HKUST

MATH150 Introduction to Differential Equations

Final Examination (Version A)
Name: \qquad
25th May 2006
Student I.D.: \qquad
8:30am-10:30am
Tutorial Section: \qquad

Directions:

- Write your name, ID number, and tutorial section in the space provided above.
- DO NOT open the exam until instructed to do so.
- When instructed to open the exam, check that you have, in addition to this cover page, 8 pages of questions, printed on both sides of each page.
- Turn off all mobile phones and pagers during the examination.
- This is a closed book examination.
- You are advised to try the problems you feel more comfortable with first.
- There are 9 multiple choice questions. DO NOT guess wildly! If you do not have confidence in your answer leave the answer box blank. Each incorrectly answered question will result in a 0.5 point deduction.
- For the short and long questions, you must show the working steps of your answers in order to receive all points.
- Unless stated otherwise, you may assume that all units are in SI system.
- Cheating is a serious offense. Students caught cheating are subject to a zero score as well as additional penalties.

Question No.	Points	Out of
Q. 1-9		36
Q. 10-13		34
Q. $\mathbf{1 4}$		12
Q. 15		18
Total Points		100

Part I: Each correct answer in the answer box for the following 9 multiple choice questions is worth 4 points. DO NOT guess wildly! If you do not have confidence in your answer leave the answer box blank. Each incorrectly answered question will result in a 0.5 point deduction.

Question	1	2	3	4	5	6	7	8	9	Total
Answer										

1. Suppose that the population $p(t)$ of certain field mice after t years from now is described by the initial value problem

$$
\frac{d p}{d t}=0.5 p-500, \quad p(0)=800 .
$$

Find the time when the population just become extinct; i.e., the time T (in years) when $p(T)=0$.
(a) 1.2476
(b) 1.8637
(c) 2.7645
(d) 3.2189
(e) 4.2537
2. For which of the following functions $M(x, y)$ is the equation

$$
M(x, y)+\left(x^{3}+8 y-3 x\right) \frac{d y}{d x}=0
$$

an exact equation?
(a) $x\left(y^{2}+1\right)$
(b) $3 y\left(x^{2}-1\right)$
(c) $x^{2}-2 y^{2}$
(d) $x^{2}+y$
(e) $x y$
3. By the method of undetermined coefficients, there is a particular solution of the equation

$$
y^{\prime \prime}-4 y^{\prime}-5 y=\left(1+2 t^{2}-t^{3}\right) e^{5 t}
$$

which has the form $u=p(t) e^{5 t}$, where $p(t)$ is a polynomial. The degree of $p(t)$ is:
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5
4. A periodic external force $F(t)=9 \cos (\omega t)$ is applied to a undamped spring-mass system so that the equation of motion of the mass is

$$
2 y^{\prime \prime}+6 y=9 \cos (\omega t)
$$

Which of the following values of ω will cause an unbounded oscillation (resonance) of the mass?
(a) $\frac{2}{3}$
(b) 3
(c) $\sqrt{3}$
(d) $\sqrt{\frac{2}{3}}$
(e) none of the above
5. Which of the following differential equations has $e^{-2 t} \cos \sqrt{3} t$ and $e^{-2 t} \sin \sqrt{3} t$ as a pair of fundamental solutions?
(a) $y^{\prime \prime}+2 y^{\prime}+3 y=0$
(b) $y^{\prime \prime}-2 y^{\prime}+3 y=0$
(c) $y^{\prime \prime}+2 y^{\prime}-3 y=0$
(d) $y^{\prime \prime}+4 y^{\prime}-7 y=0$
(e) $y^{\prime \prime}+4 y^{\prime}+7 y=0$
6. The Wronskian $W\left(y_{1}, y_{2}\right)(t)$ of a pair of fundamental solutions $y_{1}(t), y_{2}(t)$ of the equation

$$
t^{2} y^{\prime \prime}-3 y^{\prime}+\left(1+t^{2}\right) y=0
$$

has value $W\left(y_{1}, y_{2}\right)(3)=3$ at $t=3$. Find the value $W\left(y_{1}, y_{2}\right)(6)$.
(a) $3 \sqrt{e}$
(b) $\sqrt{3} e$
(c) $3 e$
(d) $3 e^{2}$
(e) $6 e$
7. Find the Laplace transform of the piecewise defined function

$$
f(t)= \begin{cases}t, & 0 \leq t<3 \\ 2 t-3, & t \geq 3\end{cases}
$$

(a) $\frac{3 e^{-3 s}(1-s)}{s^{2}}$
(b) $\frac{3-3 s}{s^{2}}$
(c) $\frac{1+2 e^{-3 s}-3 s}{s^{2}}$
(d) $\frac{1+e^{-3 s}(2 s-3)}{s^{2}}$
(e) $\frac{1+e^{-3 s}}{s^{2}}$
8. Find the Laplace transform $Y(s)=\mathcal{L}\{y(t)\}$ of the solution of the following initial value problem:

$$
2 y^{\prime \prime}-4 y^{\prime}+5 y=e^{-3 t} \cos 2 t, \quad y(0)=-1, \quad y^{\prime}(0)=2 .
$$

(a) $Y(s)=\frac{-2 s+2}{2 s^{2}-4 s+5}+\frac{s+3}{\left(2 s^{2}-4 s+5\right)\left(s^{2}+6 s+13\right)}$
(b) $Y(s)=\frac{-2 s+8}{2 s^{2}-4 s+5}+\frac{s+3}{\left(2 s^{2}-4 s+5\right)\left(s^{2}+6 s+13\right)}$
(c) $Y(s)=\frac{-2 s+4}{2 s^{2}-4 s+5}+\frac{2}{\left(2 s^{2}-4 s+5\right)\left(s^{2}+6 s+13\right)}$
(d) $Y(s)=\frac{-2 s}{2 s^{2}-4 s+5}+\frac{s+3}{\left(2 s^{2}-4 s+5\right)\left(s^{2}+6 s+13\right)}$
(e) $Y(s)=\frac{-2 s+3}{2 s^{2}-4 s+5}+\frac{2}{\left(2 s^{2}-4 s+5\right)\left(s^{2}+6 s+13\right)}$
9. Which of the following convolution integral is a solution of the initial value problem

$$
\frac{d^{2} y}{d t^{2}}+4 y=3 u_{\pi}(t) f(t-\pi), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

where $u_{\pi}(t)$ is a unit step function.
(a) $y(t)=\int_{0}^{t} \frac{3}{2} \sin 2 \tau f(t-\tau) d \tau$
(b) $y(t)=\int_{0}^{t} \frac{3}{2} \cos 2(t-\tau) f(\tau) d \tau$
(c) $y(t)=\int_{0}^{t} \frac{3}{2} \delta(t-\tau+\pi) \sin 2(t-\tau) f(\tau) d \tau$
(d) $y(t)=\int_{0}^{t} \frac{3}{2} u_{\pi}(t-\tau) \sin 2(t-\tau) f(\tau) d \tau$
(e) $y(t)=\int_{0}^{t} \frac{3}{2} u_{\pi}(t) \sin 2 t f(t-\tau) d \tau$

Part II: Answer each of the following 4 short questions. Show all your work for full credit.

Question	10	11	12	13	Total
Points	$/ 8$	$/ 8$	$/ 8$	$/ 10$	$/ 34$

10. [8 pts] The homogeneous equation $(1-t) y^{\prime \prime}+t y^{\prime}-y=0$ has two solutions $y_{1}(t)=t$ and $y_{2}(t)=e^{t}$.
(a) Find the Wronskian of y_{1} and y_{2}.

Answer: The Wronskian is $W\left(y_{1}, y_{2}\right)(t)=$ \qquad
(b) Find a particular solution of the nonhomoegeneous equation

$$
(1-t) y^{\prime \prime}+t y^{\prime}-y=2(t-1)^{3} e^{-t}
$$

which has the form $y(t)=t u(t)+e^{t} v(t)$ for some functions $u(t)$ and $v(t)$. (You may leave you answers in terms of some integrals.)

Answer: $y(t)=$ \qquad
11. [8 pts] Find the solution of the boundary value problem: $y^{\prime \prime}+y=2 x, \quad y(0)=2, \quad y\left(\frac{\pi}{2}\right)=1$.

Answer: The solution is $y(x)=$ \qquad
12. [8 pts] After extending the function defined by $f(x)=x^{3}$, for $-2 \leq x \leq 2$, to a function of period 4 on the whole real line, the resulting periodic function has a Fourier series expansion, containing only sine terms.
(a) Find this Fourier series. (Hint: use an appropriate integration formula in the formula sheet.)

Answer: The Fourier series is:
(b) At $x=2$, the Fourier series converges to the value \qquad .
13. [10 pts] The heat equation problem

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t} \\
& u(0, t)=u(2 \pi, t)=0, \quad u(x, 0)=3 x, \quad(0<x<2 \pi)
\end{aligned}
$$

can be solved by considering $u(x, t)=X(x) T(t)$ as a product.
(a) Show that the function $e^{-\lambda^{2} t} \sin \lambda x$ satisfies the heat equation $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}$ for any constant λ.
[2 pts]
(b) Show that there is a positive sequence λ_{n} so that $u_{n}(x, t)=e^{-\lambda_{n}^{2} t} \sin \lambda_{n} x$ satisfies the condition $u(0, t)=u(2 \pi, t)=0$.

Answer: $\lambda_{n}=$ \qquad , where $n=1,2,3, \ldots$.
(c) Using superposition of these basic solutions, i.e., $\sum_{n=1}^{\infty} c_{n} u_{n}(x, t)$, and the Fourier sine series of $u(x, 0)=3 x$, find the solution of the heat equation problem.

Part III: Answer the following two long questions.

14. [12 pts] A damped forced vibration of a mass is described by the following differential equation:

$$
y^{\prime \prime}+4 y^{\prime}+3 y=3 \sin t
$$

(a) Find the general solution of the equation.

Answer: The general solution is $y(t)=$ \qquad [8 pts]
(b) Explain why the motion of the mass is approximately a damped free vibration as $t \rightarrow+\infty$.
[2 pts]
(c) Find the amplitude of the damped free vibration which approximates the motion of the mass for large t.
15. [18 pts] A damped forced vibration of a mass is described by the initial value problem

$$
y^{\prime \prime}+3 y^{\prime}+2 y=4 e^{-5 t}, \quad y(0)=0, \quad y^{\prime}(0)=0
$$

(a) Solve the initial value problem by the method of Laplace transform.
(b) Suppose the external force function $4 e^{-5 t}$ is cut off at $t=3$, and an impluse force is applied to the mass at $t=6$, so that the equation of motion is given by

$$
y^{\prime \prime}+3 y^{\prime}+2 y=4 e^{-5 t}-4 u_{3}(t) e^{-5 t}+2 \delta(t-6), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

(i) Find the solution of the new initial value problem.
(ii) Are there jumps in the velocity of the mass at the time $t=3$ and $t=6$? If yes, write down the sudden change in velocity respectively.

Math150-L2 Formula Sheet

Integration Formulas

For any polynomial $p(x)$,

$$
\begin{array}{r}
\int p(x) e^{a x} d x=\frac{1}{a} p(x) e^{a x}-\frac{1}{a^{2}} p^{\prime}(x) e^{a x}+\frac{1}{a^{3}} p^{\prime \prime}(x) e^{a x}-\cdots \quad(\text { signs alternate: }+-+-\cdots .) \\
\int p(x) \sin a x d x=-\frac{1}{a} p(x) \cos a x+\frac{1}{a^{2}} p^{\prime}(x) \sin a x+\frac{1}{a^{3}} p^{\prime \prime}(x) \cos a x-\cdots \quad(\text { signs alternate in }:-++--++--\cdots .) \\
\int p(x) \cos a x d x=\frac{1}{a} p(x) \sin a x+\frac{1}{a^{2}} p^{\prime}(x) \cos a x-\frac{1}{a^{3}} p^{\prime \prime}(x) \sin a x-\cdots \quad(\text { signs alternate in pairs: }++--++--\cdots .)
\end{array}
$$

Laplace Transform Table

	$f(t)=\mathcal{L}^{-1}\{F(s)\}$	$F(s)=\mathcal{L}\{f(t)\}$
1	1	$\frac{1}{s}, \quad s>0$
2	$e^{a t}$	$\frac{1}{s-a}, \quad s>a$
3	$t^{n}, \quad n=$ positive integer	$\frac{n!}{s^{n+1}}, \quad s>0$
4	$t^{p}, \quad p>-1$	$\frac{\Gamma(p+1)}{s^{p+1}}, \quad s>0$
5	$\sin a t$	$\frac{a}{s^{2}+a^{2}}, \quad s>0$
6	$\cos a t$	$\frac{s}{s^{2}+a^{2}}, \quad s>0$
7	$\sinh a t$	$\frac{a}{s^{2}-a^{2}}, \quad s>\|a\|$
8	$\cosh a t$	$\frac{s}{s^{2}-a^{2}}, \quad s>\|a\|$
9	$e^{a t} \sin b t$	$\frac{b}{(s-a)^{2}+b^{2}}, \quad s>a$
10	$e^{a t} \cos b t$	$\frac{s-a}{(s-a)^{2}+b^{2}}, \quad s>a$
11	$t^{n} e^{a t}, \quad n=$ positive integer	$\frac{n!}{(s-a)^{n+1}}, \quad s>0$
12	$u_{c}(t)$	$\frac{e^{-c s}}{s}, \quad s>0$
13	$u_{c}(t) f(t-c)$	$e^{-c s} F(s)$
14	$e^{c t} f(t)$	$F(s-c)$
15	$f(c t)$	$\frac{1}{c} F\left(\frac{s}{c}\right), \quad c>0$
16	$\int_{0}^{t} f(t-\tau) g(\tau) d \tau$	$F(s) G(s)$
17	$\delta(t-c)$	$e^{-c s}$
18	$f^{(n)}(t)$	$s^{n} F(s)-s^{n-1} f(0)-\cdots$
19	$(-t)^{n} f(t)$	$F^{(n)}(s)$

