HKUST

MATH150 Introduction to Differential Equations

Final Examination (Version A)	Name:
26^{th} May 2007	Student I.D.:
08:30-10:30	Tutorial Section:

Directions:

- Write your name, ID number, and tutorial section in the space provided above.
- DO NOT open the exam booklet until instructed to do so.
- When instructed to open the exam booklet, check that you have, in addition to this cover page, 12 pages of questions.
- Turn off all mobile phones and pagers during the examination.
- This is a closed book examination.
- You are advised to try the problems you feel more comfortable with first.
- You may write on both sides of the examination papers.
- There are 8 multiple choice questions. DO NOT guess wildly! If you do not have confidence in your answer leave the question blank. Each incorrectly answered question will result in a 0.5 point deduction.
- For the short and long questions, you must show the working steps of your answers in order to receive full points.
- You must not possess any written or printed papers that contains information related to this examination.
- Cheating is a serious offense. Students caught cheating are subject to a zero score as well as additional penalties.

Question No.	Points	Out of
Q. 1-8		24
Q. 9-14		38
Q. 15		17
Q. 16		21
Total Points		100

Part I: Fill in answer <u>in the allocated answer box</u> for the following 8 multiple choice questions is worth 3 points each. DO NOT guess wildly! If you do not have confidence in your answer leave the box blank. Each incorrectly answered question will result in a 0.5 point deduction.

Question	1	2	3	4	5	6	7	8	Total
Answer									

- 1. Match the graph of the direction field (slopefield) to the differential equation.
 - (a) $\frac{dy}{dx} = x 2y$ (b) $\frac{dy}{dx} = x + 2y$ (c) $\frac{dy}{dx} = 1 - x - 2y$ (d) $\frac{dy}{dx} = 2 - y$ (e) $\frac{dy}{dx} = x - 2y + 1$
- 2. Which of the following differential equations is/are linear equation(s)?

(I)
$$\frac{d^3y}{dt^3} + y = e^t$$

(II) $\frac{dy}{dt} + ty^2 = 0$
(III) $\frac{d^2y}{dt^2} + \sin(t+y) = \sin t$
(a) (I) (b) (II) (c) (III) (d) (I) and (II) (e) (II) and (III)

3. Determine the interval in which the solution of

$$(t^2 - 9)y' + (\ln t)y = 2t, \quad y(1) = 2$$

is certain to exist.

(a) t < 3 (b) 3 < t (c) -3 < t < 3 (d) $0 \le t \le 3$ (e) 0 < t < 3

4. Consider the differential equation

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0. \quad (*)$$

Which of the following is/are sufficient condition(s) for (*) to be exact.

(I)
$$\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$$

(II) There exists F(x,y) such that $\frac{\partial F}{\partial x} = M$ and $\frac{\partial F}{\partial y} = N$.

(III)
$$\frac{\partial M}{\partial y} = 0$$
 and $\frac{\partial N}{\partial x} = 0$.

- (a) (II) only
- (b) (II) and (III) only
- (c) (I) and (II) only
- (d) (I) and (III) only
- (e) (I), (II) and (III)
- 5. Consider the following differential equation

$$\frac{1}{t}\frac{dy}{dt} + y = 1$$

- (a) Integrating factor $=e^{\frac{t^2}{2}}$; General solution $=1+Ce^{-\frac{t^2}{2}}$
- (b) Integrating factor $= e^{-t}$; General solution = C
- (c) Integrating factor $= e^{-\frac{t^2}{2}}$; General solution $= 1 + Ce^{\frac{t^2}{2}}$
- (d) Integrating factor = e^t ; General solution = $Ce^{-\frac{t^2}{2}}$
- (e) Integrating factor = t; General solution = C
- 6. Suppose $\{y_1, y_2\}$ is a set of fundamental solutions to the differential equation $y'' + (\sin x)y' + e^x y = 0$. Suppose $W(y_1, y_2)$ is the Wronskian of y_1 and y_2 . Then $W(y_1, y_2) =$
 - (a) 0.
 - (b) $ce^{\cos x}$ for some constant c.
 - (c) ce^{-e^x} for some constant c.
 - (d) $c_1 \sin x + c_2 e^x$ for some constants c_1 and c_2 .
 - (e) None of the above.

7. Find the Laplace transform $Y(s) = \mathcal{L} \{y(t)\}$ of the solution of the given initial value problem :

$$2y'' + 4y' + 5y = e^{-2t} \sin 3t$$
, $y(0) = 2$, $y'(0) = -1$.

(a)
$$Y(s) = \frac{2s+4}{2s^2+4s+5} + \frac{3}{(2s^2+4s+5)(s^2+4s+13)}$$

(b) $Y(s) = \frac{2s-6}{2s^2+4s+5} + \frac{s+2}{(2s^2+4s+5)(s^2+4s+13)}$
(c) $Y(s) = \frac{4s-2}{2s^2+4s+5} + \frac{3}{(2s^2+4s+5)(s^2+4s+13)}$
(d) $Y(s) = \frac{4s+6}{2s^2+4s+5} + \frac{3}{(2s^2+4s+5)(s^2+4s+13)}$
(e) $Y(s) = \frac{4s-6}{2s^2+4s+5} + \frac{3}{(2s^2+4s+5)(s^2+4s+13)}$

8. Which figure below best represents the solution to the initial value problem:

$$y'' + y = \cos t$$
, $y(0) = 0$, $y'(0) = 0$.

Part II: Answer each of the following 6 short questions. Show all your work for full credit.

Question	9	10	11	12	13	14	Total
Points	/8	/6	/6	/6	/6	/6	/38

9. Suppose that the logistic equation

 $\frac{dx}{dt} = kx(M-x),$

where k and M are positive constants, models a population x(t) of fish in a lake after t months during which no fishing occurs. Now suppose that, because of fishing, fishes are removed from the lake at the rate of hx fishes per month, where h is a positive constant.

(a) [3 pts] If 0 < h < kM, show that the new fish population (with fishes removed at the above rate) still satisfy a logistic equation and hence find two equilibrium solutions when fishing occurs.

Answer: ____

(b) [2 pts] Classify each equilibrium solution in (a) as asymptotically stable or unstable.

Answer:

(c) [3 pts] If h = kM, show that $x(t) \to 0$ as $t \to \infty$ i.e. the lake is eventually fished out.

10. [6 pts] Find the general solution of the differential equation

 $y'' - 2y = e^{-x} \sin x.$

Answer:

11. Consider a piecewise continuous function

($t-\frac{\pi}{2}$	if $0 \le t < \frac{\pi}{2}$;
$g(t) = \boldsymbol{\zeta}$	$\cos t$	if $\frac{\pi}{2} \le t < \pi$;
	0	if $t \geq \pi$.

(a) [3 pts] Express g(t) in terms of unit step functions $u_c(t)$ and the functions appearing in the definition of g(t).

Answer: g(t) =

(b) [3 pts] Find the Laplace transform of g(t).

Answer: $\mathcal{L} \{g(t)\} =$ _____

12. [6 pts] Use the method of Laplace transform to solve

$$f(t) = \sin 3t + \int_0^t f(s) \sin 3(t-s) \, ds.$$

Answer:

13. [6 pts] Find the Fourier series of

$$f(x) = \begin{cases} x, & -2 \le x < 0; \\ -x, & 0 \le x \le 2. \end{cases}$$

. .

.

14. [6 pts] Given that y(x) = x is a solution of

$$x^{2}y'' - x(x+2)y' + (x+2)y = 0.$$

Find the general solution of the above differential equation.

Answer:

.

Part III: Answer the following two long questions.

- 15. A mass of 2 kg stretches a hanging spring downward by 0.25 metres. The mass is then acted on by an external force $20\cos(8t)$ Newtons, and is damped by a force which is opposite to the direction of motion and proportional to the magnitude of velocity. It is known that the damping force is 2 Newtons when the velocity is 0.25 metres/second. Let us assume that the acceleration due to gravity is 10 metres/second².
 - (a) [2 pt] Find the spring constant k; so, force $= k \cdot \text{stretch}$.

Answer: k = _____

(b) [2 pt] Find the damping constant γ ; so, force = $\gamma \cdot$ velocity.

Answer: $\gamma = _$

(c) [3 pt] Let u denote the distance of the mass from its equilibrium position. Write down a 2nd order differential equation for u.

Answer:

(d) $[6 \ pt]$ Suppose the mass is initially at rest at its equilibrium position. Formulate the initial value problem for u and hence solve for u.

Answer: u =_____

•

(e) [4 pt] Express the steady-state solution in the form $R\cos(\omega t - \delta)$ and hence find the amplitude and phase of the motion.

Answer:

16. (A) Suppose an elastic string of length 50cm is being fixed at both ends in a horizontal position. Let u(x, t) be the vertical displacement of the string at x centermeters from one end and at time t. Suppose the displacement function satisfies

$$\begin{aligned}
4u_{xx} &= u_{tt}, & t > 0; \\
u(0, t) &= 0 = u(50, t), & t \ge 0; \\
u_t(x, 0) &= 0, & u(x, 0) = f(x), & 0 \le x \le 50,
\end{aligned}$$
(1)

where

$$f(x) = \begin{cases} -2x/50, & 0 \le x \le 25; \\ (x-50)/25, & 25 < x \le 50 \end{cases}$$

(a) [2 pts] Sketch the initial position of the string given by f(x):

Answer: The sketch is ______.

- (b) [1 pt] Is the string released initially at rest _____ (answer "yes" or "no") ?
- (c) [6 pts] Suppose a solution to (1) is in the form

$$u(x, t) = \sum_{n=1}^{\infty} c_n u_n(x, t)$$
(2)

where $u_n(x, t) = X_n(x)T_n(t)$ for each $n = 1, 2, 3, \cdots$. Derive with reason the boundary value problem satisfied by $X_n(x)$. Then solve the problem.

(e) [3 pts] Derive with reason the boundary value problem satisfied by $T_n(t)$. Then solve the problem.

Answers:

(f) [3 pts] Explain how one can determine the unknown coefficients c_n . Write down a formula for c_n without actually evaluating the integrals.

Answer:

- (B) Suppose the problem (A) above is modified so that the displacement function u(x, t) still satisfy (1) but with new conditions u(x, 0) = 0 and $u_t(x, 0) = g(x)$, $0 \le x \le 50$ instead, where g(x) is some given function. We again assume that a solution u(x, t) takes the form (2) for some different c_n .
 - (g) [2 pts] Is the string released at rest initially _____ (answer "yes" or "no")?
 - (h) [4 pts] Determine with details the $u_n(x, t)$, $n = 1, 2, 3, \cdots$.

	$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$
1	1	$\frac{1}{s}$, $s > 0$
2	e^{at}	$\frac{1}{s-a}, \qquad s > a$
3	t^n , $n = \text{positive integer}$	$\frac{n!}{s^{n+1}}, \qquad s > 0$
4	$t^p, p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}, \qquad s > 0$
5	$\sin at$	$\frac{a}{s^2 + a^2}, \qquad s > 0$
6	$\cos at$	$\frac{s}{s^2 + a^2}, \qquad s > 0$
7	$\sinh at$	$\frac{a}{s^2 - a^2}, \qquad s > a $
8	$\cosh at$	$\frac{s}{s^2 - a^2}, \qquad s > a $
9	$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}, \qquad s>a$
10	$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, \qquad s>a$
11	$t^n e^{at}$, $n = \text{positive integer}$	$\frac{n!}{(s-a)^{n+1}}, \qquad s>0$
12	$u_c(t)$	$\frac{e^{-cs}}{s}, \qquad s > 0$
13	$u_c(t) f(t-c)$	$e^{-cs} F(s)$
14	$e^{ct} f(t)$	F(s-c)
15	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right), c > 0$
16	$\int_0^t f(t- au) g(au) d au$	F(s) G(s)
17	$\delta(t-c)$	e^{-cs}
18	$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$
19	$(-t)^n f(t)$	$F^{(n)}(s)$

Table 1: Laplace transforms