HKUST

MATH150 Introduction to Differential Equations

Final Examination (Version A)	Name:
25th May 2006	Student I.D.:
8:30am–10:30am	Tutorial Section:

Directions:

- Write your name, ID number, and tutorial section in the space provided above.
- DO NOT open the exam until instructed to do so.
- When instructed to open the exam, check that you have, in addition to this cover page, 8 pages of questions, printed on both sides of each page.
- Turn off all mobile phones and pagers during the examination.
- This is a closed book examination.
- You are advised to try the problems you feel more comfortable with first.
- There are 9 multiple choice questions. DO NOT guess wildly! If you do not have confidence in your answer leave the answer box blank. Each incorrectly answered question will result in a 0.5 point deduction.
- For the short and long questions, you must show the working steps of your answers in order to receive all points.
- Unless stated otherwise, you may assume that all units are in SI system.
- Cheating is a serious offense. Students caught cheating are subject to a zero score as well as additional penalties.

Question No.	Points	Out of
Q. 1-9		36
Q. 10-13		34
Q. 14		12
Q. 15		18
Total Points		100

Part I: Each correct answer <u>in the answer box</u> for the following 9 multiple choice questions is worth <u>4 points</u>. DO NOT guess wildly! If you do not have confidence in your answer leave the answer box blank. Each incorrectly answered question will result in a 0.5 point deduction.

Question	1	2	3	4	5	6	7	8	9	Total
Answer										

1. Suppose that the population p(t) of certain field mice after t years from now is described by the initial value problem

$$\frac{dp}{dt} = 0.5p - 500$$
, $p(0) = 800$.

Find the time when the population just become extinct; i.e., the time T (in years) when p(T) = 0.

(a)
$$1.2476$$
 (b) 1.8637 (c) 2.7645 (d) 3.2189 (e) 4.2537

2. For which of the following functions M(x, y) is the equation

$$M(x,y) + (x^{3} + 8y - 3x)\frac{dy}{dx} = 0$$

an exact equation?

(a)
$$x(y^2+1)$$
 (b) $3y(x^2-1)$ (c) x^2-2y^2 (d) x^2+y (e) xy

3. By the method of undetermined coefficients, there is a particular solution of the equation

$$y'' - 4y' - 5y = (1 + 2t^2 - t^3)e^{5t}$$

which has the form $u = p(t)e^{5t}$, where p(t) is a polynomial. The degree of p(t) is:

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5

4. A periodic external force $F(t) = 9\cos(\omega t)$ is applied to a undamped spring-mass system so that the equation of motion of the mass is

$$2y'' + 6y = 9\cos(\omega t) \; .$$

Which of the following values of ω will cause an unbounded oscillation (resonance) of the mass?

(a)
$$\frac{2}{3}$$
 (b) 3 (c) $\sqrt{3}$ (d) $\sqrt{\frac{2}{3}}$ (e) none of the above

5. Which of the following differential equations has $e^{-2t} \cos \sqrt{3}t$ and $e^{-2t} \sin \sqrt{3}t$ as a pair of fundamental solutions?

(a)
$$y'' + 2y' + 3y = 0$$
 (b) $y'' - 2y' + 3y = 0$ (c) $y'' + 2y' - 3y = 0$
(d) $y'' + 4y' - 7y = 0$ (e) $y'' + 4y' + 7y = 0$

6. The Wronskian $W(y_1, y_2)(t)$ of a pair of fundamental solutions $y_1(t), y_2(t)$ of the equation

$$t^2y'' - 3y' + (1+t^2)y = 0$$

has value $W(y_1, y_2)(3) = 3$ at t = 3. Find the value $W(y_1, y_2)(6)$.

(a) $3\sqrt{e}$ (b) $\sqrt{3}e$ (c) 3e (d) $3e^2$ (e) 6e

7. Find the Laplace transform of the piecewise defined function

$$f(t) = \begin{cases} t, & 0 \le t < 3, \\ 2t - 3, & t \ge 3 \end{cases}$$

(a)
$$\frac{3e^{-3s}(1-s)}{s^2}$$
 (b) $\frac{3-3s}{s^2}$ (c) $\frac{1+2e^{-3s}-3s}{s^2}$
(d) $\frac{1+e^{-3s}(2s-3)}{s^2}$ (e) $\frac{1+e^{-3s}}{s^2}$

8. Find the Laplace transform $Y(s) = \mathcal{L} \{y(t)\}$ of the solution of the following initial value problem:

$$2y'' - 4y' + 5y = e^{-3t}\cos 2t, \quad y(0) = -1, \quad y'(0) = 2.$$

(a)
$$Y(s) = \frac{-2s+2}{2s^2-4s+5} + \frac{s+3}{(2s^2-4s+5)(s^2+6s+13)}$$

(b) $Y(s) = \frac{-2s+8}{2s^2-4s+5} + \frac{s+3}{(2s^2-4s+5)(s^2+6s+13)}$
(c) $Y(s) = \frac{-2s+4}{2s^2-4s+5} + \frac{2}{(2s^2-4s+5)(s^2+6s+13)}$
(d) $Y(s) = \frac{-2s}{2s^2-4s+5} + \frac{s+3}{(2s^2-4s+5)(s^2+6s+13)}$

(e)
$$Y(s) = \frac{-2s+3}{2s^2-4s+5} + \frac{2}{(2s^2-4s+5)(s^2+6s+13)}$$

9. Which of the following convolution integral is a solution of the initial value problem

$$\frac{d^2y}{dt^2} + 4y = 3u_\pi(t)f(t-\pi) , \quad y(0) = 0, \quad y'(0) = 0$$

where $u_{\pi}(t)$ is a unit step function.

(a)
$$y(t) = \int_0^t \frac{3}{2} \sin 2\tau f(t-\tau) d\tau$$

(b) $y(t) = \int_0^t \frac{3}{2} \cos 2(t-\tau) f(\tau) d\tau$
(c) $y(t) = \int_0^t \frac{3}{2} \delta(t-\tau+\pi) \sin 2(t-\tau) f(\tau) d\tau$
(d) $y(t) = \int_0^t \frac{3}{2} u_\pi(t-\tau) \sin 2(t-\tau) f(\tau) d\tau$
(e) $y(t) = \int_0^t \frac{3}{2} u_\pi(t) \sin 2t f(t-\tau) d\tau$

Part II: Answer each of the following 4 short questions. Show all your work for full credit.

Question	10	11	12	13	Total
Points	/8	/8	/8	/10	/34

10. [8 pts] The homogeneous equation (1-t)y"+ty'-y = 0 has two solutions y₁(t) = t and y₂(t) = e^t.
(a) Find the Wronskian of y₁ and y₂.

Answer: The Wronskian is $W(y_1, y_2)(t) =$ [2 pts]

(b) Find a particular solution of the nonhomoegeneous equation

$$(1-t)y'' + ty' - y = 2(t-1)^3 e^{-t}$$

which has the form $y(t) = tu(t) + e^t v(t)$ for some functions u(t) and v(t). (You may leave you answers in terms of some integrals.)

11. [8 pts] Find the solution of the boundary value problem: y'' + y = 2x, y(0) = 2, $y(\frac{\pi}{2}) = 1$.

Answer: The solution is y(x) = _____

- 12. [8 pts] After extending the function defined by $f(x) = x^3$, for $-2 \le x \le 2$, to a function of period 4 on the whole real line, the resulting periodic function has a Fourier series expansion, containing only sine terms.
 - (a) Find this Fourier series. (Hint: use an appropriate integration formula in the formula sheet.)

(b) At x = 2, the Fourier series converges to the value _____. [2 pts]

13. $[10 \ pts]$ The heat equation problem

$$\begin{split} &\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t} \\ &u(0,t) = u(2\pi,t) = 0, \quad u(x,0) = 3x, \quad (0 < x < 2\pi) \end{split}$$

can be solved by considering u(x,t) = X(x)T(t) as a product.

(a) Show that the function $e^{-\lambda^2 t} \sin \lambda x$ satisfies the heat equation $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$ for any constant λ .

(b) Show that there is a positive sequence λ_n so that $u_n(x,t) = e^{-\lambda_n^2 t} \sin \lambda_n x$ satisfies the condition $u(0,t) = u(2\pi,t) = 0.$

Answer: $\lambda_n = ___$, where n = 1, 2, 3, ... [3 *pts*]

(c) Using superposition of these basic solutions, i.e., $\sum_{n=1}^{\infty} c_n u_n(x,t)$, and the Fourier sine series of u(x,0) = 3x, find the solution of the heat equation problem.

 $[2 \ pts]$

Part III: Answer the following two long questions.

14. [12 pts] A damped forced vibration of a mass is described by the following differential equation:

$$y'' + 4y' + 3y = 3\sin t.$$

(a) Find the general solution of the equation.

Answer: The general solution is y(t) = [8 pts]

(b) Explain why the motion of the mass is approximately a damped free vibration as $t \to +\infty$. [2 pts]

⁽c) Find the amplitude of the damped free vibration which approximates the motion of the mass for large t. [2 pts]

15. [18 pts] A damped forced vibration of a mass is described by the initial value problem

$$y'' + 3y' + 2y = 4e^{-5t}, \qquad y(0) = 0, \quad y'(0) = 0.$$

(a) Solve the initial value problem by the method of Laplace transform. [7 pts]

(b) Suppose the external force function $4e^{-5t}$ is cut off at t = 3, and an impluse force is applied to the mass at t = 6, so that the equation of motion is given by

$$y'' + 3y' + 2y = 4e^{-5t} - 4u_3(t)e^{-5t} + 2\delta(t-6), \qquad y(0) = 0, \quad y'(0) = 0.$$

(i) Find the solution of the new initial value problem.

(ii) Are there jumps in the velocity of the mass at the time t = 3 and t = 6? If yes, write down the sudden change in velocity respectively. [3 pts]

[8 pts]

Math150-L2 Formula Sheet

Integration Formulas For any polynomial p(x),

$$\int p(x)e^{ax} dx = \frac{1}{a}p(x)e^{ax} - \frac{1}{a^2}p'(x)e^{ax} + \frac{1}{a^3}p''(x)e^{ax} - \cdots \text{ (signs alternate: } + - + - \cdots \text{.)}$$

$$\int p(x)\sin ax \, dx = -\frac{1}{a}p(x)\cos ax + \frac{1}{a^2}p'(x)\sin ax + \frac{1}{a^3}p''(x)\cos ax - \cdots \text{ (signs alternate in : } - + + - - + + - - \cdots \text{.)}$$

$$\int p(x)\cos ax \, dx = \frac{1}{a}p(x)\sin ax + \frac{1}{a^2}p'(x)\cos ax - \frac{1}{a^3}p''(x)\sin ax - \cdots \text{ (signs alternate in pairs: } + - - + + - - \cdots \text{.)}$$

Laplace Transform Table

	$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$
1	1	$\frac{1}{s}$, $s > 0$
2	e^{at}	$\frac{1}{s-a}, \qquad s > a$
5	t^n , $n = $ positive integer	$\frac{n!}{s^{n+1}}, \qquad s > 0$
L	$t^p, p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}, \qquad s > 0$
5	$\sin at$	$\frac{a}{s^2 + a^2}, \qquad s > 0$
5	$\cos at$	$\frac{s}{s^2 + a^2}, \qquad s > 0$
,	$\sinh at$	$\frac{a}{s^2 - a^2}, \qquad s > a $
3	$\cosh at$	$\frac{s}{s^2 - a^2}, \qquad s > a $
)	$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}, \qquad s > a$
.0	$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, \qquad s>a$
.1	$t^n e^{at}$, $n = \text{positive integer}$	$\frac{n!}{(s-a)^{n+1}}, \qquad s>0$
2	$u_c(t)$	$\frac{e^{-cs}}{s}, \qquad s > 0$
3	$u_c(t) f(t-c)$	$e^{-cs} F(s)$
4	$e^{ct} f(t)$	F(s-c)
.5	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right), c > 0$
.6	$\int_0^t f(t- au) g(au) d au$	F(s) G(s)
.7	$\delta(t-c)$	e^{-cs}
18	$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$
19	$(-t)^n f(t)$	$F^{(n)}(s)$