The Pick Theorem and the Proof of the Reciprocity Law for Dedekind Sums*

Beifang Chen
Department of Mathematics
Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong
Email: mabfchen@ust.hk

Abstract

This paper is to provide some new generalizations of the Pick Theorem. We first derive a point-set version of the Pick Theorem for an arbitrary bounded lattice polyhedron, then using the idea of weight function of [2] to obtain a weighted version; other Pick type theorems known to the author for integral lattice \mathbf{Z}^{2} are reduced to some special cases of the generalization. Finally, using the idea of Ehrhart [6] and the Pick Theorem, we give a direct proof of the reciprocity law for Dedekind sums. The ideas and methods presented here may be pushed to higher dimensions.

1 Point-Set Version of the Pick Theorem

Let P be a lattice polygon of \mathbf{R}^{2}, i.e., the vertices of P are points of the integral lattice \mathbf{Z}^{2}. Let $i(P)$ be the number of lattice points of P and $i(\partial P)$ the number of lattice points of its boundary $\partial \sigma$. The Pick Theorem says that

$$
\begin{equation*}
\operatorname{area}(P)=i(P)-\frac{1}{2} i(\partial P)-1 \tag{1}
\end{equation*}
$$

Given a bounded lattice polyhedron X of \mathbf{R}^{2}; we denote by \bar{X} the closure of X and by int X the interior of X; the frontier of X is the set $\bar{X}-\operatorname{int} X$. The link of X near a point $x \in \bar{X}$ is the intersection of X and a circle $S^{1}(x, r)$ centered at x with small enough radius r; the Euler characteristic $\chi(\operatorname{lk}(x, X))$ is a local topological invariant, which plays an important role in our Pick type theorems. For an interior point $x \in \operatorname{int} X$, the link $\operatorname{lk}(x, X)$ is a circle and has Euler characteristic zero. If X is closed, then for any $x \in \operatorname{fr} X$, the link $\mathrm{lk}(x, X)$ is a collection of finite number of arcs and points, so

$$
\chi(\operatorname{lk}(x, X))=\text { the number of branches near } x \text {. }
$$

[^0]

Figure 1: Π tiles the whole plane disjointly

For any positive integer m, we denote by $i(X, m)$ the number of lattice points of the dilation $m X=\{m x: x \in X\}$; and will see that $i(X, m)$ is a polynomial function of m of degree at most 2 . We take $i(X,-m)$ as the value of the polynomial function $i(X, t)$ at $t=-m$; note that $i(X,-m)$ is very different from $i(-m X)$, which is the number of lattice points inside the set $-m X$ (the reflection of $m X$ at the origin) and is the same as $i(m X)$.

Theorem 1.1 Let X be a bounded lattice polyhedron of \mathbf{R}^{2}. Then

$$
\begin{equation*}
\operatorname{area}(X)=i(X)-\chi(X)-\frac{1}{2} \sum_{x \in \mathbf{Z}^{2} \cap \mathrm{fr} X} \chi(\operatorname{lk}(x, X)) \tag{2}
\end{equation*}
$$

Proof Let $A B C$ be a closed lattice triangle with vertices A, B, C; and denote by a, b, c, and d the numbers of lattice points inside the relative interior of the segments $B C$, $C A, A B$, and the interior of the triangle $A B C$, respectively. We extend the triangle $A B C$ into a parallelogram $A B C D$; the vertex D must be a lattice point. Let Π be the half-closed and half-open parallelogram obtained from $A B C D$ by removing the segments $B D$ and $C D$; the points B and C must have been removed; see Figure 1. Then, for any positive integer m,

$$
i(\Pi, m)=i(m \Pi)=m^{2} i(\Pi) .
$$

We divide Π into a disjoint union of an open triangle σ (whose closure is the triangle $A B C)$ and the interior of the triangle $B C D$, the half-closed and half-open segment $[A B)$, and the two open segments $(A C)$ and $(B C)$. The interior of $B C D$ is just a lattice translation of the open triangle $-\sigma$ (the reflection of σ at the origin). Assume the vertex A is at the origin. On the one hand,

$$
\begin{aligned}
i(\Pi, m) & =2 i(m \sigma)+i(m[A B))+i(m[B C))+i(m[C A))-2 \\
& =2 i(\sigma, m)+m\{i([A B))+i([B C))+i([C A))\}-2
\end{aligned}
$$

and on the other hand,

$$
m^{2} i(\Pi)=m^{2}\{2 i(\sigma)+i([A B))+i([B C))+i([C A))-2\} .
$$

Note that $i(\sigma)=d, i([A B))=c+1, i([B C))=a+1, i([A C))=b+1$. It follows that

$$
i(\sigma, m)=\left(d+\frac{a+b+c+1}{2}\right) m^{2}-\left(\frac{a+b+c+3}{2}\right) m+1 .
$$

Obviously, the coefficient of m is $-i(\partial \sigma) / 2$. If the closed triangle $\bar{\sigma}$ has lattice points only at its vertices, then $a=b=c=d=0$; and in this case the area of σ must be $1 / 2$ (need be checked, but easy), which is the coefficient of m^{2} in $i(\sigma, m)$; such lattice triangles are called primitive. Since any open lattice triangle can be a disjoint union of finitely many primitive open lattice triangles, primitive open lattice segments, and some lattice points, thus for an arbitrary open lattice triangle σ,

$$
i(\sigma, m)=\operatorname{area}(\sigma) m^{2}-\frac{i(\partial \sigma)}{2} m+1
$$

Repeat the above argument similarly for the closed lattice triangle $\bar{\sigma}$; we have

$$
i(\bar{\sigma}, m)=\operatorname{area}(\sigma) m^{2}+\frac{i(\partial \sigma)}{2} m+1
$$

This shows that $i(\sigma,-m)=i(\bar{\sigma}, m)$. In fact, if σ is a lattice simplex of dimension at most 2, i.e., if σ is either an open lattice triangle, or an open lattice segment, or a lattice point, then

$$
\begin{equation*}
i(\sigma,-m)=(-1)^{\operatorname{dim} \sigma} i(\bar{\sigma}, m) \tag{3}
\end{equation*}
$$

Now we consider a bounded lattice polyhedron X of \mathbf{R}^{2} and a lattice triangulation Δ of X, i.e., Δ is a collection of disjoint open lattice triangles, open lattice segments, and some lattice points such that the union is the whole set X; define

$$
\begin{equation*}
L(X, m)=\frac{1}{2} \sum_{\sigma \in \Delta}[i(\sigma, m)+i(\sigma,-m)] \tag{4}
\end{equation*}
$$

It is clear that $L(X, m)=L(X,-m)$. In other words, the coefficient of m in $L(X, m)$ is zero. Since

$$
i(\sigma, m)+i(\sigma,-m)=2\left[\operatorname{area}(\sigma) m^{2}+(-1)^{\operatorname{dim} \sigma}\right]
$$

for any open lattice simplex σ of dimension at most 2 , we have

$$
\begin{equation*}
L(X, m)=\operatorname{area}(X) m^{2}+\chi(X) \tag{5}
\end{equation*}
$$

Let us compute $L(X, m)$. It suffices to compute $\sum_{\sigma \in \Delta} i(\sigma,-m)$. In fact,

$$
\begin{aligned}
\sum_{\sigma \in \Delta} i(\sigma,-m) & =\sum_{\sigma \in \Delta}(-1)^{\operatorname{dim} \sigma} i(\bar{\sigma}, m) \quad[\text { by }(3)] \\
& =\sum_{\sigma \in \Delta}(-1)^{\operatorname{dim} \sigma} \sum_{\tau \leq \sigma} i(\tau, m) \\
& =\sum_{\tau \in \bar{\Delta}} i(\tau, m) \sum_{\tau \leq \sigma \in \Delta}(-1)^{\operatorname{dim} \sigma}
\end{aligned}
$$

where $\bar{\Delta}$ is the lattice triangulation of \bar{X} extended from Δ. Note that $\cup_{\tau \leq \sigma \in \Delta} \sigma$ can be viewed as a star open neighborhood of any point $x \in \tau$ in X. Then for $x \in \tau$,

$$
\sum_{\tau \leq \sigma \in \Delta}(-1)^{\operatorname{dim} \sigma}=\delta(x, X)-\chi(\operatorname{lk}(x, X))
$$

where $\delta(x, X)=1$ for $x \in X$ and $\delta(x, X)=0$ otherwise. Thus

$$
\begin{aligned}
\sum_{\sigma \in \Delta} i(\sigma,-m)= & \sum_{\tau \in \bar{\Delta}} i(\tau, m) \delta(x, X)(x \in \tau) \\
& -\sum_{\tau \in \bar{\Delta}} i(\tau, m) \chi(\operatorname{lk}(x, X))(x \in \tau) \\
= & i(X, m)-\sum_{x \in \mathbf{Z}^{2} \cap m \bar{X}} \chi(\operatorname{lk}(x, m X)) .
\end{aligned}
$$

Substitute this into (4), one obtains

$$
L(X, m)=i(X, m)-\frac{1}{2} \sum_{x \in \mathbf{Z}^{2} \cap m \bar{X}} \chi(\operatorname{lk}(x, m X))
$$

which shows that the sum (4) is independent of the lattice triangulation Δ. Set $m=1$ and make use of (5); we obtain (2) as desired.

Corollary 1.2 Let X be a bounded closed lattice polyhedron of \mathbf{R}^{2}. Then

$$
\begin{equation*}
\operatorname{area}(X) \leq i(X)-\chi(X)-\frac{1}{2} i(\operatorname{fr} X) \tag{6}
\end{equation*}
$$

The equality holds if and only if X is a manifold with boundary.
Proof Since X is closed, the link $\operatorname{lk}(x, X)$ for any $x \in \operatorname{fr} X$ is a disjoint union of some closed arcs and points; thus $\chi(\operatorname{lk}(x, X)) \geq 1$ and (6) follows immediately. Moreover, it is clear that the equality in (6) holds if and only if $\chi(\operatorname{lk}(x, X))=1$ for all $x \in \operatorname{fr} X$. This is equivalent to saying that X is a manifold with boundary.

If X is closed and 1-dimensional, then X can be viewed as a planar graph G. Thus area $(X)=0$, fr $X=X$, and

$$
0=i(X)-\chi(X)-\frac{1}{2} \sum_{x \in X \cap \mathbf{Z}^{2}} \operatorname{deg}(x)
$$

It is easy to see the following inequality

$$
\begin{equation*}
\sum_{x \in X \cap \mathbf{Z}^{2}} \operatorname{deg}(x)+\#\{\text { leaves }\} \geq 2 \#\{\text { vertices }\}=2 i(X) \tag{7}
\end{equation*}
$$

because the left side is the sum of degrees contributed at vertices, and at each vertex the contribution is at least 2 , including the leaves. In other words, the left side is at least the twice of the number of vertices. We thus have $\chi(X) \leq \#\{$ leaves $\} / 2$. Note that (7) is actually true for any graph, not necessary for planar graphs. Moreover, the equality in (7) holds if and only if the graph G has degree 2 at every non-leaf, which is equivalent to saying that G is a disjoint union of paths and cycles. This yields the following corollary that can be verified directly.

Corollary 1.3 For any graph G with p vertices and q edges,

$$
\begin{equation*}
p-q \leq \#\{\text { leaves }\} / 2 \tag{8}
\end{equation*}
$$

The equality holds if and only if G is a disjoint union of paths and cycles.
The Pick type Theorem 1.1 is in its full generality in dimension two, including the Pick type theorems of [7, 19], but not the Pick type theorem of [9], which is about abstract polygons. However, the Pick type theorem of [9] is an example of the weighted version of the Pick type theorem in the next section.

2 Weighted Version of the Pick Theorem

Let X be a compact polyhedron of \mathbf{R}^{2}. A stratification of X is a collection \mathcal{D} of disjoint connected manifolds without boundary (called strata) such that the union of all strata is the whole set X. A function ω on X is called a weight function with respect to a stratification \mathcal{D} if ω is constant on each stratum; in other word, ω is simply a function on the set \mathcal{D} of strata. A better way to define weight function is not to have given the compact polyhedron X at beginning. For this purpose, we define a weight function as a function on \mathbf{R}^{2} whose range of values is a finite set, and for each $c \in \mathbf{R}, \omega^{-1}(c)$ is a polyhedron. This is slightly more general than the previous one, and we use this definition throughout the whole section.

Let ω be a weight function on \mathbf{R}^{2} with bounded support X. Let \mathcal{D} be a stratification of \bar{X} such that ω is constant on each stratum. We define the weighted area, the weighted number of lattice points, and the weighted Euler characteristic of X as

$$
\begin{aligned}
\operatorname{area}(X, \omega) & =\sum_{Y \in \mathcal{D}} \omega(Y)=\int_{\mathbf{R}^{2}} \omega(x) \mathrm{d} x, \\
i(X, \omega) & =\sum_{Y \in \mathcal{D}} \omega(Y) i(Y)=\int_{\mathbf{Z}^{2}} \omega(x) \mathrm{d} \#(x), \\
\chi(X, \omega) & =\sum_{Y \in \mathcal{D}} \omega(Y) \chi(Y)=\int_{\mathbf{R}^{2}} \omega(x) \mathrm{d} \chi(x)
\end{aligned}
$$

respectively, where \# is the counting measure on \mathbf{Z}^{2} and χ is the Euler measure; see [2]. For a point $x \in X$, choose a circle $S^{1}(x, r)$ centered at x with small enough radius r. Then $\mathcal{D}(x)=\left\{X_{i} \cap S^{1}(x, r) \neq \emptyset: X_{i} \in \mathcal{D}\right\}$ is a stratification of $1 \mathrm{k}(x, X)$; the restriction of ω on $\mathrm{lk}(x, X)$ is a weight function with respect to $\mathcal{D}(x)$; we still use ω to denote this weight function.

Theorem 2.1 Let ω be a weight function on \mathbf{R}^{2} with bounded support X. Then

$$
\begin{equation*}
\operatorname{area}(X, \omega)=i(X, \omega)-\chi(X, \omega)-\frac{1}{2} \sum_{x \in \mathbf{Z}^{2} \cap f \mathrm{fr} X} \chi(\operatorname{lk}(x, X), \omega) . \tag{9}
\end{equation*}
$$

Proof Let \mathcal{D} be a lattice stratification (each stratum is a lattice polyhedron) of \bar{X} such that ω is constant on each stratum. Similar to the proof of Theorem 1.1, we define

$$
\begin{equation*}
L(X, \omega ; m)=\frac{1}{2} \sum_{Y \in \mathcal{D}} \omega(Y)[i(Y, m)+i(Y,-m)] \tag{10}
\end{equation*}
$$

for any positive integer m. Let Δ be a stratified lattice triangulation of X, i.e., each stratum of \mathcal{D} is a disjoint union of some open lattice simplices of Δ. It is clear that ω is also a weight function with respect to Δ, and

$$
\begin{align*}
L(X, \omega ; m) & =\frac{1}{2} \sum_{\sigma \in \Delta} \omega(\sigma)[i(\sigma, m)+i(\sigma,-m)] \\
& =\operatorname{area}(X, \omega) m^{2}+\chi(X, \omega) \tag{11}
\end{align*}
$$

Similarly,

$$
\begin{aligned}
\sum_{\sigma \in \Delta} i(\sigma,-m) \omega(\sigma) & =\sum_{\sigma \in \Delta}(-1)^{\operatorname{dim} \sigma} i(\bar{\sigma}, m) \omega(\sigma) \\
& =\sum_{\sigma \in \Delta}(-1)^{\operatorname{dim} \sigma} \omega(\sigma) \sum_{\tau \leq \sigma} i(\tau, m) \\
& =\sum_{\tau \in \bar{\Delta}} i(\tau, m) \sum_{\tau \leq \sigma \in \Delta}(-1)^{\operatorname{dim} \sigma} \omega(\sigma) .
\end{aligned}
$$

For each $\tau \in \bar{\Delta}$, select a point $x \in \tau$; we claim that

$$
\sum_{\tau \leq \sigma \in \Delta}(-1)^{\operatorname{dim} \sigma} \omega(\sigma)=\omega(\tau)-\chi(\operatorname{lk}(x, X), \omega)
$$

In fact, it is obviously true if τ is a vertex or an open triangle of Δ. If τ is an open segment of Δ, let σ_{i} be the open triangles such that $\sigma_{i}>\tau$; we have

$$
\begin{aligned}
\sum_{\tau \leq \sigma \in \Delta}(-1)^{\operatorname{dim} \sigma} \omega(\sigma) & =-\omega(\tau)+\sum_{i} \omega\left(\sigma_{i}\right) \\
& =\omega(\tau)-\left(2 \omega(\tau)-\sum_{i} \omega\left(\sigma_{i}\right)\right) \\
& =\omega(\tau)-\chi(\operatorname{lk}(x, X), \omega) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\sum_{\sigma \in \Delta} i(\sigma,-m) \omega(\sigma) & =\sum_{\tau \in \bar{\Delta}} i(\tau, m) \omega(\tau)-\sum_{\tau \in \bar{\Delta}} i(\tau, m) \chi(\operatorname{lk}(x, X), \omega)(x \in \tau) \\
& =i(X, \omega ; m)-\sum_{x \in \mathbf{Z}^{2} \cap m \bar{X}} \chi(\operatorname{lk}(x, m X), \omega) .
\end{aligned}
$$

Put this in (11) and set $m=1$; we have

$$
\operatorname{area}(X, \omega)+\chi(X, \omega)=i(X, \omega)-\frac{1}{2} \sum_{x \in \mathbf{Z}^{2} \cap \bar{X}} \chi(\operatorname{lk}(x, X), \omega) .
$$

Note that $\chi(\operatorname{lk}(x, X), \omega)=0$ for all $x \in \operatorname{int} X$; the formula (9) follows immediately.

Corollary 2.2 Let G be a graph embedded in \mathbf{R}^{2} such that the embedding is a lattice polyhedron. Let ω be a function on \mathbf{R}^{2} satisfying the properties: (i) ω is constant on all regions divided by G and vanishes on the unbounded region; (ii) the value of ω on an edge is the average value of the regions at both sides of the edge. Then

$$
\begin{equation*}
\int_{\mathbf{R}^{2}} \omega(x) \mathrm{d} x=\int_{\mathbf{Z}^{2}} \omega(x) \mathrm{d} \#(x)-\int_{\mathbf{R}^{2}} \omega(x) \mathrm{d} \chi(x) \tag{12}
\end{equation*}
$$

Proof Let X be the support of the weight function ω and obviously, fr $X \subset G$. It suffices to show that the weighted Euler characteristic $\chi(\operatorname{lk}(x, X), \omega)$ vanishes for all $x \in G$. Let $S^{1}(x, r)$ be the circle centered at x of small enough radius r. Then, no matter x is a vertex or a point on an edge of G, the complement $S^{1}(x, r)-G$ is a collection of open $\operatorname{arcs} S^{1}(x, r) \cap R_{j}, 1 \leq j \leq n$, where R_{j} are some regions divided by G, R_{j} and R_{j+1} share a common boundary $E_{j}, R_{n+1}=R_{1}$. Then

$$
\begin{aligned}
\chi(\operatorname{lk}(x, X), \omega) & =\sum_{j=1}^{n} \omega\left(E_{j}\right)-\sum_{j=1}^{n} \omega\left(R_{j}\right) \\
& =\sum_{j=1}^{n}\left[\omega\left(R_{j}\right)+\omega\left(R_{j+1}\right)\right] / 2-\sum_{j=1}^{n} \omega\left(R_{j}\right)=0 .
\end{aligned}
$$

It is interesting to notice that the weight function in Corollary 2.2 can have arbitrary values at the vertices of G; the whole plane with the given weight function is a weighted manifold (with vanishing boundary weight function) of [2]. In the following we derive the Pick type theorem of [9] as an example of Corollary 2.2 with a special weight function.

Let \vec{P} be a closed oriented curve of \mathbf{R}^{2}, allowing self-intersections and even overlapping arcs; its point-set is denoted by P. If \vec{P} is a smooth curve, then it is an immersion of a circle in \mathbf{R}^{2}. The complement $\mathbf{R}^{2}-\vec{P}$ is a finite collection of open cells and one unbounded region. We define a function $\omega(\vec{P}, x)$ on \mathbf{R}^{2} as follows: (i) fix the point x and take a curve $R(x)$ from x to ∞ such that $R(x)$ intersects P transversally at finitely many number of points; (ii) at each intersection point y (topologically equivalent to one of the six types in Figure 2), assign the index

$$
\iota(R(x), y)=\left\{\begin{array}{rl}
1 & \text { if } y \neq x \text { and is of type (a) } \\
-1 & \text { if } y \neq x \text { and is of type (b) } \\
\frac{1}{2} & \text { if } y=x \text { and is of type (c) or (e) } \\
-\frac{1}{2} & \text { if } y=x \text { and is of type (d) or (f) }
\end{array} ;\right.
$$

(iii) set

$$
\begin{equation*}
\omega(\vec{P}, x)=\sum_{y \in R(x) \cap \vec{P}} \iota(R(x), y), \tag{13}
\end{equation*}
$$

where y is counted with multiplicity when \vec{P} intersects itself. The cases (e) and (f) are special and we need to pay more attention. The case (e) means that the head of the curve \vec{P} moves forward and reaches at the point x, then moves backward along

(a)

(c)

(e)

(b)

(d)

(f)

Figure 2: Six types of intersections
the original trail, and it keeps moving on the original trail until it reaches the point z, where the head starts a new trail; we call this backtrack, see Figure 2. The index we assigned for the cases (e) and (f) is equivalent to blowing up the overlapped arc $[z x]$ topologically, i.e., separating the overlapped arc $[z x]$ from z all the way to x and keep the local shape topologically equivalent. We call the point x in cases (e) and (f) a whisker point and the corresponding point z a co-whisker point; so a whisker point and its co-whisker point always appear in pair. We can get rid off a whisker point x and its co-whisker point z by removing the half-closed and half-open arc $[x z)$ and the curve \vec{P} becomes a curve \vec{P}^{\prime}; the function $\omega(\vec{P}, \cdot)$ will remain unchanged except at x and z; and if $\omega(\vec{P}, x)=\omega\left(\vec{P}^{\prime}, x\right) \pm 1 / 2$, then $\omega(\vec{P}, z)=\omega\left(\vec{P}^{\prime}, z\right) \mp 1 / 2$. It should be pointed out that the idea to define the function $\omega(\vec{P}, x)$ comes from the definition of the function $i(P, x)$ in [9]; and the two definitions give the same number for the cases (a), (b), (c) and (d). However, we allow backtrack case, i.e., the whisker-free condition of [8] is not needed in our treatment.

It is not hard to see that $\omega(\vec{P}, x)$ is independent of the chosen curve $R(x)$ starting from x to ∞. In fact, if $x \notin \vec{P}$, it is just the winding number (need be checked, but leave it to the reader) of \vec{P} at x and is constant on each cell σ_{j} (the unique unbounded region is also called a cell here, even it is not homeomorphic to an open disc); so $\omega(\vec{P}, x)$ is well-defined. We write $\omega\left(\sigma_{j}\right)=\omega(\vec{P}, x)$ for $x \in \sigma_{j}$, then $\omega\left(\sigma_{j}\right)=0$ if σ_{j} is unbounded. Let us mark all cross points, whisker and co-whisker points on P as vertices, and take the rest of arcs as edges and loops; we obtain a planar graph G possibly with multiple edges and loops. Let x be a point on an edge (or a loop) ε between two cells σ^{\prime} and $\sigma^{\prime \prime}$ (σ^{\prime} and $\sigma^{\prime \prime}$ may be the same when ε bounds a whisker point), and choose the curve $R(x)$ to intersect the cell σ^{\prime}; see Figure 3. Assume that there are m directed arcs of case (c)

Figure 3: The arcs on E were moved to the arc $u w v$.
and n directed arcs of case (d) from \vec{P} overlapping with ε. Then, on the one hand,

$$
\omega(\vec{P}, x)=\omega\left(\sigma^{\prime}\right)+\frac{m-n}{2},
$$

and on the other hand, extending the curve $R(x)$ beyond x to a point $y \in \sigma^{\prime \prime}$, we have

$$
\omega(\vec{P}, y)=\omega\left(\sigma^{\prime \prime}\right)=\omega\left(\sigma^{\prime}\right)+m-n
$$

Thus

$$
\omega(\vec{P}, x)=\frac{1}{2}\left[\omega\left(\sigma^{\prime}\right)+\omega\left(\sigma^{\prime \prime}\right)\right],
$$

which shows that $\omega(\vec{P}, x)$ is well-defined. The situation for x to be a vertex of G is similar, just pay more attention to whisker points.

Theorem 2.3 Let \vec{P} be a closed oriented curve of \mathbf{R}^{2} and let $\omega(\vec{P}, x)$ be the function defined by (13). Let $r(\vec{P})$ be the rotation number of \vec{P}. Then

$$
\begin{equation*}
r(\vec{P})=\int_{\mathbf{R}^{2}} \omega(\vec{P}, x) \mathrm{d} \chi(x) . \tag{14}
\end{equation*}
$$

Proof We mark all cross points, whisker and co-whisker points of P to have a planar graph G. The complement of G is a finite collection of bounded open cells and one unbounded region. We proceed by induction on the number of bounded cells. If there is only one bounded cell σ, and \vec{P} wraps n times around $\partial \sigma$ counterclockwise, then $r(\vec{P})=\omega(\vec{P}, x)=n$ for $x \in \sigma$, and so

$$
\int_{\mathbf{R}^{2}} \omega(\vec{P}, x) \mathrm{d} \chi(x)=n \chi(\sigma)-\frac{n}{2} \chi(\partial \sigma)=r(\vec{P}) .
$$

In general, we choose a bounded cell σ which shares a common edge (or loop) E with the unbounded region; the common edge E bounds two end points u and $v(u=v$ if E is a loop), and is oriented with the positive orientation (counterclockwise) of $\partial \sigma$; see Figure 3.

We assume that there are m arcs on E having the same orientation as E and $n \operatorname{arcs}$ having the opposite orientation. We move all the $m+n \operatorname{arcs}$ to the other side of $\partial \sigma$ so
that the cell σ is connected to the unbounded region, and obtain a new closed curve \vec{P}^{\prime} having one less bounded cell. If E is an edge, then $r(\vec{P})=r\left(\vec{P}^{\prime}\right)$,

$$
\omega(\vec{P}, x)= \begin{cases}\omega\left(\vec{P}^{\prime}, x\right) & \text { for } x \notin \bar{\sigma} \text { or } x \in\{u, v\} \tag{15}\\ \omega\left(\vec{P}^{\prime}, x\right)+\frac{m-n}{2} & \text { for } x \in \partial \sigma-\{u, v\} \\ \omega\left(\vec{P}^{\prime}, x\right)+m-n & \text { for } x \in \sigma\end{cases}
$$

and $\omega\left(\vec{P}^{\prime}, x\right)=0$ for $x \in \sigma \cup E$. A routine calculation shows that

$$
\int_{\bar{\sigma}}\left[\omega(\vec{P}, x)-\omega\left(\vec{P}^{\prime}, x\right)\right] \mathrm{d} \chi(x)=0
$$

Thus

$$
\begin{aligned}
\int_{\mathbf{R}^{2}} \omega(\vec{P}, x) \mathrm{d} \chi(x) & =\int_{\mathbf{R}^{2}} \omega\left(\vec{P}^{\prime}, x\right) \mathrm{d} \chi(x)+\int_{\bar{\sigma}}\left[\omega(\vec{P}, x)-\omega\left(\vec{P}^{\prime}, x\right)\right] \mathrm{d} \chi(x) \\
& =r\left(\vec{P}^{\prime}\right)=r(\vec{P}) .
\end{aligned}
$$

If E is a loop, then $u=v,(15)$ is still valid and $\omega\left(\vec{P}^{\prime}, x\right)=0$ for $x \in \sigma \cup E$, but $r(\vec{P})=r\left(\vec{P}^{\prime}\right)+(m-n) / 2$. Thus

$$
\begin{aligned}
\int_{\mathbf{R}^{2}} \omega(\vec{P}, x) \mathrm{d} \chi(x) & =\int_{\mathbf{R}^{2}} \omega\left(\vec{P}^{\prime}, x\right) \mathrm{d} \chi(x)+\int_{\bar{\sigma}}\left[\omega(\vec{P}, x)-\omega\left(\vec{P}^{\prime}, x\right)\right] \mathrm{d} \chi(x) \\
& =r\left(\vec{P}^{\prime}\right)+\frac{m-n}{2}=r(\vec{P}) .
\end{aligned}
$$

Remark When the directed closed path \vec{P} is decomposed into some (overlapped) directed cycles, we may count the number of counterclockwise directed cycles, denoted $r^{+}(\vec{P})$, and the number of clockwise directed cycles, denoted $r^{-}(\vec{P})$. Then the rotation number $r(\vec{P})$ is given by

$$
r(\vec{P})=r^{+}(\vec{P})-r^{-}(\vec{P})
$$

and it is independent of the decompositions of \vec{P} into directed cycles.
Proposition 2.4 (Grünbaum and Shephard) Let \vec{P} be a closed oriented lattice polyhedral curve of \mathbf{R}^{2} and let $\omega(\vec{P}, x)$ be the function defined by (13). Then

$$
\int_{\mathbf{R}^{2}} \omega(\vec{P}, x) \mathrm{d} x=\int_{\mathbf{Z}^{2}} \omega(\vec{P}, x) \mathrm{d} \#(x)-r(\vec{P})
$$

Proof It follows immediately from Corollary 2.2 and Theorem 2.3.
The Pick type theorem of Grünbaum and Shephard [9] was originally stated for an abstract polygon, which is just a closed oriented lattice polyhedral curve of \mathbf{R}^{2} without whisker points. Theorem 2.1 is the two-dimensional case of the higher dimensional volume formulas of [2] in terms of weight functions; and all the volume formulas of [13, 14, 17, 18] can be induced from those volume formulas of [2] by choosing weight
equal to 1. The volume formula of [12] is also a special case of the volume formula of [2] by setting weight equal to 1 .

There should be a higher dimensional analog of Theorem 2.3. Let M be a closed oriented smooth n-manifold and is immersed in \mathbf{R}^{n+1} by a smooth map ϕ. The image $\phi(M)$ divides \mathbf{R}^{n+1} into finite number of regions. We similarly define the function $\omega(\phi, x)$ on \mathbf{R}^{n+1} in the following steps:
(i) Choose an orientation ε of \mathbf{R}^{n+1}.
(ii) Fix a point $x \in \mathbf{R}^{n+1}$ and take a smooth curve $R(x)$ from x to ∞ such that $R(x)$ intersects $\phi(M)$ transversally at finitely many number of points.
(iii) For each intersection point $y \in R(x) \cap \phi(M)$ and its any inverse image $p \in \phi^{-1}(y)$, the orientation of the tangent space $T_{p} M$ of M at p induces an orientation on the tangent space $T_{y} \phi(M)$ of $\phi(M)$ at y; this orientation of $T_{y} \phi(M)$ together with the direction vector of $R(x)$ at y form an orientation ε_{p} of \mathbf{R}^{n+1}.
(iv) Define the the function

$$
\iota(R(x), p)=\left\{\begin{array}{rl}
1 & \text { if } x \neq \phi(p) \in R(x), \varepsilon_{p}=\varepsilon \\
-1 & \text { if } x \neq \phi(p) \in R(x), \varepsilon_{p}=-\varepsilon \\
\frac{1}{2} & \text { if } \phi(p)=x, \varepsilon_{p}=\varepsilon \\
-\frac{1}{2} & \text { if } \phi(p)=x, \varepsilon_{p}=-\varepsilon
\end{array} .\right.
$$

(v) Define the function

$$
\omega(\phi, x)=\sum_{\phi(p) \in R(x)} \iota(R(x), p) .
$$

On the other hand, for any $p \in M$ and its induced orientation ε_{p} of the tangent space $T_{\phi(p)} \phi(M)$, there is a unique unit vector v_{p} normal to $T_{\phi(p)} \phi(M)$ such that the orientation ε_{p} together with v_{p} gives the chosen orientation ε of \mathbf{R}^{n+1}. This defines a smooth map ψ from M to the unit n-sphere S^{n}. We state the following conjecture.
Conjecture 2.5 Let M be a closed oriented smooth n-manifold and let $\phi: M \longrightarrow \mathbf{R}^{n+1}$ be a smooth immersion, $n \geq 1$. Let $\omega(\phi, x)$ and ψ be defined as above.

1. If n is odd, then

$$
\operatorname{deg} \psi=\int_{\mathbf{R}^{n+1}} \omega(\phi, x) d \chi(x) .
$$

In particular, if ϕ is a smooth embedding, then M is a closed hyper-surface of \mathbf{R}^{n+1}, ψ is the Gauss map, and

$$
\operatorname{deg} \psi=\chi\left(M_{+}\right)
$$

where M_{+}is the bounded component of the complement $\mathbf{R}^{n+1}-M$.
2. If n is even, then

$$
\int_{\mathbf{R}^{n+1}} \omega(\phi, x) d \chi(x)=0 .
$$

The conjecture may be stated in a more general setting, but the present version is good enough for testing. For $n=1$, it is Theorem 2.3. For even n, it is easily verified when ϕ is an embedding.

3 The Reciprocity Law of Dedekind Sums

Counting the number of lattice points inside the dilation $m X$ of a lattice polyhedron X by a positive integer m was systematically studied by Ehrhart [6] in higher dimensions. Let σ be an open lattice triangle of \mathbf{R}^{2} with the vertices α_{1}, α_{2} and the origin. Let m be a positive integer and α a point of $m \bar{\sigma}$. Write $\alpha=x_{1} \alpha_{1}+x_{2} \alpha_{2}$ with real numbers $x_{1} \geq 0, x_{2} \geq 0$ such that $x_{1}+x_{2} \leq m$; then by the Division Algorithm,

$$
\alpha=\left(k_{1} \alpha_{1}+k_{2} \alpha_{2}\right)+\left(u_{1} \alpha_{1}+u_{2} \alpha_{2}\right),
$$

where k_{1} and k_{2} are non-negative integers, $0 \leq u_{1}<1$ and $0 \leq u_{2}<1, u_{1}+u_{2}+k_{1}+k_{2} \leq$ m. We define the determined set for σ :

$$
D(\sigma)=\left\{u_{1} \alpha_{1}+u_{2} \alpha_{2} \in \mathbf{Z}^{2}: 0 \leq u_{1}<1,0 \leq u_{2}<1\right\} .
$$

Then $\alpha \in \mathbf{Z}^{2}$ if and only if $\gamma=u_{1} \alpha_{1}+u_{2} \alpha_{2} \in \mathbf{Z}^{2}$. Write $|\gamma|=u_{1}+u_{2}$; then we have $k_{1}+k_{2} \leq m-|\gamma|$, which is equivalent to $k_{1}+k_{2} \leq m-\lceil|\gamma|\rceil$, where $\lceil|\gamma|\rceil$ is the smallest integer greater than or equal to $|\gamma|$. The number of tuples $\left(k_{1}, k_{2}\right)$ of non-negative integers such that $k_{1}+k_{2} \leq m-\lceil|\gamma|\rceil$ is the same as the number of non-negative integer solutions of the equation $k_{1}+k_{2}+k_{3}=m-\lceil|\gamma|\rceil$, which turns out to be the binomial coefficient

$$
\binom{m-\lceil|\gamma|\rceil+2}{2}=\frac{1}{2} m^{2}+\left(\frac{3}{2}-\lceil|\gamma|\rceil\right) m+\frac{1}{2}\left(\lceil|\gamma|\rceil^{2}-3\lceil|\gamma|+2\rceil\right) .
$$

Thus the constant coefficient c_{0} of m in $i(\bar{\sigma}, m)$ is given by

$$
c_{0}=\frac{1}{2} \sum_{\gamma \in D(\sigma)}\left(\lceil|\gamma|\rceil^{2}-3\lceil|\gamma|\rceil+2\right) .
$$

Now we consider the special lattice triangle $\sigma(a, b)$ with the vertices $(0,0),(a, 0)$, $(0, b)$, where a and b are coprime positive integers. Then

$$
\begin{equation*}
c_{0}=\frac{1}{2} \sum_{i=0}^{a-1} \sum_{j=0}^{b-1}\left(\left\lceil\frac{i}{a}+\frac{j}{b}\right\rceil^{2}-3\left\lceil\frac{i}{a}+\frac{j}{b}\right\rceil+2\right) . \tag{16}
\end{equation*}
$$

Recall the Dedekind sum $s(q, p)$ of coprime positive integers p and q, which is defined by

$$
s(q, p)=\sum_{k=1}^{p-1}\left(\left(\frac{q k}{p}\right)\right)\left(\left(\frac{k}{p}\right)\right),
$$

where $((t))$ is the function

$$
((t))= \begin{cases}t-\lceil t\rceil+\frac{1}{2} & \text { for } t \notin \mathbf{Z} \\ 0 & \text { for } t \in \mathbf{Z} .\end{cases}
$$

If $i / a+j / b=k$ is an integer, i.e., $b i+a j=k a b$, then $a \mid i$ and $b \mid j$, and it forces that $(i, j)=(0,0)$. Thus, if $(i, j) \neq(0,0)$,

$$
\left\lceil\frac{i}{a}+\frac{j}{b}\right\rceil=\left(\frac{i}{a}+\frac{j}{b}\right)-\left(\left(\frac{i}{a}+\frac{j}{b}\right)\right)+\frac{1}{2} .
$$

Set $u=i / a+j / b$ and pay attention to the sum (16) at $(i, j)=(0,0)$; we further have

$$
\begin{equation*}
c_{0}=\frac{5}{8}+\frac{1}{2} \sum\left[u^{2}-2 u((u))+((u))^{2}-2 u+2((u))+\frac{3}{4}\right], \tag{17}
\end{equation*}
$$

where the sum is extended over $0 \leq i \leq a-1,0 \leq j \leq b-1$. A trivial calculation shows that

$$
\begin{aligned}
\sum u & =a b-\frac{a+b}{2} \\
\sum u^{2} & =\frac{7 a b}{6}-(a+b)+\frac{1}{6}\left(\frac{a}{b}+\frac{b}{a}\right)+\frac{1}{2}
\end{aligned}
$$

To figure out the other terms in the sum (17), we need the formulas

$$
\begin{aligned}
\sum_{k=0}^{p-1}\left(\left(\frac{k}{p}\right)\right) & =0 \\
\sum_{k=0}^{p-1}\left(\left(\frac{k+t}{p}\right)\right) & =((t)), \\
\sum_{k=0}^{p-1}\left(\left(\frac{k}{p}\right)\right)^{2} & =\frac{p}{12}+\frac{1}{6 p}-\frac{1}{4} .
\end{aligned}
$$

which can be checked directly by the properties of the function $((t))$; see [16]. Sine a and b are coprime integers, the integers $b i+a j$ for $0 \leq i \leq a-1$ and $0 \leq j \leq b-1$ $(\bmod a b)$ range from 0 to $a b-1$ and they must be distinct residues modulo $a b$. Thus

$$
\begin{aligned}
\sum((u)) & =0 \\
\sum((u))^{2} & =\frac{a b}{12}+\frac{1}{6 a b}-\frac{1}{4} .
\end{aligned}
$$

For the term $\sum u((u))$, we need to use Dedekind sums as follows:

$$
\begin{aligned}
\sum u((u)) & =\sum_{i=0}^{a-1} \frac{i}{a} \sum_{j=0}^{b-1}\left(\left(\frac{b i / a+j}{b}\right)\right)+\sum_{j=0}^{b-1} \frac{j}{b} \sum_{i=0}^{a-1}\left(\left(\frac{i+a j / b}{a}\right)\right) \\
& =\sum_{i=0}^{a-1} \frac{i}{a}\left(\left(\frac{b i}{a}\right)\right)+\sum_{j=0}^{b-1} \frac{j}{b}\left(\left(\frac{a j}{b}\right)\right) \\
& =\sum_{i=0}^{a-1}\left[\left(\left(\frac{i}{a}\right)\right)+\frac{1}{2}\right]\left(\left(\frac{b i}{a}\right)\right)+\sum_{j=0}^{b-1}\left[\left(\left(\frac{j}{b}\right)\right)+\frac{1}{2}\right]\left(\left(\frac{a j}{b}\right)\right) \\
& =s(b, a)+s(a, b) .
\end{aligned}
$$

Substitute these into the constant coefficient formula (17) and simplify it carefully, we obtain c_{0} explicitly as

$$
c_{0}=\frac{1}{12}\left(\frac{a}{b}+\frac{b}{a}+\frac{1}{a b}\right)+\frac{3}{4}-s(a, b)-s(b, a) .
$$

Use the fact $c_{0}=1$ by the Pick Theorem; the sum $s(a, b)+s(b, a)$ has a rational expression of a and b as given in the following.

Theorem 3.1 (Reciprocity Law of Dedekind Sums) For coprime positive integers a and b,

$$
s(a, b)+s(b, a)=\frac{1}{12}\left(\frac{a}{b}+\frac{b}{a}+\frac{1}{a b}\right)-\frac{1}{4} .
$$

The above direct proof for the reciprocity law of Dedekind sums is a special case of [3] for the computation of the co-dimension two coefficient of a special lattice simplex. In higher dimensions, the coefficient formulas similar to (17) have been given in [3, 4]; and one can apply those coefficient formulas to an n-dimensional lattice simplex to obtain Zagier's reciprocity law of higher dimensional Dedekind sums; see [10, 20]. However, I would like to mention another proof given by Beck [1] for the reciprocity law of Dedekind sums, using the generating functions of Ehrhart polynomials of [5]. Finally, it should be pointed out that the idea to realize the reciprocity law of Dedekind sums by a lattice simplex is from the work of Diaz and Robins [5], Kantor and Khovanskii [11], Pommersheim [15], though they employed more advanced tools.

References

[1] M. Beck, The reciprocity law for Dedekind sums via the constant Ehrhart coefficient, Amer. Math. Monthly, 106 (1999), 459-462.
[2] B. Chen, Weight functions, double reciprocity law, and volume formulas for integral polyhedra, Proc. Natl. Acad. Sci. USA, 95 (1998), 9093-9098.
[3] B. Chen, Lattice points, Dedekind sums and Ehrhart polynomials of lattice polyhedra, Discrete \& Compt. Geom., to appear.
[4] B. Chen and V. Tauraev, Counting lattice points of rational polyhedra, Advances in Math. 155 (2000), 84-97.
[5] R. Diaz and S. Robins, The Ehrhart polynomial of a lattice polytope, Annals of Mathematics 135 (1997), 503-518.
[6] E. Ehrhart, Sur un problème de geómétrie diophantienne linéaire II, J. Reine Angrew. Math. 227 (1967), 25-49.
[7] W. W. Funkenbusch, From Euler's formula to Pick's theorem using an edge theorem, Amer. Math. Monthly 81 (1974), 647-648.
[8] B. Grünbaum and G. C. Shephard, Rotation and winding numbers for planar polygons and curves, Trans. Amer. Math. Soc. 322 (1990), 169-1187.
[9] B. Grünbaum and G. C. Shephard, Pick's theorem, Amer. Math. Monthly 100 (1993), 150-161.
[10] F. Hirzebruch and D. Zagier, The Atiyah-Singer Index Theorem and Elementary Number Theory, Publish or Perish, Inc., Boston, MA, 1974.
[11] J. M. Kantor and A. G. Khovanskii, Une application du Théoréme de RiemannRoch combinatorie au polynôme d'Ehrhart des polytopes entiers de \mathbf{R}^{n}, C.R. Acad. Sci. Paris, Série I 317, 1993, 501-507.
[12] K. Kolodziejczyk, Hadwiger-Wills-type higher-dimensional generalizations of Pick's theorem. Discrete Comput. Geom. 24 (2000), 355-364.
[13] I. G. Macdonald, The volume of a lattice polyhedron, Proc. Camb. Phil. Soc. 59 (1963), 719-726.
[14] I. G. Macdonald, Polynomials associated with finite cell complexes, J. London Math. Soc. (2) 4 (1971), 181-192.
[15] J. Pommersheim, Toric varieties, lattice points and Dedekind sums, Math Ann. 295 (1993), 1-24.
[16] H. Rademacher and E. Grosswald, Dedekind Sums, The Carus Mathematical Monographs 16, The Mathematical Association of America, Washington, D.C., 1972.
[17] J. E. Reeve, On the volume of lattice polyhedra, Proc. London Math. Soc. (3) 7 (1975), 378-395.
[18] J. E. Reeve, A further note on the volume of lattice polyhedra, J. London Math. Soc. 34 (1959), 57-62.
[19] D. E. Varberg, Pick's theorem revised, Amer. Math. Monthly 92 (1985), 584-587.
[20] D. Zagier, Higher dimensional Dedekind sums, Math. Ann. 202 (1973), 149-172.

[^0]: *Research is supported by RGC Competitive Earmarked Grant HKUST6119/00P

