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Abstract

This paper is to provide some new generalizations of the Pick Theorem. We first
derive a point-set version of the Pick Theorem for an arbitrary bounded lattice
polyhedron, then using the idea of weight function of [2] to obtain a weighted
version; other Pick type theorems known to the author for integral lattice Z2 are
reduced to some special cases of the generalization. Finally, using the idea of
Ehrhart [6] and the Pick Theorem, we give a direct proof of the reciprocity law for
Dedekind sums. The ideas and methods presented here may be pushed to higher
dimensions.

1 Point-Set Version of the Pick Theorem

Let P be a lattice polygon of R2, i.e., the vertices of P are points of the integral lattice
Z2. Let i(P ) be the number of lattice points of P and i(∂P ) the number of lattice points
of its boundary ∂σ. The Pick Theorem says that

area (P ) = i(P )− 1

2
i(∂P )− 1. (1)

Given a bounded lattice polyhedron X of R2; we denote by X̄ the closure of X and
by intX the interior of X; the frontier of X is the set X̄ − intX. The link of X near a
point x ∈ X̄ is the intersection of X and a circle S1(x, r) centered at x with small enough
radius r; the Euler characteristic χ(lk (x, X)) is a local topological invariant, which plays
an important role in our Pick type theorems. For an interior point x ∈ intX, the link
lk (x,X) is a circle and has Euler characteristic zero. If X is closed, then for any x ∈ frX,
the link lk (x,X) is a collection of finite number of arcs and points, so

χ(lk (x,X)) = the number of branches near x.
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Figure 1: Π tiles the whole plane disjointly

For any positive integer m, we denote by i(X, m) the number of lattice points of the
dilation mX = {mx : x ∈ X}; and will see that i(X, m) is a polynomial function of m
of degree at most 2. We take i(X,−m) as the value of the polynomial function i(X, t)
at t = −m; note that i(X,−m) is very different from i(−mX), which is the number of
lattice points inside the set −mX (the reflection of mX at the origin) and is the same
as i(mX).

Theorem 1.1 Let X be a bounded lattice polyhedron of R2. Then

area (X) = i(X)− χ(X)− 1

2

∑

x∈Z2∩fr X

χ(lk (x,X)). (2)

Proof Let ABC be a closed lattice triangle with vertices A,B,C; and denote by a, b,
c, and d the numbers of lattice points inside the relative interior of the segments BC,
CA, AB, and the interior of the triangle ABC, respectively. We extend the triangle
ABC into a parallelogram ABCD; the vertex D must be a lattice point. Let Π be the
half-closed and half-open parallelogram obtained from ABCD by removing the segments
BD and CD; the points B and C must have been removed; see Figure 1. Then, for any
positive integer m,

i(Π, m) = i(mΠ) = m2i(Π).

We divide Π into a disjoint union of an open triangle σ (whose closure is the triangle
ABC) and the interior of the triangle BCD, the half-closed and half-open segment
[AB), and the two open segments (AC) and (BC). The interior of BCD is just a lattice
translation of the open triangle −σ (the reflection of σ at the origin). Assume the vertex
A is at the origin. On the one hand,

i(Π,m) = 2 i(mσ) + i(m[AB)) + i(m[BC)) + i(m[CA))− 2

= 2 i(σ,m) + m {i([AB)) + i([BC)) + i([CA))} − 2;

and on the other hand,

m2i(Π) = m2{2 i(σ) + i([AB)) + i([BC)) + i([CA))− 2}.

Note that i(σ) = d, i([AB)) = c + 1, i([BC)) = a + 1, i([AC)) = b + 1. It follows that

i(σ,m) =

(
d +

a + b + c + 1

2

)
m2 −

(
a + b + c + 3

2

)
m + 1.
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Obviously, the coefficient of m is −i(∂σ)/2. If the closed triangle σ̄ has lattice points
only at its vertices, then a = b = c = d = 0; and in this case the area of σ must be
1/2 (need be checked, but easy), which is the coefficient of m2 in i(σ,m); such lattice
triangles are called primitive. Since any open lattice triangle can be a disjoint union of
finitely many primitive open lattice triangles, primitive open lattice segments, and some
lattice points, thus for an arbitrary open lattice triangle σ,

i(σ,m) = area (σ) m2 − i(∂σ)

2
m + 1.

Repeat the above argument similarly for the closed lattice triangle σ̄; we have

i(σ̄,m) = area (σ) m2 +
i(∂σ)

2
m + 1.

This shows that i(σ,−m) = i(σ̄,m). In fact, if σ is a lattice simplex of dimension at
most 2, i.e., if σ is either an open lattice triangle, or an open lattice segment, or a lattice
point, then

i(σ,−m) = (−1)dim σi(σ̄, m). (3)

Now we consider a bounded lattice polyhedron X of R2 and a lattice triangulation
∆ of X, i.e., ∆ is a collection of disjoint open lattice triangles, open lattice segments,
and some lattice points such that the union is the whole set X; define

L(X, m) =
1

2

∑

σ∈∆

[i(σ,m) + i(σ,−m)]. (4)

It is clear that L(X, m) = L(X,−m). In other words, the coefficient of m in L(X, m) is
zero. Since

i(σ,m) + i(σ,−m) = 2[area (σ) m2 + (−1)dim σ]

for any open lattice simplex σ of dimension at most 2, we have

L(X, m) = area (X) m2 + χ(X). (5)

Let us compute L(X,m). It suffices to compute
∑

σ∈∆ i(σ,−m). In fact,

∑

σ∈∆

i(σ,−m) =
∑

σ∈∆

(−1)dim σi(σ̄, m) [by (3)]

=
∑

σ∈∆

(−1)dim σ
∑

τ≤σ

i(τ, m)

=
∑

τ∈∆̄

i(τ,m)
∑

τ≤σ∈∆

(−1)dim σ,

where ∆̄ is the lattice triangulation of X̄ extended from ∆. Note that ∪τ≤σ∈∆σ can be
viewed as a star open neighborhood of any point x ∈ τ in X. Then for x ∈ τ ,

∑

τ≤σ∈∆

(−1)dim σ = δ(x,X)− χ(lk (x,X)),
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where δ(x,X) = 1 for x ∈ X and δ(x,X) = 0 otherwise. Thus

∑

σ∈∆

i(σ,−m) =
∑

τ∈∆̄

i(τ, m)δ(x,X) (x ∈ τ)

− ∑

τ∈∆̄

i(τ, m)χ(lk (x,X)) (x ∈ τ)

= i(X,m)− ∑

x∈Z2∩mX̄

χ(lk (x,mX)).

Substitute this into (4), one obtains

L(X,m) = i(X, m)− 1

2

∑

x∈Z2∩mX̄

χ(lk (x,mX)),

which shows that the sum (4) is independent of the lattice triangulation ∆. Set m = 1
and make use of (5); we obtain (2) as desired. 2

Corollary 1.2 Let X be a bounded closed lattice polyhedron of R2. Then

area (X) ≤ i(X)− χ(X)− 1

2
i(frX). (6)

The equality holds if and only if X is a manifold with boundary.

Proof Since X is closed, the link lk (x,X) for any x ∈ frX is a disjoint union of some
closed arcs and points; thus χ(lk (x,X)) ≥ 1 and (6) follows immediately. Moreover, it
is clear that the equality in (6) holds if and only if χ(lk (x,X)) = 1 for all x ∈ frX. This
is equivalent to saying that X is a manifold with boundary. 2

If X is closed and 1-dimensional, then X can be viewed as a planar graph G. Thus
area (X) = 0, frX = X, and

0 = i(X)− χ(X)− 1

2

∑

x∈X∩Z2

deg (x).

It is easy to see the following inequality

∑

x∈X∩Z2

deg (x) + #{leaves} ≥ 2#{vertices} = 2i(X) (7)

because the left side is the sum of degrees contributed at vertices, and at each vertex the
contribution is at least 2, including the leaves. In other words, the left side is at least
the twice of the number of vertices. We thus have χ(X) ≤ #{leaves}/2. Note that (7) is
actually true for any graph, not necessary for planar graphs. Moreover, the equality in
(7) holds if and only if the graph G has degree 2 at every non-leaf, which is equivalent to
saying that G is a disjoint union of paths and cycles. This yields the following corollary
that can be verified directly.
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Corollary 1.3 For any graph G with p vertices and q edges,

p− q ≤ #{leaves}/2. (8)

The equality holds if and only if G is a disjoint union of paths and cycles.

The Pick type Theorem 1.1 is in its full generality in dimension two, including the
Pick type theorems of [7, 19], but not the Pick type theorem of [9], which is about
abstract polygons. However, the Pick type theorem of [9] is an example of the weighted
version of the Pick type theorem in the next section.

2 Weighted Version of the Pick Theorem

Let X be a compact polyhedron of R2. A stratification of X is a collection D of
disjoint connected manifolds without boundary (called strata) such that the union of
all strata is the whole set X. A function ω on X is called a weight function with
respect to a stratification D if ω is constant on each stratum; in other word, ω is
simply a function on the set D of strata. A better way to define weight function is not
to have given the compact polyhedron X at beginning. For this purpose, we define a
weight function as a function on R2 whose range of values is a finite set, and for each
c ∈ R, ω−1(c) is a polyhedron. This is slightly more general than the previous one, and
we use this definition throughout the whole section.

Let ω be a weight function on R2 with bounded support X. Let D be a stratification
of X̄ such that ω is constant on each stratum. We define the weighted area, the
weighted number of lattice points, and the weighted Euler characteristic of X
as

area (X,ω) =
∑

Y ∈D
ω(Y ) =

∫

R2
ω(x)dx,

i(X,ω) =
∑

Y ∈D
ω(Y )i(Y ) =

∫

Z2
ω(x)d#(x),

χ(X,ω) =
∑

Y ∈D
ω(Y )χ(Y ) =

∫

R2
ω(x)dχ(x)

respectively, where # is the counting measure on Z2 and χ is the Euler measure; see [2].
For a point x ∈ X, choose a circle S1(x, r) centered at x with small enough radius r.
Then D(x) = {Xi ∩ S1(x, r) 6= ∅ : Xi ∈ D} is a stratification of lk (x,X); the restriction
of ω on lk (x,X) is a weight function with respect to D(x); we still use ω to denote this
weight function.

Theorem 2.1 Let ω be a weight function on R2 with bounded support X. Then

area (X, ω) = i(X, ω)− χ(X, ω)− 1

2

∑

x∈Z2∩fr X

χ(lk (x,X), ω). (9)
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Proof Let D be a lattice stratification (each stratum is a lattice polyhedron) of X̄ such
that ω is constant on each stratum. Similar to the proof of Theorem 1.1, we define

L(X, ω; m) =
1

2

∑

Y ∈D
ω(Y )[i(Y, m) + i(Y,−m)] (10)

for any positive integer m. Let ∆ be a stratified lattice triangulation of X, i.e., each
stratum of D is a disjoint union of some open lattice simplices of ∆. It is clear that ω
is also a weight function with respect to ∆, and

L(X, ω; m) =
1

2

∑

σ∈∆

ω(σ)[i(σ,m) + i(σ,−m)]

= area (X, ω)m2 + χ(X,ω). (11)

Similarly,
∑

σ∈∆

i(σ,−m)ω(σ) =
∑

σ∈∆

(−1)dim σi(σ̄, m)ω(σ)

=
∑

σ∈∆

(−1)dim σω(σ)
∑

τ≤σ

i(τ,m)

=
∑

τ∈∆̄

i(τ, m)
∑

τ≤σ∈∆

(−1)dim σω(σ).

For each τ ∈ ∆̄, select a point x ∈ τ ; we claim that
∑

τ≤σ∈∆

(−1)dim σω(σ) = ω(τ)− χ(lk (x,X), ω).

In fact, it is obviously true if τ is a vertex or an open triangle of ∆. If τ is an open
segment of ∆, let σi be the open triangles such that σi > τ ; we have

∑

τ≤σ∈∆

(−1)dim σω(σ) = −ω(τ) +
∑

i

ω(σi)

= ω(τ)−
(

2ω(τ)−∑

i

ω(σi)

)

= ω(τ)− χ(lk (x,X), ω).

Therefore
∑

σ∈∆

i(σ,−m)ω(σ) =
∑

τ∈∆̄

i(τ,m)ω(τ)− ∑

τ∈∆̄

i(τ, m)χ(lk (x,X), ω) (x ∈ τ)

= i(X, ω; m)− ∑

x∈Z2∩mX̄

χ(lk (x,mX), ω).

Put this in (11) and set m = 1; we have

area (X,ω) + χ(X,ω) = i(X, ω)− 1

2

∑

x∈Z2∩X̄

χ(lk (x,X), ω).

Note that χ(lk (x, X), ω) = 0 for all x ∈ intX; the formula (9) follows immediately. 2
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Corollary 2.2 Let G be a graph embedded in R2 such that the embedding is a lattice
polyhedron. Let ω be a function on R2 satisfying the properties: (i) ω is constant on all
regions divided by G and vanishes on the unbounded region; (ii) the value of ω on an
edge is the average value of the regions at both sides of the edge. Then

∫

R2
ω(x)dx =

∫

Z2
ω(x)d#(x)−

∫

R2
ω(x)dχ(x). (12)

Proof Let X be the support of the weight function ω and obviously, fr X ⊂ G. It suffices
to show that the weighted Euler characteristic χ(lk (x,X), ω) vanishes for all x ∈ G. Let
S1(x, r) be the circle centered at x of small enough radius r. Then, no matter x is a
vertex or a point on an edge of G, the complement S1(x, r) − G is a collection of open
arcs S1(x, r) ∩ Rj, 1 ≤ j ≤ n, where Rj are some regions divided by G, Rj and Rj+1

share a common boundary Ej, Rn+1 = R1. Then

χ(lk (x,X), ω) =
n∑

j=1

ω(Ej)−
n∑

j=1

ω(Rj)

=
n∑

j=1

[ω(Rj) + ω(Rj+1)]/2−
n∑

j=1

ω(Rj) = 0.

2

It is interesting to notice that the weight function in Corollary 2.2 can have arbitrary
values at the vertices of G; the whole plane with the given weight function is a weighted
manifold (with vanishing boundary weight function) of [2]. In the following we derive the
Pick type theorem of [9] as an example of Corollary 2.2 with a special weight function.

Let ~P be a closed oriented curve of R2, allowing self-intersections and even overlap-
ping arcs; its point-set is denoted by P . If ~P is a smooth curve, then it is an immersion
of a circle in R2. The complement R2 − ~P is a finite collection of open cells and one
unbounded region. We define a function ω(~P , x) on R2 as follows: (i) fix the point x
and take a curve R(x) from x to ∞ such that R(x) intersects P transversally at finitely
many number of points; (ii) at each intersection point y (topologically equivalent to one
of the six types in Figure 2), assign the index

ι(R(x), y) =





1 if y 6= x and is of type (a)

−1 if y 6= x and is of type (b)
1
2

if y = x and is of type (c) or (e)

−1
2

if y = x and is of type (d) or (f)

;

(iii) set

ω(~P , x) =
∑

y∈R(x)∩~P

ι(R(x), y), (13)

where y is counted with multiplicity when ~P intersects itself. The cases (e) and (f)
are special and we need to pay more attention. The case (e) means that the head of

the curve ~P moves forward and reaches at the point x, then moves backward along
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Figure 2: Six types of intersections

the original trail, and it keeps moving on the original trail until it reaches the point z,
where the head starts a new trail; we call this backtrack, see Figure 2. The index we
assigned for the cases (e) and (f) is equivalent to blowing up the overlapped arc [zx]
topologically, i.e., separating the overlapped arc [zx] from z all the way to x and keep the
local shape topologically equivalent. We call the point x in cases (e) and (f) a whisker
point and the corresponding point z a co-whisker point; so a whisker point and its
co-whisker point always appear in pair. We can get rid off a whisker point x and its
co-whisker point z by removing the half-closed and half-open arc [xz) and the curve ~P

becomes a curve ~P ′; the function ω(~P , ·) will remain unchanged except at x and z; and

if ω(~P , x) = ω(~P ′, x)±1/2, then ω(~P , z) = ω(~P ′, z)∓1/2. It should be pointed out that

the idea to define the function ω(~P , x) comes from the definition of the function i(P, x)
in [9]; and the two definitions give the same number for the cases (a), (b), (c) and (d).
However, we allow backtrack case, i.e., the whisker-free condition of [8] is not needed
in our treatment.

It is not hard to see that ω(~P , x) is independent of the chosen curve R(x) starting

from x to ∞. In fact, if x 6∈ ~P , it is just the winding number (need be checked, but

leave it to the reader) of ~P at x and is constant on each cell σj (the unique unbounded

region is also called a cell here, even it is not homeomorphic to an open disc); so ω(~P , x)

is well-defined. We write ω(σj) = ω(~P , x) for x ∈ σj, then ω(σj) = 0 if σj is unbounded.
Let us mark all cross points, whisker and co-whisker points on P as vertices, and take
the rest of arcs as edges and loops; we obtain a planar graph G possibly with multiple
edges and loops. Let x be a point on an edge (or a loop) ε between two cells σ′ and σ′′

(σ′ and σ′′ may be the same when ε bounds a whisker point), and choose the curve R(x)
to intersect the cell σ′; see Figure 3. Assume that there are m directed arcs of case (c)

8



A

P P’

v

u

w
v

w

u

σ
E

ε

y

x

R(x)

σ’’

Figure 3: The arcs on E were moved to the arc uwv.

and n directed arcs of case (d) from ~P overlapping with ε. Then, on the one hand,

ω(~P , x) = ω(σ′) +
m− n

2
,

and on the other hand, extending the curve R(x) beyond x to a point y ∈ σ′′, we have

ω(~P , y) = ω(σ′′) = ω(σ′) + m− n.

Thus

ω(~P , x) =
1

2
[ω(σ′) + ω(σ′′)],

which shows that ω(~P , x) is well-defined. The situation for x to be a vertex of G is
similar, just pay more attention to whisker points.

Theorem 2.3 Let ~P be a closed oriented curve of R2 and let ω(~P , x) be the function

defined by (13). Let r(~P ) be the rotation number of ~P . Then

r(~P ) =
∫

R2
ω(~P , x)dχ(x). (14)

Proof We mark all cross points, whisker and co-whisker points of P to have a planar
graph G. The complement of G is a finite collection of bounded open cells and one
unbounded region. We proceed by induction on the number of bounded cells. If there
is only one bounded cell σ, and ~P wraps n times around ∂σ counterclockwise, then
r(~P ) = ω(~P , x) = n for x ∈ σ, and so

∫

R2
ω(~P , x)dχ(x) = nχ(σ)− n

2
χ(∂σ) = r(~P ).

In general, we choose a bounded cell σ which shares a common edge (or loop) E with
the unbounded region; the common edge E bounds two end points u and v (u = v if
E is a loop), and is oriented with the positive orientation (counterclockwise) of ∂σ; see
Figure 3.

We assume that there are m arcs on E having the same orientation as E and n arcs
having the opposite orientation. We move all the m + n arcs to the other side of ∂σ so
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that the cell σ is connected to the unbounded region, and obtain a new closed curve ~P ′

having one less bounded cell. If E is an edge, then r(~P ) = r(~P ′),

ω(~P , x) =





ω(~P ′, x) for x 6∈ σ̄ or x ∈ {u, v}
ω(~P ′, x) + m−n

2
for x ∈ ∂σ − {u, v}

ω(~P ′, x) + m− n for x ∈ σ

; (15)

and ω(~P ′, x) = 0 for x ∈ σ ∪ E. A routine calculation shows that

∫

σ̄
[ω(~P , x)− ω(~P ′, x)]dχ(x) = 0.

Thus
∫

R2
ω(~P , x)dχ(x) =

∫

R2
ω(~P ′, x)dχ(x) +

∫

σ̄
[ω(~P , x)− ω(~P ′, x)]dχ(x)

= r(~P ′) = r(~P ).

If E is a loop, then u = v, (15) is still valid and ω(~P ′, x) = 0 for x ∈ σ ∪ E, but

r(~P ) = r(~P ′) + (m− n)/2. Thus

∫

R2
ω(~P , x)dχ(x) =

∫

R2
ω(~P ′, x)dχ(x) +

∫

σ̄
[ω(~P , x)− ω(~P ′, x)]dχ(x)

= r(~P ′) +
m− n

2
= r(~P ).

2

Remark When the directed closed path ~P is decomposed into some (overlapped) di-
rected cycles, we may count the number of counterclockwise directed cycles, denoted
r+(~P ), and the number of clockwise directed cycles, denoted r−(~P ). Then the rotation

number r(~P ) is given by

r(~P ) = r+(~P )− r−(~P ),

and it is independent of the decompositions of ~P into directed cycles.

Proposition 2.4 (Grünbaum and Shephard) Let ~P be a closed oriented lattice polyhe-

dral curve of R2 and let ω(~P , x) be the function defined by (13). Then

∫

R2
ω(~P , x)dx =

∫

Z2
ω(~P , x)d#(x)− r(~P ).

Proof It follows immediately from Corollary 2.2 and Theorem 2.3. 2

The Pick type theorem of Grünbaum and Shephard [9] was originally stated for an
abstract polygon, which is just a closed oriented lattice polyhedral curve of R2 with-
out whisker points. Theorem 2.1 is the two-dimensional case of the higher dimensional
volume formulas of [2] in terms of weight functions; and all the volume formulas of
[13, 14, 17, 18] can be induced from those volume formulas of [2] by choosing weight
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equal to 1. The volume formula of [12] is also a special case of the volume formula of [2]
by setting weight equal to 1.

There should be a higher dimensional analog of Theorem 2.3. Let M be a closed
oriented smooth n-manifold and is immersed in Rn+1 by a smooth map φ. The image
φ(M) divides Rn+1 into finite number of regions. We similarly define the function ω(φ, x)
on Rn+1 in the following steps:

(i) Choose an orientation ε of Rn+1.
(ii) Fix a point x ∈ Rn+1 and take a smooth curve R(x) from x to ∞ such that R(x)

intersects φ(M) transversally at finitely many number of points.
(iii) For each intersection point y ∈ R(x)∩φ(M) and its any inverse image p ∈ φ−1(y),

the orientation of the tangent space TpM of M at p induces an orientation on the tangent
space Tyφ(M) of φ(M) at y; this orientation of Tyφ(M) together with the direction vector
of R(x) at y form an orientation εp of Rn+1.

(iv) Define the the function

ι(R(x), p) =





1 if x 6= φ(p) ∈ R(x), εp = ε

−1 if x 6= φ(p) ∈ R(x), εp = −ε
1
2

if φ(p) = x, εp = ε

−1
2

if φ(p) = x, εp = −ε

.

(v) Define the function

ω(φ, x) =
∑

φ(p)∈R(x)

ι(R(x), p).

On the other hand, for any p ∈ M and its induced orientation εp of the tangent
space Tφ(p)φ(M), there is a unique unit vector vp normal to Tφ(p)φ(M) such that the
orientation εp together with vp gives the chosen orientation ε of Rn+1. This defines a
smooth map ψ from M to the unit n-sphere Sn. We state the following conjecture.

Conjecture 2.5 Let M be a closed oriented smooth n-manifold and let φ : M −→ Rn+1

be a smooth immersion, n ≥ 1. Let ω(φ, x) and ψ be defined as above.

1. If n is odd, then

deg ψ =
∫

Rn+1
ω(φ, x)dχ(x).

In particular, if φ is a smooth embedding, then M is a closed hyper-surface of
Rn+1, ψ is the Gauss map, and

deg ψ = χ(M+),

where M+ is the bounded component of the complement Rn+1 −M .

2. If n is even, then ∫

Rn+1
ω(φ, x)dχ(x) = 0.

The conjecture may be stated in a more general setting, but the present version is
good enough for testing. For n = 1, it is Theorem 2.3. For even n, it is easily verified
when φ is an embedding.
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3 The Reciprocity Law of Dedekind Sums

Counting the number of lattice points inside the dilation mX of a lattice polyhedron X
by a positive integer m was systematically studied by Ehrhart [6] in higher dimensions.
Let σ be an open lattice triangle of R2 with the vertices α1, α2 and the origin. Let m
be a positive integer and α a point of mσ̄. Write α = x1α1 + x2α2 with real numbers
x1 ≥ 0, x2 ≥ 0 such that x1 + x2 ≤ m; then by the Division Algorithm,

α = (k1α1 + k2α2) + (u1α1 + u2α2),

where k1 and k2 are non-negative integers, 0 ≤ u1 < 1 and 0 ≤ u2 < 1, u1+u2+k1+k2 ≤
m. We define the determined set for σ:

D(σ) = {u1α1 + u2α2 ∈ Z2 : 0 ≤ u1 < 1, 0 ≤ u2 < 1}.
Then α ∈ Z2 if and only if γ = u1α1 + u2α2 ∈ Z2. Write |γ| = u1 + u2; then we have
k1 + k2 ≤ m− |γ|, which is equivalent to k1 + k2 ≤ m−d|γ|e, where d|γ|e is the smallest
integer greater than or equal to |γ|. The number of tuples (k1, k2) of non-negative
integers such that k1 +k2 ≤ m−d|γ|e is the same as the number of non-negative integer
solutions of the equation k1 + k2 + k3 = m − d|γ|e, which turns out to be the binomial
coefficient

(
m− d|γ|e+ 2

2

)
=

1

2
m2 +

(
3

2
− d|γ|e

)
m +

1

2
(d|γ|e2 − 3d|γ|+ 2e).

Thus the constant coefficient c0 of m in i(σ̄, m) is given by

c0 =
1

2

∑

γ∈D(σ)

(d|γ|e2 − 3d|γ|e+ 2).

Now we consider the special lattice triangle σ(a, b) with the vertices (0, 0), (a, 0),
(0, b), where a and b are coprime positive integers. Then

c0 =
1

2

a−1∑

i=0

b−1∑

j=0

(⌈
i

a
+

j

b

⌉2

− 3
⌈

i

a
+

j

b

⌉
+ 2

)
. (16)

Recall the Dedekind sum s(q, p) of coprime positive integers p and q, which is defined by

s(q, p) =
p−1∑

k=1

((
qk

p

)) ((
k

p

))
,

where ((t)) is the function

((t)) =

{
t− dte+ 1

2
for t 6∈ Z

0 for t ∈ Z.

If i/a + j/b = k is an integer, i.e., bi + aj = kab, then a|i and b|j, and it forces that
(i, j) = (0, 0). Thus, if (i, j) 6= (0, 0),

⌈
i

a
+

j

b

⌉
=

(
i

a
+

j

b

)
−

((
i

a
+

j

b

))
+

1

2
.
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Set u = i/a + j/b and pay attention to the sum (16) at (i, j) = (0, 0); we further have

c0 =
5

8
+

1

2

∑ [
u2 − 2u((u)) + ((u))2 − 2u + 2((u)) +

3

4

]
, (17)

where the sum is extended over 0 ≤ i ≤ a− 1, 0 ≤ j ≤ b− 1. A trivial calculation shows
that

∑
u = ab− a + b

2
,

∑
u2 =

7ab

6
− (a + b) +

1

6

(
a

b
+

b

a

)
+

1

2
.

To figure out the other terms in the sum (17), we need the formulas

p−1∑

k=0

((
k

p

))
= 0,

p−1∑

k=0

((
k + t

p

))
= ((t)),

p−1∑

k=0

((
k

p

))2

=
p

12
+

1

6p
− 1

4
.

which can be checked directly by the properties of the function ((t)); see [16]. Sine a
and b are coprime integers, the integers bi + aj for 0 ≤ i ≤ a − 1 and 0 ≤ j ≤ b − 1
(mod ab) range from 0 to ab− 1 and they must be distinct residues modulo ab. Thus

∑
((u)) = 0,

∑
((u))2 =

ab

12
+

1

6ab
− 1

4
.

For the term
∑

u((u)), we need to use Dedekind sums as follows:

∑
u((u)) =

a−1∑

i=0

i

a

b−1∑

j=0

((
bi/a + j

b

))
+

b−1∑

j=0

j

b

a−1∑

i=0

((
i + aj/b

a

))

=
a−1∑

i=0

i

a

((
bi

a

))
+

b−1∑

j=0

j

b

((
aj

b

))

=
a−1∑

i=0

[((
i

a

))
+

1

2

] ((
bi

a

))
+

b−1∑

j=0

[((
j

b

))
+

1

2

] ((
aj

b

))

= s(b, a) + s(a, b).

Substitute these into the constant coefficient formula (17) and simplify it carefully, we
obtain c0 explicitly as

c0 =
1

12

(
a

b
+

b

a
+

1

ab

)
+

3

4
− s(a, b)− s(b, a).

Use the fact c0 = 1 by the Pick Theorem; the sum s(a, b)+s(b, a) has a rational expression
of a and b as given in the following.
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Theorem 3.1 (Reciprocity Law of Dedekind Sums) For coprime positive integers a and
b,

s(a, b) + s(b, a) =
1

12

(
a

b
+

b

a
+

1

ab

)
− 1

4
.

The above direct proof for the reciprocity law of Dedekind sums is a special case of
[3] for the computation of the co-dimension two coefficient of a special lattice simplex.
In higher dimensions, the coefficient formulas similar to (17) have been given in [3,
4]; and one can apply those coefficient formulas to an n-dimensional lattice simplex
to obtain Zagier’s reciprocity law of higher dimensional Dedekind sums; see [10, 20].
However, I would like to mention another proof given by Beck [1] for the reciprocity law
of Dedekind sums, using the generating functions of Ehrhart polynomials of [5]. Finally,
it should be pointed out that the idea to realize the reciprocity law of Dedekind sums
by a lattice simplex is from the work of Diaz and Robins [5], Kantor and Khovanskii
[11], Pommersheim [15], though they employed more advanced tools.
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