HKUST

MATH150 Introduction to Differential Equations

Final Examination (Version A)
$26^{\text {th }}$ May 2007

08:30-10:30

Name: \qquad
Student I.D.: \qquad
Tutorial Section: \qquad

Directions:

- Write your name, ID number, and tutorial section in the space provided above.
- DO NOT open the exam booklet until instructed to do so.
- When instructed to open the exam booklet, check that you have, in addition to this cover page, 12 pages of questions.
- Turn off all mobile phones and pagers during the examination.
- This is a closed book examination.
- You are advised to try the problems you feel more comfortable with first.
- You may write on both sides of the examination papers.
- There are 8 multiple choice questions. DO NOT guess wildly! If you do not have confidence in your answer leave the question blank. Each incorrectly answered question will result in a 0.5 point deduction.
- For the short and long questions, you must show the working steps of your answers in order to receive full points.
- You must not possess any written or printed papers that contains information related to this examination.
- Cheating is a serious offense. Students caught cheating are subject to a zero score as well as additional penalties.

Question No.	Points	Out of
Q. 1-8		24
Q. 9-14		38
Q. $\mathbf{1 5}$		17
Q. $\mathbf{1 6}$		21
Total Points		100

Part I: Fill in answer in the allocated answer box for the following 8 multiple choice questions is worth 3 points each. DO NOT guess wildly! If you do not have confidence in your answer leave the box blank. Each incorrectly answered question will result in a 0.5 point deduction.

Question	1	2	3	4	5	6	7	8	Total
Answer									

1. Match the graph of the direction field (slopefield) to the differential equation.
(a) $\frac{d y}{d x}=x-2 y$
(b) $\frac{d y}{d x}=x+2 y$
(c) $\frac{d y}{d x}=1-x-2 y$
(d) $\frac{d y}{d x}=2-y$

(e) $\frac{d y}{d x}=x-2 y+1$
2. Which of the following differential equations is/are linear equation(s)?
(I) $\frac{d^{3} y}{d t^{3}}+y=e^{t}$
(II) $\frac{d y}{d t}+t y^{2}=0$
(III) $\frac{d^{2} y}{d t^{2}}+\sin (t+y)=\sin t$
(a) (I)
(b) (II)
(c) (III)
(d) (I) and (II)
(e) (II) and (III)
3. Determine the interval in which the solution of

$$
\left(t^{2}-9\right) y^{\prime}+(\ln t) y=2 t, \quad y(1)=2
$$

is certain to exist.
(a) $t<3$
(b) $3<t$
(c) $-3<t<3$
(d) $0 \leq t \leq 3$
(e) $0<t<3$
4. Consider the differential equation

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{*}
\end{equation*}
$$

Which of the following is/are sufficient condition(s) for (*) to be exact.
(I) $\frac{\partial M}{\partial x}=\frac{\partial N}{\partial y}$.
(II) There exists $F(x, y)$ such that $\frac{\partial F}{\partial x}=M$ and $\frac{\partial F}{\partial y}=N$.
(III) $\frac{\partial M}{\partial y}=0$ and $\frac{\partial N}{\partial x}=0$.
(a) (II) only
(b) (II) and (III) only
(c) (I) and (II) only
(d) (I) and (III) only
(e) (I), (II) and (III)
5. Consider the following differential equation

$$
\frac{1}{t} \frac{d y}{d t}+y=1
$$

(a) Integrating factor $=e^{\frac{t^{2}}{2}} ;$ General solution $=1+C e^{-\frac{t^{2}}{2}}$
(b) Integrating factor $=e^{-t}$; General solution $=C$
(c) Integrating factor $=e^{-\frac{t^{2}}{2}} ;$ General solution $=1+C e^{\frac{t^{2}}{2}}$
(d) Integrating factor $=e^{t}$; General solution $=C e^{-\frac{t^{2}}{2}}$
(e) Integrating factor $=t$; General solution $=C$
6. Suppose $\left\{y_{1}, y_{2}\right\}$ is a set of fundamental solutions to the differential equation $y^{\prime \prime}+(\sin x) y^{\prime}+e^{x} y=0$. Suppose $W\left(y_{1}, y_{2}\right)$ is the Wronskian of y_{1} and y_{2}. Then $W\left(y_{1}, y_{2}\right)=$
(a) 0 .
(b) $c e^{\cos x}$ for some constant c.
(c) $c e^{-e^{x}}$ for some constant c.
(d) $c_{1} \sin x+c_{2} e^{x}$ for some constants c_{1} and c_{2}.
(e) None of the above.
7. Find the Laplace transform $Y(s)=\mathcal{L}\{y(t)\}$ of the solution of the given initial value problem :

$$
2 y^{\prime \prime}+4 y^{\prime}+5 y=e^{-2 t} \sin 3 t, \quad y(0)=2, \quad y^{\prime}(0)=-1
$$

(a) $Y(s)=\frac{2 s+4}{2 s^{2}+4 s+5}+\frac{3}{\left(2 s^{2}+4 s+5\right)\left(s^{2}+4 s+13\right)}$
(b) $Y(s)=\frac{2 s-6}{2 s^{2}+4 s+5}+\frac{s+2}{\left(2 s^{2}+4 s+5\right)\left(s^{2}+4 s+13\right)}$
(c) $Y(s)=\frac{4 s-2}{2 s^{2}+4 s+5}+\frac{3}{\left(2 s^{2}+4 s+5\right)\left(s^{2}+4 s+13\right)}$
(d) $Y(s)=\frac{4 s+6}{2 s^{2}+4 s+5}+\frac{3}{\left(2 s^{2}+4 s+5\right)\left(s^{2}+4 s+13\right)}$
(e) $Y(s)=\frac{4 s-6}{2 s^{2}+4 s+5}+\frac{3}{\left(2 s^{2}+4 s+5\right)\left(s^{2}+4 s+13\right)}$
8. Which figure below best represents the solution to the initial value problem:

$$
y^{\prime \prime}+y=\cos t, \quad y(0)=0, y^{\prime}(0)=0
$$

(a)

(c)

(e)

(b)

(d)

Part II: Answer each of the following 6 short questions. Show all your work for full credit.

Question	9	10	11	12	13	14	Total
Points	$/ 8$	$/ 6$	$/ 6$	$/ 6$	$/ 6$	$/ 6$	$/ 38$

9. Suppose that the logistic equation

$$
\frac{d x}{d t}=k x(M-x),
$$

where k and M are positive constants, models a population $x(t)$ of fish in a lake after t months during which no fishing occurs. Now suppose that, because of fishing, fishes are removed from the lake at the rate of $h x$ fishes per month, where h is a positive constant.
(a) [3 pts] If $0<h<k M$, show that the new fish population (with fishes removed at the above rate) still satisfy a logistic equation and hence find two equilibrium solutions when fishing occurs.

Answer: \qquad
(b) [2 pts] Classify each equilibrium solution in (a) as asymptotically stable or unstable.

Answer:
(c) [3 pts] If $h=k M$, show that $x(t) \rightarrow 0$ as $t \rightarrow \infty$ i.e. the lake is eventually fished out.
\qquad
10. [6 pts] Find the general solution of the differential equation

$$
y^{\prime \prime}-2 y=e^{-x} \sin x
$$

Answer: \qquad .
11. Consider a piecewise continuous function

$$
g(t)= \begin{cases}t-\frac{\pi}{2} & \text { if } 0 \leq t<\frac{\pi}{2} \\ \cos t & \text { if } \frac{\pi}{2} \leq t<\pi \\ 0 & \text { if } t \geq \pi\end{cases}
$$

(a) [3 pts] Express $g(t)$ in terms of unit step functions $u_{c}(t)$ and the functions appearing in the definition of $g(t)$.

Answer: $g(t)=$ \qquad
(b) [3 pts] Find the Laplace transform of $g(t)$.

Answer: $\mathcal{L}\{g(t)\}=$
12. [6 pts] Use the method of Laplace transform to solve

$$
f(t)=\sin 3 t+\int_{0}^{t} f(s) \sin 3(t-s) d s
$$

Answer:

\qquad .
13. [6 pts] Find the Fourier series of

$$
f(x)= \begin{cases}x, & -2 \leq x<0 ; \\ -x, & 0 \leq x \leq 2 .\end{cases}
$$

14. [6 pts] Given that $y(x)=x$ is a solution of

$$
x^{2} y^{\prime \prime}-x(x+2) y^{\prime}+(x+2) y=0 .
$$

Find the general solution of the above differential equation.

Answer: \qquad .

Part III: Answer the following two long questions.

15. A mass of 2 kg stretches a hanging spring downward by 0.25 metres. The mass is then acted on by an external force $20 \cos (8 t)$ Newtons, and is damped by a force which is opposite to the direction of motion and proportional to the magnitude of velocity. It is known that the damping force is 2 Newtons when the velocity is 0.25 metres/second. Let us assume that the acceleration due to gravity is 10 metres/second ${ }^{2}$.
(a) $[2 p t]$ Find the spring constant k; so, force $=k \cdot$ stretch.

Answer: $k=$ \qquad
(b) [2 $p t]$ Find the damping constant γ; so, force $=\gamma \cdot$ velocity.

Answer: $\gamma=$ \qquad
(c) [3 $p t$] Let u denote the distance of the mass from its equilibrium position. Write down a 2 nd order differential equation for u.

Answer:
(d) $\left[\begin{array}{lll}6 & p t\end{array}\right]$ Suppose the mass is initially at rest at its equilibrium position. Formulate the initial value problem for u and hence solve for u.

Answer: $u=$
(e) $[4 p t]$ Express the steady-state solution in the form $R \cos (\omega t-\delta)$ and hence find the amplitude and phase of the motion.

Answer:
16. (A) Suppose an elastic string of length 50 cm is being fixed at both ends in a horizontal position. Let $u(x, t)$ be the vertical displacement of the string at x centermeters from one end and at time t. Suppose the displacement function satisfies

$$
\begin{array}{ll}
4 u_{x x}=u_{t t}, & t>0 ; \\
u(0, t)=0=u(50, t), & t \geq 0 ; \\
u_{t}(x, 0)=0, u(x, 0)=f(x), & 0 \leq x \leq 50, \tag{1}
\end{array}
$$

where

$$
f(x)= \begin{cases}-2 x / 50, & 0 \leq x \leq 25 \\ (x-50) / 25, & 25<x \leq 50\end{cases}
$$

(a) [2 pts] Sketch the initial position of the string given by $f(x)$:

Answer: The sketch is \qquad .
(b) $[1 p t]$ Is the string released initially at rest \qquad (answer "yes" or " $n o$ ") ?
(c) [6 pts$]$ Suppose a solution to (1) is in the form

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} c_{n} u_{n}(x, t) \tag{2}
\end{equation*}
$$

where $u_{n}(x, t)=X_{n}(x) T_{n}(t)$ for each $n=1,2,3, \cdots$. Derive with reason the boundary value problem satisfied by $X_{n}(x)$. Then solve the problem.
\qquad .
(e) [3 pts] Derive with reason the boundary value problem satisfied by $T_{n}(t)$. Then solve the problem.

Answers: \qquad .
(f) [3 pts] Explain how one can determine the unknown coefficients c_{n}. Write down a formula for c_{n} without actually evaluating the integrals.

Answer: \qquad .
(B) Suppose the problem (A) above is modified so that the displacement function $u(x, t)$ still satisfy (1) but with new conditions $u(x, 0)=0$ and $u_{t}(x, 0)=g(x), 0 \leq x \leq 50$ instead, where $g(x)$ is some given function. We again assume that a solution $u(x, t)$ takes the form (2) for some different c_{n}.
(g) [2 pts] Is the string released at rest initially \qquad (answer "yes" or "no")?
(h) [4 pts] Determine with details the $u_{n}(x, t), n=1,2,3, \cdots$.
\qquad .

Table 1: Laplace transforms

	$f(t)=\mathcal{L}^{-1}\{F(s)\}$	$F(s)=\mathcal{L}\{f(t)\}$
1	1	$\frac{1}{s}, \quad s>0$
2	$e^{a t}$	$\frac{1}{s-a}, \quad s>a$
3	$t^{n}, \quad n=$ positive integer	$\frac{n!}{s^{n+1}}, \quad s>0$
4	$t^{p}, \quad p>-1$	$\frac{\Gamma(p+1)}{s^{p+1}}, \quad s>0$
5	$\sin a t$	$\frac{a}{s^{2}+a^{2}}, \quad s>0$
6	$\cos a t$	$\frac{s}{s^{2}+a^{2}}, \quad s>0$
7	$\sinh a t$	$\frac{a}{s^{2}-a^{2}}, \quad s>\|a\|$
8	$\cosh a t$	$\frac{s}{s^{2}-a^{2}}, \quad s>\|a\|$
9	$e^{a t} \sin b t$	$\frac{b}{(s-a)^{2}+b^{2}}, \quad s>a$
10	$e^{a t} \cos b t$	$\frac{s-a}{(s-a)^{2}+b^{2}}, \quad s>a$
11	$t^{n} e^{a t}, \quad n=$ positive integer	$\frac{n!}{(s-a)^{n+1}}, \quad s>0$
12	$u_{c}(t)$	$\frac{e^{-c s}}{s}, \quad s>0$
13	$u_{c}(t) f(t-c)$	$e^{-c s} F(s)$
14	$e^{c t} f(t)$	$F(s-c)$
15	$f(c t)$	$\frac{1}{c} F\left(\frac{s}{c}\right), \quad c>0$
16	$\int_{0}^{t} f(t-\tau) g(\tau) d \tau$	$F(s) G(s)$
17	$\delta(t-c)$	$e^{-c s}$
18	$f^{(n)}(t)$	$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$
19	$(-t)^{n} f(t)$	$F^{(n)}(s)$

