HKUST

MATH150 Introduction to Differential Equations

Final Examination (Version White)
15th December 2004
8:30-10:30

Name: \qquad
Student I.D.: \qquad
Tutorial Section: \qquad

Directions:

- Write your name, ID number, and tutorial section in the space provided above.
- DO NOT open the exam until instructed to do so.
- When instructed to open the exam, check that you have, in addition to this cover page, 11 pages of questions.
- Turn off all mobile phones and pagers during the examination.
- This is a closed book examination.
- You are advised to try the problems you feel more comfortable with first.
- You may write on both sides of the examination papers.
- There are 8 multiple choice questions. DO NOT guess wildly! If you do not have confidence in your answer leave the question blank. Each incorrectly answered question will result in a 0.5 point deduction.
- For the short and long questions, you must show the working steps of your answers in order to receive full points.
- Cheating is a serious offense. Students caught cheating are subject to a zero score as well as additional penalties.

Question No.	Points	Out of
Q. 1-8		32
Q. 9-14		32
Q. $\mathbf{1 5}$		18
Q. 16		18
Total Points		100

Part I: Each correct answer in the answer box for the following 8 multiple choice questions is worth 4 point. DO NOT guess wildly! If you do not have confidence in your answer leave the answer box blank. Each incorrectly answered question will result in a 0.5 point deduction.

Question	1	2	3	4	5	6	7	8	Total
Answer									

1. Which of the following functions can be used as an integrating factor to turn the following non-exact equation into an exact equation?

$$
(3 y \cos x-x y \sin x)+2 x \cos x \frac{d y}{d x}=0 ?
$$

(a) x^{2}
(b) $x^{2} y$
(c) y^{2}
(d) $x y^{2}$
(e) $x y$
2. For a simple RLC series electrical circuit with $R=1 / 5$ ohm, $L=1$ henry, and C farads, the differential equation for the current I through the circuit is

$$
C \frac{d^{2} I}{d t^{2}}+\frac{C}{5} \frac{d I}{d t}+I=0 .
$$

Pick the largest possible C from the following with which the current of the circuit will keep changing its direction (oscillates) as $t \rightarrow \infty$.
(a) 260
(b) 100
(c) 80
(d) 62
(e) 15
3. On which of the given intervals will the following initial value problem have a unique, continuous, solution?

$$
\left[\begin{array}{c}
\frac{d x_{1}}{d t} \\
\frac{d x_{2}}{d t}
\end{array}\right]=\left[\begin{array}{cc}
e^{2 t} & \frac{t}{t-2} \\
t e^{t} & t
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
\tan t \\
t+t^{2}
\end{array}\right], \quad\left[\begin{array}{c}
x_{1}(3) \\
x_{2}(3)
\end{array}\right]=\left[\begin{array}{c}
2 \\
-3
\end{array}\right]
$$

(a) $-2<t<2$
(b) $\frac{\pi}{2}<t<3$
(c) $2<t<\frac{3 \pi}{2}$
(d) $\frac{\pi}{2}<t<\frac{3 \pi}{2}$
(e) $2<t<5$
4. Determine the inverse Laplace transform of the function $\frac{1}{(s+1)^{2}}$.
(a) t
(b) $t e^{-t}$
(c) t^{2}
(d) $t^{2} e^{-t}$
(e) $t e^{t}$
5. Consider the nonhomogeneous equation

$$
y^{\prime \prime}+6 y^{\prime}+9 y=\left(2 t+t^{4}\right) e^{-3 t} .
$$

By the method of undetermined coefficients, there is a solution to the equation which is of the form $y=Q(t) e^{-3 t}$ where $Q(t)$ is a polynomial. The degree of $Q(t)$ is :
(a) 2
(b) 3
(c) 4
(d) 5
(e) 6
6. The following intial value problem of a first order linear system

$$
\begin{cases}x^{\prime}=3 x-2 y, & x(0)=1, \\ y^{\prime}=-3 x+4 y, & y(0)=-2\end{cases}
$$

can be converted into an initial value problem of a 2 nd order differential equation for $x(t)$. It is
(a) $x^{\prime \prime}-7 x^{\prime}+6 x=0, x(0)=1, x^{\prime}(0)=-2$
(b) $x^{\prime \prime}-7 x^{\prime}+6 x=0, x(0)=1, x^{\prime}(0)=0$
(c) $x^{\prime \prime}-7 x^{\prime}+6 x=0, x(0)=1, x^{\prime}(0)=7$
(d) $x^{\prime \prime}-x^{\prime}+6 x=0, x(0)=1, x^{\prime}(0)=-2$
(e) $x^{\prime \prime}-x^{\prime}+6 x=0, x(0)=1, x^{\prime}(0)=0$
7. If $x(t), y(t)$ solve the initial value problem

$$
\begin{cases}x^{\prime}(t)+2 x-2 y=e^{-2 t}, & x(0)=0 \\ y^{\prime}(t)-2 x+3 y=0, & y(0)=0\end{cases}
$$

their Laplace transforms $X(s)=\mathcal{L}\{x(t)\}$ and $Y(s)=\mathcal{L}\{y(t)\}$ are:
(a) $X(s)=\frac{s+3}{(s+2)\left(s^{2}+5 s+2\right)}, \quad Y(s)=\frac{2}{(s+2)\left(s^{2}+5 s+2\right)}$
(b) $X(s)=\frac{s+3}{(s+2)\left(s^{2}+5 s+2\right)}, \quad Y(s)=\frac{-2}{(s+2)\left(s^{2}+5 s+2\right)}$
(c) $X(s)=\frac{s-2}{(s+2)\left(s^{2}+5 s+2\right)}, \quad Y(s)=\frac{s+3}{(s+2)\left(s^{2}+5 s+2\right)}$
(d) $X(s)=\frac{s-3}{(s+2)\left(s^{2}-5 s+2\right)}, \quad Y(s)=\frac{-2}{(s+2)\left(s^{2}-5 s+2\right)}$
(e) $X(s)=\frac{s-2}{(s+2)\left(s^{2}-5 s+2\right)}, \quad Y(s)=\frac{s+3}{(s+2)\left(s^{2}-5 s+2\right)}$
8. Which of the following convolution integral is a solution of the equation $\frac{d^{2} y}{d t^{2}}+4 y=u_{\pi}(t) f(t-\pi)$, where $u_{\pi}(t)$ is a unit step function.
(a) $\int_{0}^{t} \frac{1}{2} \sin 2(t-u) f(u) d u$
(b) $\int_{0}^{t} \frac{1}{2} \cos 2(t-u) f(u) d u$
(c) $\int_{0}^{t} \frac{1}{2} \delta(t-u+\pi) \sin 2(t-u) f(u) d u$
(d) $\int_{0}^{t} \frac{1}{2} u_{\pi}(t-u) \sin 2(t-u) f(u) d u$
(e) $\int_{0}^{t} \frac{1}{2} u_{\pi}(t) \sin 2(t-u) f(t-u) d u$

Part II: Answer each of the following 6 short answer questions. Show all your work for full credit.

Question	9	10	11	12	13	14	Total
Points							

9. [6 pts] Match each of the three systems of equations with one of the four direction-field/vectorfields shown.
(a)

(c)

(b)

(d)

Equation	$x^{\prime}=y-1$ $y^{\prime}=\sin (x-1)$	$x^{\prime}=5 x-2.5 x y$ $y^{\prime}=3 x y-3 y$	$x^{\prime}=-3 x+y+7$ $y^{\prime}=-2 y+2$
Graph			

10. [8 pts] The homogeneous equation $(1-2 t) y^{\prime \prime}+4 t y^{\prime}-4 y=0$ has two fundamental solutions $2 t$ and $e^{2 t}$. The method of variation of parameters says that, for appropriate choices of functions $u_{1}(t)$ and $u_{2}(t)$, the function $2 t u_{1}(t)+e^{2 t} u_{2}(t)$ is a solution of the nonhomogeneous equation

$$
(1-2 t) y^{\prime \prime}+4 t y^{\prime}-4 y=-(1-2 t)^{2} .
$$

(a) Find the 1 st order linear system that $u_{1}(t)$ and $u_{2}(t)$ must satisfy. (Warning: the given nonhomogeneous equation is not written in the standard normal form.)
[4 pts]

Answer: The linear system for $u_{1}(t)$ and $u_{2}(t)$ is : \qquad .
(b) From the linear system in (a), find the unknown functions $u_{1}(t), u_{2}(t)$, and then also the general solution of the nonhomogeneous equation. (You may leave your answers in terms of some integrals.)
\qquad .
11. [4 pts] When a delta impulse force of 1 is applied to a certain spring-mass system initially at rest at time $t=1$ the equation of motion of the mass is given by

$$
y^{\prime \prime}+2 y^{\prime}+10 y=\delta(t-1), \quad y(0)=0, y^{\prime}(0)=1,
$$

where $y(t)$ denotes the displacement of the mass from the equilibrium position. Solve for the Laplace transform of the solution. You only need to find the Laplace transform.

Answer: The Laplace transform is: $\mathcal{L}(y)=$ \qquad .
12. [4 pts] The solution of the vibrational differential equation

$$
y^{\prime \prime}+2 y^{\prime}+\left(1+\pi^{2}\right) y=\pi \delta(t)+b \pi \delta(t-2), \quad y(0)=y^{\prime}(0)=0,
$$

(b is an adjustable constant) is

$$
y(t)=e^{-t} \sin (\pi t)+b u_{2}(t) e^{-(t-2)} \sin (\pi(t-2)) .
$$

By taking an appropriate value for the constant b, it is possible to halt the vibration for all t larger than some t_{0}. Determine b and t_{0}.

Answer: $b=$ \qquad . Answer: $t_{0}=$ \qquad .
13. [4 pts] The matrix $A=\left[\begin{array}{ccc}2 & 1 & 1 \\ 2 & 2 & 3 \\ -2 & 2 & 1\end{array}\right]$ has three linearly independent eigenvectors $\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{c}-3 \\ -2 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}5 \\ 8 \\ 2\end{array}\right]$. Find the general solution of the 3×3 linear system $\frac{d \mathbf{x}}{d t}=A \mathbf{x}$.

Answer: The general solution is \qquad
14. [6 pts] The non-linear system

$$
\begin{aligned}
x^{\prime} & =-0.7 x+0.001 x y \\
y^{\prime} & =-0.001 x y+0.2 y
\end{aligned}
$$

is a model for the interaction of two populations x and y of predators and prey. An example is a population x of snakes hunting a population y of mice. If the initial populations are $x(0)=100$, $y(0)=500$, generalize Euler's method to the system case to estimate $x(0.2)$, and $y(0.2)$ by using two steps to go from 0 to 0.2 . The two steps are 0 to 0.1 and 0.1 to 0.2 . Keep 1 decimal place to your answers. Remember to show your work for full credit.

i	0	1	2
t_{i}	0.0	0.1	0.2
x_{i}	100.0		
y_{i}	500.0		

Based on your calculations at $t=0$, circle the correct statement. At $t=0$, the number of mice is:

$$
\text { increasing } \quad \text { decreaing } \quad \text { stays the same }
$$

Part III: Answer the two long questions.

15. [18 pts] Consider the flow of money into and out of two countries (country C and country J) and the rest of the world.
(a) Assume the following:

- At time $t=0$, country C has 1 trillion (1,000 billion) dollars in assets, and country J has 2 trillion (2,000 billion) dollars in assets.
- Country J buys goods from country C at a rate of 20% of J's assets plus 10 billion dollars (per year), that is $(0.20 J+10)$.
- Country C buys goods from country J at a rate of 5% of C's assets plus 20 billion dollars, that is $(0.05 C+20)$.

- Country J also buys goods from the rest of the world at a rate 15% of its assets plus 45 billion dollars, that is $(0.15 J+45)$.
- Country C also buys goods from the rest of the world at a rate 10% of its assets plus 30 billion dollars, that is $(0.10 C+30)$.
- Country J sells goods to the rest of the world at a fixed rate of 100 billion per year.
- Country C sells goods to the rest of the world at a fixed rate of 300 billion per year.

Use the variables C and J, and units of billions of dollars, to write the matrix differential equation, with initial conditions, which governs the system.
[6 pts]
(b) For some slightly different assumptions than part (a), it is known that the initial value problem is

$$
\left[\begin{array}{c}
C^{\prime} \\
J^{\prime}
\end{array}\right]=\frac{1}{100}\left[\begin{array}{rr}
-3 & 4 \\
4 & -9
\end{array}\right]\left[\begin{array}{c}
C \\
J
\end{array}\right]+\left[\begin{array}{l}
54 \\
49
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c}
C(0) \\
J(0)
\end{array}\right]=\left[\begin{array}{l}
1000 \\
2000
\end{array}\right]
$$

(i) Determine equilibrium solutions C_{e} and J_{e}, and use them to convert the non-homogeneous matrix differential equation into a homogeneous matrix differential equation. Hint. Take new variables $x=C-C_{e}$, and $y=J-J_{e}$.
(ii) Solve the initial value problem for x, y in part (i), and then determine the asset functions $C(t)$ and $J(t)$. (Hint. The matrix $\frac{1}{100}\left[\begin{array}{rr}-3 & 4 \\ 4 & -9\end{array}\right]$ has eigenvector $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ with eigenvalue $-1 / 100$ and eigenvector $\left[\begin{array}{r}1 \\ -2\end{array}\right]$ with eigenvalue $-11 / 100$.) [5 pts]
(iii) Based on your answer to part (ii), setup an equation in the time variable t which can be solved to find when the assets of country C equals those of country J.
[3 pts]

The equation is: $0=$ \qquad . $1+$ \qquad $\cdot e^{-t / 100}+$ \qquad - $e^{-11 t / 100}$
16. [18 pts] The vibration of a single-wheel bike travelling with constant speed v along a bumpy road modelled by a height function $h(x)$ can be described by the differential equation

$$
m y^{\prime \prime}(t)=-\gamma[y(t)-h(v t)]^{\prime}-k[y(t)-h(v t)]
$$

(Newton's 2nd Law: $m a=F$)
where $y(t)$ is the displacement form equilibruim position, $m=300 \mathrm{~kg}$ is the mass, $k=12000 \mathrm{~N} / \mathrm{m}$ the spring constant, and γ the damping constant. Note that the distance travelled in the x-direction after time t is $x=v t$.
(a) Suppose the shock absorber has a damping constant $\gamma=4800 \mathrm{Ns} / \mathrm{m}$, the speed of the bike is $v=3 \mathrm{~m} / \mathrm{s}$, and the height function of the bumpy road is a sine function $h(x)=1.5 \sin \frac{2 \pi x}{24}$.
(i) Write down the equation of vibration for the bike and find its general solution. [10 pts] (Use the back side of this page to find your particular solution if necessary.)
(ii) Is it possible that the vibration will eventually die down as $t \rightarrow+\infty$? Why?
(b) At what travelling speed v would resonance occur after the shock absorber worn out (i.e., no more dampling)?
(c) Suppose the bike now travels again along a plain road with only one bump at 30 m from the inital position $x=0 \mathrm{~m}$, with constant speed $v=3 \mathrm{~m} / \mathrm{s}$ in the x-direction, and without any vibration in the y direction initially. Suppose the height function of the bump can still be modelled by the same sine function as above, so that the maximum height is 1.5 m and the length of the bump is 12 m . Write down an initial value problem for the vibration of the bike.
[3 pts]

