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Abstract

This paper introduces q-series for a curve singularity (C, 0) in the affine space
(Cn, 0) via subspace arrangements. These q-series are certain multivariable gen-
erating functions whose coefficients are the characteristic polynomials of subspace
arrangements associated with the singularity (C, 0) at various orders; the q is the
variable in the characteristic polynomials of the subspace arrangements, represent-
ing the equivalence class of the ground field C as an affine algebraic line. We show
that all the q-series introduced are rational functions and satisfy some interesting
properties. When (C, 0) is a plane curve singularity, the intersection S3

ε ∩ C de-
fines a link Lr, where S3

ε is a 3-sphere centered at the origin with small enough
radius ε. The value of certain q-series at q = 1 is the Alexander polynomial of the
link Lr, up to a normalization. The approach is to introduce integration on the
space OCn,0 of germs via the parameterization of the singularity (C, 0). The whole
exposition may be extended to some higher-dimensional singularities.

1 Introduction

x
Let ϕi : C→ Cn be a family of holomorphic functions such that ϕi(0) = 0, 1 ≤ i ≤ r.

The image Ci = Imϕi is a complex curve in Cn passing through the origin 0. Our
interest is to study the local behavior of the complex curve C =

⋃r
i=1 Ci near the origin.

To get local information we may observe how the compositions g ◦ ϕi vary for various
holomorphic germs g of Cn at the origin. The entire observation for such holomorphic
germs should, in principle, contain holomorphic information about C near the origin
with respect to the family Φ = {ϕi}r

i=1. This paper, inspired by the work of Campillo,
Delgado and Gusein-Zade [4, 5], is to apply this general philosophy in a rigorous manner.
The whole exposition may be generalized to a family of parameterizations of higher
dimensional singularities.

Let OCn,0 be the ring of holomorphic germs of Cn at the origin 0. When a coordinate
is selected, OCn,0 is the vector space of all convergent power series near the origin. Let
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I∞i be the ideal of germs that vanish on the curve Ci; the notation will be justified
later. The collection I∞ = {I∞i }r

i=1 of ideals is called the ideal arrangement of OCn,0 at
order ∞. Throughout the paper we denote by Z the set of integers and by N the set
of nonnegative integers. For each germ g ∈ OCn,0, we expand the holomorphic function
g ◦ ϕi(z) into power series

g ◦ ϕi(z) = εiz
ωi + higher order terms, εi 6= 0. (1)

The leading term of g ◦ ϕi(z) defines an order function ωi : OCn,0 → N ∪ {∞} and
a coefficient partial function εi : OCn,0 → C∗ by (1). When g ◦ ϕi ≡ 0, we define
ωi(g) = ∞ and keep εi(g) undefined. We write ω(g) = (ω1(g), . . . , ωr(g)) and ε(g) =
(ε1(g), . . . , εr(g)). The partial map ε is not defined for g ∈ ⋃r

i=1 I∞i . The semigroup
SΦ of the family Φ is the sub-semigroup of Nr, consisting of the elements of the form
ω(g) = (ω1(g), . . . , ωr(g)) for all germs g ∈ OCn,0 − ⋃r

i=1 I∞i . The full semigroup of Φ is

the sub-semigroup S̄Φ = {ω(g) | g ∈ OCn,0} of (N ∪ {∞})r. The extended semigroup ŜΦ

is the sub-semigroup of Nr× (C∗)r, consisting of the elements of the form (ω(g), ε(g)) =
(ω1(g), . . . , ωr(g); ε1(g), . . . , εr(g)) for all g ∈ OCn,0−⋃r

i=1 I∞i . The semigroup operation
in (N ∪ {∞})r is the addition and in (C∗)r is the multiplication; a + ∞ = ∞ for any
a ∈ N ∪ {∞}.

Let m be the maximal ideal of OC\,′. The kth jet space Jk
Cn,0 is the quotient OCn,0/m

k

whose dimension is
(

n+k
k

)
. For g ∈ mk, the order ω(g) with respect to each ϕi is at least

k. For α = (a1, . . . , ar) ∈ Zr, let

Iα = {g ∈ OCn,0 | ω(g) ≥ α} and Iα
0 = {g ∈ OCn,0 | ω(g) = α}. (2)

It is clear that each Iα is an ideal of OCn,0 and contains the ideals mk for large enough
k; so that OCn,0/I

α is finite dimensional. The space OCn,0 of germs is decomposed into
a disjoint union

OCn,0 =
⊕

α∈S̄Φ

Iα
0

in which OCn,0 can be viewed as a graded semigroup under multiplication. Let the
coordinate functions zk (1 ≤ k ≤ n) in the parameterization ϕi(z) = (z1, . . . , zn) be
written in the power series

zk = ck1z
k1 + ck2z

k2 + · · · ,

where k1, k2, . . . are ascending positive integers and ck1 , ck2 , . . . are nonzero constants,
but there may be only finitely many terms. Let di = gcd(k1, k2, . . . ) and d = (d1, . . . , dr).
Let di be the vector of Zr whose ith coordinate is di and zero elsewhere. Let L be the
lattice generated by {di}r

i=1 and D =
∏r

i=1[0, di) ∩ Z. Clearly, Iα
0 is nonempty if and

only if α ∈ L; Iα−γ = Iα for any α ∈ L and γ ∈ D. The arrangement of Φ at order α
is the collection Iα = {Iα+di}r

i=1 of sub-ideals in Iα, and the projective arrangement of
Φ at order α is the collection PIα = {PIα+di}r

i=1 of projective subspaces in PIα. For
α ∈ L, the sets Iα

0 and PIα
0 are the complement of the arrangement Iα in Iα and the

complement of the arrangement PIα in PIα, respectively; that is,

Iα
0 = Iα −

r⋃

i=1

Iα+di and PIα
0 = PIα −

r⋃

i=1

PIα+di .
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Note that this may not be true for α 6∈ L. Let L(Iα) be the semi-lattice of all possible
intersections of the sub-ideals in Iα, including Iα =

⋂
i∈∅ Iα+di . The semi-lattice L(Iα)

is a poset (partially ordered set) whose partial order is the set-inclusion. Similarly,
the projective semi-lattice is L(PIα) = {PI | I ∈ L(Iα)}. We define characteristic
polynomials χ(Iα, q) for Iα and χ(PIα, q) for PIα as follows:

χ(Iα, q) =
∑

I∈L(Iα)

µ(I, Iα)q− dimOCn,0/I ,

χ(PIα, q) =
∑

PI∈L(PIα),
I 6=OCn,0

µ(PI,PIα)(−q−1 − · · · − q− dimP(OCn,0/I)),

where µ are the Möbius functions on L(Iα) and L(PIα); see Section 2. The reason
why we define χ(Iα, q) and χ(PIα, q) in the above form will be explained in Sections
2 and 3. The posets L(Iα) and L(PIα) are isomorphic; their Möbius functions satisfy
the relation µ(I, J) = µ(PI,PJ) for I ≤ J . The polynomials χ(Iα, q) and χ(PIα, q)
are actually defined for all α ∈ Zr. However, they are only nonzero for α ∈ L. Let
t = (t1, . . . , tr) be a vector indeterminate and tα = ta1

1 · · · tar
r for α = (a1, . . . , ar) ∈ Zr.

We introduce the q-series:

MΦ(q; t) =
∑

α∈L
q− dimOCn,0/Iα

tα, (3)

M0
Φ(q; t) =

∑

α∈L∩Nr

χ(Iα, q)tα, (4)

PMΦ(q; t) =
∑

α∈L,Iα 6=OCn,0

(−q−1 − · · · − q− dimPOCn,0/Iα

)tα, (5)

PM0
Φ(q; t) =

∑

α∈L∩Nr

χ(PIα, q)tα. (6)

These q-series are certainly invariants for the parameterization family Φ in the sense
that if Ψ = {ψi}r

i=1 is another family such that ψi(z) = ϕi(ciz + · · · ) for some nonzero
constants ci then the q-series for Ψ are the same as the q-series for Φ. This is similar to
that of [13].

There are other ways to introduce q-series for a parameterization family Φ. Like the
approach in [4]; one has the linear map `α : Iα → Cr, `α(g) = (b1, . . . , br), where

g ◦ ϕi(z) = biz
ai + higher order terms, bi ∈ C.

The coefficient bi may be zero because biz
ai may not be the leading term in the power

series expansion of g ◦ ϕi(z). The image Im `α is isomorphic to the quotient Iα/Iα+d;
and the image `α(Iα

0 ) is a subset of (C∗)r. Let Hi be the coordinate hyperplane of Cr

whose ith coordinate is zero. The arrangement Hα = {Im `α ∩ Hi}r
i=1 in Im `α and

the arrangement PHα = {PIm `α ∩ Hi}r
i=1 in PIm `α are called affine and projective

hyperplane arrangements of Φ at order α, respectively. Let L(Hα) be the semi-lattice of
all possible nonempty intersections of the hyperplanes in Hα; L(PHα) = {PX | {0} 6=
X ∈ L(Hα)}. The characteristic polynomials of Hα and PHα are defined by

χ(Hα, q) =
∑

H∈L(Hα)

µ(H, Im `α)qdim H ,

χ(PHα, q) =
∑

P∈L(PHα)

µ(P,PIm `α)(1 + q + · · ·+ qdim P ),
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where µ are the Möbius functions of L(Hα) and of L(PHα). We define the q-series:

LΦ(q; t) =
∑

α∈L
qdim Im`αtα, (7)

L0
Φ(q; t) =

∑

α∈L∩Nr

χ(Hα, q)tα, (8)

PLΦ(q; t) =
∑

α∈L,Im `α 6={0}
(1 + q + · · ·+ qdimPIm`α)tα, (9)

PL0
Φ(q; t) =

∑

α∈L∩Nr

χ(PHα, q)tα. (10)

The q-series introduced above encode various local information about the curve singu-
larity (C, 0) near the origin along the parameterization Φ. Our first main result is the
following theorem.

Theorem 1.1 All the q-series are rational functions. More precisely, MΦ(q; t)
∏r

i=1(q
−1tdi

i −
1)(tdi

i −1) and PMΦ(q; t)
∏r

i=1(q
−1tdi

i −1) are polynomials in q−1 and t; LΦ(q; t), L0
Φ(q; t),

PLΦ(q; t), and PL0
Φ(q; t) are rational functions in q and t with the same denominator∏r

i=1(t
di
i − 1). Moreover, QΦ(q; t) = (q − 1)PQΦ(q; t) for Q = L,L0,M, M0, and

M0
Φ(q; t) =

MΦ(q; t)
∏r

i=1(t
di
i − 1)

td1
1 · · · tdr

r

, (11)

L0
Φ(q; t) =

∑

α∈L∩Nr

qdimOCn,0/Iα+d

χ(Iα, q)tα, (12)

PL0
Φ(q; t) =

∑

α∈L∩Nr

qdimPOCn,0/Iα+d

χ(PIα, q)tα. (13)

When q = 1, we can say more about the series. In fact, taking q = 1 is the same
as taking the Euler characteristic of the appropriate spaces constructed from the pa-
rameterization Φ; the geometric meaning is obvious. The q-series contain the original
information about the curve singularity; and their values at q = 1 are about taking their
derivatives at q = 1. Our next result is the following theorem.

Theorem 1.2 The series PL0(1; t) and PM0(1; t) are polynomials for r ≥ 2, but merely
series for r = 1. However, for all r ≥ 1,

PM0
Φ(1; t) =

PMΦ(1; t)
∏r

i=1(t
di
i − 1)

td1
1 · · · tdr

r

= PL0
Φ(1; t), (14)

PLΦ(1; t) =
PMΦ(1; t)(td1

1 · · · tdr
r − 1)

td1
1 · · · tdr

r

, (15)

PL0
Φ(1; t) =

PLΦ(1; t)
∏r

i=1(t
di
i − 1)

td1
1 · · · tdr

r − 1
. (16)

Let (C, 0) =
⋃r

i=1(Ci, 0) be a reducible plane curve singularity in (C2, 0) with the
irreducible components Ci, defined by a holomorphic germ f =

∏r
i=1 fi, where Ci = {fi =

0}. Let Φ = {ϕi}r
i=1 be a uniformization of {Ci}r

i=1; that is, each φi : C2−{0} → Ci−{0}
is biholomorphic. Let S3

ε be the 3-sphere of radius ε in C2 with the center at the origin.
For small enough ε the intersection S3

ε ∩ C defines a link Lr with r components. The
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Alexander polynomial ∆Lr(t1, . . . , tr) of Lr is defined up to the multiplication by the
monomials ±tα. We normalize ∆Lr(t1, . . . , tr) so that it contains no negative power
terms and its constant term ∆C(0, . . . , 0) = 1. Eisenbud and Neumann [11] showed that
∆Lr(t) can be expressed in terms of the data from the resolution of (C, 0).

Let π : (X,E) → (C2, 0) be an embedded resolution of (C, 0), where E is the
exceptional divisor; the components of E are isomorphic to the complex projective line
CP1 and their intersections are simple crossings; the components of the strict transform
C̃i of the curve Ci meet E transversely and each intersection is a simple crossing. We
choose a small enough neighborhood U of 0 in C2 so that the components of C̃ ∩
π−1(U −{0}) are disjoint, each meeting E at one point. We name the components of E
by E1, . . . , Es and write C̃i ∩ π−1(U − {0}) =

⊔κi
k=1 C̃i,k. The resolution arrangement of

(C, 0) is the collection E = {C̃i,k, Ej | 1 ≤ i ≤ r, 1 ≤ k ≤ κi, 1 ≤ j ≤ s}. Let L(E) be the
intersection semi-lattice of E . The set

E0
j = Ej −

⋃

P<Ej ,P∈L(E)

P

is called the smooth part of Ej and Dj = Ej−E0
j the singular part of Ej. The arrangement

E can be described by a graph Γ(E) whose vertex set is E and two vertices are adjacent
if the corresponding components intersect; the graph is a tree. The order of blow-ups to
obtain X induces a partial order on the vertices and the graph Γ(E) turns out to be a
rooted tree with the root at the exceptional divisor of the beginning blow-up. All strict
transform components C̃i,k are leaves and the exceptional components Ej are non-leaves.

For each germ g ∈ OC2,0, let mg,j be the multiplicity of g ◦ π along the components
Ej; the multiplicity of the zero germ is ∞. We write mi,j for the multiplicity mfi,j of fi

along Ej. There is a linear map λ : OC2,0 → Zs by λ(g) = (mg,1, . . . , mg,s). For β ∈ Zs,
let

Jβ = {g ∈ OC2,0 | λ(g) ≥ β} and Jβ
0 = {g ∈ OC2,0 | λ(g) = β}.

Let 1j be the vector in Zs whose jth coordinate is 1 and zero elsewhere. The collec-
tion {Jβ+1j}s

j=1 is a subspace arrangement of OC2,0. One can define q-series similar to
L,L0,M, M0 and obtain results similar to Theorems 1.1 and 1.2; see Section 4. For
vector indeterminate u = (u1, . . . , us), we write uβ = ub1

1 · · ·ubs
s for β = (b1, . . . , bs). Set

mj = (m1,j, . . . ,mr,j). Our third result is the following theorem.

Theorem 1.3 There exists a valuation (finitely additive measure) ν̃ on the Boolean
algebra generated by the projective subspaces of POC2,0, taking values in Q[q], such that
the function tω(g)uλ(g) from POC2,0 to Q[q][[t,u]] is ν̃-integrable, and

∫

POC2,0

tω(g)uλ(g)dν̃(g) =
s∏

j=1

(1− tmjuj)
−q−χ(E0

j )+1. (17)

In particular, taking q = 1, the valuation ν̃ is reduced to the Euler characteristic χ on
POC2,0, and

∫

POC2,0

tω(g)uλ(g)dχ(g) =
s∏

j=1

(1− tmjuj)
−χ(E0

j ). (18)
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Setting u1 = · · · = us = 1, the formula (18) reduces to PL0
C(1; t) =

∏s
j=1(1 −

tmj)−χ(E0
j ), which was recently obtained by Campillo, Delgado and Gusein-Zade [4].

Using the result ∆Lr(t) =
∏s

j=1(1 − tmj)−χ(E0
j ) of Eisenbud and Neumann [11], it is

clear that PL0(1; t) = ∆Lr(t). This indicates that the q-series PL0
Φ(q; t), as well as

PM0
Φ(q; t), are q-analogs of the Alexander polynomial of the algebraic link. Our ap-

proach is to study subspace arrangements and valuations (finitely additive measures) on
infinite dimensional vector spaces. In Section 2 we sketch some basic ideas and neces-
sary results on subspace arrangements that will be needed for the rest of the paper. In
Section 3 we provide detailed proofs of Theorems 1.1 and 1.2. Section 4 is devoted to
the proof of the q-analog product formulas (17) and (18).

2 Valuations on the Boolean Algebra of Subspaces

Let V be a finite dimensional vector space over a field F. We denote by L0(V ) (L(V )) the
lattice of all (affine) subspaces of V . Let B0(V ) (B(V )) be the Boolean algebra generated
by L0(V ) (L(V )). The elements of B0(V ) (B(V )) are called (affine) linear sets in V . For
affine linear sets X and Y in finite dimensional vector spaces V and W respectively, a
map f : X → Y is called an affine linear morphism if its graph Γ(f) = {(x, f(x) |x ∈ X}
is an affine linear set in V ×W . Clearly, the Cartesian product X ×Y is an affine linear
set in V ×W . Let g : Y → Z be an affine linear morphism from Y to an affine linear set
Z in a finite dimensional vector space U . The composition g ◦ f : X → Z is an affine
linear morphism, because its graph Γ(g ◦ f) is in one-to-one correspondence with the
affine linear set (Γ(f)×Γ(g))∩H under the projection πW : V ×W ×W ×U → V ×U ,
where H = {v, w, w, u) | u ∈ U, v ∈ V, w ∈ W}. Thus affine linear sets and affine linear
morphisms over F form a category C(F), called the category of affine linear sets. Let
K0(F) be the ring generated by the isomorphism classes of objects in the category C(F),
subject to the relations:

[X ∪ Y ] = [X] + [Y ]− [X ∩ Y ] (19)

[X][Y ] = [X × Y ]. (20)

If F is infinite, K0(F) is the ring Z[q] of polynomials in the variable q = [F]. If F is finite,
K0(F) is isomorphic to Z.

The Boolean algebra B0(V ) is a subalgebra of B(V ). An affine linear morphism
f : X → Y between linear sets is called a linear morphism if f satisfies f(cx) = f(x)
for c ∈ F∗. Similarly, linear sets and linear morphisms over a fixed field F form a
subcategory C0(F) of the category C(F), called the category of linear sets. Clearly, the
ring K0(F) is also generated by the isomorphism classes of objects in C0(F). For a
linear set X ∈ B0(V ), the quotient (X − {0})/F∗ is called the projectivization of X,
denoted PX; P{0} = ∅. Let B(PV ) be the Boolean algebra generated by projective
subspaces of PV ; that is, B(PV ) = {PX | X ∈ B0(V )}. The elements of B(PV ) are
called projective linear sets. For vector spaces V and W of finite dimensions, there is a
map π : P(V ×W ) → PV × PW defined [x, y] 7→ ([x], [y]). A subset Z ⊂ PV × PW is
called a projective linear set if its lifting π−1(Z) is a projective linear set in P(V ×W ).
A map f : X → Y between linear projective sets is called a projective linear morphism
if its graph Γ(f) ⊂ PV ×PW is a projective linear set. Again, projective linear sets and
projective linear maps form a category, called the category of projective linear sets. For a
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codimension one vector subspace V of a vector space W , fix a vector w ∈ W−V ; one can
identify P(W −V ) with the affine space w+V by [cw+v] 7→ w+v/c. The identification
P(W − V ) ' (w + V ) implies that the abelian group K0(F) is also generated by the
isomorphism classes of projective linear sets, subject to the relation (19). However, we
define a different multiplication by

[PX] ◦ [PY ] = [P(X × Y )]. (21)

Writing q = [F], we have [V ] = qdim V for any finite dimensional vector space V ; if V is
not the zero space {0}, we have [PV ] = 1 + q + . . . + qdim V−1. A ring homomorphism
% : (K0(F), ·) → K0(F), ◦) is induced by %([X]) = [PX]. More specifically, %(1) = 0 and
%(qn) = 1 + q + · · ·+ qn−1 for n ≥ 1. It follows that for any polynomial f(q),

%(f(q)) =
f(q)− f(1)

q − 1
. (22)

The operator % can be linearly extended to Z[q, q−1] by setting %(q−n) = −(q−1+· · ·+q−n)
for n ≥ 1. The idea for defining % in this way is as follows: Let Ω be an infinite
dimensional vector space, and let V1, . . . , Vk be finite codimensional vector subspaces
such that Vk ⊂ · · · ⊂ V1 ⊂ V0 = Ω and dim(Vi−1/Vi) = 1, 1 ≤ i ≤ k. Then PV0 − PVk =⊔k

i=1 PVi−1 − PVi and PVi−1 − PVi ' Vi. Thus

[PV0]− [PVk] = [PV0 − PVk] =
k∑

i=1

[PVi−1 − PVi] =
k∑

i=1

[Vi].

If we assume that Ω is normalized to a “zero-dimensional” space so that [Ω] = 1, then
we may assume that the subspace Vi is a “negative i-dimensional” subspace and the
projectivization PΩ is the empty space so that [Vi] = q−i and [PΩ] = 0. Therefore,
[PVk] = −∑k

i=1 q−i. On the other hand, we still have %(q−n) = (q−n − 1)/(q − 1) for
n ≥ 1. So (22) is still valid for any Laurent polynomials f(q); and this kind of coincidence
justifies our definition; see also Theorem 2.5 in the following for further explanation.

We are interested in the sets that can be obtained from an affine subspace by deleting
finitely many of its affine subspaces. It is not hard to see that any affine linear set
is a disjoint union of finitely many such sets. A subspace arrangement A in a finite
dimensional vector space V over a field F is a collection of finitely many affine subspaces
of V . The semi-lattice of A is the poset

L(A) =

{ ⋂

H∈E
H 6= ∅

∣∣∣∣∣ E ⊂ A
}

,

whose partial order is the set-inclusion; here we take the convention V =
⋂

H∈∅ H. A
useful invariant on the poset L(A) is its Möbius function µ. By the Möbius function on
a locally finite poset P (each interval [x, y] = {z ∈ P | x ≤ z ≤ y} is a finite set) we
mean the function µ on the ordered pairs of P , defined by µP (x, x) = 1 for x ∈ P and
defined inductively for x < y by

µP (x, y) = − ∑

x≤z<y

µP (x, z) = − ∑

x<z≤y

µP (z, y).
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The characteristic polynomial of A, introduced by Rota in [15] for arbitrary locally finite
posets with rank functions, is the polynomial

χ(A, q) =
∑

X∈L(A)

µ(X,V )qdim X , (23)

where µ is the Möbius function on L(A). To understand the geometric meaning of the
polynomial (23), we use the idea of [8] to interpret χ(A, q) as the element [V − ∪A] in
the ring K0(F) by setting q = [F]. For each X ∈ L(A), we define

X0 = X − ⋃

Y <X, Y ∈L(A)

Y.

It is clear that the set {X0 |X ∈ L(A)} is a collection of disjoint subsets of V . Then

[X] =
∑

Y≤X, Y ∈L(A)

[Y 0].

By the Möbius inversion, we have

[X0] =
∑

Y≤X, Y ∈L(A)

µ(Y, X)[Y ].

In particular, V 0 = V − ⋃
X∈L(A) X = V − ⋃

X∈A X, and

[V 0] =
∑

X∈L(A)

µ(X,V )[X]. (24)

If the affine subspaces in the arrangement A are all vector subspaces in V , we may
define a projective arrangement PA in the projective space PV , where PA is the set of
projective subspaces PX, X ∈ A, but X 6= {0}. The semi-lattice of PA is the poset
L(PA) = {PX |X ∈ L(A), X 6= {0}}. For projective subspaces Yi ∈ L(PA) (i = 1, 2),
the order relation Y1 ≤ Y2 is satisfied if and only if there are affine subspaces Xi ∈ L(A)
such that Yi = PXi and X1 ≤ X2. For each Y ∈ L(PA), we similarly define

Y 0 = Y − ⋃

Z<Y, Z∈L(PA)

Z.

It is clear that the set {Y 0 | Y ∈ L(PA)} is a collection of disjoint subsets in PV . Thus

[Y ] =
∑

Z≤Y, Z∈L(PA)

[Z0].

By the Möbius inversion, we have

[Y 0] =
∑

Z≤Y, Z∈L(PA)

µ(Z, Y )[Z].

In particular, PV 0 = PV − ⋃
Y ∈L(PA) Y = PV − ⋃

Y ∈PA Y , and

[PV 0] =
∑

Y ∈L(PA)

µ(Y,PV )[Y ]. (25)
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We define the characteristic polynomial for the projective arrangement PA as follows:

χ(PA, q) =
∑

Y ∈PA
µ(Y,PV )

(
1 + q + · · ·+ qdim Y

)
.

Now we apply the idea of [8] by taking F to be either a finite field Fq of q elements,
the field R of real numbers, the field C of complex numbers, or the division ring H of
the quaternion. It is known from [7, 16, 19] that the combinatorial Euler characteristic
is a valuation (finitely additive measure). Since Fq is a finite set, R is a 1-cell, C and H
are even-dimensional cells, we have

χ(F) =





q for F = Fq

−1 for F = R
1 for F = C,H.

We should emphasize here that the combinatorial Euler characteristic of R is −1, not
+1 as is usually assumed in topology. Then for any affine linear set or projective linear
set X, the isomorphism class [X] is a polynomial f(X, [F]) with integral coefficients in
one variable [F] and χ(X) = f(X,χ(F)). It can be easily proved that Grassmanians,
flag varieties, partition varieties [10], and quiver varieties, etc, are all (affine) linear
sets; the characteristic polynomials of any such variety over the fields Fq, R, C and H
(division ring) have the same form. But this is not the issue we want to discuss in the
present paper; a detailed study of the subject will be given elsewhere. We summarize
the conclusions in the following theorem.

Theorem 2.1 (a) For any affine linear set or projective linear set X, its equivalence
class [X] is a polynomial f(X, q) with integral coefficients in one variable q = [F], and
its (combinatorial) Euler characteristic is given by

χ(X) = f(X,χ(F)).

(b) Let A be a subspace arrangement of a finite dimensional vector space V over a field
F. Writing q = [F], then χ(A, q) is the equivalence class of the complement V − ∪A in
the ring K0(F); that is,

χ(A, q) =

[
V − ⋃

X∈A
X

]
. (26)

(c) If A is a vector subspace arrangement, then χ(PA, q) is the equivalence class of the
complement PV − ∪PA in K0(F); that is,

χ(PA, q) =

[
PV − ⋃

X∈A
PX

]
, (27)

Moreover, χ(A, q) = (q − 1)χ(PA, q) and χ(PA, 1) = ∂qχ(A, 1).

2

The purpose of introducing the ring K0(F) is to construct certain valuations (finitely
additive measures) that can take values in K0(F). Let S be a class of subsets of a set S,
containing the empty set and closed under intersection; any such class of sets is called
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an intersectional class. The relative Boolean algebra generated by S is the class B(S)
of sets constructed from S by taking unions, intersections, and relative complements
finitely many times. Let R be a commutative ring R with unity 1 6= 0. A set-function
µ : B(S) → R is called a valuation if µ(∅) = 0 and

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B)

for A,B ∈ B(S). Let M be an R-module. A function f : S → M is called simple with
respect to S if f =

∑
i vi1Ai

for some finitely many subsets Ai ∈ S, where 1Ai
is the

characteristic function of Ai; that is, 1Ai
(x) = 1 for x ∈ Ai and 1Ai

(x) = 0 for x 6∈ Ai.
Given a set-function µ : S → R; one can define the integration with respect to µ for any
simple function f =

∑
vi1Ai

: S → M as follows:

µ(f) =
∫

S
f(x)dµ(x) =

∑

i

µ(Ai)vi. (28)

The integral (28) is meaningful only if the integration for all different expressions of the
same function yields the same value; and in this case µ is said to permit an integral for
the function f . Let F (S,M) be the R-module of simple functions from S to M . If µ
permits an integral for all functions in F (S,M), then µ is an R-homomorphism from
F (S,M) to M . What conditions are needed for a set-function on an intersectional class
to permit an integral for simple functions? The following proposition, essentially due to
Groemer [12], gives the required condition when the integral is well-defined.

Proposition 2.2 Let S be an intersectional class of subsets of a set S and let M be
an R-module. Let µ : S → R be a set-function such that µ(∅) = 0. If µ satisfies the
Inclusion-Exclusion formula

µ(A1 ∪ · · · ∪ An) =
∑

i

µ(Ai)−
∑

i<j

µ(Ai ∩ Aj) +
∑

i<j<k

µ(Ai ∩ Aj ∩ Ak)− · · · ,
(29)

where A1, . . . , An, A1 ∪ · · · ∪ An are sets in S, then µ permits an integral by (28) for
simple functions from S to M with respect to the class S.

Proof. We first note that permitting an integral by (28) is equivalent to

∑
wj1Bj

= 0, Bj ∈ S ⇒ ∑
µ(Bj)wj = 0. (30)

Let [n] = {1, . . . , n} and AI =
⋂

i∈I Ai for I ⊂ [n]. Then
∑

I⊂[n](−1)#I1AI
= 0. Thus

if the module M contains R, the condition (29) is also necessary. Now suppose that µ
does not permit an integral by (28); that is, there exist sets Y1, . . . , Yk such that (30)
is not satisfied. We linearly order the nonempty subsets of [n] as follows: I1, . . . , Ip,
where p = 2k−1; i-subsets are ahead of (i+1)-subsets; i-subsets are ordered arbitrarily.
Consider the intersections YI1 , . . . , YIp , some of them may be the same sets. Since (30)
is not satisfied, it follows that there are elements vi ∈ M such that

∑

i≥r

vi1YIi
= 0, vr 6= 0 but

∑

i≥r

viµ(YIi
) 6= 0. (31)

Since 1 ≤ r ≤ p we may assume that the elements vi are selected so that the integer r
is maximal. However, r can not be p; if so, then vp1Y1∩···∩Yk

= 0 and vp 6= 0 imply that
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Y1 ∩ · · · ∩ Yp = ∅; hence vpµ(Y1 ∩ · · · ∩ Yp) = 0. Because of (31) it is impossible to find
points x ∈ S such that x ∈ YIr and x 6∈ YIi

for all i > r. Thus every point of YIr is
contained in some YIi

with i > r. We have

YIr = YIr ∩ (YIr+1 ∪ · · · ∪ YIp) = (YIr ∩ YIr+1) ∪ · · · ∪ (YIr ∩ YIp).

Since both the characteristic functions and the set-function µ satisfy the Inclusion-
Exclusion formula it follows that

1YIr
=

∑

r<i≤p

1YIr∩YIi
− ∑

r<i<j≤p

1YIr∩YIi
∩YIj

+ · · · ,

µ(YIr) =
∑

r<i≤p

µ(YIr ∩ YIi
)− ∑

r<i<j≤p

µ(YIr ∩ YIi
∩ YIj

) + · · · .

Each intersection in these two equalities is some YIs with s > r. Collecting the like terms
with the same index Is, there are elements ds ∈ R such that

1YIr
=

∑
s>r

ds1YIs
and µ(YIr) =

∑
s>r

dsµ(YIs). (32)

Substitute (32) into (31) and collect the like terms with the same index Ii; we obtain
∑

i≥r+1

wi1YIi
= 0 but

∑

i≥r+1

wiµ(YIi
) 6= 0, (33)

where wi ∈ M . If wi = 0 for all i ≥ r + 1, then
∑

i≥r+1 wiµ(YIi
) = 0, a contradiction.

This means that not all wi are zero; let r′ be the smallest integer such that wr′ 6= 0.
We thus have an expression of the same type as (31) but with a larger integer r′, a
contradiction. 2

Groemer’s original statement assumed that the commutative ring R is the real field
R, the R-module M is real vector space, the set-function µ is from S to M , and simple
functions are from S to R. But his proof does not depend on these assumptions. Our
modification makes it convenient for application because we often have the situation
where the set-function and the function to be integrated are taking values in different
algebraic structures. We are only interested in the case where the set S is a vector space
Ω over a field F and the intersectional class S is the lattice L(Ω) of all affine subspaces of
Ω or the sub-lattice L0(Ω) of all vector subspaces of Ω. The Boolean algebras generated
by L(Ω) and L0(Ω) are denoted by B(Ω) and B0(Ω), respectively. We want to find
the special form of the Inclusion-Exclusion condition (29) for a set-function on L0(Ω)
or L(Ω). It turns out that in this special case the Inclusion-Exclusion condition (29) is
automatically satisfied when the field F is infinite.

Definition 2.3 (a) A partial function f : S → M is called measurable with respect to
an intersectional class S if (i) the image Im f is a countable set; (ii) the complement
of S −Dom f belongs to B(S); (iii) for each v ∈ Im f the inverse image f−1(v) belongs
B(S).

(b) Let M be a complete topological R-module and µ : B(S) → R a valuation. A
measurable function f : S → M is called integrable with respect to µ if Im f is finite, or
Im f is countably infinite but for any sequence {vk}∞k=1 = Im f , the following sequence

S(f, v1, . . . , vn) =
n∑

k=1

viµ(f−1(vi))

is convergent in M

11



Proposition 2.4 Let Ω be a vector space over an infinite field F, either finite or infinite
dimensional. Then any set-function µ on L0(Ω) (L(Ω)) satisfies the Inclusion-Exclusion
formula (29); hence µ can be extended uniquely to a valuation on the Boolean algebra
B0(Ω) (B(Ω)). In particular, any set function µ on L0(Ω) can be uniquely extended to
a translation invariant valuation on B(Ω).

Proof. Let V, V1, . . . , Vn be vector subspaces of Ω such that V = V1 ∪ · · · ∪ Vn. We
first claim that V = Vi for some i. This is obviously true when V is finite dimensional
because any finitely many proper subspaces of V can not cover the whole space V . Let V
be infinite dimensional. Suppose that it is not true; that is, each Vi is a proper subspace
of V . Then there are vectors vi ∈ V such that vi 6∈ Vi. Let W be the vector subspace
spanned by v1, . . . , vn. Obviously, W = (W ∩ V1) ∪ · · · ∪ (W ∩ Vn), and each W ∩ Vi

is a proper subspace of W because vi 6∈ W ∩ Vi. This is contrary to that of the finite
dimensional case.

Now we claim that µ satisfies (29). Let [n] = {1, . . . , n}. The formula (29) can be
written as

∑
I⊂[n](−1)#Iµ (

⋂
i∈I Vi) = 0. We preceed by induction on n. It is obviously

true for n = 1. For arbitrary n, among the subspaces V1, . . . , Vn there is at least one
subspace which is actually the whole space V , say, Vn = V . Then

∑

I⊂[n]

(−1)#Iµ

(⋂

i∈I

Vi

)
=

∑

I⊂[n−1]

(−1)#Iµ

(⋂

i∈I

Vi

)
− ∑

I⊂[n−1]

(−1)#Iµ

(⋂

i∈I

Vi ∩ Vn

)
= 0.

The proof for the case of the lattice L(Ω) is exactly the same. 2

Let Γ be the weighted directed graph defined as follows: The vertex set of Γ is L0(Ω);
for vertices corresponding to subspaces V and W such that V ⊂ W and dim W/V < ∞,
there is a directed edge from V to W with the weight dim W/V and a directed edge
from W to V with the negative weight − dim W/V . Then Γ is decomposed into disjoint
connected components Γσ. Recall that the length of a path is the number of edges in
the path; the distance between two vertices is the minimal length of the paths between
the two vertices.

Theorem 2.5 For any vector space Ω over an infinite field F, either finite or infinite
dimensional. Then

(a) every connected component Γσ is a lattice; that is, V, W ∈ Γσ imply V ∩W ∈ Γσ

and V + W ∈ Γσ;

(b) there exists a translation invariant valuation µ : B(Ω) → Z such that µ(W −V ) =
dim W/V for any vector subspaces V and W satisfying V ⊂ W and dim W/V < ∞;

(c) the valuation in (b) is unique in the sense that if ν is another such valuation, there
are numbers c(Γσ) corresponding to connected components Γσ, such that ν(V ) =
µ(V ) + c(Γσ) for all V ∈ Γσ.

Proof. (a) We proceed by induction on the length `(V, W ) for V, W ∈ Γσ. It is obviously
true when `(V, W ) = 1 because we either have V ⊂ W or W ⊂ V ; so V ∩ W and
V + W belong to Γσ. For the case `(V, W ) = 2, if we have a path like V ↪→ U ↪→ W or
V ←↩ U ←↩ W then we have either V ⊂ W or V ⊃ W ; so `(V, W ) = 1, a contradiction.
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Thus the path of length 2 must be of the form V ↪→ U ←↩ W or V ←↩ U ↪→ W . This
means either V + W ⊂ U or U ⊂ V ∩W ; so either dim(V + W )/V ≤ dim U/V < ∞
or dim V/(V ∩ W ) ≤ dim V/U < ∞; that is, either V + W or V ∩ W belongs to
Γσ. In the first case, we have vectors v1, . . . , vk in V and vectors w1, . . . , wl in W
such that V ⊕ span {w1, . . . , wl} = V + W = W ⊕ span {v1, . . . , vk}; hence V + W =
(V ∩W )⊕span {v1, . . . , vk}⊕ span {w1, . . . , wl}; it is clear that dim V/(V ∩W ) < ∞; so
V ∩W ∈ Γσ. In the latter case, there are vectors v1, . . . , vk in V and vectors w1, . . . , wl

in W such that V = (V ∩W )⊕span {v1, . . . , vk} and W = span {w1, . . . , wl}⊕(V ∩W );
then V + W = span {v1, . . . , vk, w1, . . . , wl} ⊕ (V ∩ W ); thus dim(V + W )/V < ∞;
therefore V + W ∈ Γσ.

Now if `(V, W ) = n ≥ 3, there are vectors V1, . . . , Vn−1 such that `(Vi, Vi+1) = 1
for 0 ≤ i ≤ n − 1, here V0 = V and Vn = W . Then V ∩ V2 and V + V2 are in
Γσ and `(V, V ∩ V2) = `(V, V + V2) = 1. Since either V2 ⊂ V3 or V2 ⊃ V3, we have
either `(V ∩ V2, V3) = 1 or `(V + V2, V3) = 1. Therefore `(V, V3) ≤ 2; subsequently,
`(V, W ) ≤ n− 1, a contradiction. We have shown that each components Γσ is a lattice.

(b) Choose a subspace Vσ from each connected component Γσ and assign an integer
µ(Vσ) arbitrarily. For any vertex W in the connected component Γσ, there is a directed
path V

a1→ V1
a2→ · · · an→ Vn = W ; we define µ(W ) = µ(V ) +

∑n
i=1 ai. This is well-defined

only if the total weight of any directed cycle is zero. Since any cycle is generated by the
cycles of the form (V ∩W ) ↪→ V ↪→ (V +W ) ←↩ W ←↩ (V ∩W ), the total weight of such
cycles is obviously zero; it follows that µ is well-defined on L0(Ω). Extend µ to L(Ω) by
setting µ(P ) = µ(P − v) for P ∈ L(Ω), where v ∈ P and P − v = {p − v | x ∈ P} is a
vector space.

(c) The uniqueness in the sense is obvious. 2

Corollary 2.6 There exists a valuation χ : B(PΩ) → Z, called the Euler characteristic,
such that χ(PW − PV ) = dim W/V for projective subspaces PV and PW satisfying
PV ⊂ PW and dim W/V < ∞.

Proof. The Boolean algebra B0(Ω) is isomorphic to its projectivization B(PΩ). 2

The hierarchical relation between the connected components of Γ is complicated when
Ω is infinite dimensional. However, there are two connected components Γ0 and Γ1 which
are important to us; that is, the component Γ0 that contains the zero vector space {0}
and the component Γ1 that contains the whole space Ω. We have two special valuations
µ0 and µ1, where µ0 = µ on Γ0 and µ0 = 0 on all other components; µ1 = µ on Γ1 and
µ1 = 0 on all other components. We assume that µ({0}) = µ(Ω) = 0. The valuation µ1 is
closely related to the motivic measures [9, 14]. In fact, let {Ωn | n ≥ 0} be a descending
sequence of finite codimensional vector subspaces of Ω, such that

⋂
k≥0 Ωk = {0}; let

πn : Ω → Ω/Ωn and πm,n : Ω/Ωn → Ω/Ωm be the obvious projections, n > m. Clearly,
πm = πm,n ◦ πn. A subset X ⊂ Ω is called cylindric with respect to the sequence {Ωn}
if there exists a subset Bk ⊂ Ω/Ωk such that X = π−1

k (Bk); the cylinder set X is called
constructible if Bk is constructible in Ω/Ωk. Let B(Γ1) be the Boolean algebra generated
by the subspaces in Γ1. It is easy to see that Γ1 is the same as the class of subspaces
that contain some Ωk. Obviously, µ1 can be extended to the class of constructible sets
of Ω.

Given an arbitrary subset X ⊂ Ω. A point x ∈ X is called Ωk-constructible if x+Ωk ⊂
X; x is called constructible if it is Ωk-constructible for at least one k; otherwise it is called
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non-constructible. Let Xk be the subset of X whose elements are Ωk-constructible; and
let X∞ be the subset whose elements are non-constructible; X0

k = Xk−Xk−1. Obviously,
X =

⊔
k≤∞ X0

k . A subset X ⊂ Ω is called σ-constructible if each Xk is Ωk-constructible,
or equivalently if all X0

k are constructible. One can construct a σ-ring S that contains
all constructible sets, and a measure µ on S such that for any X ∈ S,

µ(X) =
∞∑

k=0

µ(X0
k) where µ(X0

k) =
[πk(X

0
k)]

[Ω/Ωk]
.

The measure µ is the extension of the valuation µ1 on the Boolean algebra B(Γ1). Let
K0(V) be the Grothendieck ring of reducible algebraic varieties. The infinite sum is taken
into account in the completion of the ring K0(V)[q−1] with respect to the filtration

· · · ⊃ F n−1K0(V)[q−1] ⊃ F nK0(V)[q−1] ⊃ · · · , n ∈ Z

where each F nK0(V)[q−1] is the subring of K0(V)[q−1] generated by the elements of the
form [X]q−k satisfying the condition k − dim X ≥ n. The construction is similar to
that of motivic integration; see [9]. However, this construction is not needed for us to
study curve singularities. We have a simple approach of completion when integrating
with respect to a valuation; that is, the completion of the module M , not the ring
K0(V)[q−1].

3 Properties of the q-Series

Let Φ = {ϕi}r
i=1 be a family of holomorphic functions from C to Cn such that ϕi(0) = 0.

Let Ci = Imϕi, d = (d1, . . . , dr), where di is the GCD of the powers in the power
series expansion of the coordinate components in the parameterization ϕi. Let L be the
sublattice of Zr generated by the vectors di. We want to find the relationship between
the q-series LΦ(q; t), L0

Φ(q; t), MΦ(q; t), M0
Φ(q; t) and the q-series PLΦ(q; t), PMΦ(q; t),

PL0
Φ(q; t), PM0

Φ(q; t). From the geometric viewpoint, the q-series PLΦ(q; t), PMΦ(q; t),
PL0

Φ(q; t), and PM0
Φ(q; t) are the “projectivization” of the q-series LΦ(q; t), L0

Φ(q; t),
MΦ(q; t), and M0

Φ(q; t), respectively. In fact, any vector space V is a fiber bundle over
its projectivization PV with the fiber C∗, whose equivalence class in K0(C) is [C]− 1.

Proposition 3.1 Taking projectivization of spaces corresponds to acting the homomor-
phism map % to the q-series of the corresponding spaces; that is,

PLΦ(q; t) = %LΦ(q; t) =
LΦ(q; t)

q − 1
, (34)

PL0
Φ(q; t) = %L0

Φ(q; t) =
L0

Φ(q; t)

q − 1
, (35)

PMΦ(q; t) = %MΦ(q; t) =
MΦ(q; t)

q − 1
, (36)

PM0
Φ(q; t) = %M0

Φ(q; t) =
M0

Φ(q; t)

q − 1
. (37)

In particular, LΦ(1; t) = L0
Φ(1; t) = MΦ(1; t) = M0

Φ(1; t) = 0.
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Proof. The formulas (34) and (36) follow from the fact that for any finite dimensional
vector space V and finite codimensional vector subspace W of OCn,0,

[PV ] = 1 + q + · · ·+ qdimPV = (qdim V − 1)/(q − 1),

[PW ] = −(q−1 + · · ·+ q− dimPOCn,0/W ) = (q− dimPOCn,0/W − 1)/(q − 1),

and from the fact that
∑

α∈L tα = 0 as a rational function. As for (35) and (37), they
follow from the fact that

χ(PIα, q) =
∑

I∈L(Iα)

µ(I, Iα)(q− dimOCn,0/I − 1)/(q − 1)

= (χ(Iα, q)− χ(Iα, 1))/(q − 1),

χ(PHα, q) =
∑

PH∈L(PHα)

µ(PH,PIm `α)(qdim H − 1)/(q − 1)

= (χ(Hα, q)− χ(Hα, 1))/(q − 1),

and from the fact that χ(Iα, 1) = χ(Hα, 1) =
∑

I⊂[r](−1)#I = 0. 2

Let us consider the infinite-dimensional vector space OCn,0 of the germs and let R
be a commutative ring with unity 1 6= 0. Because of Proposition 2.4, any set-function
µ : L0(OCn,0) → R can be automatically viewed as a translation invariant valuation
µ : B(OCn,0) → R. Note that the ring R[[t1, . . . , tr]] of the formal power series is
complete. Assuming no topology on R[[t]], a sequence Fn =

∑
aα(n)tα in R[[t]] is called

convergent to F =
∑

aαt
α if for any α ∈ Nr there is a number N(α) such that aα(n) = aα

for all n ≥ N(α); see [17], page 6. So any formal power series is the limit of its truncation
sequence of polynomials.

Lemma 3.2 (a) The ideals I∞i are not finite codimensional; that is, I∞i 6∈ Γ1. So
µ1(I

∞
i ) = 0 for all 1 ≤ i ≤ r.
(b) The function F : OCn,0 − ⋃r

i=1 I∞i → R[[t]] by F (g) = tω(g) is measurable with
respect to the intersectional class L0(OCn,0) and is integrable with respect to any valuation
µ : L0(OCn,0) → R such that µ(I∞i ) = 0.

Proof. (a) For each fixed i it is clear that for any k there is a germ g ∈ mk such that
g ◦ φi 6≡ 0; that is, mk is not contained in the ideal I∞i for all k. Select a sequence
gkn ∈ mkn such that gkn 6∈ I∞i and gkn 6∈ mkn+1 . Then gkn + I∞i are independent cosets
in OCn,0/I

∞
i . Hence I∞i is not finite codimensional.

(b) It is obvious that ImF is contained in {tα | α ∈ Nr}. For any α ∈ Nr the inverse
image F−1(tα) is the linear set Iα

0 . So F is measurable with respect to L0(OCn,0).
Since the ring R[[t]] is complete, any truncated sequence of the formal power series
f(t) =

∑
α∈Nr µ(Iα

0 )tα is convergent to f(t). So F is integrable with respect to µ. 2

Theorem 3.3 Let µ : L0(OCn,0) → R be a valuation such that µ(I∞i ) = 0, 1 ≤ i ≤ r.
Then ∫

OCn,0

tω(g)dµ(g) =
∑

α∈L∩Nr

µ(Iα
0 )tα

=

∏r
i=1(t

di
i − 1)

td1
1 · · · tdr

r

∑

α∈L
µ(Iα)tα, (38)

=

∏r
i=1(ti − 1)

t1 · · · tr
∑

α∈Zr

µ(Iα)tα.
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Proof. Let [r] = {1, 2, . . . , r}. For I ⊂ [r], we denote by dI the vector in Zr whose ith
entry is di for i ∈ I and zero for i 6∈ I. When I = {i} we write di instead of d{i}. The
lattice L is generated by the vectors di. Then

∑

α∈L∩Nr

µ(Iα
0 )tα =

∑

α∈L
tαµ

(
Iα −

r⋃

i=1

Iα+di

)

=
∑

α∈L
tα

∑

I⊂[r]

(−1)#Iµ(Iα+dI )

=
∑

I⊂[r]

(−1)#It−dI
∑

α∈L
µ(Iα+dI )tα+dI

=
r∏

i=1

(
1− t−di

i

) ∑

α∈L
µ(Iα)tα

=

∏r
i=1(t

di
i − 1)

td1
1 · · · tdr

r

∑

α∈L
µ(Iα)tα.

Let D =
∏r

i=1[0, di) ∩ Z. Then Zr =
⊔

γ∈D(L− γ) and Iα−γ = Iα. We have

∑

α∈Zr

µ(Iα)tα =
∑

α∈L
µ(Iα)tα

∑

γ∈D

t−γ

=
∑

α∈L
µ(Iα)tα

r∏

i=1

t−di
i − 1

t−1
i − 1

=

∏r
i=1(t

di
i − 1)

td1−1
1 · · · tdr−1

r

∏r
i=1(ti − 1)

∑

α∈L
µ(Iα)tα.

The formula (38) follows by substitution. 2

Some special cases of Theorem 3.3 are particularly interesting. Let R = Z[q−1],
where q = [C]. We have the valuation µ1 : L0(OCn,0) → Z[q−1], defined by

µ1(V ) =

{
1/[OCn,0/V ] V is finite codimensional
0 otherwise

,

where L0(OCn,0) is the lattice of all vector subspaces of OCn,0; and the valuation µ̃1 :
L(POCn,0) → Z[q−1], defined by

µ̃1(PV ) =

{
−[P(OCn,0/V )]/[OCn,0/V ] V is finite codimensional in OCn,0

0 otherwise
,

where L(POCn,0) is the lattice of all projective subspaces of POCn,0. The motivation to
define µ1 on L0(POCn,0) is explained in Section 2. The order function ω(g) is well-defined
on POCn,0 because ω(cg) = ω(g) for any c 6= 0.

Theorem 3.4 The q-series MΦ(q; t)
∏r

i=1(q
−1tdi

i −1)(tdi
i −1) and PMΦ(q; t)

∏r
i=1(q

−1tdi
i −

1) are polynomials in q−1 and t; LΦ(q; t), L0
Φ(q; t), PMΦ(q; t), and PL0

Φ(q; t) are rational
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functions in q and t with the same denominator
∏r

i=1(t
di
i − 1). Moreover,

M0
Φ(q; t) =

∫

OCn,0

tω(g)dµ1(g) =
MΦ(q; t)

∏r
i=1(t

di
i − 1)

td1
1 · · · tdr

r

, (39)

PM0
Φ(q; t) =

∫

POCn,0

tω(g)dµ̃1(g) =
PMΦ(q; t)

∏r
i=1(t

di
i − 1)

td1
1 · · · tdr

r

, (40)

L0
Φ(1/q; t) =

∫

OCn,0

qdimOCn,0/Iω(g)+d

tω(g)dµ1(g), (41)

PL0
Φ(1/q; t) =

∫

POCn,0

qdimPOCn,0/Iω(g)+d

tω(g)dµ̃1(g). (42)

Proof. We first prove the formulas (39-42), then we prove the rationality of the q-series.
The formula (39) is a direct consequence of (38). Formula (40) follows from (36)

and (39). Let Hi be the subspace of Cr whose ith coordinate is zero. For I ⊂ [r], let
HI =

⋂
i∈I Hi. The inverse image `−1

α (Im `α∩HI) is the ideal Iα+dI . Then Im `α∩HI is iso-

morphic to Iα+dI/Iα+d. Note that the quotient
OCn,0/Iα+d

Iα+dI /Iα+d is isomorphic to OCn,0/I
α+dI .

This implies that the dimension of Iα+dI/Iα+d is the dimension of OCn,0/I
α+d minus

the dimension of OCn,0/I
α+dI . Thus

χ(Hα, q) =
∑

I⊂[r]

(−1)#IqdimOCn,0/Iα+d

q− dimOCn,0/Iα+dI

= qdimOCn,0/Iα+d

χ(Iα, q).

Take summation over L ∩ Nr; the formula (41) follows.
Recall χ(Hα, q) = (q − 1)χ(PHα, q) and χ(Iα, q) = (q − 1)χ(PIα, q). Then

χ(PHα, q) = (q − 1)−1qdimOCn,0/Iα+d

χ(Iα, q)

= (q − 1)−1qdimOCn,0/Iα+d

(q − 1)χ(PIα, q)

= qdimPOCn,0/Iα+d

χ(PIα, q).

Take summation over L ∩ Nr; the formula (42) follows.
To prove the rationality for the q-series, we only need to show that MΦ(q; t), LΦ(q; t),

and L0
Φ(q; t) are rational functions. The rationality of the other q-series follows from

Proposition 3.1 and formulas (39) and (40).
Let α = (a1, . . . , ai, . . . , ar), α′ = (a1, . . . , a′i, . . . , ar). Note that Iα′ ⊂ Iα if α ≤ α′.

If both ai ≤ 0 and a′i ≤ 0, then Iα = Iα′ . We fix a vector α ∈ L and consider the vectors
αk = α + kdi, k ∈ Z. Obviously, Iαk is a sequence of descending chains of ideals in
OCn,0. The ideals Iαk for k ≤ 0 are constant. So

∑

k≤0

[OCn,0/I
α+kdi ]−1tα+kdi =

[OCn,0/I
α]−1tdi

i tα

tdi
i − 1

. (43)

The sequence Iαk for k ≥ 1 can not be stable; otherwise, we must have Iαk = Iα+∞di

for large enough k, but the ideal Iα+∞di is not finite codimensional, a contradiction. We
claim that [OCn,0/I

αk+1 ] = [OCn,0/I
αk ]q for large enough k.
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Let g ∈ OCn,0 be an arbitrary germ, written as g =
∑

j,... ,k≥0 cj,... ,kz
j
1 · · · zk

n. Let the
parameterization ϕi(z) = (z1(z), . . . , zn(z)) be written as





z1 = c1,j1z
j1 + c1,j2z

j2 + · · · ,
...

zn = cn,k1z
k1 + cn,k2z

k2 + · · · ,

where the powers of z are in ascending order, all the constants are nonzero, and each
equation may have only finitely many terms. Then

g ◦ ϕi(z) =
∑

j,... ,k≥0

cj,... ,k

(
c1,j1z

j1 + · · ·
)j · · ·

(
cn,k1z

k1 + · · ·
)k

.

The terms (c1,j1z
j1 + · · · )j

, . . . , (cn,k1z
k1 + · · · )k may be written as the binomial expan-

sions

∑
j′1+j′2+···=j

(
j

j′1,j′2,...

)
(c1,j1z

j1)j′1(c1,j2z
j2)j′2 · · · ,

· · ·
∑

k′1+k′2+···=k

(
k

k′1,k′2,...

)
(cn,k1z

k1)k′1(cn,k2z
k2)k′2 · · · .

Thus

g ◦ ϕi(z) =
∑

l≥0

zl
∑ (

j
j′1,j′2,...

)
· · ·

(
k

k′1,k′2,...

) (
c
j′1
1,j1 · · · c

k′1
n,k1

c
j′2
1,j2 · · · c

k′2
n,k2

· · ·
)
cj,... ,k,

where the second sum is extended over all indices (j′1, j
′
2, . . . ), · · · , (k′1, k

′
2, . . . ) such that





j′1 + j′2 + · · · = j
· · ·

k′1 + k′2 + · · · = k
(j1j

′
1 + · · ·+ k1k

′
1) + (j2j

′
2 + · · ·+ k2k

′
2) + · · · = l.

(44)

Note that di = gcd(j1, . . . , k1; j2, . . . , k2; . . . ). The ideal Iαk = Iα+kdi is defined by the
system of the linear equations





∑ (
j

j′1,j′2,...

)
· · ·

(
k

k′1,k′2,...

) (
c
j′1
1,j1 · · · c

k′1
n,k1

· · ·
)
cj,... ,k = 0

l < ai + kdi, di|l
(45)

in variables cj,... ,k, where the sum is extended over the indices (j′1, j
′
2, . . . ), · · · , (k′1, k

′
2, . . . )

such that (44) is satisfied, plus some other fixed similar systems of linear equations
specified by the parameterizations ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕr and integers a1, . . . , ai−1,
ai+1, . . . , ar, respectively.

Let SCi
be the semigroup of the irreducible curve Ci and let Sϕi

be the semigroup
of the parameterization ϕi. Then Sϕi

= diSCi
. Note that SCi

contains any large enough
integers; see [3, 18]. Hence Sϕi

contains any large enough integers in diN. It is clear
that for large enough integer kdi, dim(Iα+kdi/Iα+(k+1)di) = 1 if and only if kdi ∈ Sϕi

. It
can be also directly shown that when k is large enough, the last equation in the system
(45) with ai + (k + 1)di is linearly independent of all other equations in the system
with ai + kdi. Thus there exists a number l ≥ 1 such that Iα+(l+k)di/Iα+(l+k+1)di is
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one dimensional for all k ≥ 0. This implies that [OCn,0/I
α+(l+k)di ] = [OCn,0/I

α+ldi ]qk.
Therefore,

∑

k≥0

[ OCn,0

Iα+(l+k)di

]−1

tα+(l+k)di =
∑

k≥0

[OCn,0

Iα+ldi

]−1

tα+ldiq−ktkdi
i

=
tα+ldi [OCn,0/I

α+ldi ]−1

1− q−1tdi
i

.

This and (43) imply that the q-series MΦ(q; t)
∏r

i=1(q
−1tdi

i − 1)(tdi
i − 1) must be a poly-

nomial in q−1 and t1, . . . , tr.
Similarly, for the finitely many vectors α+dI , I ⊂ [r], there exists a common positive

integer l such that [OCn,0/I
α+dI+(l+k)di ] = [OCn,0/I

α+dI+ldi ]qk for k ≥ 0. Then

∑

k≥0

tα+(l+k)di
∑

I⊂[r]

(−1)#I
[ OCn,0

Iα+(l+k)di+dI

]−1

=
tα+ldi

1− q−1tdi
i

∑

I⊂[r]

(−1)#I
[ OCn,0

Iα+ldi+dI

]−1

.

This shows that PM0
Φ(q; t)

∏r
i=1(q

−1tdi
i − 1) must be a polynomial in q−1 and t1, . . . , tr.

Analogously,
∑

k≤−1

[
Iα+kdi

Iα+kdi+d

]
tα+kdi =

[Iα/Iα−di+d]tα

tdi
i − 1

.

Note that
[

Iα+(l+k)di

Iα+(l+k)di+d

]
=

[OCn,0/Iα+(l+k)di ]

[OCn,0/Iα+(l+k)di+d]
. It follows that

∑

k≥0

[
Iα+(l+k)di

Iα+(l+k)di+d

]
tα+(l+k)di =

tα+ldi

1− tdi
i

[
Iα+ldi

Iα+ldi+d

]
.

This means that the q-series LΦ(q; t)
∏r

i=1(t
di
i − 1) must be a polynomial in q and

t1, . . . , tr. The following

∑

k≥0

∑

I⊂[r]

(−1)#I

[
Iα+(l+k)di+dI

Iα+(l+k)di+d

]
tα+(l+k)di =

tα+ldi

tdi
i − 1

∑

I⊂[r]

(−1)#I

[
Iα+ldi+dI

Iα+ldi+d

]

shows that L0
Φ(q; t)

∏r
i=1(t

di
i − 1) is a polynomial in q and t1, . . . , tr. 2

Theorem 3.5 The series PL0
Φ(1; t) and PM0

Φ(1; t) are polynomials for r ≥ 2, but
merely series for r = 1. However, for all r ≥ 1,

PM0
Φ(1; t) =

PMΦ(1; t)
∏r

i=1(t
di
i − 1)

td1
1 · · · tdr

r

= PL0(1; t), (46)

PLΦ(1; t) =
PMΦ(1; t)(td1

1 · · · tdr
r − 1)

td1
1 · · · tdr

r

, (47)

PL0
Φ(1; t) =

PLΦ(1; t)
∏r

i=1(t
di
i − 1)

td1
1 · · · tdr

r − 1
. (48)
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Proof. We show the identities first. The first half of (46) is a direct consequence of
(40) by setting q = 1. Since χ(PHα, q) = qdimPOCn,0/Iα+d

χ(PIα, q), we have χ(PHα, 1) =
χ(PIα, 1). This implies that PL0

Φ(1; t) = PM0
Φ(1; t), which is the second equality in

(46).

Note that Im `α ' Iα/Iα+d and
OCn,0/Iα+d

Iα/Iα+d ' OCn,0/I
α. It follows that the dimension

of Im `α equals the difference dimOCn,0/I
α+d − dimOCn,0/I

α. Thus (47) is obtained as
follows:

PLΦ(1; t) =
∑

α∈Nr

(dimOCn,0/I
α+d − dimOCn,0/I

α)tα

= (t−d − 1)
∑

α∈Zr

dimOCn,0/I
αtα

= (1− t−d)PMΦ(1; t)

= PMΦ(1; t)(td − 1)/td.

The identity (48) follows from (47) and PM0
Φ(1; t) = PL0

Φ(1; t).
To show that PL0(1, t) is a polynomial, let us write the identity (48) as

(td1
1 · · · tdr

r − 1)PL0(1, t) = PLΦ(1; t)
r∏

i=1

(tdi
i − 1). (49)

On the one hand note that LΦ(q; t)
∏r

i=1(t
di
i −1) is a polynomial in q and t. It follows that

PLΦ(q; t)
∏r

i=1(t
di
i −1) is also a polynomial in q and t because LΦ(q; t) = (q−1)PLΦ(q; t).

So PLΦ(1; t)
∏r

i=1(t
di
i −1) is a polynomial in t. On the other hand, for each i there exists

an integer Ni such that for ai ≥ Ni, there are germs g such that g ◦ϕi = εiz
ai + · · · with

εi 6= 0. This means that for α ∈ Nr such that α ≥ (N1, . . . , Nr), we have Im `α = Cr;
it follows that the complement of the hyperplane arrangement Hα is (C∗)r; thus the
coefficient of tα in PL0

φ(q; t) is (q − 1)r−1; so when r ≥ 2 the coefficients of tα in
PL0

φ(1; t) are zero. However, the identity (49) and the polynomial property of its right
side means that outside a bounded set in Nr, the coefficients cα of PL0(1; t) satisfy the
relation: cα = cα+1. Notice that the coefficients of PL0(1; t) are zero for large enough
α. This forces that PL0(1; t) is actually a polynomial. 2

4 Plane Curve Singularity

In this section we assume that (C, 0) is a plane curve singularity in C2 with irreducible
components Ci, each passing through the origin; C =

⋃r
i=1 Ci. Let C be defined by a

germ f(z1, z2) = 0 and Ci by fi(z1, z2) = 0, where f = f1 · · · fr. We further assume that
Φ = {ϕi}r

i=1 are uniformizations of {Ci}r
i=1, respectively; that is, each ϕi : C → Ci is

biholomorphic outside the origin; this can be done because every irreducible component
is isomorphic to C; see [2]. The powers of z in both coordinates z1(z) and z2(z) for
ϕi(z) = (z1(z), z2(z)) must be coprime; that is, d = (1, . . . , 1) ∈ Zr. Let S3

ε be the 3-
sphere of radius ε in C2 with the center at the origin. For small enough ε the intersection
S3

ε ∩C defines a link Lr with r components. It is natural to ask the relationship between
the polynomial PL0(1; t) and the Alexander polynomial ∆Lr(t) of the link Lr because
both are determined by the singularity. Recall that the Alexander polynomial is only
well-defined up to multiplication by ±tα. Using the result of Eisenbud and Neumann
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[11], Campillo, Delgado and Gusein-Zade [4] recently proved that the two polynomials
are actually the same, provided that ∆Lr(t) is normalized so that ∆Lr(0) = 1. We
generalize it to Theorem 4.3 with rigorous proof.

Let π : (X,E) → (C2, 0) be an emdedded resolution of the plane curve singularity
(C, 0) in [11] (page 142), where E = π−1(0) is the exceptional divisor; the components
of E are listed by E1, . . . , Es, where each is isomorphic to the complex projective line
CP1; the components of the strict transform C̃i of the curve Ci intersect E transversely
with the intersection multiplicity one at each intersection point. Let Dj be the set of
intersection points of Ej and all other components in the total transform (f ◦ π)−1(0).
For each germ g ∈ OC2,0 such that g(0) = 0, let mg,j be the multiplicity of the lifting
g̃ = g ◦π along the exceptional divisor Ej; for the germs fi we write mij instead of mfi,j.
The total transform g̃−1(0) always contains E; the strict transform of Cg = {g = 0} is
the closure of π−1(Cg − {0}) in X, denoted C̃g. The number of intersections of C̃g and
E (counted by multiplicities) is a multiset of E.

Let VC be the category of reducible varieties and let K0(VC) be the Grothendieck
ring generated by the isomorphism classes of objects in VC, subject to the relations (19)
and (20). Given a constructible set Y ; its equivalence class in K0(VC) is denoted [Y ].
By a multiset of Y we mean a collection of some elements in Y with repetition allowed.
Equivalently, we consider a multiset as a function v : Y → N; a k-multiset is a function
v such that

∑
y∈Y v(y) = k. We denote by 〈Y

k
〉 the set of all k-multisets of Y . The set

〈Y
k
〉 can be made into a topological space by identifying it with the symmetric power

SkY = Y k/Sk, where Sk is the symmetric group of [k] = {1, 2, . . . , k}, acting on Y k in
an obvious way. An ordinary subset of Y can be viewed as a function v : Y → N such
that v(y) ≤ 1 for all y ∈ Y . The set (Y

k
) of all k-subsets of Y can also be made into a

topological space by the identification

(
Y

k

)
=


Y k − ⋃

i6=j

Y k
i,j




/
Sk,

where Y k
i,j = {(y1, . . . , yk) ∈ Y k |yi = yj}. Note that 〈Y

0
〉 = (Y

0
) is a singleton, consisting

of the only empty set. Note that the equivalence class [(Y
k
)] is not an element in K0(VC),

but an element in Q⊗K0(V), having the form

[(
Y

k

)]
=

(
[Y ]

k

)
= :

[Y ]([Y ]− 1) · · · ([Y ]− k + 1)

k!
.

There is a projection π : 〈Y
k
〉 → ⊔k

l=1(
Y
l
), given by π(v)(y) = 1 if v(y) 6= 0 and π(v)(y) =

0 otherwise for v ∈ 〈Y
k
〉. The fiber over the set (Y

l
) is a finite set whose cardinality is

the number of positive integral solutions of the equation y1 + · · · + yl = k, which turns
out to be (k−1

l−1
). Note that (Y

k
) is open in 〈Y

k
〉 and is stratified by (k−1

l−1
) many copies of

(Y
l
), 1 ≤ l ≤ k. We then have

[SkY ] =
[〈

Y

k

〉]
=

k∑

l=1

(
k − 1

l − 1

) [(
Y

l

)]

=

(
[Y ] + k − 1

k

)
= (−1)k

(−[Y ]

k

)
.
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The symmetric space S(Y ) =
⊔

k≥0 Sk(Y )tk can be considered as a graded space and its
equivalence class can be considered as an element in Q⊗K0(V)[[t]]; that is,

[S(Y )] =
∑

k≥0

[Sk(Y )]tk = (1− t)−[Y ].

For disjoint constructible sets Y1 and Y2, the symmetric space S(Y1 t Y2) is isomorphic
to the product S(Y1) × S(Y2). Write [S(Y1)] = (1 − t1)

−[Y1] and [S(Y2)] = (1 − t2)
−[Y2];

we have [S(Y1 t Y2)] = [S(Y1)][S(Y2)].
Let us consider the symmetric space S(E) of the exceptional divisor E in a resolution

of the plane curve singularity (C, 0). Write E0 =
⋃s

j=1 E0
j and D =

⋃s
j=1 Dj. Obviously,

E is the disjoint union of E0 and D, and

S(E) = S(E0 tD) =
(
S(E0)× {1}

) ⊔

S(E0)× ⋃

k≥1

SkD


 .

We define the projection φ : OC2,0 → S(E) as follows: For g ∈ OC2,0, the image φ(g)

is the multiset of intersections of the strict transform C̃g and the exceptional divisor E
(counted by multiplicities); that is, φ(g) is the function on E whose support is C̃g∩E and
the value of φ(g) at each point p ∈ C̃g ∩ E equals its intersect multiplicity. For a germ
g ∈ OC2,0, if the strict transform C̃g only intersects E in E0, then the intersection set
must be a finite set and the intersection multiplicity must be finite at each intersection
point. Moreover, let kj =

∑
p∈E0

j
φ(g)(p); it is not hard to see that ωi(g) =

∑s
j=1 mijkj.

On the other hand, if the strict transform C̃g intersects E at some singular point in D,
then one can see that there is at leat one ωi(g) = ∞ because the curve Cg shares a
tangent line with one of the irreducible curves Ci. Therefore, the map φ transforms the
union

⋃r
i=1 I∞i of the arrangement I∞ to S(E0)×⋃

k≥1 SkD and the complement of I∞
to S(E0).

Let λ : OCn,0 → Zs, λ(g) = (mg,1, . . . ,mg,s). For each vector β ∈ Zs, we define

Jβ = {g ∈ OC2,0 | λ(g) ≥ β} and Jβ
0 = {g ∈ OC2,0 | λ(g) = β}.

It is clear that Jβ is an ideal of OC2,0 and contains the ideals mk for large enough k;

so Jβ is finite codimensional. We have Jβ
0 = Jβ − ⋃s

j=1 Jβ+1j , where 1j ∈ Zs is the
vector whose jth coordinate is 1 and zero elsewhere. The collection J β = {Jβ+1j}s

j=1

is an arrangement of subspace in Jβ and PJ β = {PJβ+1j}s
j=1 is an arrangement of

some projective subspaces in PJβ. We then have intersection semi-lattices L(J β) and
L(PJ β). One can define the q-series

SC(q;u) =
∑

β∈Zs

q− dimOC2,0/Jβ

uβ,

S0
C(q;u) =

∑

β∈Ns

uβ
∑

J∈L(J β)

µ(J, Jβ)[J ],

PSC(q;u) =
∑

β∈Zs

[P(OC2,0/J
β)]uβ,

PS0
C(q;u) =

∑

β∈Ns

uβ
∑

PJ∈L(PJ β)

µ(PJ,PJβ)[PJ ].
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For each β = (b1, . . . , bs) ∈ Zs, there is a linear map `′β : Jβ → C by `′β(g) = (c1, . . . , cs),
where cj (1 ≤ j ≤ s) are given as follows: Choose a coordinate (x, y) in X such that
Ej = {x = 0}; the lifting g̃ = g ◦ π can be written as

g̃ = cjx
bjydj + higher order terms of x, cj ∈ C.

Let Hj be the hyperplane of Cs whose jth coordinate is zero. Then the collection
Hβ = {Im `′β ∩ Hj}s

j=1 is a hyperplane arrangement of Im `′β. One can similarly define
the q-series:

RC(q;u) =
∑

β∈Zs

qdim Im `′βuβ,

R0
C(q;u) =

∑

β∈Ns

χ(Hβ, q)uβ,

PRC(q;u) =
∑

β∈Zs

(1 + q + · · ·+ qdimPIm `′β)uβ,

PR0
C(q;u) =

∑

β∈Ns

χ(PHβ, q)uβ.

The following theorem is similar to Proposition 3.1, Theorems 3.3 and 3.4, except for
the rationality; the proof are parallel and is omitted here.

Theorem 4.1 For Q = RC , SC , R0
C , S0

C, PQ(q;u) = Q(q;u)/(q − 1). Moreover,

S0
C(q;u) =

∫

OC2,0

uλ(g)dµ1(g) =
SC(q;u)

∏s
j=1(uj − 1)

u1 · · ·us

,

PS0
C(q;u) =

∫

POC2,0

uλ(g)dµ̃1(g) =
PSC(q;u)

∏s
j=1(uj − 1)

u1 · · ·us

,

R0
C(q;u) =

∫

OC2,0

qdimOC2,0/Jγ(g)+1

uλ(g)dµ1(g),

PR0
C(q;u) =

∫

POC2,0

qdimP(OC2,0/Jγ(g)+1)uλ(g)dµ̃1(g).

The rationality of the q-series can be similarly established. But it seems more inter-
esting to integrade the function tω(g)uλ(g) over OC2,0. To this end we need the following
lemma which can be found in [6] and will be needed in proving Theorem 4.3.

Lemma 4.2 For any element v ∈ S(E0), the inverse image φ−1(v) is given by

φ−1(v) = span {g, Jλ(g)+1} − Jλ(g)+1,

where 1 = (1, . . . , 1) ∈ Zs, g is any germ such that φ(g) = v.

Proof. For germs g1, g2 ∈ OC2,0, it suffices to show that φ(g1) = φ(g2) if and only if there
exist c 6= 0 and h ∈ OC2,0 such that g2 = cg1 + h and mh,j > mg1,j(= mg2,j), 1 ≤ j ≤ s.
Consider the liftings g̃1 = g1 ◦ π, g̃2 = g2 ◦ π, and the meromorphic function g̃2/g̃1 on X.
If φ(g1) = φ(g2), the zeros and poles of g̃2/g̃1 cancel each other on the exceptional divisor
E. Then g̃2/g̃1 is a nonzero constant on E, say, g̃2/g̃1|E = c ∈ C∗. Set h = g2 − cg1; we
have mg1,j = mg2,j < mh,j for all 1 ≤ j ≤ s. Conversely, if g2 = cg1 + h and mh,j > mg1,j
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for all 1 ≤ j ≤ s, c ∈ C∗. Then g̃2/g̃1 = c on the exceptional divisor E. It follows that
the zeros and poles of g̃2/g̃1 cancel each other on E. This means that φ(g1) = φ(g2). 2

Let us consider the embedding ψ : POC2,0 → S(E) × POC2,0 by ψ(g) = (φ(g), g);
this is well-defined because φ(g) = φ(cg) for c ∈ C∗. Note that Ej ' CP1 and E0

j is a
punctured complex plane; hence (E0

j )
k is isomorphic to a linear set in Ck for any k ≥ 0.

The linear set (E0
j )

k can be divided into smaller linear sets so that Sk(E0
j ) is still a linear

set after identification. Thus
∏s

j=1 Skj(E0
j ) is a linear set for any nonnegative integers

kj. By a linear set of S(E0
j ) we mean a finite union of some linear sets in

∏s
j=1 Skj(E0

j )
for various kj ≥ 0. Projective linear sets can be similarly constructed on S(E). Let
ν be the valuation on S(E), defined on the class of projective linear sets in S(E) such
that ν(Y ) = [Y ] if Y ⊂ S(E0) and ν(Y ) = 0 if Y ⊂ S(E0)× ⋃

k≥1 Sk(D). Let χ be the
valuation on POC2,0, defined on the Boolean algebra B(PΩ) of projective subspaces by
Corollary 2.6; that is, χ(PW − PV ) = dim W/V for projective subspaces PV and PW
satisfying PV ⊂ PW and dim W/V < ∞. We then have a product valuation ν × χ on
S(E)× POC2,0. The pullback ν̃ = ψ∗(ν × χ) is a valuation on POC2,0.

Theorem 4.3 The pullback ν̃ of the product valuation ν×χ is a valuation on a sub-class
of projective linear sets in POC2,0. Write mj = (m1j, . . . ,mrj) ∈ Zr, 1 ≤ j ≤ s. Then

∫

POC2,0

tω(g)uλ(g)dν̃(g) =
s∏

j=1

(1− tmjuj)
−[E0

j ] . (50)

In particular, set q = 1; the formula (50) reduces to

∫

POC2,0

tω(g)uλ(g)dχ(g) =
s∏

j=1

(1− tmjuj)
−χ(E0

j ) . (51)

Proof. The map φ is measurable because for any β = (b1, . . . , bs) the inverse image
φ−1(

∏s
j=1 Sbj(E0

j )) is the linear set Jβ
0 in OC2,0. The function tω(g)uλ(g) is obviously a

measurable function from OC2,0 to the ring Z[q, q−1][[t;u]]. Consider the trivial vector
bundle S(E0) × OC2,0 over S(E0) and its sub-bundle EC =

⋃
v∈S(E0) span {g, Jλ(v)+1}

and sub-bundle Eβ
C =

⋃
v∈S(E0) Jλ(v)+β, where λ(v) = λ(g) for any germ g such that

φ(g) = v, 1 = (1, . . . , 1), β ∈ Zs. Lemma 4.2 implies that the germ space OC2,0, being a
fiber bundle over S(E0), can be identified to the difference EC − V 1

E of sub-bundles by
the map φ. The integration of these bundle differences with respect to ν×χ is a q-series.
In fact, the difference EC−Eβ

C can be identified with the quotient bundle EC/Eβ
C , which

can be further identified by translation to a finite dimensional vector bundle over S(E0).
Now the valuation on the fiber is the ordinary Euler characteristic χ, which alway has
value 1. Then

∫

EC−Eβ
C

tω(g)uλ(g)d(ν × χ)(g) =
∫

EC−E1
C

tω(g)uλ(g) +
∫

E1
C−Eβ

C

tω(g)uλ(g)

=
∫

EC/E1
C

tω(g)uλ(g) +
∫

E1
C/Eβ

C

tω(g)uλ(g).

In particular, the quotient fiber span {g, Jλ(g)+1}/Jλ(g)+1 in EC/E1
C over the point φ(g) is

one-dimensional. However, the projectivization P(span {g, Jλ(g)+1}− Jλ(g)+1) is isomor-
phic to the affine space g + Jλ(g)+1, which can be identified with Jλ(g)+1 by translation.
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Let kj(g) =
∑

p∈E0
j
φ(g)(p). Then ω(g) =

∑s
j=1 kj(g)mj. We then have

∫

POC2,0

tω(g)uλ(g)dν̃(g) =
∫

EC/E1
C

tω(g)uλ(g)d(ν × χ)

=
∑

k1,... ,ks≥0

∫
∏s

j=1
Skj (E0

j )
t
∑s

j=1
kjmj

s∏

j=1

u
kj

j dν

=
∑

k1,... ,ks≥0

s∏

j=1

[Skj(E0
j )]t

kjmju
kj

j

=
s∏

j=1

(1− tmjuj)
−[E0

j ].

Take q = 1; the valuation ν becomes the Euler characteristic χ. Fix a vector α =
(a1, . . . , ar) ∈ Nr; let OC2,0(α) be the set of germs g such that ω(g) ≤ α and let

S(E0, α) =
⊔

k1m1+···+ksms≤α

s∏

j=1

Skj(E0
j ).

Clearly, φ(OC2,0(α)) = S(E0, α). Let k ≥ 1 + max{a1, . . . , ar} and let πk be the pro-
jection from OC2,0 to the jet space Jk

C2,0. Then πk(OC2,0(α)) is a linear set of the finite

dimensional vector space Jk
C2,0, and is also a fiber bundle over S(E0, α) whose fiber is a

difference W − V of vector subspaces where V is codimension one in W . It follows that
Pπk(OC2,0(α)) is a fiber bundle over S(E0, α) whose fiber is P(W − V ). The fiber can
be identified as a coset of V and the coset can be identified as the vector space V as in
Section 2. So Pπk(OC2,0(α)) can be identified as a vector bundle over S(E0). Now the
Euler characteristic on OC2,0(α) induces the Euler characteristic on πk(OC2,0(α)), and
further to the Euler characteristic on Pπk(OC2,0(α)), which can be split into integration
over the base space and the fiber space, respectively (here we actually treated the con-
structible sets as real semi-algebraic sets and the Euler characteristic for such sets are
well treated in [?, 7]). Therefore

∫

POC2,0

tω(g)uλ(g)dχ(g) = lim
α→∞

∫

PπkOC2,0(α)
tω(πk(g))uλ(πk(g))dχ(πk(g))

= lim
α→∞

∑

k1m1+···+ksms≤α

χ




s∏

j=1

Skj(E0
j )


 tkjmju

kj

j

=
∞∑

k1,... ,ks=0

s∏

j=1

χ(SkjE0
j )t

kjmju
kj

j

=
s∏

j=1

(1− tmjuj)
−χ(E0

j ).

Please note that all the bundles mentioned above are not ordinary bundles; their fibers
have no constant dimensions. 2

5 q-Analog of Zeta-Functions

In this section we consider the case where there is only one parameterization ϕ1, that is,
r = 1. We write ϕ = ϕ1, d = d1, and the semigroup SΦ is denoted by Sϕ. Let C = Imϕ
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be given by a germ f ; that is, C = {f = 0}. The local coordinate ring of C at 0 is
OC,0 = OCn,0/(f) and there is a canonical linear map ϕ∗ : OC,0 → OC,0. Let m be the
maximal ideal in OC,0. The filtration OC,0 = m0 ⊃ m1 ⊃ m2 ⊃ · · · induces a filtration
OC,0 = I0 ⊃ Id ⊃ I2d ⊃ · · · , where Ikd = (ϕ∗)−1(mk). The Poincaré series is defined by

Pϕ(t) =
∞∑

k=0

dim
(
Ikd/I(k+1)d

)
tkd.

Note that an integer kd ∈ Sϕ if and only if dim(Ikd/I(k+1)d) = 1; and that Sϕ contains any
large enough integers in dN. The series Pϕ(t) is a rational function of t with denominator
1− td, and

Pϕ(t) =
∑

n∈Sϕ

tn.

Since Im `k = {0} for k < 0 and Im `0 = C, then we have

Lϕ(q; t) =
∑

k∈dZ
qdim Im `ktk,

L0
ϕ(q; t) =

∑

k∈dN
(qdim Im `k − 1)tk

=
∑

k∈Sϕ

(q − 1)tk.

Then
PLϕ(q; t) =

∑

k∈dN,`k 6=0

tk =
∑

k∈Sϕ

tk = PL0
ϕ(q; t).

Thus Lϕ(q; t) = L0
ϕ(q; t) = (q − 1)PLϕ(q; t); PLϕ(q; t) is independent of q and is the

same as the Poincaré series Pϕ(t).
Let ϕ : C → C2 be a uniformization of an irreducible plane curve singularity C =

{f = 0}, passing through the origin. Let Vf be the Milnor fiber of the singularity f ;
that is, Vf = {z ∈ C2 : ||z|| ≤ ε, f(z) = δ}, 0 < δ ¿ ε. Let hf : Vf → Vf be the classical
monodromy transformation. The zeta-function is defined by

ζf (t) =
∞∏

k=0

[
det

(
id− t · h∗|Hk(Vf ;R)

)](−1)k+1

.

Let π : (X,E) → (C2, 0) be the embedded resolution of (C, 0) with the exceptional
divisor E =

⋃s
j=1 Ej, where Ej are the components of E. Let Dj be the set of intersection

points of Ej and other components in the total transform of (f ◦ π)−1(0); let E0
j be the

complement of Dj in Ej, see the previous section. It is known from [1] that ζf (t) =∏s
j=1(1−tmj)−χ(E0

j ), where mj is the multiplicity of the lifting f ◦π along the exceptional
divisor Ej in the embedded resolution X of C. This is generalized by Campillo, Delgado
and Gusein-Zade in [5] to define the zeta-function for a reducible curve C by

ζC(t) =
∑

α∈SC

χ(PIα, 1)t||α||,

where α = (a1, . . . , ar) and ||α|| = a1 + · · ·+ ar. Then

ζC(t) =
∫

POC2,0

t||ω(g)||dχ(g) = ∆Lr(t, . . . , t).
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We define the following q-analog zeta-function for any parameterization Φ by

ζΦ(q; t) =
∑

α∈SC

χ(PIα, q)t||α||.

It is clear that ζΦ(q; t) = PM0
Φ(q; t, . . . , t). If Φ is a uniformization and C is a plane

curve singularity, then ζΦ(1; t) = ζC(t). Another q-analog zeta-function can be defined
by

ZC(q; t) =
∫

POC2,0

t||ω(g)||dν̃(g).

Proposition 5.1 Let C =
⋃r

i=1 Ci be a plane curve singularity passing through the
origin. Let mj be the multiplicity of f = f1 · · · fr along the exceptional divisor Ej. Then

ZC(q; t) =
s∏

j=1

(1− tmj)−q+χ(E0
j )+1 ,

ζC(q; t) =
∫

POC2,0

t||ω(g)||dµ1(g).

In particular, ZC(1; t) = ζC(1; t) = ζC(t) = ∆Lr(t, . . . , t). For r = 1,

ζC(q; t) = q−1
∑

k∈Sϕ

q− dimOCn,0/Ik

tk.

Proof. The first two formulas are straightforward consequences of Theorem 4.3. As for
the last formula, we have Ik = OCn,0 for k ≤ 0 and Ik/Ik+d has dimension one if and
only if k ∈ Sϕ; that is, dimOCn,0/I

k+d = 1 + dimOCn,0/I
k for k ∈ Sϕ.

Mϕ(q; t) =
∑

k∈dZ
q− dimOCn,0/Ik

tk,

M0
ϕ(q; t) =

∑

k∈dZ

(
q− dimOCn,0/Ik − q− dimOCn,0/Ik+d

)
tk

=
∑

k∈dN

(
q− dimOCn,0/Ik − q− dimOCn,0/Ik+d

)
tk

=
∑

k∈Sϕ

(q− dimOCn,0/Ik − q− dimOCn,0/Ik+d

)tk

= Mϕ(q; t)(td − 1)/td,

PM0
ϕ(q; t) = q−1

∑

k∈Sϕ

q− dimOCn,0/Ik

tk = ζC(q, t).

2

One can similarly define the q-analog zeta-function for a plane curve singularity at
∞. The germ to define the curve C is a polynomial and the space OCn,∞ of germs
at infinity is just the polynomial ring C[z1, z2]. The detailed technical setting may be
completed by mimicking the treatment in [5].

Remark: For an arbitrary link we mention the following observation. Let L = {Ci}r
i=1

be a collection of r disjoint real curves in R3, each parameterized by some smooth
functions fi : [−π, π] → R3, fi(−π) = fi(π). Write fi as the Fourier series

fij(θ) =
∞∑

n=−∞
cn(i, j)e

√−1nθ, i = 1, . . . , r; j = 1, 2, 3.
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We complexify the functions fi by changing fi into complex functions Fi : C → C3,
where Fi = (Fi1, Fi2, Fi3) and Fij(z) =

∑∞
n=−∞ cn(i, j)zn. Write Fij = F+

ij + F−
ij , where

F+
ij =

c0

2
+

∞∑

n=0

cn(i, j)zn and F−
ij =

c0

2
+

∞∑

n=0

c−n(i, j)zn.

We then have the curve parameterizations Φ+ = {F+
i }r

i=1 and Φ− = {F−
i }r

i=1. Thus
one can define Laurent polynomials ∆Φ(q; t) = PL0

Φ+
(q; t)+PL0

Φ−(q; 1/t). The Laurent

polynomials ∆Φ(1; t) may be related to the Alexander polynomial ∆L(t) of the link L.
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