$$
\Delta^{p} f(n)=\left(\Delta^{p} f\right)(n):=\sum_{k=0}^{p}(-1)^{p-k}\binom{p}{k} f(n+k), \quad n \geq 0 .
$$

Proof. For $p=0$, it is clear that $\Delta^{0} f(n)=\left(\Delta^{0} f\right)(n)=f(n)$. For $p=1$,

$$
\sum_{k=0}^{1}(-1)^{1-k}\binom{1}{k} f(n+k)=f(n+1)-f(n)=(\Delta f)(n)
$$

Let $p \geq 2$. We assume that it is true for $p-1$, that is,

$$
\left(\Delta^{p-1} f\right)(n)=\sum_{k=0}^{p-1}(-1)^{p-1-k}\binom{p-1}{k} f(n+k) .
$$

By definition of difference, $\Delta^{p} f=\Delta\left(\Delta^{p-1} f\right)$, we have

$$
\begin{aligned}
& \left(\Delta^{p} f\right)(n)=\left(\Delta\left(\Delta^{p-1} f\right)\right)(n)=\left(\Delta^{p-1} f\right)(n+1)-\left(\Delta^{p-1} f\right)(n) \\
& =\sum_{k=0}^{p-1}(-1)^{p-1-k}\binom{p-1}{k} f(n+1+k)-\sum_{k=0}^{p-1}(-1)^{p-1-k}\binom{p-1}{k} f(n+k) \\
& =\sum_{k=1}^{p}(-1)^{p-k}\binom{p-1}{k-1} f(n+k)+\sum_{k=0}^{p-1}(-1)^{p-k}\binom{p-1}{k} f(n+k) .
\end{aligned}
$$

Applying the Pascal formula $\binom{p}{k}=\binom{p-1}{k-1}+\binom{p-1}{k}$ for $1 \leq k \leq p-1$, we obtain

$$
\left(\Delta^{p} f\right)(n)=\sum_{k=0}^{p}(-1)^{p-k}\binom{p}{k} f(n+k), \quad n \geq 0
$$

Definition 2.4. The difference table of a sequence $f(n)(n \geq 0)$ is the array

$(\Delta f)(0)$	$f(1)$		$f(2)$		$f(3)$
		$(\Delta f)(1)$		$(\Delta f)(2)$	
	$\left(\Delta^{2} f\right)(0)$		$\left(\Delta^{2} f\right)(1)$		\ldots
		$\left(\Delta^{3} f\right)(0)$			

where the p th row is the p th order difference sequence $\left(\Delta^{p} f\right)(n), n \geq 0$.
Example 2.2. Let $f(n)$ be a sequence defined by

$$
f(n)=2 n^{2}+3 n+1, \quad n \geq 0 .
$$

Then its difference table is

1		6		15		28		45		66		\ldots
	5		9		13		17		21		\ldots	
	4		4		4		4		\ldots			
		0		0		0		\ldots				
			0		0		\ddots					
				0		\ddots						

A sequence $f(n)(n \geq 0)$ of the form

$$
f(n)=\alpha_{p} n^{p}+a_{p-1} n^{p-1}+\cdots+\alpha_{1} n+\alpha_{0}, \quad n \geq 0
$$

where $\alpha_{1}, \ldots, \alpha_{p}$ are constants and $\alpha_{p} \neq 0$, is called a polynomial sequence of degree p.

Theorem 2.5. For each polynomial sequence $f(n)(n \geq 0)$ of degree p, the $(p+1)$ th order difference sequence $\Delta^{p+1} f$ is identically zero, that is,

$$
\left(\Delta^{p+1} f\right)(n)=0, \quad n \geq 0
$$

Proof. We proceed by induction on p. For $p=0$, the sequence $f(n)=\alpha_{0}$ is a constant sequence, and

$$
(\Delta f)(n)=\alpha_{0}-\alpha_{0}=0
$$

is the zero sequence. Consider $p \geq 1$ and assume $\Delta^{p} g \equiv 0$ for all polynomial sequences g of degree at most $p-1$. Compute the difference

$$
\begin{aligned}
(\Delta f)(n)= & {\left[\alpha_{p}(n+1)^{p}+\alpha_{p-1}(n+1)^{p-1}+\cdots+\alpha_{1}(n+1)+\alpha_{0}\right] } \\
& -\left[\alpha_{p} n^{p}+\alpha_{p-1} n^{p-1}+\cdots+\alpha_{1} n+\alpha_{0}\right] \\
= & \alpha_{p}\binom{p}{1} n^{p-1}+\text { lower degree terms. }
\end{aligned}
$$

The sequence $g=\Delta f$ is a polynomial sequence of degree at most $p-1$. Thus by the induction hypothesis,

$$
\Delta^{p+1} f=\Delta^{p}(\Delta f)=\Delta^{p} g \equiv 0
$$

Theorem 2.6. The difference table of a sequence $f(n)(n \geq 0)$ is determined by its 0th diagonal sequence

$$
\left(\Delta^{0} f\right)(0), \quad\left(\Delta^{1} f\right)(0), \quad\left(\Delta^{2} f\right)(0), \quad \ldots, \quad\left(\Delta^{n} f\right)(0), \quad \ldots
$$

Moreover, the sequence $f(n)$ itself is determined as

$$
\begin{equation*}
f(n)=\sum_{k=0}^{n}\binom{n}{k}\left(\Delta^{k} f\right)(0)=\sum_{k=0}^{\infty}\binom{n}{k}\left(\Delta^{k} f\right)(0), \quad n \geq 0 . \tag{2}
\end{equation*}
$$

Proof. We proceed by induction on $n \geq 0$. For $n=0$, for any sequence $g \in S_{\infty}$,

$$
g(0)=\sum_{k=0}^{0}\binom{0}{k}\left(\Delta^{k} g\right)(0)=\left(\Delta^{0} g\right)(0)=g(0) .
$$

Let $n \geq 1$ and assume that it is true for the case $n-1$, that is, for each sequence $h \in S_{\infty}$,

$$
h(n-1)=\sum_{k=0}^{n-1}\binom{n-1}{k}\left(\Delta^{k} h\right)(0) .
$$

Now for the sequence $f \in S_{\infty}$, by definition of Δf at $n-1$, we have

$$
f(n)=f(n-1)+(\Delta f)(n-1)=(f+\Delta f)(n-1) .
$$

Applying the induction hypothesis to the sequences f and Δf, we have

$$
\begin{align*}
f(n) & =\sum_{k=0}^{n-1}\binom{n-1}{k}\left(\Delta^{k} f\right)(0)+\sum_{k=0}^{n-1}\binom{n-1}{k}\left(\Delta^{k}(\Delta f)\right)(0) \tag{0}\\
& =\sum_{k=0}^{n-1}\binom{n-1}{k}\left(\Delta^{k} f\right)(0)+\sum_{k=0}^{n-1}\binom{n-1}{k}\left(\Delta^{k+1} f\right)(0) \\
& =\left(\Delta^{0} f\right)(0)+\sum_{k=1}^{n-1}\left[\binom{n-1}{k}+\binom{n-1}{k-1}\right]\left(\Delta^{k} f\right)(0)+\left(\Delta^{n} f\right)(0) \\
& =\sum_{k=0}^{n}\binom{n}{k}\left(\Delta^{k} f\right)(0), \quad \because\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} .
\end{align*}
$$

Corollary 2.7. If the 0th diagonal of the difference table for a sequence $f(n), n \geq 0$ is

$$
c_{0}, \quad c_{1}, \quad \ldots, \quad c_{p}(\neq 0), \quad 0, \quad \ldots,
$$

then $f(n)$ is a polynomial sequence of degree p, and is explicitly given by

$$
f(n)=c_{0}\binom{n}{0}+c_{1}\binom{n}{1}+c_{2}\binom{n}{2}+\cdots+c_{p}\binom{n}{p}, \quad n \geq 0 .
$$

In other words,

$$
\begin{equation*}
f(n)=\sum_{k=0}^{p}\binom{n}{k}\left(\Delta^{k} f\right)(0), \quad n \geq 0 . \tag{3}
\end{equation*}
$$

Proof. Note that $f(n)=\sum_{k=0}^{n}\binom{n}{k}\left(\Delta^{k} f\right)(0)$ for $n \geq 0$. For $n \leq p$, we have

$$
f(n)=\sum_{k=0}^{n} c_{k}\binom{n}{k}+\sum_{k=n+1}^{p} c_{k}\binom{n}{k}=\sum_{k=0}^{p} c_{k}\binom{n}{k} .
$$

For $n>p$, we have

$$
f(n)=\sum_{k=0}^{p} c_{k}\binom{n}{k}+\sum_{k=p+1}^{n}\left(\Delta^{k} f\right)(0)\binom{n}{k}=\sum_{k=0}^{p} c_{k}\binom{n}{k} .
$$

For sequence f_{p} such that $\Delta^{n} f_{p}(0)=\delta_{n p}$ with $p=3$, we have its difference table

Example 2.3. Consider the sequence

$$
f(n)=n^{3}+2 n^{2}-3 n+2, \quad n \geq 0 .
$$

Computing the difference we obtain

2		2		12	
0		10		26	
	10		16		
		6			

Thus the sequence $f(n)$ can be written as

$$
f(n)=2\binom{n}{0}+10\binom{n}{2}+6\binom{n}{3}, \quad n \geq 0 .
$$

Corollary 2.8. For any sequence $f(n), n \geq 0$, its partial sum can be written as

$$
\begin{equation*}
\sum_{k=0}^{n} f(k)=\sum_{k=0}^{n}\binom{n+1}{k+1}\left(\Delta^{k} f\right)(0), \quad n \geq 0 \tag{4}
\end{equation*}
$$

Proof. Recall the identity $\sum_{k=i}^{n}\binom{k}{i}=\binom{n+1}{i+1}$. Then

$$
\begin{aligned}
\sum_{k=0}^{n} f(k) & =\sum_{k=0}^{n} \sum_{i=0}^{k}\binom{k}{i}\left(\Delta^{i} f\right)(0) \\
& =\sum_{i=0}^{n}\left[\sum_{k=i}^{n}\binom{k}{i}\right]\left(\Delta^{i} f\right)(0) \\
& =\sum_{i=0}^{n}\binom{n+1}{i+1}\left(\Delta^{i} f\right)(0) .
\end{aligned}
$$

Example 2.4. For the sequence $f(n)=n^{2}(n \geq 0)$, computing the difference we have

$$
\begin{array}{llll}
0 & & 1 & \\
& 1 & & 4 \\
& & 2 &
\end{array}
$$

Thus

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\binom{n+1}{2}+2\binom{n+1}{3}=\frac{(n+1) n(2 n+1)}{6} .
$$

For the sequence $f(n)=n^{3}$, computing the difference we obtain

0		1		8	27
	1		7		19
		6		12	
			6		

Thus

$$
\begin{aligned}
1^{3}+2^{3}+3^{3}+\cdots+n^{3} & =\binom{n+1}{2}+6\binom{n+1}{3}+6\binom{n+1}{4} \\
& =\left[\frac{(n+1) n}{2}\right]^{2}
\end{aligned}
$$

For $f(n)=n^{4}$, computing the difference we have

0		1			16		81		256
	1		15		65		175		
	14		50		110				
		36		60					
					24				

Hence

$$
\begin{aligned}
\sum_{k=1}^{n} k^{4} & =\binom{n+1}{2}+14\binom{n+1}{3}+36\binom{n+1}{4}+24\binom{n+1}{5} \\
& =\frac{(n+1) n\left(6 n^{3}+9 n^{2}+n-1\right)}{30}
\end{aligned}
$$

Example 2.5. Consider the sequence $f(n)=n^{p}, n \geq 0$, with $p \in \mathbb{N}$. Write its 0th diagonal sequence as

$$
C(p, 0), \quad C(p, 1), \quad \ldots, \quad C(p, p), \quad 0, \quad \ldots
$$

Then by Corollary 2.7,

$$
n^{p}=\sum_{k=0}^{p} C(p, k)\binom{n}{k} .
$$

Definition 2.9. The falling factorial of n with length k is the number

$$
\begin{aligned}
{[n]_{0} } & =1, \\
{[n]_{k} } & =n(n-1) \cdots(n-k+1), \quad k \geq 1 .
\end{aligned}
$$

We call the numbers

$$
S(p, k)=\frac{C(p, k)}{k!}, \quad 0 \leq k \leq p
$$

the Stirling numbers of the second kind.
It is easy to see that the falling factorial $[n]_{k}$ with $n \geq k \geq 0$ satisfies the recurrence relation

$$
\begin{gathered}
{[n]_{k+1}=(n-k)[n]_{k} ;} \\
{[n]_{k}=\binom{n}{k} k!, \quad n, k \geq 0 .}
\end{gathered}
$$

Then $[n]_{0}=[n]_{n}=1$ for $n \geq 0$ and $[n]_{k}=0$ for $k>n$.
Corollary 2.10. For any integer $p \geq 0$,

$$
\begin{equation*}
n^{p}=\sum_{k=0}^{p} S(p, k)[n]_{k} . \tag{5}
\end{equation*}
$$

Proof. $C(p, k)\binom{n}{k}=(C(p, k) / k!)[n]_{k}=S(p, k)[n]_{k}$.
Theorem 2.11. The Stirling numbers $S(p, k)$ of the second kind are integers, satisfying the recurrence relation:

$$
\begin{cases}S(0,0)=S(p, p)=1 & \text { if } p \geq 0 \tag{6}\\ S(p, 0)=0 & \text { if } p \geq 1 \\ S(p, 1)=1 & \text { if } p \geq 1 \\ S(p, k)=S(p-1, k-1)+k S(p-1, k) & \text { if } p>k \geq 1\end{cases}
$$

Proof. For $p=0$, since $n^{0}=1$ and $[n]_{0}=1$, (5) implies $S(0,0)=1$. Since $[n]_{k}$ is a polynomial of degree k in n with leading coefficient 1 , then (5) implies $S(p, p)=1$.

Let $p \geq 1$. The constant term of the polynomial n^{p} is zero. Since $[n]_{k}$ is a polynomial of degree k, the constant term of $[n]_{k}$ is zero if $k \geq 1$. Then $[n]_{0}=1$
and (5) force that $S(p, 0)=0$. Since $[n]_{1}=n$, let $n=1$ in (5), since $1^{p}=1$, $S(p, 0)=0,[1]_{1}=1$, and $[1]_{k}=0$ for $k \geq 2$, we see that $S(p, 1)=1$.

Now for $p>k \geq 1$, notice that

$$
n^{p}=\sum_{k=0}^{p} S(p, k)[n]_{k}, \quad n^{p-1}=\sum_{k=0}^{p-1} S(p-1, k)[n]_{k} .
$$

It follows that

$$
\begin{aligned}
n^{p}=n \times n^{p-1} & =n \sum_{k=0}^{p-1} S(p-1, k)[n]_{k} \\
& =\sum_{k=0}^{p-1} S(p-1, k)(n-k+k)[n]_{k}
\end{aligned}
$$

Splitting $n-k+k$ into $(n-k)+k$, we have

$$
\begin{aligned}
n^{p} & =\sum_{k=0}^{p-1} S(p-1, k)(n-k)[n]_{k}+\sum_{k=0}^{p-1} S(p-1, k) k[n]_{k} \\
& =\sum_{k=0}^{p-1} S(p-1, k)[n]_{k+1}+\sum_{k=0}^{p-1} k S(p-1, k)[n]_{k} \\
& =\sum_{j=1}^{p} S(p-1, j-1)[n]_{j}+\sum_{k=1}^{p-1} k S(p-1, k)[n]_{k} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \sum_{k=0}^{p} S(p, k)[n]_{k}=S(p-1, p-1)[n]_{p}+ \\
& \quad \sum_{k=1}^{p-1}\left[S(p-1, k-1)+k(S(p-1, k)][n]_{k}\right.
\end{aligned}
$$

Therefore $S(p, p)=S(p-1, p-1)$ and

$$
S(p, k)=S(p-1, k-1)+k S(p-1, k), \quad 1 \leq k<p
$$

In particular, for $p \geq 2$ and $k=1$, since $S(p-1,0)=0$, we obtain

$$
S(p, 1)=S(p-1,0)+S(p-1,1)=S(p-1,1)
$$

Applying the recurrence, we have

$$
S(p, 1)=S(p-1,1)=\cdots=S(2,1)=S(1,1)=1 .
$$

The recurrence relation implies that $S(p, k)$ are integers for all $p \geq k \geq 0$.

(p, k)	0	1	2	3	4	5	6	7	8
0	1								
1	0	1							
2	0	1	1						
3	0	1	3	1					
4	0	1	7	6	1				
5	0	1	15	25	10	1			
6	0	1	31	90	65	15	1		
7	0	1	63	301	350	140	21	1	
8	0	1	127	966	1701	1050	266	28	1

Theorem 2.12.

$$
\begin{aligned}
\sum_{k=1}^{n} k^{p} & =\sum_{i=0}^{p}\binom{n+1}{i+1} C(p, i) \\
& =\sum_{i=0}^{p} \frac{S(p, i)}{i+1}[n+1]_{i+1} \\
& =\sum_{k=1}^{p+1} \frac{S(p, k-1)}{k}[n+1]_{k} .
\end{aligned}
$$

Definition 2.13. A partition of a set S is a collection \mathcal{P} of disjoint nonempty subsets of S such that

$$
S=\bigcup_{A \in \mathcal{P}} A
$$

The cardinality $|\mathcal{P}|$ is called the number of parts (or blocks) of the partition \mathcal{P}. We define

$$
S_{n, k}=\text { number of partitions of an } n \text {-set into } k \text { parts. }
$$

We have $S_{n, k}=0$ for $k>n$. We assume $S_{0,0}=1$.
A partition of a set S into k parts can be viewed as a placement of S into k indistinguishable boxes so that each box is nonempty.

Example 2.6. (a) An n-set S with $n \geq 1$ cannot be partitioned into zero parts, can be partitioned into one part in only one way, and can be partitioned into n parts in only one way. So we have

$$
S_{n, 0}=0, \quad S_{n, 1}=S_{n, n}=1, \quad n \geq 1
$$

(b) For $S=\{1,2\}$, we have partitions

$$
\{1,2\} ; \quad\{\{1\},\{2\}\} .
$$

(c) For $S=\{1,2,3\}$, we have partitions:

$$
\begin{gathered}
\{1,2,3\} ; \\
\{\{1\},\{2,3\}\},\{\{1,2\},\{3\}\},\{\{1,3\},\{2\}\} ; \\
\{\{1\},\{2\},\{3\}\} .
\end{gathered}
$$

(d) For $S=\{1,2,3,4\}$, there are 7 partitions of S into two parts:

$$
\begin{gathered}
\{\{1\},\{2,3,4\}\},\{\{1,3,4\},\{2\}\},\{\{1,2,4\},\{3\}\},\{\{1,2,3\},\{4\}\}, \\
\{\{1,2\},\{3,4\}\},\{\{1,3\},\{2,4\}\},\{\{1,4\},\{2,3\}\} .
\end{gathered}
$$

There are 6 partitions of S into three parts:

$$
\begin{aligned}
& \{\{1\},\{2\},\{3,4\}\},\{\{1\},\{3\},\{2,4\}\},\{\{1\},\{4\},\{2,3\}\}, \\
& \{\{2\},\{3\},\{1,4\}\},\{\{2\},\{4\},\{1,3\}\},\{\{3\},\{4\},\{1,2\}\} .
\end{aligned}
$$

Theorem 2.14. The numbers $S_{n, k}$ satisfy the recurrence relation:

$$
\begin{cases}S_{0,0}=S_{n, n}=1 & \text { if } n \geq 0 \tag{7}\\ S_{n, 0}=0 & \text { if } n \geq 1 \\ S_{n, 1}=1 & \text { if } n \geq 1 \\ S_{n, k}=S_{n-1, k-1}+k S_{n-1, k} & \text { if } n-1 \geq k \geq 1\end{cases}
$$

Proof. Obviously, $S_{0,0}=S_{n, n}=1$. For $n \geq 1$, it is also clear that $S_{n, 0}=0$ and $S_{n, 1}=1$.

Let S be a set of n elements, $n>k \geq 1$. Fix an element $a \in S$. The partitions of S into k parts can be divided into two categories: partitions in which $\{a\}$ is a single part, and the partitions that $\{a\}$ is not a single part. The formal partitions can be viewed as partitions of $S \backslash\{a\}$ into $k-1$ parts; there are $S_{n-1, k-1}$ such partitions. The latter partitions can be obtained by partitions of $S \backslash\{a\}$ into k parts and joining the element a in one of the k parts; there are $k S_{n-1, k}$ such partitions. Thus

$$
S_{n, k}=S_{n-1, k-1}+k S_{n-1, k}
$$

Corollary 2.15.

$$
S(p, k)=S_{p, k}, \quad 0 \leq k \leq p
$$

Theorem 2.16.

$$
\begin{gathered}
C(p, k)=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(k-i)^{p} \\
S(p, k)=\frac{1}{k!} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(k-i)^{p} .
\end{gathered}
$$

Definition 2.17. The nth Bell number B_{n} is the number of partitions of an n-set into nonempty indistinguishable boxes, i.e.,

$$
B_{n}=\sum_{k=0}^{n} S_{n, k}
$$

The first few Bell numbers are

$$
\begin{array}{ll}
B_{0}=1 & B_{4}=15 \\
B_{1}=1 & B_{5}=52 \\
B_{2}=2 & B_{6}=203 \\
B_{3}=5 & B_{7}=877
\end{array}
$$

Theorem 2.18. For $n \geq 1$,

$$
B_{n}=\sum_{k=0}^{n-1}\binom{n-1}{k} B_{k}
$$

Proof. Let S be a set of n elements and fix an element $a \in S$. For each partition \mathcal{P} of S, there is a part (or block) A which contains a. Then $A^{\prime}=A-\{a\}$ is a subset of $S-\{a\}$. The other blocks of \mathcal{P} except the block A form a partition \mathcal{P}^{\prime} of $S-A$. Let $k=\left|A^{\prime}\right|$. Then $0 \leq k \leq p-1$.

Conversely, for any subset $A^{\prime} \subseteq S-\{a\}$ and any partition \mathcal{P}^{\prime} of $S-A^{\prime} \cup\{a\}$, the collection $\mathcal{P}^{\prime} \cup\{A \cup\{a\}\}$ forms a partition of S. If $\left|A^{\prime}\right|=k$, then there are $\binom{p-1}{k}$ ways to select A^{\prime}; there are $B_{n-1-k}\left(=B_{k}\right)$ partitions for the set $S-A^{\prime} \cup\{a\}$. Thus

$$
B_{n}=\sum_{k=0}^{n-1}\binom{n-1}{k} B_{n-1-k}=\sum_{k=0}^{n-1}\binom{n-1}{k} B_{k} .
$$

The falling factorial $[n]_{p}$ is a polynomial of degree k in n, and so can be written as a linear combination of the monomials $1, n, n^{2}, \ldots, n^{p}$. Let

$$
\begin{align*}
{[n]_{p} } & =n(n-1) \cdots(n-p+1) \\
& =\sum_{k=0}^{p} s(p, k) n^{k} \\
& =\sum_{k=0}^{p}(-1)^{p-k} c(p, k) n^{k} . \tag{8}
\end{align*}
$$

The integers $s(p, k)$ are called the (signed) Stirling numbers of the first kind. For variables $x_{1}, x_{2}, \ldots, x_{p}$, the elementary symmetric polynomials
$s_{0}, s_{1}, s_{2}, \ldots, s_{p}$ are defined as follows:

$$
\begin{aligned}
s_{0}\left(x_{1}, x_{2} \ldots, x_{p}\right) & =1 \\
s_{1}\left(x_{1}, x_{2} \ldots, x_{p}\right) & =\sum_{i=1}^{p} x_{i} \\
s_{2}\left(x_{1}, x_{2} \ldots, x_{p}\right) & =\sum_{i<j} x_{i} x_{j} \\
& \vdots \\
s_{p}\left(x_{1}, x_{2} \ldots, x_{p}\right) & =x_{1} x_{2} \cdots x_{p}
\end{aligned}
$$

Since

$$
[n]_{p}=n(n-1) \cdots(n-p+1)=\sum_{k=0}^{p}(-1)^{p-k} s_{p-k}(0,1, \ldots, p-1) n^{k}
$$

we have

$$
s(p, k)=(-1)^{p-k} s_{p-k}(0,1, \ldots, p-1)
$$

Theorem 2.19. The integers $c(p, k)$ satisfy the recurrence relation

$$
\begin{cases}c(0,0)=c(p, p)=1 & \text { if } p \geq 0 \tag{9}\\ c(p, 0)=0 & \text { if } p \geq 1 \\ c(p, k)=c(p-1, k-1)+(p-1) c(p-1, k) & \text { if } p-1 \geq k \geq 1\end{cases}
$$

Proof. It follows from definition (8) that $c(0,0)=c(p, p)=1$ and $c(p, 0)=0$ for $p \geq 1$.

Let $1 \leq k \leq p-1$. Note that

$$
\begin{gathered}
{[n]_{p}=\sum_{k=0}^{p}(-1)^{p-k} c(p, k) n^{k}} \\
{[n]_{p-1}=\sum_{k=0}^{p-1}(-1)^{p-1-k} c(p-1, k) n^{k}} \\
{[n]_{p}=(n-(p-1))[n]_{p-1}}
\end{gathered}
$$

Then

$$
\begin{aligned}
{[n]_{p} } & =\sum_{k=0}^{p-1}(-1)^{p-1-k}(n-(p-1)) c(p-1, k) n^{k} \\
& =\sum_{k=0}^{p-1}(-1)^{p-1-k} c(p-1, k) n^{k+1}-\sum_{k=0}^{p-1}(-1)^{p-1-k}(p-1) c(p-1, k) n^{k} \\
& =\sum_{k=1}^{p}(-1)^{p-k} c(p-1, k-1) n^{k}+(p-1) \sum_{k=0}^{p-1}(-1)^{p-k} c(p-1, k) n^{k}
\end{aligned}
$$

Comparing the coefficients of n^{k}, we obtain

$$
c(p, k)=c(p-1, k-1)+(p-1) c(p-1, k), \quad 1 \leq k \leq p-1
$$

Recall that each permutation of n letters can be written as disjoint cycles. Let $c_{n, k}$ denote the number of permutations of an n-set S with exactly k cycles. We assume that $c_{0,0}=1$.

Proposition 2.20. The numbers $c_{n, k}$ satisfy the recurrence relation:

$$
\begin{cases}c_{0,0}=c_{n, n}=1 & \text { if } n \geq 0 \tag{10}\\ c_{n, 0}=0 & \text { if } n \geq 1 \\ c_{n, k}=c_{n-1, k-1}+(n-1) c_{n-1, k} & \text { if } n-1 \geq k \geq 1\end{cases}
$$

Proof. Let $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set of n objects. If n is positive, then the number of cycles of any permutation must be positive. So $c_{n, 0}=0$ for $n \geq 1$. Note that only the identity permutation has exactly n cycles, so $c_{n, n}=1$ for $n \geq 0$.

Now fix the object a_{n} of S. Then permutations of S with k cycles can be divided into two kinds: the permutations that the singleton $\left\{a_{n}\right\}$ is a cycle, and the permutations that the singleton $\left\{a_{n}\right\}$ is not a cycle. In the former case, deleting the cycle $\left\{a_{n}\right\}$, the permutations become the permutations of $n-1$ objects with $k-1$ cycles; there are $c_{n-1, k-1}$ such permutations. In the latter case, deleting the element a_{n} from the cycle that a_{n} is contained, the permutations of S become permutations of $S \backslash\left\{a_{n}\right\}$ with k cycles; since each
such permutation of S with k cycles can be obtained by putting a_{n} into the left of elements $a_{1}, a_{2}, \ldots, a_{n-1}$, and since there are $n-1$ such ways, there are $(n-1) c_{n-1, k}$ permutations of the second type. Thus we obtain the recurrence relation:

$$
c_{n, k}=c_{n-1, k-1}+(n-1) c_{n-1, k}, \quad 1 \leq k \leq n-1
$$

Corollary 2.21.

$$
c(p, k)=c_{p, k}
$$

3 Partition Numbers

A partition of a positive integer n is a representation of n as an unordered sum of one or more positive integers (called parts). The number of partitions of n is denoted by p_{n}. For instance,

$$
\begin{aligned}
& 2=1+1 \\
& 3=2+1=1+1+1 \\
& 4=3+1=2+2=2+1+1=1+1+1+1
\end{aligned}
$$

Thus $p_{1}=1, p_{2}=2, p_{3}=3, p_{4}=5$. The partition sequence is the sequence of numbers

$$
p_{0}=1, \quad p_{1}, \quad p_{2}, \quad \ldots, \quad p_{n}, \quad \ldots
$$

A partition of n is sometimes symbolically written as

$$
\lambda=1^{a_{1}} 2^{a_{2}} \cdots n^{a_{n}}
$$

where a_{k} is the number of parts equal to k. If k is not a part of the partition λ then $a_{k}=0$, and in this case the term $k^{a_{k}}$ is usually omitted. For instance, the partitions

$$
\begin{aligned}
5 & =4+1=3+2=3+1+1=2+2+1 \\
& =2+1+1+1=1+1+1+1+1
\end{aligned}
$$

can be written as

$$
5^{1}, \quad 1^{1} 4^{1}, \quad 2^{1} 3^{1}, \quad 1^{2} 3^{1}, \quad 1^{1} 2^{2}, \quad 1^{3} 2^{1}, \quad 1^{5}
$$

Let λ be the partition

$$
n=n_{1}+n_{2}+\cdots+n_{k}
$$

of n with $n_{1} \geq n_{2} \geq \cdots \geq n_{k}$. The Ferrers diagram of λ is a left-justified array of dots which has k rows with n_{i} dots in the i th row. For instance, the Ferrers diagram of the partition $15=6+4+3+1+1$ is

Theorem 3.1.

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{n} x^{n}=\prod_{k=1}^{\infty} \frac{1}{1-x^{k}} \tag{11}
\end{equation*}
$$

Proof. Note that the right side of (11) is the product of the series

$$
\frac{1}{1-x^{k}}=1+x^{k}+x^{2 k}+x^{3 k}+\cdots
$$

for $1 \leq k<\infty$. The term x^{n} arises in the product by choosing a term $x^{a_{1} 1}$ from the first factor, a term $x^{a_{2}{ }^{2}}$ from the second factor, a term $x^{a_{3} 3}$ from the third factor, and so on, with

$$
a_{1} 1+a_{2} 2+a_{3} 3+\cdots+a_{k} k+\cdots=n
$$

Such choices are in one-to-one correspondent with the partitions

$$
\lambda=1^{a_{1}} 2^{a_{2}} 3^{a_{3}} \cdots k^{a_{k}} \ldots
$$

of the integer n.
Definition 3.2. Let λ and μ be partitions of a positive integer n, and

$$
\begin{array}{lll}
\lambda: & n=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}, & \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k} \\
\mu: & n=\mu_{1}+\mu_{2}+\cdots+\mu_{k}, & \mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{k}
\end{array}
$$

The partition λ is called majorized by the partition μ (or μ majorizes λ), denoted by $\lambda \leq \mu$, if

$$
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{i} \leq \mu_{1}+\mu_{2}+\cdots+\mu_{i} \quad \text { for } \quad 1 \leq i \leq k
$$

Example 3.1. Consider the three partitions of 9:

$$
\begin{array}{ll}
\lambda: & 9=5+1+1+1+1 \\
\mu: & 9=4+2+2+1 \\
\nu: & 9=4+4+1
\end{array}
$$

The partition μ is majorized by the partition ν because

$$
\begin{aligned}
& 4 \leq 4 \\
& 4+2 \leq 4+4 \\
& 4+2+2 \leq 4+4+1 \\
& 4+2+2+1 \leq 4+4+1
\end{aligned}
$$

However, the partitions λ and μ are incomparable because

$$
\begin{aligned}
& 5>4 \\
& 4+2+2>5+1+1
\end{aligned}
$$

Similarly, λ and ν are incomparable.
Theorem 3.3. The lexicographic order is a linear extension of the partial order of majorization on the set P_{n} of partitions of a positive integer n.

Proof. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}\right)$ be distinct partitions of n. We need to show that if λ is majorized by μ then there exists an i such that

$$
\lambda_{1}=\mu_{1}, \quad \lambda_{2}=\mu_{2}, \quad \ldots, \quad \lambda_{i-1}=\mu_{i-1}, \quad \text { and } \quad \lambda_{i}<\mu_{i} .
$$

In fact we choose the smallest integer i such that $\lambda_{j}=\mu_{j}$ for all $j<i$ but $\lambda_{i} \neq \mu_{i}$. Since

$$
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{i} \leq \mu_{1}+\mu_{2}+\cdots+\mu_{i}
$$

we conclude that $\lambda_{i}<\mu_{i}$, and hence λ precedes μ in the lexicographic order.

4 A Geometric Problem

This section is to give a geometric and combinatorial interpretation for the numbers

$$
h_{n}^{(m)}=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{m}, \quad m \geq 0, n \geq 0 .
$$

For each fixed $m \geq 0$, we obtain a sequence

$$
h_{0}^{(m)}, \quad h_{1}^{(m)}, \quad \ldots, \quad h_{n}^{(m)}, \quad \ldots
$$

For each fixed n,

$$
\left.2^{n}=h_{n}^{(n)}\right)=h_{n}^{(n+1)}=h_{n}^{(n+2)}=\cdots
$$

For $m=0$, we have

$$
h_{n}^{(0)}=\binom{n}{0}=1, \quad n \geq 0
$$

For $m=1$, we obtain

$$
h_{n}^{(1)}=\binom{n}{0}+\binom{n}{1}=n+1, \quad n \geq 0
$$

For $m=2$, we have

$$
h_{n}^{(2)}=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}=\frac{n^{2}+n+2}{2}, \quad n \geq 0 .
$$

Using Pascal's formula $\binom{n+1}{i}=\binom{n}{i}+\binom{n}{i-1}$ for $i \geq 1$, the difference of the sequence $h_{n}^{(m)}$ can be computed as

$$
\begin{aligned}
\Delta h_{n}^{(m)} & =h_{n+1}^{(m)}-h_{n}^{(m)} \\
& =\sum_{i=0}^{m}\binom{n+1}{i}-\sum_{i=0}^{m}\binom{n}{i} \\
& =\sum_{i=0}^{m}\left[\binom{n+1}{i}-\binom{n}{i}\right] \\
& =\sum_{i=1}^{m}\binom{n}{i-1} \\
& =\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{m-1}=h_{n}^{(m-1)} .
\end{aligned}
$$

Theorem 4.1. The number $h_{n}^{(m)}$ counts the number of regions in an m dimensional space divided by n hyperplanes in general position.

Proof. Hyperplanes in general position in an m-dimensional vector space: Every k hyperplanes, where $1 \leq k \leq m$, meet in an $(m-k)$-plane; no $k+1$ hyperplanes meet in an ($m-k$)-plane.

Let $g_{n}^{(m)}$ denote the number of regions divided by n hyperplanes in an m dimensional vector space in general position. Assume $g_{n}^{(0)}=1$ for $n \geq 0$. We need to prove that $g_{n}^{(m)}=h_{n}^{(m)}$. We show it by induction on $m \geq 1$.

For $m=1$, any 1 -dimensional space is a straight line; a hyperplane of a straight line is just a point; any finite number of points on a line are in general position. If n distinct points are inserted on a straight line, the line is divided into $n+1$ parts (called regions). Thus the number of regions of a line divided by n distinct points is

$$
g_{n}^{(1)}=n+1=\binom{n}{0}+\binom{n}{1}=h_{n}^{(1)} .
$$

For $m=2$, consider n lines in a plane in general position. Being in general position in this case means that any two lines meet at a common point, not three lines meet at a point (the intersection of any three lines is empty).

Given n lines in general position in a plane, we add a new line so that the total $n+1$ lines are in general position. The first n lines intersect the $(n+1)$ th line at n distinct points, and the $(n+1)$ th line is divided into

$$
g_{n}^{(1)}=n+1
$$

open segments, including two unbounded open segments. Each of these $g_{n}^{(1)}$ segments divides a region formed by the first n lines into two regions. Thus the number of regions formed by $n+1$ lines is increased by $g_{n}^{(1)}$ (from the number of regions formed by the first n lines), i.e.,

$$
\Delta g_{n}^{(2)}=g_{n+1}^{(2)}-g_{n}^{(2)}=g_{n}^{(1)}=h_{n}^{(1)}=\Delta h_{n}^{(2)} .
$$

Note that $h_{0}^{(2)}=g_{0}^{(2)}=1$ (the number of regions of a plane divided by zero lines is 1). The two sequences $g_{n}^{(2)}, h_{n}^{(2)}$ have the same difference and satisfy the same initial condition. We conclude that

$$
g_{n}^{(2)}=h_{n}^{(2)}=\binom{n}{0}+\binom{n}{1}+\binom{n}{2} .
$$

For $m=3$, consider n planes in 3 -space in general position: Every two planes meet at a line, every three planes meet at a point, and no four planes meet at point (the intersection of any four planes is empty).

Now for $m \geq 2$, consider n hyperplanes in m-dimensional vector space in general position. The number of regions of an m-dimensional space divided by 0 hyperplanes is 1 , i.e., $g_{0}^{(m)}=1$. Consider $n+1$ hyperplanes in general position. The first n hyperplanes intersect the ($n+1$)th hyperplane in n distinct ($m-2$)-planes in general position. These n planes of dimension $m-2$ divide the $(n+1)$ th hyperplane into $g_{n}^{(m-1)}$ regions of dimension $m-1$; each of these ($m-1$)-dimensional regions divides an m-dimensional region (formed by the first n hyperplanes) into two m-dimensional regions. Then the number of m dimensional regions formed by $n+1$ hyperplanes is increased by $g_{n}^{(m-1)}$, i.e.,

$$
\Delta g_{n}^{(m)}=g_{n+1}^{(m)}-g_{n}^{(m)}=g_{n}^{(m-1)}=h_{n}^{(m-1)}=\Delta h_{n}^{(m)} .
$$

Note that $h_{0}^{(m)}=g_{0}^{(m)}=1$ (having the same initial condition). The sequences $g_{n}^{(m)}, h_{n}^{(m)}$ for the fixed m have the same difference and satisfy the same initial condition. We conclude that

$$
g_{n}^{(m)}=h_{n}^{(m)}=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{m}, \quad n \geq 0 .
$$

