
Week 1

1 What is combinatorics?

The question of what is combinatorics is similar to the question of what is

mathematics. If we say that mathematics is about the study of numbers and

figures, then combinatorics is about the counting (enumeration) of objects, in-

cluding discrete elements of a finite set, pieces in a continuum geometric shape,

and measuring structures of spaces, etc.

Examples of combinatorial problems:

(1) Finding the number of games that n teams would play if each team played

with every other team exactly once.

(2) Constructing a magic square.

(3) Attempting to trace through a network without removing your pencil from

the paper and without tracing any part of the network more than once.

(4) Counting the number of poker hands which are full houses.

Historically, combinatorics has its roots in mathematical recreations and games.

Many problems that were studied in the past, either for amusement or for aes-

thetic appeal, are today of great importance in pure and applied sciences. Now

combinatorics is an important branch of mathematics, and its influence continues

to expand. Part of the reason for the tremendous growth of combinatorics since

the sixties has been the major impact that computers have had and continue to

have in our society. Another reason for the recent growth of combinatorics is

its applicability to disciplines that had previously had little serious contact with

mathematics. It is often found that the ideas and techniques of combinatorics are

being used not only in the traditional areas of mathematical application, name-

ly, the physical sciences, but also in the social sciences, the biological sciences,

information theory, and recently emerged data science, etc.

Combinatorics is concerned with arrangements of the objects of a set into

patterns satisfying specified rules.

Combinatorial problems can be classified into following categories:

Existence of the arrangement.

Enumeration of the arrangements.
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Classification of the arrangements.

Study of a known arrangement.

Construction of an optimal arrangement.

In other words, combinatorics is concerned with the existence, enumeration,

analysis, and optimization of discrete structures.

There are very few general methods in combinatorics that can apply to solve

large number of combinatorial problems. The typical general methods in combi-

natorics: Induction; inclusion-exclusion principle, pigeonhole principle; bijective

counting; methods of recurrence relations and generating function; Burnside’s

theorem and Pólya counting; and Möbius inversion formula.

2 Examples

2.1 Perfect Cover of Chessboards

It is obvious that the chessboard can be covered by 32 dominoes so that no

two dominoes overlap. Such a cover is called a perfect cover. However, the

chessboard with two diagonal corners removed cannot be perfectly covered by

31 dominoes since

31BW ̸= 32B + 30W.

The following board cannot be perfectly covered by dominoes.

A b-omino is a (1, b)-board or (b, 1)-board, where b ≥ 2. A perfect cover

of an m-by-n board by b-ominoes is an arrangement of b-ominoes on the board

so that no two b-ominoes overlap. When does an m × n-board have a perfect

cover by b-ominoes? The answer is given by the following theorem.

Theorem 2.1. An m-by-n-board has a perfect cover by b-ominoes iff b

divides either m or n.
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Proof. “⇐:” The condition is obviously sufficient.

“⇒:” Let m and n be divided by b to have remainders r and s respectively:

m = pb + r, 0 ≤ r < b,

n = qb + s, 0 ≤ s < b.

Without loss of generality we may assume r ≤ s. We claim that r = 0. Let the

m× n-board B be cyclicly colored (or labeled) by b colors as follows:

1 2 3 · · · b− 1 b

b 1 2 · · · b− 2 b− 1

b− 1 b 1 · · · b− 3 b− 2
... ... ... ... ...

3 4 5 · · · 1 2

2 3 4 · · · b 1

For example, for m = 10, n = 15, and b = 4, the 10-by-15 board can be colored

as
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3

4 1 2 3 4 1 2 3 4 1 2 3 4 1 2

3 4 1 2 3 4 1 2 3 4 1 2 3 4 1

2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3

4 1 2 3 4 1 2 3 4 1 2 3 4 1 2

3 4 1 2 3 4 1 2 3 4 1 2 3 4 1

2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3

4 1 2 3 4 1 2 3 4 1 2 3 4 1 2

Note that each b-omino of a perfect covering covers exactly one square of each

of the b colors, no matter how the b-omino is placed. It follows that there are

must be the same number of squares of each color of the board. Let the m-by-n

board be divided into three parts as follows:

Obviously, the boards B1, B2 are perfectly covered by b-ominoes. Note that the

number of squares of each of b colors is constant in each of the three boards B,

B1, and B2. It follows that the number of squares of each of the b colors in the
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Figure 1: The m× n-board is cut into three boards.

r-by-s board B3 is also constant. Since r ≤ s, the number of squares of the

color i in the left-upper corner of B3 is r, and there are rb squares in the board

B3. We thus have rs = rb. If r > 0, then s = b, a contradiction. Hence, r = 0.

This means that b | m.

2.2 Cutting a Cube

What is the minimal number of cuts to cut a cube of side length 3 into 27 small

cubes of unit side length? Geometrically, it is easy to see that each cut must

parallel to a face of the cube. It is also easy to see that 6 cuts are enough to do

the job. The problem is whether 6 is minimal or not. The answer is yes. (The

middle cube has 6 faces which need at least 6 cuts.)

A problem related to the cube-cutting problem is the following: Consider a

4-by-4 chessboard that is perfectly covered by 8 dominoes. A fault-line for a

perfect cover of a board is either a horizontal line or a vertical line that does not

cut any domino in the cover. Do there always exist a fault-line?

Theorem 2.2. Every perfect cover has a fault-line.

We only prove the theorem for 4-by-4 board. Suppose the 4 × 4-board has

a perfect cover which has no fault-line. Let a, b, c, x, y, z denote the number of

dominoes cut by the three vertical lines and the three horizontal lines respectively.

Since there is no fault-line, the numbers a, b, c, x, y, z are positive. By try-and-

error, we see that a, b, c, x, y, z ≥ 2. It is clear that no domino can be cut by

more than two lines. Then there are at least

a + b + c + x + y + z ≥ 2 · 6 = 12
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dominoes in the perfect cover. However, the number of dominoes must be 8.

This is a contradiction.

2.3 Magic Squares

A magic square of order n is an n × n-array constructed out of the integers

1, 2, . . . , n2 in such a way that the sum of the integers in each row, in each

column, and in each of the two diagonals is the same number s. The number s

is called the magic sum of the magic square. For example,

 8 1 6

3 5 7

4 9 2

 ,


16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

 ,


7 12 1 14

2 13 8 11

16 3 10 5

9 6 15 4

 .

The first matrix is a magic square of order 3 with magic sum 15. The last two

matrices are magic squares of order 4 with magic sum 34.

Necessary condition:

1 + 2 + · · · + n2 =
n2(n2 + 1)

2
.

s =
n(n2 + 1)

2
.

De La Loubère’s Method: This is only for constructing magic square of odd

order n. The integer 1 is placed in the middle square of the top row. The

successive integers are then placed in their natural order along a diagonal line

which slopes upwards and to the right, with the following modifications:

1) When the top row is reached, the next integer is put in the bottom row as

if it came immediately above the top row.
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2) When the rightmost column is reached, the next integer is put in the

leftmost column as if it immediately succeeded the rightmost column.

3) When a square is reached which has already been filled or when the top

rightmost square is reached, the next integer is placed in the square imme-

diately below the last square which was filled.

For instance, the magic squares of order 5 and 7 are constructed as follows:


17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

 ,



30 39 48 1 10 19 28

38 47 7 9 18 27 29

46 6 8 17 26 35 37

5 14 16 25 34 36 45

13 15 24 33 42 44 4

21 23 32 41 43 3 12

22 31 40 49 2 11 20



i+n− i+n+

i

1 or11

Figure 2: Every row and every column have the same sum.

Let n = 2k + 1. Let ai,j be the (i, j)-entry of the constructed magic matrix.

Initially, a1,k+1 = 1. The entries satisfy the relations:

(a) if n - ai,j, then ai−1,j+1 = ai,j + 1;

(b) if n | ai,j, then ai−1,j+1 = ai,j − n + 1,

(c) if n | ai,j and aij < n2, then ai+1,j = ai,j + 1.
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We have only n numbers divisible by n, namely, 1n, 2n, . . . , nn(= n2). It is easy

to see from (a)–(b) that

if ai,j = mn, then ai+2,j−1 = (m + 1)n, (1)

where the row and column indices are understand to be modulo n.

We immediately see that each column has exactly one entry divisible by n.

Since a1,k+1 = 1, we have a0,k+2 = 2, a−1,k+3 = 3, . . . , a−(n−2),k+n = n, namely,

an,k+2 = 2, an−1,k+3 = 3, . . . , a2,k = n.

Based on a2,k = n, we obtain by the recurrence (1)

a2,k = n, a4,k−1 = 2n, a6,k−2 = 3n, . . . , a2k,1 = kn. (2)

Based on a2k,1 = kn, we have a2(k+1),0 = a1,n = (k + 1)n. Thus

a1,n = (k + 1)n, a3,n−1 = (k + 2)n, a5,n−2 = (k + 3)n,

. . . . . . . . . . . . , a2k+1,n−k = an,k+1 = (k + k + 1)n = n2. (3)

We have located all multiples of n from 1 to n2. It is clear that each row and

each column contains exactly one multiple of n.

Now consider two columns next to each other, say, the jth column and the

(j + 1)th column. There exist exactly n − 1 entries of ai,j+1 which are exactly

one larger than the corresponding entries ai+1,j, and there exists exactly one

entry of the (j +1)th column which is exactly n− 1 less than the corresponding

entry of the jth column. It follows that the two columns have the same sum.

Likewise, any two rows next to each other also have the same sum.

Since a2k,1 = kn, we have a2k+1,1 = an,1 = kn + 1. We obtain

an−ℓ+1,ℓ = kn + ℓ, where ℓ = 1, . . . , n.

The rising diagonal sum is confirmed as

an,1 + an−1,2 + · · · + a1,n = (kn + 1) + · · · + (kn + n)

=
n(2kn + n + 1)

2
=

n(n2 + 1)

2
.

It needs more work to figure out the downing diagonal sum. To do this we

separate k in even and odd cases. For the even case, let k = 2p with p a positive
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integer, then n = 4p + 1. We gather the entries which are multiples of n of the

magic matrix into four groups (I), (II), (III), and (IV).

Consider the first group, consisting the entries of odd multiples of n in (2) as

(I)



a2,2p = (4p + 1)

a6,2p−2 = 3(4p + 1)
...

a4p−6,4 = (2p− 3)(4p + 1)

a4p−2,2 = (2p− 1)(4p + 1)

which can be written as a4r+2,2p−2r = (2r + 1)(4p + 1) with 0 ≤ r < p. Then

a4r+2+s,2p−2r−s = (2r + 1)(4p + 1)− s,

where 0 ≤ r < p, 0 ≤ s < n. Setting 4r + 2 + s = 2p − 2r − s, we have

s = p− 3r − 1, 0 ≤ r < p. Then i = j = p + r + 1. Note that if s is negative,

we must have a4r+2+s,2p−2r−s = 2r(4p + 1)− s. Thus we obtain

ap+r+1,p+r+1 =

{
(2r + 1)(4p + 1)− (p− 3r − 1) if p ≥ 3r + 1

2r(4p + 1)− (p− 3r − 1) if p < 3r + 1

=

{
(2n + 3)r + (3n + 5)/4 if p ≥ 3r + 1

(2n + 3)r + (3n + 5)/4− n if p < 3r + 1
(4)

where 0 ≤ r < p. The second group consists of the entries of even multiples of

n in (2) as

(II)



a4,2p−1 = 2(4p + 1)

a8,2p−3 = 4(4p + 1)
...

a4p−4,3 = (2p− 3)(4p + 1)

a4p,1 = 2p(4p + 1)

which be written as

a4r+4,2p−1−2r = 2(r + 1)(4p + 1), 0 ≤ r < p.

By the recurrence (1),

a4r+4+s,2p−1−2r−s = 2(r + 1)(4p + 1)− s,
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where 0 ≤ r < p and 0 ≤ s < n. Setting 4r+4+ s = 2p− 1− 2r− s (mod n),

since 2p− 1− 2r − s will be non-positive, we should have

4r + 4 + s = 2p− 1− 2r − s + (4p + 1).

Then s = 3p− 3r − 2, and i = j = 3p + r + 2, where 0 ≤ r < p. We obtain

a3p+r+2,3p+r+2 = 2(r + 1)(4p + 1)− (3p− 3r − 2)

= (2n + 3)r + (5n + 11)/4, 0 ≤ r < p. (5)

The third group consists of the entries of even multiples of n in (3) as

(III)



a1,4p+1 = (2p + 1)(4p + 1)

a5,4p−1 = (2p + 3)(4p + 1)
...

a4p−3,2p+3 = (4p− 1)(4p + 1)

a4p+1,2p+1 = (2p + 2p + 1)(4p + 1)

which can be written as

a4r+1,4p−2r+1 = (2p + 2r + 1)(4p + 1), 0 ≤ r ≤ p.

By the recurrence relation (1)

a4r+1+s,4p−2r+1−s = (2p + 2r + 1)(4p + 1)− s,

where 0 ≤ r ≤ p and 0 ≤ s < n. Setting 4r+ 1+ s = 4p− 2r+ 1− s, we have

s = 2p− 3r; consequently, i = j = 2p + r + 1, where 0 ≤ r ≤ p. We obtain

a2p+r+1,2p+r+1 =

{
(2p + 2r + 1)(4p + 1)− (2p− 3r) if 3r ≤ 2p

(2p + 2r)(4p + 1)− (2p− 3r) if 3r > 2p

=

{
(2n + 3)r + (n2 + 1)/2 if 3r ≤ 2p

(2n + 3)r + (n2 + 1)/2− n if 3r > 2p
(6)

where 0 ≤ r ≤ p. The last group consists of entries of the odd multiples of n in

(3) as

(IV)


a3,4p = 2(p + 1)(4p + 1)

a7,4p−2 = 2(p + 2)(4p + 1)
...

a4p−1,2p+2 = 2(p + p)(4p + 1)
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which can be written as

a4r+3,4p−2r = 2(p + r + 1)(4p + 1), 0 ≤ r < p.

By the recurrence relation,

a4r+3+s,4p−2r−s = 2(p + r + 1)(4p + 1)− s,

where 0 ≤ r < p and 0 ≤ s < n. Setting 4r + 3 + s = 4p − 2r − s (mod n),

since the subscripts 4r+3+ s may be larger than n (= 4p+1), so we should set

4r + 3 + s− (4p + 1) = 4p− 2r − s.

Then s = 4p− 3r − 1, consequently, i = j = r + 1. We obtain

ar+1,r+1 = 2(p + r + 1)(4p + 1)− (4p− 3r − 1)

= (2n + 3)r + (n2 + n + 4)/2, 0 ≤ r < p. (7)

Now the downing diagonal sum is the adding of the sums of (4)–(7), which is

S = a3p+1,3p+1 +

p−1∑
r=0

(I+II+III+IV)

=
4n2 − 3n− 1

4
+ 4

p−1∑
r=0

(2n + 3)r +
n− 1

4
·(

3n + 5

4
+

5n + 11

4
+

n2 + 1

2
+

n2 + n + 4

2

)
−n

∑
0≤r<p,3r+1>p

1− n
∑

0≤r<p,3r>2p

1

=
4n2 − 3n− 1

4
+ (2n + 3)(n− 1) · n− 5

8

+
n− 1

4

(
n2 +

5n

2
+

13

2

)
− nΣ

=
n(n2 + 1)

2
.

(
Σ =

n− 8

4

)
A magic cube of order n is an n× n× n cubical array constructed out of

integers 1, 2, . . . , n3 in such away that the sum s of the integers in the n cells of

each of the following straight lines is the same:
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1) lines parallel to an edge of the cube;

2) two diagonals of each plane cross section;

3) four space diagonals.

The number s is called the magic sum of the magic cube and has the value

(since there are n2 vertical lines)

s =
n3(n3 + 1)

2
· 1

n2
=

n(n3 + 1)

2
.

There is no magic cube of order 3.

Suppose there is a magic cube of order 3. Its magic sum should be 3(33+1)
2 = 42.

For a magic cube of order 3, 1 ≤ i, j, k ≤ 3, consider any 3 × 3 plane cross

section  a b c

u v w

x y z


Then

a + b + c = 42 (8)

x + y + z = 42 (9)

a + v + z = 42 (10)

b + v + y = 42 (11)

c + v + x = 42 (12)

Do operation (3) + (4) + (5) − (1) − (2), we have 3v = 42 and v = 14. This

means that 14 has to be the center for any plane cross section of the magic cube.

However, there are more than one such plane centers, and 14 can only occupy

one place. This is a contradiction.

It is much more difficult to show that there is no magic cube of order 4. A

magic cube of order 8 is given in an article by Gardner, “Mathematical games,”

Scientific American, January (1976), 118–123.
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2.4 The Four-Color Problem

2.5 The Problem of 36 Officers

Given 36 officers of 6 ranks and from 6 regiments, no two have both the same

rank and from the same regiments, can they be arranged in a 6 × 6 formation

so that in each row and column there is one officer of each rank and one officer

from each regiment? This problem can be stated as follows:

Can the 36 ordered pairs (i, j) (i = 1, 2, . . . , 6; j = 1, 2, . . . , 6) be arranged

in a 6 × 6 array so that in each row and each column, the numbers in the first

position form a permutation of {1, 2, . . . , 6} and the numbers in the second

position form a permutation of {1, 2, . . . , 6}?
Such an array can be split into two 6 × 6 arrays, one corresponding to the

first positions of the ordered pairs (the rank array) and the other to the second

positions (the regiment array). Thus the problem can be stated:

Do there exist two 6 × 6 arrays whose entries are taken from the integers

1, 2, . . . , 6 such that (1) in each row and in each column of these arrays the inte-

gers 1, 2, . . . , 6 occur in some order, and (2) when the two arrays are juxtaposed

all of the 36 ordered pairs (i, j) (1 ≤ i, j ≤ 6) occur?

To make the problem concrete and easy, suppose instead that there are 9

officers of 3 ranks and from 3 different regiments. Then a solution for the problem

in this case is 1 2 3

3 1 2

2 3 1

 ,

 1 2 3

2 3 1

3 1 2

 −→

 (1, 1) (2, 2) (3, 3)

(3, 2) (1, 3) (2, 1)

(2, 3) (3, 1) (1, 2)


A Latin square of rank n is an array of integers such that each row and each

column of the array the integers 1, 2, . . . , n occur in some order. The rank and

regiment arrays above are Latin squares of order 3. The following are Latin

squares of order 2 and 4:

[
1 2

2 1

]
and


1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1

 .
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Two Latin squares of order n are called orthogonal if, when they are juxta-

posed, all ordered pairs (i, j) (1 ≤ i ≤ n and 1 ≤ j ≤ n) occur.

Euler investigated the existence of orthogonal Latin squares of order n. It is

easy to see that there is no pair of Latin squares of order 2.

Euler showed that how to construct a pair of orthogonal Latin squares of order

n when n is odd or divisible by 4. Notice that this does not include n = 6. On

the basis of many trials he concluded, but did not prove, that there is no pair

of orthogonal Latin squares of order 6, and he conjectured that there is no such

pair existed for any of integers n = 4k + 2 with k ≥ 1.

By exhaustive enumeration Terry in 1901 proved that Euler’s conjecture is

true for n = 6. Around 1960 Bose, Parker, and Shrikhande succeeded in proving

that Euler’s conjecture was false for all n > 6, i.e., for n = 4k + 2 with k ≥ 2.

2.6 Shortest Path Problem

2.7 The Game of Nim

Nim is a game played by two players with heaps of coins. Suppose there are k

heaps of coins which contain, respectively, n1, . . . , nk coins. The object of the

game is to select the last coin. The rules of the game are as follows:

1. The players alternate turns (let us call the player who makes the first move

I and then call the other player II)

2. Each player, when it is their turn, selects one of the heaps and removes one

or more coins from the selected heap. (The player may take all of the coins

from the selected heap, thereby leaving an empty heap, which is now “out

of play.”)

The game ends when all the heaps are empty. The last player to make a move,

that is, the player who takes the last coin(s), is the winner.

When k = 1, obviously, player I wins the game.

When k = 2, if n1 ̸= n2, say, n1 > n2, player I may remove n1 − n2 coins

from the first heap to make the two heaps having the same amount of coins;

such a move is called balancing. No matter how player II moves, the player I

may adopt the winning strategy to remove the same amount of coins that
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player II moves. This guarantees that player I wins the game. If n1 = n2, the

game is already balanced, no matter how player I moves at beginning, player II

can take the winning strategy to win the game.

For instance,

(9, 7)
I→ (7, 7)

II→ (4, 7)
I→ (4, 4)

II→ (3, 4)
I→ (3, 3)

II→ (3, 2)
I→ (2, 2)

II→ (0, 2)
I→ (0, 0).

When there are k heaps of coins, say (n1, n2, . . . , nk), we write the numbers

n1, n2, . . . , nk as base 2 numerals:

n1 = asas−1 · · · a2a1a0,
n2 = bsbs−1 · · · b2b1b0,

...

nk = cscs−1 · · · c2c1c0.

Dividing each heap into s + 1 sub-heaps (some of them may be zero), the the

game becomes a game having total k(s + 1) sub-heaps as the following:

(as, . . . , a1, a0; bs, . . . , b1, b0; . . . ; cs, . . . , c1, c0).

A Nim game is said to be balanced if all digit sums

as + bs + · · · + cs, . . . , a1 + b1 + · · · + c1, a0 + b0 + · · · + c0

are even; otherwise, it is said to be unbalanced.

When the game is unbalanced, it is always possible to move certain amount of

coins in the largest heap so that the game becomes balanced. When the game is

unbalanced, player I wins the game since player I can always balance the game.

When the game is balanced, player II wins the game.

Theorem 2.3. If the game of Nim is unbalanced, then the player I can

always take certain number of coins from one of the heaps to balance the

game. More specifically, if s is the largest digit whose sum as+ bs+ · · ·+ cs
is odd, then one of the summand is 1, say as = 1; the player I can move

d =

s∑
i=0

εi2
i
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coins from the first heap, where

εi =


1 if the ith digit sum is odd and ai = 1,

−1 if the ith digit sum is odd and ai = 0,

0 if the ith digit sum is even.

Proof. In the case of unbalanced, say, s is the largest digit such that

as + bs + · · · + cs

is odd and as = 1, remove d coins from the first heap to have n′
1 := n1 − d,

whose binary expression is

a′sa
′
s−1 . . . a

′
2a

′
1a

′
0, where a′i = ai − εi.

If ai + bi + · · ·+ ci is even, then a′i + bi + · · ·+ ci = ai + bi + · · ·+ ci is even. If

ai + bi + · · · + ci is odd, then

a′i + bi + · · · + ci = (ai − εi) + bi + · · · + ci = ai + bi + · · · + ci ∓ 1

is even. Now the game becomes balanced.

In the case of balanced and (n1, n2, . . . , nk) ̸= (0, 0, . . . , 0), say, n1 ̸= 0,

removing any d coins from the 1st heap will result a balanced game. Let d be

written as d =
∑s

i=0 δi2
i. Let r be the smallest digit such that δr = 1. Then

rth digit sum is odd, and the game becomes unbalanced.

For example,

Size of heaps 23 = 8 22 = 4 21 = 2 20 = 1

6 0 1 1 0

10 1 0 1 0

13 1 1 0 1

15 1 1 1 1

We can take 6 coins away from the heap 2 to balance the game as

Size of heaps 23 = 8 22 = 4 21 = 2 20 = 1

6 0 1 1 0

4 0 1 0 0

13 1 1 0 1

15 1 1 1 1
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The game can be also balanced by removing 10 coins from the heap 3 or removing

14 coins from the heap 4.

3 Gambler’s Ruin

Two persons A and B gamble dollars on the toss of a fair coin; A has $70 and

B has $30. In each play either A wins $1 from B or loss $1 to B; and the game

is played without stop until one wins all the money of the other or goes forever.

Find the odds of the following possibilities:

(a) A wins all the money of B.

(b) A loses all his money to B.

(c) The game continues forever.

Solution. Either A or B can keep track of the game simply by counting their

own money; their position (amount of dollars) can be one of the numbers

0, 1, 2, . . . , 100. Let pn be the probability that A reaches 100 at position n,

where n = 0, 1, 2, . . . , 99, 100; p0 = 0 and p100 = 1. After one toss, player A

enters into either position n+ 1 or position n− 1, where 1 ≤ n ≤ 99. The new

probability that A reaches 100 is either pn+1 or pn−1. Since the probability of A

moving to position n+1 or n−1 from n is 50% = 1/2, i.e., pn = 1
2pn+1+

1
2pn−1,

where 1 ≤ n ≤ 99. Let us consider the sequence pn defined by the recurrence

relation 
pn = 1

2pn+1 +
1
2pn−1

p0 = 0

p100 = 1

⇔


pn+1 = 2pn − pn−1

p0 = 0

p100 = 1

The characteristic equation is r2 − 2r + 1 = 0; it has only one root r = 1. The

general solutions is

pn = c1 + c2n.

Apply the boundary conditions p0 = 0 and p100 = 1; we have c1 = 0 and

c2 =
1
100. Thus

pn =
n

100
, 0 ≤ n ≤ 100.
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Of course, pn = n
100 for n > 100 is nonsense to the original problem. The

probabilities for (a), (b), and (c) are 70%, 30%, and 0, respectively.

The recurrence relation pn = 1
2pn+1 +

1
2pn−1 can be directly solved. In fact,

the recurrence relation can be written as

pn+1 − pn = pn − pn−1.

Then pn+1− pn = pn− pn−1 = · · · = p1− p0 is constant. Since p0 = 0, we have

pn = pn−1 + p1. Apply the recurrence relation again and again, we obtain

pn = p0 + np1.

Apply the boundary conditions p0 = 0, p100 = 1; we see that p1 =
1
100. Hence

pn = n
100.

4 Hanoi Tower

The game of Hanoi Tower is to play with a set of disks of graduated size with

holes in their centers and a playing board having three spokes for holding the

disks; see Figure 4. The object of the game is to transfer all the disks from spoke

A to spoke C by moving one disk at a time without placing a larger disk on top

of a smaller one. What is the minimal number of moves required when there are

n disks?
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A B C

Solution. Let an be the minimum number of moves to transfer n disks from one

spoke to another. Then {an : n ≥ 1} defines an infinite sequence. The first

few terms of the sequence {an} can be listed as

1, 3, 7, 15, . . .

We are interested in finding a closed formula to compute an for arbitrary n.

In order to to move n disks from spoke A to spoke C, one must move the first

n−1 disks from spoke A to spoke B by an−1 moves, then move the last (also the
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largest) disk from spoke A to spoke C by one move, and then remove the n− 1

disks again from spoke B to spoke C by an−1 moves. Thus the total number of

moves should be

an = an−1 + 1 + an−1 = 2an−1 + 1.

This means that the sequence {an | n ≥ 1} satisfies the recurrence relation{
an = 2an−1 + 1, n ≥ 1

a1 = 1.
(13)

Given a recurrence relation for a sequence with initial conditions, solving the

recurrence relation means to find a formula to express the general term an of the

sequence.

For the sequence {an | n ≥ 0} defined by the recurrence relation (13), if we

apply the recurrence relation again and again, we have

a1 = 2a0 + 1

a2 = 2a1 + 1 = 2(2a0 + 1) + 1 = 22a0 + 2 + 1

a3 = 2a2 + 1 = 2(22a0 + 2 + 1) = 23a0 + 22 + 2 + 1

a4 = 2a3 + 1 = 2(23a0 + 22 + 2 + 1) = 24a0 + 23 + 22 + 2 + 1
...

an = 2na0 + 2n−1 + 2n−2 + · · · + 2 + 1 = 2na0 + 2n − 1.

Let a0 = 0. The general term is given by

an = 2n − 1, n ≥ 1.

5 Marriage Problem
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