Math150-L2 Final Exam Answers, Spring 06

Part I: MC Questions

Version A

Question	1	2	3	4	5	6	7	8	9	Total
Answer	d	b	d	c	e	a	e	b	d	

Version B

Question	1	2	3	4	5	6	7	8	9	Total
Answer	c	e	c	a	b	d	b	e	c	

Answers of Version A MC Questions

1. Suppose that the population $p(t)$ of certain field mice after t years from now is described by the initial value problem

$$
\frac{d p}{d t}=0.5 p-500, \quad p(0)=800
$$

Find the time when the population just become extinct; i.e., the time T (in years) when $p(T)=0$.
(a) 1.2476
(b) 1.8637
(c) 2.7645
(d) 3.2189
(e) 4.2537

Answer: (d). $\int \frac{d p}{p-1000}=\int \frac{1}{2} d t \Longleftrightarrow p(t)=1000+C e^{t / 2} \cdot p(0)=800$ implies $C=-200$, and hence $p(t)=1000-200 e^{t / 2}$.

$$
p(t)=0 \Longleftrightarrow t=2 \ln 5=3.2189
$$

2. For which of the following functions $M(x, y)$ is the equation

$$
M(x, y)+\left(x^{3}+8 y-3 x\right) \frac{d y}{d x}=0
$$

an exact equation?
(a) $x\left(y^{2}+1\right)$
(b) $3 y\left(x^{2}-1\right)$
(c) $x^{2}-2 y^{2}$
(d) $x^{2}+y$
(e) $x y$

Answer: (b). $\frac{\partial\left(3 y\left(x^{2}-1\right)\right)}{\partial y}=3 x^{2}-3=\frac{\partial\left(x^{3}+8 y-3 x\right)}{\partial x}$.
3. By the method of undetermined coefficients, there is a particular solution of the equation

$$
y^{\prime \prime}-4 y^{\prime}-5 y=\left(1+2 t^{2}-t^{3}\right) e^{5 t}
$$

which has the form $u=p(t) e^{5 t}$, where $p(t)$ is a polynomial. The degree of $p(t)$ is:
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5

Answer : (d). 5 is a single root of the characteristic equation $r^{2}-4 r-5=(r-5)(r+1)=0$. Hence the degree of $p(t)$ is 4 . Or by directly putting $u=p(t) e^{5 t}$ into the equation to see the degree of $p(t)$:

$$
\begin{gathered}
\left(p^{\prime \prime} e^{5 t}+10 p^{\prime} e^{5 t}+25 p e^{5 t}\right)-4\left(p^{\prime} e^{5 t}+5 p e^{5 t}\right)-5 p e^{5 t}=\left(1+2 t^{2}-t^{3}\right) e^{5 t} \\
p^{\prime \prime}-6 p^{\prime}=1+2 t^{2}-t^{3}
\end{gathered}
$$

4. A periodic external force $F(t)=9 \cos (\omega t)$ is applied to a undamped spring-mass system so that the equation of motion of the mass is

$$
2 y^{\prime \prime}+6 y=9 \cos (\omega t)
$$

Which of the following values of ω will cause an unbounded oscillation (resonance) of the mass?
(a) $\frac{2}{3}$
(b) 3
(c) $\sqrt{3}$
(d) $\sqrt{\frac{2}{3}}$
(e) none of the above

Answer: (c). The natural frequency is $\sqrt{\frac{6}{2}}=\sqrt{3}$.
5. Which of the following differential equations has $e^{-2 t} \cos \sqrt{3} t$ and $e^{-2 t} \sin \sqrt{3} t$ as a pair of fundamental solutions?
(a) $y^{\prime \prime}+2 y^{\prime}+3 y=0$
(b) $y^{\prime \prime}-2 y^{\prime}+3 y=0$
(c) $y^{\prime \prime}+2 y^{\prime}-3 y=0$
(d) $y^{\prime \prime}+4 y^{\prime}-7 y=0$
(e) $y^{\prime \prime}+4 y^{\prime}+7 y=0$

Answer: (e). $-2 \pm \sqrt{3} i$ are the roots of the characteristic equation $r^{2}+4 r+7=0$.
6. The Wronskian $W\left(y_{1}, y_{2}\right)(t)$ of a pair of fundamental solutions $y_{1}(t), y_{2}(t)$ of the equation

$$
t^{2} y^{\prime \prime}-3 y^{\prime}+\left(1+t^{2}\right) y=0
$$

has value $W\left(y_{1}, y_{2}\right)(3)=3$ at $t=3$. Find the value $W\left(y_{1}, y_{2}\right)(6)$.
(a) $3 \sqrt{e}$
(b) $\sqrt{3} e$
(c) $3 e$
(d) $3 e^{2}$
(e) $6 e$

Answer: (a). $y^{\prime \prime}-\frac{3}{t^{2}} y^{\prime}+\frac{1+t^{2}}{t^{2}} y=0$. Thus $W=C e^{\int \frac{3}{t^{2}} d t}=C e^{-3 t^{-1}}$.

$$
\begin{gathered}
3=W(3)=C e^{-1} \Longleftrightarrow C=3 e \\
W(6)=3 e \cdot e^{-3 / 6}=3 e^{1 / 2}
\end{gathered}
$$

7. Find the Laplace transform of the piecewise defined function

$$
f(t)= \begin{cases}t, & 0 \leq t<3 \\ 2 t-3, & t \geq 3\end{cases}
$$

(a) $\frac{3 e^{-3 s}(1-s)}{s^{2}}$
(b) $\frac{3-3 s}{s^{2}}$
(c) $\frac{1+2 e^{-3 s}-3 s}{s^{2}}$
(d) $\frac{1+e^{-3 s}(2 s-3)}{s^{2}}$
(e) $\frac{1+e^{-3 s}}{s^{2}}$

Answer: (e). $f(t)=t+u_{3}(t)(t-3)$, and hence

$$
\mathcal{L}\{f(t)\}=\mathcal{L}\{t\}+\mathcal{L}\left\{u_{3}(t)(t-3)\right\}=\frac{1}{s^{2}}+\frac{e^{-3 s}}{s^{2}}
$$

8. Find the Laplace transform $Y(s)=\mathcal{L}\{y(t)\}$ of the solution of the following initial value problem:

$$
2 y^{\prime \prime}-4 y^{\prime}+5 y=e^{-3 t} \cos 2 t, \quad y(0)=-1, \quad y^{\prime}(0)=2
$$

(a) $Y(s)=\frac{-2 s+2}{2 s^{2}-4 s+5}+\frac{s+3}{\left(2 s^{2}-4 s+5\right)\left(s^{2}+6 s+13\right)}$
(b) $Y(s)=\frac{-2 s+8}{2 s^{2}-4 s+5}+\frac{s+3}{\left(2 s^{2}-4 s+5\right)\left(s^{2}+6 s+13\right)}$
(c) $Y(s)=\frac{-2 s+4}{2 s^{2}-4 s+5}+\frac{2}{\left(2 s^{2}-4 s+5\right)\left(s^{2}+6 s+13\right)}$
(d) $Y(s)=\frac{-2 s}{2 s^{2}-4 s+5}+\frac{s+3}{\left(2 s^{2}-4 s+5\right)\left(s^{2}+6 s+13\right)}$
(e) $Y(s)=\frac{-2 s+3}{2 s^{2}-4 s+5}+\frac{2}{\left(2 s^{2}-4 s+5\right)\left(s^{2}+6 s+13\right)}$

Answer: (b). Taking the Laplace transform of the equation,

$$
\begin{gathered}
2\left(s^{2} Y(s)-s(-1)-2\right)-4(s Y(s)-(-1))+5 Y(s)=\frac{s+3}{(s+3)^{2}+4} \\
\left(2 s^{2}-4 s+5\right) Y(s)=-2 s+8+\frac{s+3}{s^{2}+6 s+13} \\
Y(s)=\frac{-2 s+8}{2 s^{2}-4 s+5}+\frac{s+3}{\left(2 s^{2}-4 s+5\right)\left(s^{2}+6 s+13\right)}
\end{gathered}
$$

9. Which of the following convolution integral is a solution of the initial value problem

$$
\frac{d^{2} y}{d t^{2}}+4 y=3 u_{\pi}(t) f(t-\pi), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

where $u_{\pi}(t)$ is a unit step function.
(a) $y(t)=\int_{0}^{t} \frac{3}{2} \sin 2 \tau f(t-\tau) d \tau$
(b) $y(t)=\int_{0}^{t} \frac{3}{2} \cos 2(t-\tau) f(\tau) d \tau$
(c) $y(t)=\int_{0}^{t} \frac{3}{2} \delta(t-\tau+\pi) \sin 2(t-\tau) f(\tau) d \tau$
(d) $y(t)=\int_{0}^{t} \frac{3}{2} u_{\pi}(t-\tau) \sin 2(t-\tau) f(\tau) d \tau$
(e) $y(t)=\int_{0}^{t} \frac{3}{2} u_{\pi}(t) \sin 2 t f(t-\tau) d \tau$

Answer: (d). Taking the Laplace transform of the equation,

$$
\begin{gathered}
\left(s^{2}+4\right) Y(s)=3 e^{-\pi s} \mathcal{L}\{f(t)\} \Longleftrightarrow Y(s)=\frac{3 e^{-\pi s}}{s^{2}+4} \mathcal{L}\{f(t)\}=\mathcal{L}\left\{\frac{3}{2} u_{\pi}(t) \sin 2(t-\pi)\right\} \mathcal{L}\{f(t)\} \\
Y(s)=\mathcal{L}\left\{\frac{3}{2} u_{\pi}(t) \sin 2 t * f(t)\right\}=\mathcal{L}\left\{\int_{0}^{t} \frac{3}{2} u_{\pi}(t-\tau) \sin 2(t-\tau) f(\tau) d \tau\right\}
\end{gathered}
$$

Part II: Short Questions.

10. [8 pts] The homogeneous equation $(1-t) y^{\prime \prime}+t y^{\prime}-y=0$ has two solutions $y_{1}(t)=t$ and $y_{2}(t)=e^{t}$.
(a) Find the Wronskian of y_{1} and y_{2}.

Solution:

$$
W\left(y_{1}, y_{2}\right)(t)=\left|\begin{array}{cc}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
t & e^{t} \\
1 & e^{t}
\end{array}\right|=t e^{t}-e^{t}=(t-1) e^{t}
$$

Answer: The Wronskian is $W\left(y_{1}, y_{2}\right)(t)=\underline{(t-1) e^{t}}$
(b) Find a particular solution of the nonhomoegeneous equation

$$
(1-t) y^{\prime \prime}+t y^{\prime}-y=2(t-1)^{3} e^{-t}
$$

which has the form $y(t)=t u(t)+e^{t} v(t)$ for some functions $u(t)$ and $v(t)$. (You may leave you answers in terms of some integrals.)

Solution: The equation in standard form: $y^{\prime \prime}+\frac{t}{1-t} y^{\prime}-\frac{1}{1-t} y=-2(t-1)^{2} e^{-t}$.

$$
\begin{gathered}
u(t)=-\int \frac{g(t) y_{2}(t)}{W(t)} d t=\int \frac{2(t-1)^{2} e^{-t} e^{t}}{(t-1) e^{t}} d t=2 \int(t-1) e^{-t} d t \\
\left(u(t)=-2 t e^{-t}+C_{1}\right)
\end{gathered}
$$

$$
\begin{gathered}
v(t)=\int \frac{g(t) y_{1}(t)}{W(t)} d t=-\int \frac{2(t-1)^{2} e^{-t} t}{(t-1) e^{t}} d t=-2 \int t(t-1) e^{-2 t} d t \\
\left(v(t)=t^{2} e^{-2 t}+C_{2}\right)
\end{gathered}
$$

Answer: $y(t)=\underline{2 t \int(t-1) e^{-t} d t-2 e^{t} \int t(t-1) e^{-2 t} d t\left(=-t^{2} e^{-t}\right)}$
11. [8 pts] Find the solution of the boundary value problem: $y^{\prime \prime}+y=2 x, \quad y(0)=2, \quad y\left(\frac{\pi}{2}\right)=1$.

Solution: The general solution of the homogeneous equation $y^{\prime \prime}+y=0$ is $C_{1} \cos x+C_{2} \sin x$. An obvious particular solution of the nonhomogeneous equation $y^{\prime \prime}+y=2 x$ is $y_{p}=2 x$. The general solution of the nonhomogeneous equation is thus

$$
y=C_{1} \cos x+C_{2} \sin x+2 x
$$

Putting in the boundary values:

$$
2=y(0)=C_{1} \cos 0+C_{2} \sin 0+2(0), \quad 1=y\left(\frac{\pi}{2}\right)=C_{1} \cos \frac{\pi}{2}+C_{2} \sin \frac{\pi}{2}+2\left(\frac{\pi}{2}\right)
$$

we have $C_{1}=2, C_{2}=1-\pi$.
Answer: The solution is $y(x)=2 \cos x+(1-\pi) \sin x+2 x$
12. [8 pts] After extending the function defined by $f(x)=x^{3}$, for $-2 \leq x \leq 2$, to a function of period 4 on the whole real line, the resulting periodic function has a Fourier series expansion, containing only sine terms.
(a) Find this Fourier series. (Hint: use an appropriate integration formula in the formula sheet.)

Solution: The Fourier series is: $\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{2}$, where

$$
\begin{gathered}
b_{n}=\frac{1}{2} \int_{-2}^{2} x^{3} \sin \frac{n \pi x}{2} d x \quad\left(\text { or } \int_{0}^{2} x^{3} \sin \frac{n \pi x}{2} d x\right) \\
=\frac{1}{2}\left[-\frac{2}{n \pi} x^{3} \cos \frac{n \pi x}{2}+\left(\frac{2}{n \pi}\right)^{2}\left(3 x^{2}\right) \sin \frac{n \pi x}{2}+\left(\frac{2}{n \pi}\right)^{3}(6 x) \cos \frac{n \pi x}{2}-\left(\frac{2}{n \pi}\right)^{4}(6) \sin \frac{n \pi x}{2}\right]_{-2}^{2} \\
=\left(-\frac{16}{n \pi}+\frac{96}{n^{3} \pi^{3}}\right) \cos n \pi=(-1)^{n+1} \frac{16}{n \pi}\left(1-\frac{6}{n^{2} \pi^{2}}\right)
\end{gathered}
$$

Answer: The Fourier series is: $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{16}{n \pi}\left(1-\frac{6}{n^{2} \pi^{2}}\right) \sin \frac{n \pi x}{2}$
13. [10 pts] The heat equation problem

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t} \\
& u(0, t)=u(2 \pi, t)=0, \quad u(x, 0)=3 x, \quad(0<x<2 \pi)
\end{aligned}
$$

can be solved by considering $u(x, t)=X(x) T(t)$ as a product.
(a) Show that the function $e^{-\lambda^{2} t} \sin \lambda x$ satisfies the heat equation $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}$ for any constant λ.

Solution: By computing the partial derivatives,

$$
\begin{gathered}
\frac{\partial\left(e^{-\lambda^{2} t} \sin \lambda x\right)}{\partial x}=\lambda e^{-\lambda^{2} t} \cos \lambda x \\
\frac{\partial^{2}\left(e^{-\lambda^{2} t} \sin \lambda x\right)}{\partial x^{2}}=-\lambda^{2} e^{-\lambda^{2} t} \sin \lambda x
\end{gathered}
$$

we have

$$
\frac{\partial\left(e^{-\lambda^{2} t} \sin \lambda x\right)}{\partial t}=-\lambda^{2} e^{-\lambda^{2} t} \sin \lambda x=\frac{\partial^{2}\left(e^{-\lambda^{2} t} \sin \lambda x\right)}{\partial x^{2}}
$$

(b) Show that there is a positive sequence λ_{n} so that $u_{n}(x, t)=e^{-\lambda_{n}^{2} t} \sin \lambda_{n} x$ satisfies the condition $u(0, t)=u(2 \pi, t)=0$.

Solution: $\quad u(x, t)=e^{-\lambda^{2} t} \sin \lambda x$ obviously satisfies $u(0, t)=0$. By the boundary value at $x=2 \pi$, we have $e^{-\lambda^{2} t} \sin 2 \lambda \pi=0$. For postive $\lambda>0$,

$$
\sin 2 \lambda \pi=0 \Longleftrightarrow 2 \lambda \pi=n \pi
$$

where $n=1,2,3, \ldots$ So the positive sequence λ_{n} is $\frac{n}{2}, n=1,2,3, \ldots$
Answer: $\lambda_{n}=\underline{\frac{n}{2}}$, where $n=1,2,3, \ldots$
(c) Using superposition of these basic solutions, i.e., $\sum_{n=1}^{\infty} c_{n} u_{n}(x, t)$, and the Fourier sine series of $u(x, 0)=3 x$, find the solution of the heat equation problem.

Solution: $\quad u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-n^{2} t / 4} \sin \frac{n x}{2}$ satisfies $u(0, t)=0=u(2 \pi, t)$. To satisfy also the boundary condition $u(x, 0)=3 x$, just pick c_{n} to be the corresponding coefficients of the Fourier sine series of the function $3 x$:

$$
\begin{gathered}
c_{n}=\frac{1}{2 \pi} \int_{-2 \pi}^{2 \pi} 3 x \sin \frac{n x}{2} d x=\frac{1}{2 \pi}\left[-\frac{2}{n}(3 x) \cos \frac{n x}{2}+\left(\frac{2}{n}\right)^{2}(3) \sin \frac{n x}{2}\right]_{-2 \pi}^{2 \pi} \\
c_{n}=\frac{12(-1)^{n+1}}{n}
\end{gathered}
$$

Answer: the solution is $u(x, t)=\sum_{n=1}^{\infty} \frac{12(-1)^{n+1}}{n} e^{-n^{2} t / 4} \sin \frac{n x}{2}$

Part III: Long Questions

14. [12 pts] A damped forced vibration of a mass is described by the following differential equation:

$$
y^{\prime \prime}+4 y^{\prime}+3 y=3 \sin t
$$

(a) Find the general solution of the equation.

Solution: $r^{2}+4 r+3=(r+3)(r+1)=0 \Longleftrightarrow r=-1,-3$. The general solution of the corresponding homogeneous equation is $C_{1} e^{-t}+C_{2} e^{-3 t}$.
To find a particular solution of the form $y_{p}=A \cos t+B \sin t$, put y_{p} into the equation:

$$
\begin{gathered}
(-A \cos t-B \sin t)+4(-A \sin t+B \cos t)+3(A \cos t+B \sin t)=3 \sin t \\
(2 A+4 B) \cos t+(-4 A+2 B) \sin t=3 \sin t \\
\left\{\begin{array}{l}
A+2 B=0 \\
-4 A+2 B=3
\end{array} \Longleftrightarrow \begin{array}{l}
A=-\frac{3}{5} \\
B=\frac{3}{10}
\end{array}\right.
\end{gathered}
$$

The general solution of the given equation is

$$
y=C_{1} e^{-t}+C_{2} e^{-3 t}-\frac{3}{5} \cos t+\frac{3}{10} \sin t
$$

Answer: The general solution is $y(t)=C_{1} e^{-t}+C_{2} e^{-3}-\frac{3}{5} \cos t+\frac{3}{10} \sin t$ [8 pts]
(b) Explain why the motion of the mass is approximately a damped free vibration as $t \rightarrow+\infty$.

Solution: As $t \rightarrow+\infty, e^{-t} \rightarrow 0$ and $e^{-3 t} \rightarrow 0$. Thus $y(t)$ is approximately the periodic vibration $-\frac{3}{5} \cos t+\frac{3}{10} \sin t$ for large t.
(c) Find the amplitude of the damped free vibration which approximates the motion of the mass for large t.

Solution: The amplitude of the periodic vibration $-\frac{3}{5} \cos t+\frac{3}{10} \sin t$ is

$$
\sqrt{\left(\frac{3}{5}\right)^{2}+\left(\frac{3}{10}\right)^{2}}=\frac{3}{10} \sqrt{5}
$$

15. [18 pts] A damped forced vibration of a mass is described by the initial value problem

$$
y^{\prime \prime}+3 y^{\prime}+2 y=4 e^{-5 t}, \quad y(0)=0, \quad y^{\prime}(0)=0
$$

(a) Solve the initial value problem by the method of Laplace transform.

Solution: Taking Laplace transforms,

$$
\begin{gathered}
\left(s^{2}+3 s+2\right) Y(s)=\frac{4}{s+5} \\
Y(s)=\frac{4}{(s+1)(s+2)(s+5)}=\frac{A}{s+1}+\frac{B}{s+2}+\frac{C}{s+5}
\end{gathered}
$$

where

$$
4=A(s+2)(s+5)+B(s+1)(s+5)+C(s+1)(s+2)
$$

Putting in $s=-1$, we have $4=4 A$; i.e., $A=1$.
Putting in $s=-2$, we have $4=-3 B$; i.e., $B=-\frac{4}{3}$.
Putting in $s=-5$, we have $4=12 C$; i.e., $C=\frac{1}{3}$.

$$
\begin{gathered}
Y(s)=\frac{1}{s+1}-\frac{4}{3} \frac{1}{s+2}+\frac{1}{3} \frac{1}{s+5}=\mathcal{L}\left\{e^{-t}\right\}-\frac{4}{3} \mathcal{L}\left\{e^{-2 t}\right\}+\frac{1}{3} \mathcal{L}\left\{e^{-5 t}\right\} \\
y(t)=e^{-t}-\frac{4}{3} e^{-2 t}+\frac{1}{3} e^{-5 t}
\end{gathered}
$$

(b) Suppose the external force function $4 e^{-5 t}$ is cut off at $t=3$, and an impluse force is applied to the mass at $t=6$, so that the equation of motion is given by

$$
y^{\prime \prime}+3 y^{\prime}+2 y=4 e^{-5 t}-4 u_{3}(t) e^{-5 t}+2 \delta(t-6), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

(i) Find the solution of the new initial value problem.

Solution:

$$
\begin{gathered}
y^{\prime \prime}+3 y^{\prime}+2 y=4 e^{-5 t}-4 e^{-15} u_{3}(t) e^{-5(t-3)}+2 \delta(t-6) \\
(s+1)(s+2) Y(s)=\frac{4}{s+5}-\frac{4 e^{-15} e^{-3 s}}{s+5}+2 e^{-6 s} \\
Y(s)=\left(1-e^{-15} e^{-3 s}\right) \frac{4}{(s+1)(s+2(s+5)}+2 e^{-6 s} \cdot \frac{1}{(s+1)(s+2)} \\
Y(s)=\left(1-e^{-15} e^{-3 s}\right)\left[\frac{1}{s+1}-\frac{4}{3} \cdot \frac{1}{s+2}+\frac{1}{3} \cdot \frac{1}{s+5}\right]+2 e^{-6 s}\left[\frac{1}{s+1}-\frac{1}{s+2}\right] \\
Y(s)=\left(1-e^{-15} e^{-3 s}\right) \mathcal{L}\left\{e^{-t}-\frac{4}{3} e^{-2 t}+\frac{1}{3} e^{-5 t}\right\}+2 e^{-6 s} \mathcal{L}\left\{e^{-t}-e^{-2 t}\right\} \\
y(t)=e^{-t}-\frac{4}{3} e^{-2 t}+\frac{1}{3} e^{-5 t}-e^{-15} u_{3}(t)\left[e^{-(t-3)}-\frac{4}{3} e^{-2(t-3)}+\frac{1}{3} e^{-5(t-3)}\right] \\
+2 u_{6}(t)\left[e^{-(t-6)}-e^{-2(t-6)}\right]
\end{gathered}
$$

(ii) Are there jumps in the velocity of the mass at the time $t=3$ and $t=6$? If yes, write down the sudden change in velocity respectively.
[3 pts]
Solution: No velocity jump at $t=3$; but a jump of $y^{\prime}(6+)-y^{\prime}(6-)=2$ at $t=6$ caused by the impluse force.

