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Abstract

The generating function F (P ) =
∑

α∈P∩ZN xα for a rational polytope P carries all
essential information of P . In this paper we show that for any positive integer n, the
generating function F (P, n) of nP = {nx : x ∈ P} can be written as

F (P, n) =
∑

α∈A

Pα(n)xnα,

where A is the set of all vertices of P and each Pα(n) is a certain periodic function of
n. The Ehrhart reciprocity law follows automatically from the above formula. We also
present a formula for the coefficients of Ehrhart polynomials in terms of elementary
symmetric functions.

1 Introduction

Counting the lattice points in the integral dilates of a subset of Euclidean space RN is a
well known and extensively studied problem. Specifically, let Λ = ZN be the standard N -
dimensional lattice in RN . For a (metrically) bounded set P ⊂ RN and an integer n ≥ 1,
consider the number of lattice points in the dilated set nP = {nx | x ∈ P}:

L(P, n) = the cardinality of nP ∩ Λ.

It is clear that for each n the mapping P 7→ L(P, n) is a finitely additive measure on the
class of bounded sets: for any bounded sets P and Q,

L(P ∪Q,n) = L(P, n) + L(Q,n)− L(P ∩Q,n).

Ehrhart [6] first systematically studied the function n 7→ L(P, n) in the case where P
is a convex lattice polytope, i.e., the convex hull of a finite family of points of Λ. Ehrhart
proved that in this case L(P, n) is a polynomial of n of degree dim(P ). This result extends
to any convex rational polytope P , i.e., to the convex hull of a finite family of points in RN

with rational coordinates. Let dP be the minimal positive integer such that all vertices of
dP P lie in Λ. Then L(P, n) is a quasi-polynomial of n of degree dim(P ) and period dP , see
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for instance [8], Chapter 4. Here by a quasi-polynomial of degree m and period d, we mean
a function n 7→ ∑m

i=0 ci(n)ni where each ci(n) is a periodic function of n with period d.
Brion [1] introduced a different approach to counting lattice points in a polytope. To

describe his approach, consider the integral group ring Z[Λ] of Λ. The additive generator of
Z[Λ] represented by a vector α ∈ Λ will be denoted by xα. By definition, xα+β = xαxβ for
any α, β ∈ Λ. Note that the ring Z[Λ] has no zero-divisors; we denote its field of quotients
by Z(Λ).

For a bounded set P ⊂ RN , set

F (P ) =
∑

α∈P∩Λ

xα ∈ Z[Λ].

Brion [1] proved that if P is a convex lattice polytope, then the function n 7→ F (P, n) =
F (nP ) is exponential in n. More precisely, for any integer n ≥ 1,

F (P, n) =
∑

α∈A

Pα xnα (1)

where A is the set of vertices of P and Pα ∈ Z(Λ) for all α ∈ A. The original proof of
Formula (1) given in [1] uses the theory of toric varieties and a localization theorem in the
equivariant K-theory. For an elementary proof, see [2].

In this paper we extend Formula (1) to rational polytopes. We need the following nota-
tion. For an integer d ≥ 1, denote by d−1Λ the set {x ∈ RN | dx ∈ Λ}. It is clear that d−1Λ
is a lattice in RN so that we can consider the group ring Z[d−1Λ] and its field of quotients
Z(d−1Λ).

Theorem 1.1 Let P be a convex rational polytope in RN . Let A be the set of vertices of P
and d = dP be the minimal positive integer such that A ⊂ d−1Λ. Then there exist periodic
functions {Pα : N → Z(d−1Λ)}α∈A with period d such that for any integer n ≥ 1,

F (P, n) =
∑

α∈A

Pα(n) xnα. (2)

It is easy to verify that the functions {Pα}α∈A in this theorem are necessarily unique. In
the case d = 1, we recover Brion’s formula (1).

We can give a more precise description of the denominators of Pα in Theorem 1.1. To
this end, denote by I the kernel of the natural augmentation Z[d−1Λ] → Z determined by
summation of coefficients. It is clear that I is a two-sided ideal in Z[d−1Λ]. For an integer
m ≥ 0, denote by Im the m-th power of I.

Theorem 1.2 Under the conditions of Theorem 1.1, for all α ∈ A and n ≥ 1,

Pα(n)
∏

α,α′∈A
α6=α′

(xdα − xdα′) ∈ IM(M−1)−dim(P ) (3)

where M = card (A).

The plan of the paper is as follows. As a warm up, we give in Section 2 an explicit
formula for the Ehrhart polynomial of a rational simplex. Our exposition essentially follows
the original ideas of Ehrhart, cf. also [8], Chapter 4 and [2]. In Section 3 we prove Theorems
1.1 and 1.2. In Section 4 we discuss the reciprocity law for rational polyhedra. In Section 5
we have collected a number of miscellaneous remarks and comments.
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2 A closed formula for rational simplices

Let P be an m-dimensional closed simplex in RN with vertices α1, α2, . . ., αm+1 whose
coordinates are rational numbers. We can put the vertices of P in RN+1 in the hyper-plane
xN+1 = 1 by lifting upward one unit. This gives m + 1 linearly independent vectors

β1 = (α1, 1), β2 = (α2, 1), . . . , βm+1 = (αm+1, 1).

Denote by P̃ the closed simplex in RN+1 with the vertices β1, . . ., βm+1. For any integer
n ≥ 1, the number of lattice points in nP is the same as the number of lattice points in
nP̃ . Each lattice point in nP̃ can be uniquely expanded as a linear combination b1β1 + · · ·+
bm+1βm+1 where b1, . . . , bm+1 are non-negative real numbers whose sum is equal to n. We
have bi = ui + kid, where 0 ≤ ui < d, and ki = [bi/d] is a non-negative integer. It is clear
that the vector

d(k1β1 + · · ·+ km+1βm+1)

is a lattice point. Then u = u1β1 + · · ·+ um+1βm+1 must be a lattice point. Denote the set
of such points by D(P ). Thus,

D(P ) = {u ∈ ZN+1 | u = u1β1 + · · ·+ um+1βm+1 with 0 ≤ ui < d}.

Obviously, D(P ) is a finite set containing the origin. It can be viewed geometrically as the
set of lattice points in the “half-open” parallelotope generated by dβ1, . . ., dβm+1.

For u ∈ ZN+1, denote by |u| the last coordinate of u. Clearly, if u = u1β1 + · · · +
um+1βm+1 ∈ D(P ) then

|u| = u1 + · · ·+ um+1 < (m + 1)d.

We summarize the discussion above in the following lemma.

Lemma 2.1 For any u ∈ D(P ) and any non-negative integers k1, . . . , km+1 such that k1 +
· · · + km+1 = (n − |u|)/d, the vector u + d(k1β1 + · · · + km+1βm+1) is a lattice point of nP̃ .
Each lattice point of nP̃ can be uniquely written in this way.

Now we give an explicit formula for the number of lattice points in the integral dilates of
a closed rational simplex and a similar formula for an open rational simplex.

Theorem 2.2 Let P be an m-dimensional closed simplex in RN whose vertices have rational
coordinates. Then for any integer n ≥ 1, the number of lattice points of nP is

L(P, n) =
∑

u∈D(P )
d | (n−|u|)

(
m + (n− |u|)/d

m

)
(4)

and the number of lattice points of the relative interior nP 0 of nP is

L(P 0, n) =
∑

u∈D(P )
d | (n+|u|)

(−1 + (n + |u|)/d
m

)
. (5)
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Proof It follows from Lemma 2.1 that

L(P, n) = L(P̃ , n) =
∑

u∈D(P ),|u|≤n
d | (n−|u|)

∑
k1,...,km+1≥0

k1+···+km+1=(n−|u|)/d

1. (6)

The number of non-negative integer solutions (k1, . . . , km+1) for the linear equation k1+ · · ·+
km+1 = (n− |u|)/d is equal to the binomial coefficient

(
m + (n− |u|)/d

m

)
=

(
m +

n− |u|
d

) (
m +

n− |u|
d

− 1

)
...

(
n− |u|

d
+ 1

)
/m!

appearing on the right hand side of Formula (4). This accounts for the binomial coefficients in
Formula (4) corresponding to u ∈ D(P ) with |u| ≤ n. If n < |u|, then the binomial coefficient
appearing in (4) is equal to 0. This results from the inequalities m > m + (n − |u|)/d ≥ 0
where the second inequality follows from the fact that |u| < (m + 1)d so that the integer
(n− |u|)/d is bounded from below by −m. Therefore (4) follows from (6).

Let us prove Formula (5). Consider the finite set

D0 = {u ∈ ZN+1 | u = u1β1 + · · ·+ um+1βm+1 with 0 < ui ≤ d}.
Denote the relative interior of P̃ by P̃ 0. Similar to Lemma 2.1, we note that for any u ∈ D0

and any non-negative integers k1, . . . , km+1 such that d(k1 + · · ·+km+1) = n−|u|, the vector
u + d(k1β1 + · · · + km+1βm+1) is a lattice point of nP̃ 0. Each lattice point of nP̃ 0 can be
uniquely written in this way. Thus

L(P 0, n) = L(nP 0) (7)

= L(nP̃ 0)

=
∑

u∈D0,|u|≤n
d | (n−|u|)

∑
k1,...,km+1≥0

k1+···+km+1=(n−|u|)/d

1

=
∑

u∈D0

d | (n−|u|)

(
m + (n− |u|)/d

m

)
. (8)

Here we again use the fact that in the case n < |u|, the latter binomial coefficient vanishes.
Notice that each vector u ∈ D0 can be uniquely written as d(β1 + · · · + βm+1) − v with
v ∈ D(P ), and vice versa. Therefore (5) follows from (7) by changing the coordinates.

2

The right hand sides of Formulas (4) and (5) are quasi-polynomials in n of degree m with
period d. Since the number L(P, n) is additive with respect to disjoint union, we obtain
the result mentioned in the introduction: for any convex rational polytope P , the number
L(P, n) is a quasi-polynomial of n of degree dim(P ) with period dP . In particular, if P is a
convex lattice polytope, then L(P, n) is a polynomial of n of degree dim(P ).

To end this section, we recall Ehrhart’s reciprocity law: if P is a convex m-dimensional
rational polytope in RN then L(P 0,−n) = (−1)mL(P, n) for any integer n. In the case
where P is a simplex, this formula directly follows from Theorem 2.2 and the reciprocity law
for binomial coefficients, (

m− a

m

)
= (−1)m

(
a− 1

m

)
.

For a discussion of the general case, see Section 4.
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3 Proof of Theorems 1.1 and 1.2

We begin with two identities between m + 1 commuting variables x1, ..., xm+1 where m ≥ 0.

Lemma 3.1 For any r = 0, 1, ..., m− 1,

m+1∑

k=1


xr

k

m+1∏
i=1
i6=k

1

xk − xi


 = 0.

Proof For any integer r, consider the following (m + 1)× (m + 1)-determinant

vr(x1, ..., xm+1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
x1 x2 · · · xm+1
...

...
...

xm−1
1 xm−1

2 · · · xm−1
m+1

xr
1 xr

2 · · · xr
m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

In particular, for r = m we obtain the classical Vandermonde determinant

v(x1, ..., xm+1) = vm(x1, ..., xm+1) = ± ∏

1≤i<j≤m+1

(xi − xj).

(The sign on the right hand side equals (−1)m(m+1)/2 but we shall not use this.) Expanding
the determinant vr(x1, ..., xm+1) with respect to the last row we obtain

vr(x1, ..., xm+1) =
m+1∑

k=1

(−1)m+1+kxr
k v(x1, ..., xk−1, xk+1, ..., xm+1)

= ±
m+1∑

k=1

(−1)kxr
k

∏
1≤i<j≤m+1,

i6=k,j 6=k

(xi − xj) = ±

 ∏

1≤i<j≤m+1

(xi − xj)







m+1∑

k=1

xr
k

m+1∏
i=1
i6=k

1

xk − xi


 .

It is obvious that for r = 0, 1, ..., m− 1, the determinant vr(x1, ..., xm+1) vanishes. This and
the previous formula imply the claim of the lemma.

2

Lemma 3.2 For any integer r ≥ 0,

∑
k1,...,km+1≥0

k1+...+km+1=r

xk1
1 ...x

km+1

m+1 =
m+1∑

k=1


xr+m

k

m+1∏
i=1
i6=k

1

xk − xi


 . (9)

Proof The proof goes by induction on m. The case m = 0 is obvious. Assume that for m
variables Formula (9) holds and prove it for m + 1 variables. By the inductive assumption,

∑
k1,...,km+1≥0

k1+...+km+1=r

xk1
1 ...x

km+1

m+1 =
r∑

k=0

xk
m+1

∑
k1,...,km≥0

k1+...+km=r−k

xk1
1 ...xkm

m
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=
r∑

k=0

xk
m+1

m∑

l=1


xr−k+m−1

l

m∏
i=1
i6=l

1

xl − xi




=
m∑

l=1


xr+m−1

l ·
m∏

i=1
i6=l

1

xl − xi

·
r∑

k=0

(xm+1/xl)
k




=
m∑

l=1


xr+m−1

l ·
m+1∏
i=1
i6=l

1

xl − xi

· (xl − xr+1
m+1

xr
l

)




=
m∑

l=1


xr+m

l

m+1∏
i=1
i6=l

1

xl − xi


− xr+1

m+1

m∑

l=1


xm−1

l

m+1∏
i=1
i6=l

1

xl − xi


 .

By Lemma 3.1,
m∑

l=1


xm−1

l

m+1∏
i=1
i6=l

1

xl − xi


 = −xm−1

m+1

m+1∏
i=1

i6=m+1

1

xl − xi

.

Substituting this expression in the previous formula we obtain the claim of the lemma. 2

3.1 Proof of Theorem 1.1

Let us first consider the case where P is an m-dimensional rational simplex with vertices
α1, ..., αm+1. Recall the set D(P ) introduced in Section 2. For a vector u ∈ D(P ) ⊂ ZN+1 =
ZN ⊕ Z denote by û it projection into ZN . Lemma 2.1 implies that

F (nP ) =
∑

u∈D(P ),k1,···,km+1≥0

|u|≤n,d | (n−|u|),k1+···+km+1=(n−|u|)/d

xû+d(k1α1+···+km+1αm+1)

=
∑

u∈D(P ),|u|≤n
d | (n−|u|)

xû
∑

k1,...,km+1≥0

k1+···+km+1=(n−|u|)/d

(xdα1)k1 · · · (xdαm+1)km+1 . (10)

By Lemma 3.2 applied to x1 = xdα1 , ..., xm+1 = xdαm+1 ,

F (nP ) =
∑

u∈D(P )
d | (n−|u|)


xû

m+1∑

k=1

x(n−|u|+dm)αk

m+1∏
i=1
i6=k

1

xdαk − xdαi


 . (11)

Note that the condition |u| ≤ n does not appear on the right hand side because if this
condition is not met, then (as in the proof of Formula 4) we have (n−|u|)/d+m ∈ {0, 1, ..., m−
1} and the corresponding summand vanishes by Lemma 3.1. Thus,

F (nP ) =
m+1∑

k=1

Pαk
(n) xnαk (12)

where

Pαk
(n) =




m+1∏
i=1
i6=k

1

xdαk − xdαi




∑
u∈D(P )

d | (n−|u|)

xû+(dm−|u|)αk . (13)
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It is obvious that Pαk
(n) is a periodic function of n with period d. This proves the claim of

the theorem for closed rational simplices. Note that each such simplex is the disjoint union
of its open faces. The additivity of the function n 7→ F (nP ) and an easy induction imply
that the claim of Theorem 1.1 holds also for open rational simplices.

Any convex rational polytope P can be presented as a disjoint union of open rational
simplices whose vertices belong to the set of vertices of P . Now, the claim of the theorem
follows from the additivity of F (nP ).

3.2 Proof of Theorem 1.2

We decompose P as a disjoint union of open rational simplices {∆k}k whose vertices belong
to the set A. By additivity F (nP ) =

∑
k F (n∆k). By Formulas (12, 13) and the obvious

inclusion-exclusion argument, each F (n∆k) is a finite sum of expressions p(n)xnα where
p(n) ∈ Z(d−1Λ) is a rational function whose denominator is a product of dim(∆k) ≤ dim(P )
factors of type xdα − xdα′ where α, α′ ∈ A. This directly implies the claim of the theorem.

4 Reciprocity

By a rational polyhedron we shall mean a finite simplicial complex in RN which admits
a triangulation whose vertices have rational coordinates. It is clear from the discussion at
the end of Section 3.1 that Theorem 1.1 directly extends to rational polyhedra. Note the
following corollary of Theorem 1.1.

Corollary 4.1 Let P be a rational polyhedron in RN and let A be its set of vertices. Let
d = dP be the minimal positive integer such that A ⊂ d−1Λ. If the underlying topological
space of P is a topological manifold (possibly with boundary), then there are unique periodic
functions {P 0

α : N → Z(d−1Λ)}α∈A of period d such that for any integer n ≥ 1,

F (P 0, n) =
∑

α∈A

P 0
α(n) xnα (14)

where P 0 = P\∂P is the interior of P .

This corollary follows from the generalization of Theorem 1.1 to rational polyhedra men-
tioned above and the formula F (P 0, n) = F (P, n)− F (∂P, n).

As in the Ehrhart theory, we can use Formulas (2, 14) to extend both F (P, n) and
F (P 0, n) to all integers n.

Theorem 4.2 Let P be a rational polyhedron in RN whose underlying topological space is
an m-dimensional manifold (possibly with boundary). Then for any integer n,

F (P,−n) = (−1)mF (−P 0, n). (15)

In the case of a convex lattice polytope, this theorem was obtained by Brion [1]. His
proof is based on the theory of toric varieties and the Serre duality. Our proof of Theorem
4.2 is quite elementary. It is based on a reduction to simplices provided by the following
lemma, cf. [7].
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Lemma 4.3 Let ψ1, ψ2 be two finitely additive measures on the class of bounded subsets of
RN with values in an Abelian group. If ψ1(∆

0) = (−1)dim(∆)ψ2(∆) for any rational simplex
∆ then ψ1(P

0) = (−1)mψ2(P ) for any rational polyhedron P whose underlying topological
space is an m-dimensional manifold.

Proof By additivity, we have for any closed simplex ∆ and i = 1, 2,

ψi(∆) =
∑

τ≤∆

ψi(τ
0)

where τ runs over all closed faces of ∆ and τ 0 is the interior of τ . Using the inclusion-exclusion
arguments we obtain that

ψi(∆
0) =

∑

τ≤∆

(−1)|∆|−|τ |ψi(τ)

where |τ | denotes the dimension of τ .
Now, consider a rational polyhedron P ⊂ RN whose underlying topological space is an

m-dimensional manifold. Fix a triangulation X of P consisting of (closed) rational simplices.
By additivity,

ψ1(P ) =
∑

∆∈X

ψ1(∆
0) =

∑

∆∈X

∑

τ≤∆

(−1)|∆|−|τ |ψ1(τ) =
∑

τ∈X

ψ1(τ)


 ∑

∆∈X,∆≥τ

(−1)|∆|−|τ |

 .

It is clear that for a given simplex τ ∈ X,

∑

∆∈X,∆≥τ

(−1)|∆|−|τ | = 1 +
∑

∆∈X,∆>τ

(−1)|∆|−|τ | = 1− χ(lkP (τ))

where χ is the Euler characteristic and lkP (τ) is the link of the simplex τ in the polyhedron
P . If τ ⊂ ∂P , then the link lkP (τ) is homeomorphic to a closed ball of dimension m−|τ |−1
and 1 − χ(lkP (τ)) = 0. If τ does not lie on the boundary of P , then the link of τ is
homeomorphic to an (m− |τ | − 1)-dimensional sphere and

1− χ(lkP (τ)) = 1− (1 + (−1)m−|τ |−1) = (−1)m−|τ |.

Hence,
ψ1(P ) =

∑

τ∈X,τ∩P 0 6=∅
(−1)m−|τ |ψ1(τ).

By assumption and the additivity,

∑

τ∈X,τ∩P 0 6=∅
(−1)m−|τ |ψ1(τ) = (−1)m

∑

τ∈X,τ∩P 0 6=∅
ψ2(τ

0) = (−1)mψ2(P
0)

which proves the claim of the lemma.
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4.1 Proof of Theorem 4.2

By the previous lemma, it suffices to prove the equality F (P,−n) = (−1)mF (−P 0, n) for
any m-dimensional rational simplex P with vertices α1, ..., αm+1. The same arguments as in
the proof of Formulas (7) and (11) imply that

F (P 0, n) = F (nP 0) =
∑

u∈D0

d | (n−|u|)


xû

m+1∑

k=1

x(n−|u|+dm)αk

m+1∏
i=1
i6=k

1

xdαk − xdαi


 .

As we have already observed, each vector u ∈ D0 can be uniquely written as d(β1 + · · · +
βm+1)− v with v ∈ D(P ), and vice versa. Then û = de− v̂ where e = α1 + ... + αm+1 ∈ RN.
Note that |u| = d(m + 1)− |v|. Therefore,

F (P 0, n) =
∑

v∈D(P )
d | (n+|v|)


xde−v̂

m+1∑

k=1

x(n+|v|−d)αk

m+1∏
i=1
i6=k

1

xdαk − xdαi


 .

Thus,

F (P 0,−n) =
∑

v∈D(P )
d | (n−|v|)


xde−v̂

m+1∑

k=1

x(−n+|v|−d)αk

m+1∏
i=1
i6=k

1

xdαk − xdαi


 .

Applying the conjugation, we obtain

F (−P 0,−n) =
∑

v∈D(−P )
d | (n−|v|)


xde−v̂

m+1∑

k=1

x(−n+|v|−d)αk

m+1∏
i=1
i6=k

1

xdαk − xdαi




=
∑

v∈D(P )
d | (n−|v|)


xv̂−de

m+1∑

k=1

x(n+d−|v|)αk

m+1∏
i=1
i6=k

−xdαk+dαi

xdαk − xdαi




= (−1)m
∑

v∈D(P )
d | (n−|v|)


xv̂

m+1∑

k=1

x(n−|v|+dm)αk

m+1∏
i=1
i6=k

1

xdαk − xdαi


 = (−1)mF (P, n)

where the last equality follows from Formula (11).

5 Miscellaneous

(1). The elements Pα ∈ Z(Λ) appearing in Formula (1) have an interesting geometric
interpretation. Let Cα ⊂ RN be the tangent cone to P at its vertex α, i.e., the convex
cone generated by half-lines R+(p − α) where p runs over all points of P . Clearly, the set
Cα ∩ Λ is infinite so that the formal sum F (Cα) =

∑
β∈Cα∩Λ xβ is not an element of Z[Λ].

However, F (Cα) can be viewed as a formal Laurent series representing a rational function,
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i.e., an element of Z(Λ). Brion [1] proved that for any vertex α of P , we have Pα = F (Cα).
There is a natural generalization of this formula to rational convex polytopes. Namely,

Pα(n) =
∑

β∈Cα,β+nα∈Λ

xβ.

By additivity, it suffices to check this formula for closed rational simplices where it can be
directly deduced from Formula (13).

(2). There is another generalization of the Ehrhart polynomial obtained by counting
lattice points with numerical weights. For a function ϕ : Λ → R, set

Lϕ(P, n) =
∑

α∈nP∩Λ

ϕ(α).

Brion and Vergne [3] proved that if ϕ is a homogeneous polynomial in the coordinates in RN

of degree k, then for any convex lattice polytope P , the number Lϕ(P, n) is a polynomial of
n of degree dim(P ) + k. Here is a generalized version of their results.

Theorem 5.1 Let ϕ : RN → R be a homogeneous polynomial function of degree k. If P is a
rational polyhedron in RN then n 7→ Lϕ(P, n) is a quasi-polynomial of degree dim(P )+k and
period dP . If the underlying topological space of P is an m-dimensional manifold (possibly
with boundary), then n 7→ Lϕ(P 0, n) is a quasi-polynomial of degree m + k and for any n,

Lϕ(P,−n) = (−1)m+kLϕ(P 0, n) (16)

This can be deduced from Theorems 1.1, 1.2, 4.2. The main ingredient is the observation
that Lϕ(P, n) is determined by a finite truncation of the Taylor power series of F (P, n).

(3). The computations of Section 2 suggest a geometric interpretation of the coefficients
of the Ehrhart polynomial of a closed m-dimensional lattice simplex P . Let us write L(P, n)
as

L(P, n) = cm(P )nm + cm−1(P )nm−1 + · · ·+ c1(P )n + c0(P ).

It is clear that each ci(P ) is a valuation, i.e., a finitely additive measure on the class of
lattice polytopes. These valuations are the lattice analogues of the intrinsic volumes µi,
0 ≤ i ≤ N . For a rectangular box B with side length x1, x2, . . . , xN , µi has the explicit
geometric interpretation

µi(B) = si(x1, . . . , xN),

where si(x1, . . . , xN) is the i-th elementary symmetric polynomial of x1, . . . , xN , and s0 = 1
by convention. With our formulas (4) and (5), the coefficients ci’s obtain a similar geometric
interpretations. Write each term of (4) as

(
n + m− |u|

m

)
= (n + m− |u|)(n + m− 1− |u|) · · · (n + 1− |u|)/m!.

Then coefficient of ni is the (m − i)-th symmetric polynomial of the variables m − |u|, . . .,
1− |u|, divided by m!, i.e.,

1

m!
sm−i(m− |u|, . . . , 1− |u|).
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Thus,

ci(P ) =
1

m!

∑

u∈D(P )

sm−i(m− |u|, . . . , 1− |u|).

Recall the geometric interpretation of cm and cm−1 (see for instance [2] or [8]):

cm(P ) = vol (P ), cm−1(P ) = vol (∂P ).

This implies card (D(P )) = m! vol (P ) and

∑

u∈D(P )

|u| = (m− 1)!

(
m(m + 1)

2
vol (P )− vol (∂P )

)
.
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