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Abstract. High-order gas-kinetic scheme (HGKS) has been well-developed in the past
years. Abundant numerical tests including hypersonic flow, turbulence, and aeroa-
coustic problems, have been used to validate its accuracy, efficiency, and robustness.
However, there are still rooms for its further improvement. Firstly, the reconstruction
in the previous scheme mainly achieves a fifth-order accuracy for the point-wise val-
ues at a cell interface due to the use of standard WENO reconstruction, and the slopes
of the initial non-equilibrium states have to be reconstructed from the cell interface
values and cell averages again. The same order of accuracy for slopes as the original
WENO scheme cannot be achieved. At the same time, the equilibrium state in space
and time in HGKS has to be reconstructed separately. Secondly, it is complicated to get
reconstructed data at Gaussian points from the WENO-type method in high dimen-
sions. For HGKS, besides the point-wise values at the Gaussian points it also requires
the slopes in both normal and tangential directions of a cell interface. Thirdly, there ex-
ists visible spurious overshoot/undershoot at weak discontinuities from the previous
HGKS with the standard WENO reconstruction. In order to overcome these difficul-
ties, in this paper we use an improved reconstruction for HGKS. The WENO with
adaptive order (WENO-AO) [2] method is implemented for reconstruction. Equipped
with WENO-AO reconstruction, the performance enhancement of HGKS is fully ex-
plored. WENO-AO not only provides the interface values, but also the slopes. In other
words, a whole polynomial inside each cell is provided by the WENO-AO reconstruc-
tion. The available polynomial may not benefit to the high-order schemes based on the
Riemann solver, where only points-wise values at the cell interface are needed. But,
it can be fully utilized in the HGKS. As a result, the HGKS becomes simpler than the
previous one with the direct implementation of cell interface values and their slopes
from WENO-AO. The additional reconstruction of equilibrium state at the beginning
of each time step can be avoided as well by dynamically merging the reconstructed
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non-equilibrium slopes. The new HGKS essentially releases or totally removes the
above existing problems in the previous HGKS. The accuracy of the scheme from 1D
to 3D from the new HGKS can recover the theoretical order of accuracy of the WENO
reconstruction. In the two- and three-dimensional simulations, the new HGKS shows
better robustness and efficiency than the previous scheme in all test cases.

AMS subject classifications: 76N15, 35L65, 35Q20, 35Q30, 76M12

Key words: High-order finite volume scheme, gas-kinetic scheme, WENO reconstruction, high-
order Navier-Stokes solver.

1 Introduction

The gas-kinetic scheme (GKS) targets on the Euler and Navier-Stokes solutions under
the finite volume framework [43]. Its interface flux is based on a time evolution so-
lution of the kinetic model equation, such as the Bhatnagar-Gross-Krook (BGK) model
[4]. High-order gas kinetic scheme (HGKS) has been developed systematically in the
past decade [20]. In comparison with traditional Riemann solver based high-order CFD
methods [38, 39], the distinguishable points of HGKS include the followings: (i) The
time evolving gas distribution function at a cell interface provides a multiple scale flow
physics from the kinetic particle transport to the hydrodynamic wave propagation, which
unifies the evolution from the upwind flux vector splitting to the central difference Lax-
Wendroff type discretization. (ii) Both inviscid and viscous fluxes are obtained from the
moments of a single time-dependent gas distribution function. (iii) The flux in GKS has
the multi-dimensional properties [46], where both normal and tangential derivatives of
flow variables around a cell interface contribute the time evolution solution of the gas
distribution function. (iv) The time evolving gas distribution function at the cell inter-
face not only provides the flux function, but also the time evolution of macroscopic flow
variables. The updated interface flow variables at the beginning of next time step can be
directly used to construct higher-order compact schemes [28, 29, 49]. (v) Different from
the Runge-Kutta (RK) time discretization for achieving high-order temporal accuracy, the
multi-stage multi-derivative (MSMD) method provides a higher-order time evolution so-
lution with less middle stages due to the existence of the time-derivative of the interface
flux function in HGKS. Inspired initially by the higher-order generalized Riemann prob-
lem [18], a two-stage fourth-order GKS is proposed [31]. (vi) The multi-scale unified GKS
(UGKS) for the whole flow regime from rarefied to continuum one have been developed
as well [11, 21, 25]. Recently a family of HGKS have been constructed with only two or
three stages for a fifth-order time accurate solution [13]. Based on the same fifth-order
WENO reconstruction, the performance of HGKS shows great advantages in terms of ef-
ficiency, accuracy, and robustness compared with traditional higher-order schemes with
Riemann solver and RK time-stepping techniques. Especially, HGKS can capture flow
structures, such as shear instabilities, significantly better than the schemes based on the
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Riemann solver due to the multi-dimensional property in GKS flux function. Among the
existing HGKS, the two-stage fourth-order method [31] seems to be an optimal choice
in practical computation, which is both efficient and accurate, and is as robust as a
second-order scheme. It has been applied to compressible multi-component flow [26],
direct simulation of compressible homogeneous turbulent flow [30], and hypersonic non-
equilibrium multi-temperature flow [6]. Besides, HGKS has been successfully extended
in the DG [23, 32, 33] and CPR [47] frameworks.

However, there are still rooms for the further improvement of HGKS. Firstly, the re-
construction procedure proposed in [24] is still adopted in most of the existing HGKS
[12, 13, 26, 27, 30, 31]. Here the WENO-JS [14] and WENO-Z [5] reconstructions are di-
rectly implemented for the construction of the interface values for the non-equilibrium
states. Then, a simple third-order reconstruction is adopted to obtain the derivatives of
flow variables at both sides of the interface by using the WENO-based reconstructed cell
interface values and cell averages. Rigorously it achieves only a third-order spatial accu-
racy and is consistent with the originally designed third-order scheme [24]. Certainly, in
smooth test cases higher order accuracy can be achieved, because the equilibrium state in-
stead of the above reconstructed non-equilibrium one contributes mostly in the final flux
transport. When the flow has discontinuities, the order of accuracy cannot be properly
defined. However, in special cases, such as low Reynolds number flow computation with
both smooth flow and strong shocks, the above third-order reconstruction does suffer the
decrease of order of accuracy. Actually, the function from the large stencils used in the
fifth-order reconstruction has not been fully utilized in the above approach. Secondly,
some spurious overshoots/undershoots have been observed in some test cases. They
typically appear around the corner of weak discontinuities. Thirdly, for the higher-order
tangential reconstruction at a cell interface, the optimal weights for WENO-JS/Z recon-
struction might become non-positive at the targeted Gaussian points. For example, it is
negative for the central point if three Gaussian points are used at a cell interface. Theoret-
ically, it is a general problem for many other higher order methods as well under the finite
volume framework. A way to resolve this problem is to use the splitting technique [36].
But, it increases the complexity of the algorithm and the robustness of the scheme de-
creases with the existence of strong shocks. Overall, the HGKS has a high requirement
on the initial reconstruction because the derivatives of flow variables at each Gaussian
point are needed as well. The above third-order reconstruction for non-equilibrium state
becomes a common choice in previous HGKS [13].

Instead of concentrating on the reconstruction of interface values, there exists another
class of WENO methods to reconstruct a complete polynomial inside each cell based
on all stencils [2, 9, 17, 50]. One of the outstanding strategies is named as the WENO
with adaptive order (WENO-AO) method [2]. Using the same stencils from original
WENO scheme, the WENO-AO could reconstruct a polynomial with fifth-order accuracy
in smooth region, and automatically approach to the smoothest quadratic sub-stencil in
discontinuous region. The WENO-AO is more suitable for HGKS to get the initial recon-
struction under finite volume framework on Cartesian mesh. The benefits include the
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followings. (i) The linear weights at the locations of all Gaussian-points become positive.
They have fixed values in [2] and work properly in all test cases in present paper. There
is no need to include more free parameter. (ii) The non-equilibrium states, including
point-wise values and slopes, can be reconstructed at once through a unique polynomial
inside each cell, and they keep the same spatial order of accuracy. The HGKS bene-
fits more from the WENO-AO reconstruction than the Riemann solver-based schemes,
where only point-wise interface values are needed. (iii) The previous HGKS needs extra
reconstruction for the equilibrium state across the cell interface with high-order spatial
accuracy in smooth region. In the new approach, a unified way is adopted to model the
equilibrium state with the same order of accuracy [42] from the non-equilibrium ones
directly through particle collision dynamics. The absence of additional reconstruction
for the equilibrium state makes the scheme be simpler, especially for three dimensional
flow computations. (iv) The new scheme becomes more robust than the previous one
due to up-winding mechanism in the construction of the equilibrium state which has a
upwinding biased weighting functions. As a result, the scheme avoids oscillation around
weak discontinuities due to the consistent reconstructions of both the equilibrium and the
non-equilibrium states from a single initial WENO-AO reconstruction. (v) The previous
HGKS obtains accurate results in smooth region [30, 31] mainly due to the linear recon-
struction for the equilibrium state across the cell interface. The new reconstruction for
the equilibrium state can recover the previous result in the smooth region and preserve
the advantage of the original HGKS.

In this paper, the HGKS with WENO-AO reconstruction will be developed. In section
2, a review of the conventional HGKS framework is presented. The contents include the
time marching strategy, the GKS flux function, and the original WENO reconstructions
from 1-D to 3-D cases. Then, the two-stage fourth-order GKS is introduced [13,31]. In sec-
tion 3, the new HGKS with WENO-AO reconstruction is presented and the comparison
with the previous one is included. Section 4 provides inviscid and viscous test cases from
one-dimensional to three dimensional flows. The accuracy, efficiency, and robustness of
the scheme are validated. The last section is the conclusion.

2 Review of high-order gas-kinetic scheme (HGKS)

This paper focuses on the initial reconstruction for HGKS. The reconstruction techniques
from 1-D to 3-D are presented in detail. However, for the flux evaluation and temporal
discretization in HGKS, in order to clearly present the idea only one dimensional formu-
lation will be fully reviewed. The multidimensional flux function in 2D and 3D can be
found in [44].

The conservation laws

Wt+∇·F(W)=0, W(0,x)=W0(x), x∈Ω⊆R
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can be written as
Wt=−∇·F(W),

for the conservative variables W and the corresponding flux F. With the spatial discretiza-
tion Wh and appropriate evaluation −∇·F(W), the original PDEs become a system of
ordinary differential equation (ODE)

Wh
t =L(Wh), t= tn, (2.1)

where L(Wh) is the total flux transport across all cell boundaries of a finite volume.

2.1 Two-stage fourth-order temporal discretization

The two-stage fourth-order time marching scheme can be used to solve the above initial
value problem, which is given by

W∗=Wn+
1

2
∆tL(Wn)+

1

8
∆t2 ∂

∂t
L(Wn), (2.2)

Wn+1=Wn+∆tL(Wn)+
1

6
∆t2

( ∂

∂t
L(Wn)+2

∂

∂t
L(W∗)

)

, (2.3)

where ∂L(W)/∂t is the time derivative of spatial operator. It was derived independently
in [18] for hyperbolic conservation laws. The above temporal discretization has been
used in many higher-order GKS [6, 12, 27, 30, 31].

Remark 2.1. The well established numerical scheme for ODE can be used to solve the
Eq. (2.1) by several ways. If we define

W
(m)
t (tn)=

dmWn

dtm
=

dm−1L(Wn)

dtm−1
=L(m−1),

a mth-order time marching scheme can be constructed straightforwardly if the time deriva-
tives of L(m) up to (m−1)th-order are provided. However, for the non-linear system only
a few low order derivatives can be obtained, such as L for the approximate Riemann
solver, L(1) for the generalized Riemann problem (GRP) solver [19] and the 2nd-order
GKS flux function, and L(2) for the third-order GKS flux function [20]. The computational
cost grows tremendously if higher-order derivatives are required, such as the 4th-order
GKS flux function with the possible evaluation of L(3) [22].

Another approach, which is similar to RK method, is to introduce the middle stages
and update the solution at tn+1 with a linear combination of L and their derivatives in
the multiple stages, which is named the multi-stage multi-derivative (MSMD) method. If
L is used only, the traditional RK method is recovered. Many middle stages are required
in RK method to achieve higher-order temporal accuracy. For example, 6 stages are the
minimum requirements for a 5th-order RK method [10]. Recent research reveals that
the usage of RK method with the time-independent L alone may generate an inconsis-
tent higher-order method [3]. With the inclusion of L(1), the multi-stage two-derivative
method can be constructed, such as the above two-stage fourth-order method.
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For one dimensional conservation laws, Eq. (2.1) can be written as the following semi-
discrete finite volume form

dWn
i

dt
=− 1

∆x
(Fn

i+1/2−Fn
i−1/2) :=L(Wn

i ), (2.4)

where L(Wi) is the numerical operator for spatial difference of the flux functions. For
a time-dependent flux function Fi±1/2 = Fi±1/2(t), the numerical fluxes and their time
derivatives, such as L(Wn

i ) and ∂L(Wn
i )/∂t, can be evaluated as follows

L(Wn
i )=− 1

∆x
(Fi+1/2(W

n,tn)−Fi−1/2(W
n,tn)),

∂

∂t
L(Wn

i )=− 1

∆x
(∂tFi+1/2(W

n,tn)−∂tFi−1/2(W
n,tn)).

According to Eq. (2.2), W∗
i at time t∗ can be updated. With the similar procedure, the

numerical fluxes and their time derivatives at the intermediate stage can be constructed
as well, where ∂L(W∗

i )/∂t is given by

∂

∂t
L(W∗

i )=− 1

∆x
(∂tFi+1/2(W

∗,t∗)−∂tFi−1/2(W
∗,t∗)).

Then, Wn+1
i can be updated through Eq. (2.3). In the following, the detailed gas-kinetic

flux function Fi±1/2(t) of HGKS is presented.

2.2 On the construction of time-dependent evolution solution at a cell
interface

The one-dimensional gas-kinetic BGK equation [4] can be written as

ft+u·∇ f =
g− f

τ
, (2.5)

where f is the gas distribution function, g is the corresponding equilibrium state, and τ
is the collision time.

The equilibrium state is a Maxwellian distribution

g=ρ
( λ

π

)
K+1

2
e−λ((u−U)2+ξ2), (2.6)

where λ=m0/2kBT, and m0,kB,T represent the molecular mass, the Boltzmann constant,
and temperature, K is the number of internal degrees of freedom, i.e. K=(3−γ)/(γ−1)
for one-dimensional flows, and γ is the specific heat ratio. The collision term satisfies the
following compatibility condition

ˆ

g− f

τ
ψψψdΞ=0, (2.7)
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where ψψψ=(1,u, 1
2(u

2+ξ2)), dΞ=dudξ1 ···dξK, the internal variable ξ2 = ξ2
1+ξ2

2+···+ξ2
K.

The connections between macroscopic mass ρ, momentum ρU, and energy ρE with the
distribution function f are





ρ
ρU
ρE



=

ˆ

ψψψ f dΞ. (2.8)

Based on the Chapman-Enskog expansion for BGK equation [7], the gas distribution
function in the continuum regime can be expanded as

f = g−τDug+τDu(τDu)g−τDu[τDu(τDu)g]+··· ,
where Du=∂/∂t+u·∇. By truncating on different orders of τ, the corresponding macro-
scopic equations can be derived. For the Euler equations, the zeroth order truncation is
taken, i.e. f = g. For the Navier-Stokes equations, the first order truncated distribution
function is

f = g−τ(ugx+gt).

Taking moments of the BGK equation (2.5) and integrating with respect to space, the
semi-discrete form (2.4) for the update of macroscopic variables could be recovered. The
numerical fluxes Fi+1/2(t) can be obtained as follows

Fi+1/2(t)=

ˆ

ψψψu f (xi+1/2,t,u,ξ)dΞ, (2.9)

where f (xi+1/2,t,u,ξ) is the gas distribution function at the cell interface. In order to
construct the numerical fluxes, the integral solution of BGK equation (2.5) is used

f (xi+1/2,t,u,ξ)=
1

τ

ˆ t

0
g(x′,t′,u,ξ)e−(t−t′)/τdt′+e−t/τ f0(−ut,u,ξ), (2.10)

where xi+1/2=0 is the location for flux evaluation, and xi+1/2=x′+u(t−t′) is the trajectory
of particle. Here f0 is the initial gas distribution function and g is the corresponding
equilibrium state. The integral solution mimics a physical process from the particle free
transport in f0 for the kinetic scale physics to the hydrodynamic flow evolution in the
integral of g term. The flow behavior at cell interface depends on the ratio of time step to
the local particle collision time ∆t/τ.

To evaluate a time evolution solution at a cell interface, the following notations are
introduced first

a≡ (∂g/∂x)/g= gx /g, A≡ (∂g/∂t)/g= gt /g,

where g is the equilibrium state. The variables (a,A), denoted by ω, depend on particle
velocity in the form of [43]

ω=ω1+ω2u+ω3
1

2
(u2+ξ2),
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in 1D case. For the kinetic part of the integral solution in Eq. (2.10), the initial gas distri-
bution function can be constructed as

f0= f l
0(x,u)H(x)+ f r

0(x,u)(1−H(x)),

where H(x) is the Heaviside function. Here f l
0 and f r

0 are the initial gas distribution
functions on both sides of a cell interface, which have one to one correspondence with
the initially reconstructed macroscopic variables. For the 2nd-order scheme, the Taylor
expansion for the gas distribution function in space around x=0 is expressed as

f k
0 (x)= f k

G(0)+
∂ f k

G

∂x
x, (2.11)

for k= l,r. According to the Chapman-Enskog expansion, f k
G has the form

f k
G(0)= gk(0)−τ(aku+Ak)gk(0), (2.12)

where gl ,gr are the equilibrium states with the form in Eq. (2.6) which can be fully deter-
mined from the reconstructed macroscopic variables Wl,Wr at the left and right sides of
a cell interface,

ˆ

ψψψgldΞ=Wl,

ˆ

ψψψgrdΞ=Wr. (2.13)

Substituting Eq. (2.11) and Eq. (2.12) into Eq. (2.10), the kinetic part in the integral solution
can be written as

e−t/τ f k
0 (−ut,u,ξ)= e−t/τ gk[1−τ(aku+Ak)−taku], (2.14)

where the coefficients ak,··· ,Ak, k= l,r are defined according to the expansion of gk. Note
that higher-order derivatives about gk have been dropped because we target on the N-S
solutions. After determining the kinetic part f0, the equilibrium state g in the integral
solution Eq. (2.10) can be expanded in space and time as well

g= gc+
∂gc

∂x
x+

∂gc

∂t
t, (2.15)

where gc is the Maxwellian equilibrium state located on the interface, which can be de-
termined through the compatibility condition Eq. (2.7),

ˆ

ψψψgcdΞ=Wc=

ˆ

u>0
ψψψgldΞ+

ˆ

u<0
ψψψgrdΞ, (2.16)

where Wc are the macroscopic flow variables for the determination of the equilibrium
state gc. Substituting Eq. (2.15) into Eq. (2.10), the hydrodynamic part in the integral
solution can be written as

1

τ

ˆ t

0
g(x′,t′,u,ξ)e−(t−t′)/τdt′=C1gc+C2acugc+C3Acgc, (2.17)
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where the coefficients ac,Ac are defined from the expansion of the equilibrium state gc.
The coefficients Ci, i=1,2,3 in Eq. (2.17) are given by

C1=1−e−t/τ, C2=(t+τ)e−t/τ−τ, C3= t−τ+τe−t/τ .

The coefficients in Eq. (2.14) and Eq. (2.17) can be determined by the spatial derivatives
of macroscopic flow variables and the compatibility condition as follows

〈a〉= ∂W

∂x
=Wx, 〈A+au〉=0, (2.18)

where

〈(···)〉=
ˆ

ψψψ(···)gdΞ.

Finally, the second-order time dependent gas distribution function at a cell interface is
[43]

f (xi+1/2,t,u,ξ)=(1−e−t/τ)gc+((t+τ)e−t/τ−τ)ugc
x

+(t−τ+τe−t/τ)gc
t

+e−t/τ[gl−(τ+t)ugl
x−τgl

t]H(u)

+e−t/τ[gr−(τ+t)ugr
x−τgr

t ](1−H(u))

=(1−e−t/τ)gc+((t+τ)e−t/τ−τ)acugc

+(t−τ+τe−t/τ)Acgc

+e−t/τgl [1−(τ+t)al u−τAl]H(u)

+e−t/τgr[1−(τ+t)ar u−τAr](1−H(u)). (2.19)

The details for the evaluation of all terms in the above equation are given in Appendix B.

2.3 On the computation of flux

Eq. (2.19) provides a time-dependent gas distribution function, which can be used to
evaluate the fluxes for the macroscopic flow variables through Eq. (2.9). In order to ob-
tain Fi±1/2(W) and ∂tFi±1/2(W) at both tn and t∗ = tn+∆t/2, the flux function can be
approximated as a linear function of time within a time interval.

Let’s define the following notation,

Fi+1/2(W
n,δ)=

ˆ tn+δ

tn

Fi+1/2(W
n,t)dt.

At tn=0, the flux in the time interval [tn,tn+∆t] is expanded as the following linear form

Fi+1/2(W
n,t)=Fn

i+1/2+t∂tF
n
i+1/2.
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The coefficients Fn
i+1/2 and ∂tF

n
i+1/2 can be fully determined as follows

Fi+1/2(W
n,tn)∆t+

1

2
∂tFi+1/2(W

n,tn)∆t2 =Fi+1/2(W
n,∆t),

1

2
Fi+1/2(W

n,tn)∆t+
1

8
∂tFi+1/2(W

n,tn)∆t2 =Fi+1/2(W
n,∆t/2).

By solving the linear system, we have

Fi+1/2(W
n,tn)=(4Fi+1/2(W

n,∆t/2)−Fi+1/2(W
n,∆t))/∆t,

∂tFi+1/2(W
n,tn)=4(Fi+1/2(W

n,∆t)−2Fi+1/2(W
n,∆t/2))/∆t2 .

(2.20)

Remark 2.2. For inviscid smooth flow with τ=0, the time evolution solution in Eq. (2.19)
reduces to

f (xi+1/2,t,u,ξ)= gc+gc
t t= gc+Acgct. (2.21)

The coefficients in Eq. (2.20) can be simplified as

Fi+1/2(W
n,tn)=

ˆ

ψψψugc(n)dΞ,

∂tFi+1/2(W
n,tn)=

ˆ

ψψψugc
t (n)dΞ,

which are equivalent to the formulation of F and Ft through the macroscopic Euler equa-
tions.

Remark 2.3. For smooth viscous flow, the full time dependent solution could be simpli-
fied as [43],

f (xi+1/2,t,u,ξ)= gc−τ(acu+Ac)gc+Acgct (2.22)

under the assumptions of gl=gr=gc,gl
x=gr

x=gc
x. The above gas-kinetic solver for smooth

flow has less numerical dissipations than the full GKS solver in Eq. (2.19) with the inclu-
sion of possible discontinuities. The scheme has been used for the purely smooth flow
simulations [45]. The above solver has only first-order time accuracy for the dissipative
terms in the NS equations [31].

Up to now, the 1-D HGKS presents an evolution solution from the initial gl,r,c and

gl,r,c
x which are based on Wl,r,c and Wl,r,c

x obtained through reconstruction. For 2-D and
3-D HGKS, the formulation of spatial operators and fluxes could be found in [30, 31].

2.4 Previous GKS with fifth-order WENO reconstruction

In the following, we first review the conventional reconstruction procedure in GKS for
1-D case [24, 31], then extend it to 2-D and 3-D cases [30, 31].
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2.4.1 Reconstruction of non-equilibrium states gl,r (W l,r) by WENO(Z)

The key idea of WENO is to construct the desired values Q on targeted locations by the
linear combination of the sub-stencil values through the optimal weights. Q could be
either conservative variable, characteristic variable, or primitive variable.

To reconstruct the left interface value Ql
i+1/2 at the cell interface xi+1/2, three sub-

stencils are selected

S0={Ii−2, Ii−1, Ii}, S1={Ii−1, Ii, Ii+1}, S2={Ii, Ii+1, Ii+2}.

The quadratic polynomials pr3
k (x) corresponding to the sub-stencils Sk, k=0,1,2 are con-

structed by requiring

1

∆x

ˆ

Ii−j−k−1

pr3
k (x)dx=Qi−j−k−1, j=−1,0,1,

where Q represents the cell-averaged quantity. Each of them can achieve a third-order
spatial accuracy r=3 in smooth case. For the reconstructed polynomials, the point value
at the cell interface xi+1/2 is given in terms of the cell averages as follows

pr3
0 (xi+1/2)=

1

3
Qi−2−

7

6
Qi−1+

11

6
Qi,

pr3
1 (xi+1/2)=−1

6
Qi−1+

5

6
Qi+

1

3
Qi+1,

pr3
2 (xi+1/2)=

1

3
Qi+

5

6
Qi+1−

1

6
Qi+2.

On the large stencil S3 = {S0,S1,S2}, a fourth-order polynomial pr5
3 (x) can be con-

structed according to the following conditions

1

∆x

ˆ

Ii+j

pr5
3 dx=Qi+j, j=−2,−1,0,1,2,

and the point value at the cell interface xi+1/2 can be written as

pr5
3 (xi+1/2)=

1

60
(47Qi−13Qi−1+2Qi−2+27Qi+1−3Qi+2).

The linear weights γk, k=0,1,2, can be found such that

pr5
3 (xi+1/2)=

2

∑
k=0

γk pr3
k (xi+1/2),

where γ0=
1
10 , γ1=

3
5 , γ2=

3
10 . These three weights are called optimal weights, which are

unique. It lifts the reconstructed low order value from the small stencils to a higher-order
one from the large stencil.
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To deal with discontinuities, the non-normalized WENO-Z type non-linear weight [5]
is introduced as follows

ωk=γk

(

1+
δ

βk+ǫ

)

,

where the global smooth indicator δ is designed as

δ= |β0−β2|.

The normalized weights ωk is defined as follows

ωk =
ωk

∑
2
0ωl

,

where ǫ is a small parameter. The βk are the smoothness indicators which are defined
as [14]

βk =
qk

∑
q=1

∆x2q−1

ˆ xi+1/2

xi−1/2

( dq

dxq
pk(x)

)2
dx=O(∆x2), (2.23)

where qk is the order of pk(x). For pr3
k , k=0,1,2, qk =2; for pr5

3 , q3=4. ǫ=10−8 is taken in
current work.

The explicit expressions for smooth indicators pr3
k , k=0,1,2 are given as

β0=
1

3
(10Q

2
i −31QiQi−1+25Q

2
i−1+11QiQi−2−19Qi−1Qi−2+4Q

2
i−2),

β1=(−2Qi+Qi−1+Qi+1)
2+

1

3
[Q

2
i +Q

2
i−1−Qi−1Qi+1+Q

2
i+1−Qi(Qi−1+Qi+1)],

β2=
1

3
(10Q

2
i −31QiQi+1+25Q

2
i+1+11QiQi+2−19Qi+1Qi+2+4Q

2
i+2).

The smooth indicator for pr5
3 is given as

β3=
1

5040

[

231153Q
2
i +104963Q

2
i−1+6908Q

2
i−2−38947Qi−2Qi+1+104963Q

2
i+1

+Qi−1(−51001Qi−2+179098Qi+1−38947Qi+2)

−3Qi(99692Qi−1−22641Qi−2+99692Qi+1−22641Qi+2)

+8209Qi−2Qi+2−51001Qi+1Qi+2+6908Q
2
i+2

]

.

The detailed derivations could be found in [2].
Thus, the reconstructed left interface value Ql

i+1/2 can be written as

Ql
i+1/2=

2

∑
k=0

ωk pr3
k (xi+1/2).

Finally, Q should be changed to the corresponding conservative variables W. The above
reconstruction has the following properties.
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• Benefits: 1) The WENO reconstruction can be easily adopted in 1-D HGKS; 2) The
optimal weights are unique, where no free parameter is introduced; 3) It is efficient
since only the low-order smoothness indicators are needed in computation.

• Deficiencies: 1) Only interface values are reconstructed while GKS also requires
the derivatives at the interfaces; 2) The optimal weights may become negative on
the different locations. For example at x=xi, the optimal weights are γ0=− 8

90 , γ1=
49
40 , γ2=− 8

90 .

• Improvement: The above optimal weights only provide the reconstructed data at
certain fixed location. It may not give optimal performance for HGKS due to the
additional requirement of slopes in gas-kinetic evolution model.

2.4.2 Reconstruction of non-equilibrium states gl,r
x (W l,r

x )

Once the discontinuities appear, not only the W l,r but also W l,r
x shall be reconstructed

through suitable limiting process. Theoretically, we could also use a unique linear com-
bination of the derivatives of the above small stencils to obtain the derivatives of the
above large stencil at the desired locations. However, the linear weights need to be re-
derived and it is not guaranteed to have all positive coefficients. The non-linear weights
need to be additionally computed.

In the original one-step third-order GKS [24], the W l,r
x are obtained by constructing a

second order polynomial by requiring

1

∆x

ˆ

Ii

p(x)dx=W i,p(xi−1/2)=Wr
i−1/2,p(xi+1/2)=W l

i+1/2,

and the solutions are

p(x)= a0+a1(x−xi)+a2(x−xi)
2,

a0 =
1

4
(−Wr

i−1/2−W l
i+1/2+6Wi),

a1 =
W l

i+1/2−Wr
i−1/2

∆x
,

a2 =
3(Wr

i−1/2+W l
i+1/2−2Wi)

∆x2
(2.24)

with

(Wr
x)i−1/2=−

2(2Wr
i−1/2+W l

i+1/2−3Wi)

∆x
, (W l

x)i+1/2=
2(Wr

i−1/2+2W l
i+1/2−3Wi)

∆x
.

Lately, all fourth- and higher-order gas kinetic schemes, including compact schemes

[12, 13, 27, 31, 49], follow the above recipe to reconstruct W l,r
x . Considering the fact that

the non-equilibrium parts mainly take effects once there is discontinuity, accurate results
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can be still obtained in most smooth test cases due to the main contributions from the
equilibrium state presented below.

• Benefits: It is simple and practically robust with the weighted W l,r
i±1/2. Little addi-

tional computational cost is needed after the reconstruction of W l,r
i±1/2.

• Deficiencies: 1) Only third-order accuracy is achieved for the slopes on the targeted
locations; 2) The values of Wr

i−1/2 and W l
i+1/2 may fall into different sides of a strong

shock. In such a case, the linear construction in the cell i by connecting the Wr
i−1/2

and W l
i+1/2 may not be appropriate.

• Solutions: A simple and efficient WENO procedure for the reconstruction of both

W l,r and W l,r
x with the same accuracy is needed.

2.4.3 Reconstruction of equilibrium state gc (Wc)

With the reconstructed W l
i+1/2 and Wr

i+1/2 at both sides of a cell interface xi+1/2, the
macroscopic variables Wc

i+1/2 and the corresponding equilibrium state gc can be deter-
mined according to Eq. (2.16).

• Advantages: 1) The weighting function is coming from the instant collision among
the particles that are going to across the cell interface. It is physically consistent
with the mechanism to get the equilibrium state, and it also includes an upwind
mechanics naturally. As a result, the scheme is more robust than the use of arith-
metic average in the construction of the equilibrium state; 2) When gl =gr, we have
gc=gl=gr . The above weighted average can keep the gc the same order of accuracy
of gl ,gr.

2.4.4 Reconstruction of slopes of equilibrium state gc
x (Wc

x)

To fully determine the slopes of the equilibrium state across the cell interface, the conser-
vative variables across the cell interface is expanded as

wc(x)=Wc
i+1/2+S1(x−xi+1/2)+

1

2
S2(x−xi+1/2)

2+
1

6
S3(x−xi+1/2)

3+
1

24
S4(x−xi+1/2)

4.

With the following conditions,
ˆ

Ii+k

wc(x)dx=Wi+k, k=−1,··· ,2,

the derivatives are determined by

(Wc
x)i+1/2=S1=

[

− 1

12
(W i+2−W i−1)+

5

4
(W i+1−W i)

]

/∆x. (2.25)

• Benefits: 1) The smooth reconstruction is consistent with the concept of equilibrium
part. Meanwhile it has the highest order of accuracy with the same stencil.
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• Deficiencies: 1) When discontinuities appear, the linear reconstruction of g0
x may

not be appropriate and effect the robustness of the scheme; 2) A separate module
is used for the reconstruction of the equilibrium state and additional modules are
needed for the reconstruction in the tangential direction in 2D and 3D cases. It
increases the complexity of the algorithm.

• Solutions: In most cases, the contribution from the equilibrium state gets to a mini-
mum contribution due to the enlarged particle collision time τn in the shock region.
The weak undershoot/overshoot in the previous GKS can be effectively reduced
from a newly developed reconstruction in Section 3.

The reconstruction for the initial non-equilibrium and equilibrium states are reviewed.
In the following, the reconstructions in the 2D and 3D cases will be presented.

2.4.5 Two dimensional reconstruction

The direction by direction reconstruction strategy is usually applied on rectangular
meshes [48]. For a fourth-order scheme, two Gaussian points on each interface are needed
for numerical flux integration. Our target is to reconstruct

W l , W l
x, W l

y, Wr , Wr
x, Wr

y, Wc, Wc
x , Wc

y ,

at each Gaussian point (xi+1/2,yjm ), m=1,2. The reconstruction procedure for the Gaus-
sian point (i+1/2, jm), m=0,1 is summarized as follows. The conserved flow variables W

should be transferred into the corresponding variables Q for reconstruction if necessary.

Step 1. According to one dimensional WENO reconstruction in Sub-subsection 2.4.1, the
line averaged reconstructed values (Ql)i+1/2,j,(Q

r)i+1/2,j can be constructed by

using the cell averaged values (Q)i+l,j, l=−2,··· ,2, and (Q)i+l+1,j, l=−2,··· ,2.

Then the line averaged spatial derivatives (W l
x)i+1/2,j, (Wr

x)i+1/2,j can be con-
structed with the method in Sub-subsection 2.4.2.

Step 2. Next the line averaged values (Wc)i+1/2,j are obtained by the compatibility con-
dition in Sub-subsection 2.4.3. The face averaged derivatives (Wc

x)i+1/2,j are eval-
uated by the linear reconstruction in Sub-subsection 2.4.4.

Step 3. Again with the one-dimensional WENO reconstruction in Sub-subsection 2.4.1
along the tangential direction, the point-wise values (the index i+1/2 is omitted)
(Ql)j±1/2, (Qr)j±1/2 can be constructed by using the line averaged values

(Ql)j+l,(Q
r)j+l , l=−2,··· ,2.

Then, the point-wise values and spatial derivatives

(W l)jm , (Wr)jm , (W l
y)jm , (Wr

y)jm ,
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with y=yjm , m=0,1 can be determined with the method in Sub-subsection 2.4.2.

Again with the one-dimensional WENO reconstruction in Sub-subsection 2.4.1
along the tangential direction, the point-wise derivatives (Ql

x)j±1/2,(Qr
x)j±1/2

can be constructed by using the line averaged derivatives (Ql
x)j+l ,(Q

r
x)j+l, l =

−2,··· ,2. And the desired point-wise derivatives (W l
x)jm , (Wr

x)jm , with y = yjm ,
m=0,1 can be determined with the method in Sub-subsection 2.4.2.

Step 4. A linear fourth-order polynomial can be constructed by using the line averaged
values (Wc)j−l, l = −2,··· ,2, and the expected values and derivatives (Wc)jm ,
(Wc

y)jm at y=yjm , m=0,1 can be obtained.

Similarly a linear fourth-order polynomial by using the line averaged derivatives
(Wc

x)j−l, l =−2,··· ,2, and the expected values and derivatives (Wc
x)jm at y= yjm ,

m=0,1, are obtained.

2.4.6 Three dimensional reconstruction

For the three dimensional computation, our target is to construct

W l , W l
x, W l

y, W l
z, Wr, Wr

x, Wr
y , Wr

z , Wc, Wc
x, Wc

y , Wc
z ,

at each Gaussian point (xi+1/2,yjm ,zkn
), m,n=1,··· ,2. The detailed procedure is given as

follows

Step 1. According to one dimensional WENO reconstruction in Sub-subsection 2.4.1, the
face averaged reconstructed values (Ql)i+1/2,j,k,(Qr)i+1/2,j,k can be constructed by

using the cell averaged values (Q)i+l,j,k, l=−2,··· ,2, and (Q)i+l+1,j,k, l=−2,··· ,2.

Then the face averaged spatial derivatives (W l
x)i+1/2,j,k, (Wr

x)i+1/2,j,k can be con-
structed with the method in Sub-subsection 2.4.2.

Step 2. Next the face averaged values (Wc)i+1/2,j,k are obtained by the compatibility con-
dition in Sub-subsection 2.4.3.

The face averaged derivatives (Wc
x)i+1/2,j,k are determined by the linear recon-

struction in Sub-subsection 2.4.4.

Step 3. Again with the one-dimensional WENO reconstruction in Sub-subsection 2.4.1
along the horizontal direction, the line averaged values (the index i+1/2 is omit-
ted) (Ql)j±1/2,k, (Qr)j±1/2,k can be constructed by using the face averaged values

(Ql)j+l,k,(Qr)j+l,k, l=−2,··· ,2.

The averaged values and spatial derivatives

(W l)jm ,k, (Wr)jm ,k, (W l
y)jm ,k, (Wr

y)jm ,k,



X. Ji and K. Xu / Commun. Comput. Phys., 28 (2020), pp. 539-590 555

with y=yjm ,m=0,1 can be determined with the method in Sub-subsection 2.4.2.

Again with the one-dimensional WENO reconstruction in Sub-subsection
2.4.1 along the horizontal direction, the line averaged derivatives (Ql

x)j±1/2,k,
(Qr

x)j±1/2,k can be constructed by using the face averaged derivatives

(Ql
x)j+l,k,(Qr

x)j+l,k, l =−2,··· ,2. The line averaged derivatives (W l
x)jm ,k, (Wr

x)jm ,k,
with y=yjm ,m=0,1 are determined with the method in Sub-subsection 2.4.2.

Step 4. A linear fourth-order polynomial can be constructed by using the face aver-
aged values (Wc)j−l,k, l =−2,··· ,2, and the line averaged values and derivatives
(Wc)jm ,k, (Wc

y)jm ,k at y=yjm , m=0,1 are obtained.

Similarly a linear fourth-order polynomial by using the face averaged derivatives
(Wc

x)j−l,k, l=−2,··· ,2, the line averaged values, and derivatives (Wc
x)jm ,k at y=yjm ,

m=0,1, are obtained.

Step 5. With one-dimensional WENO reconstruction in the vertical direction, the point-
wise values and derivatives

(W l)jm ,kn
, (Wr)jm ,kn

, (W l
z)jm ,kn

, (Wr
z )jm ,kn

are obtained by using the line averaged values

(Ql)jm ,k+l, (Qr)jm ,k+l, l=−2,··· ,2

with the exactly same method in Step 3, same as the determination of

(W l
x)jm ,kn

, (Wr
x)jm ,kn

,

(W l
y)jm ,kn

, (Wr
y)jm ,kn

.

Similarly, the point-wise values and derivatives

(Wc)jm ,kn
, (Wc

z )jm ,kn
,

are obtained by using the line averaged values

(Wc)jm ,k+l, (Wc)jm ,k+l, l=−2,··· ,2

with the exactly same method in Step 4. And spatial derivatives

(Wc
x)jm ,kn

, (Wc
y)jm ,kn

can be obtained in the same way.

Remark 2.4. In summary we need the following six modules for the reconstruction from
a programmer’s perspective,
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• reconstruction of non-equilibrium states for face-averaged value;

• reconstruction of non-equilibrium states for line-averaged value;

• reconstruction of non-equilibrium states for point value;

• reconstruction of equilibrium state for face-averaged value;

• reconstruction of equilibrium state for line-averaged value;

• reconstruction of equilibrium state for point-value.

3 Fifth-order WENO-AO reconstruction for GKS performance

enhancement

3.1 Reconstruction of non-equilibrium sates gl,r,gl,r
x (W l,r,W l,r

x ) from one
single polynomial

Instead of reconstructing the point-wise values and their slopes separately in the previous
GKS, we can reconstruct the whole polynomial within each cell through a new WENO
procedure. Then, all required variables gl ,gr,gl

x,gr
x,gl

xx,gr
xx,··· can be obtained at once.

This reconstruction method is named as WENO-AO by Balsara [2]. To be compatible
with the fourth-order temporal accuracy in current HGKS, the fifth-order WENO5-AO is
adopted, and the detailed formulation is the following.

We start from rewriting pr5
3 (x) as

pr5
3 (x)=γ3

( 1

γ3
pr5

3 (x)−
2

∑
0

γk

γ3
pr3

k (x)
)

+
2

∑
0

γk pr3
k (x), γ3 6=0, (3.1)

where γk, k= 0,1,2,3 are defined as linear weights. Clearly Eq. (3.1) holds true for any
choice of γk, k=0,1,2,3. Balsara et al. [2] take

γ3=γHi; γ0=(1−γHi)(1−γLo)/2; γ1=(1−γHi)γLo; γ2=γ0,

which satisfy rk > 0, k = 0,1,2,3 and ∑
3
0γk = 1, and suggest γHi ∈ [0.85,0.95] and γLo ∈

[0.85,0.95]. Here we choose γHi =0.85 and γLo =0.85 in the numerical tests if no specifi-
cation values are provided.

To avoid the loss of order of accuracy at inflection points, the WENO-Z type [5] non-
linear weights are used as

ω=γk

(

1+
δ2

(βk+ǫ)2

)

, (3.2)
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where the global smooth indicator δ is defined as

δ=
1

3
(|βr5

3 −βr3
0 |+|βr5

3 −βr3
1 |+|βr5

3 −βr3
2 |)=O(∆x4). (3.3)

The normalized weights are given by

ωk =
ωk

∑
3
0ωq

.

Then the final form of the reconstructed polynomial is

PAO(5,3)(x)=ω3

( 1

γ3
pr5

3 (x)−
2

∑
0

γk

γ3
pr3

k (x)
)

+
2

∑
0

ωk pr3
k (x). (3.4)

So all the desired quantities at cell interfaces can be fully determined as

Qr
i−1/2=PAO(5,3)(xi−1/2), Ql

i+1/2=PAO(5,3)(xi+1/2),

(Qr
x)i−1/2=P

AO(5,3)
x (xi−1/2), (Ql

x)i+1/2=P
AO(5,3)
x (xi+1/2).

Remark 3.1. Denote the exact flow distribution as p(x), we rewrite (3.4) as

PAO(5,3)(x)=
ω3

γ3
pr5

3 (x)+
2

∑
0

(

ωk−ω3
γk

γ3

)

pr3
k (x)

=
ω3

γ3
(p(x)+O(∆x5))+

2

∑
0

(

ωk−ω3
γk

γ3

)

(p(x)+O(∆x3))

= p(x)
[ω3

γ3
+

2

∑
0

(

ωk−ω3
γk

γ3

)]

+
ω3

γ3
O(∆x5)+

2

∑
0

(

ωk−ω3
γk

γ3

)

O(∆x3)

= p(x)+
ω3

γ3
O(∆x5)+

2

∑
0

(

ωk−ω3
γk

γ3

)

O(∆x3) (3.5)

with the constraints of ∑
3
0γk=1 and ∑

3
0 ωk=1.

According to Eq. (2.23), Eq. (3.2) and Eq. (3.3), we have

ωk∼ωk=γk(1+O(∆x4)), (3.6)

thus

PAO(5,3)(x)=p(x)+(1+O(∆x4))O(∆h5)

+
2

∑
0

[

γk(1+O(∆x4))−γ3(1+O(∆x4))
γk

γ3

]

O(∆x3)

=p(x)+(∆x5). (3.7)



558 X. Ji and K. Xu / Commun. Comput. Phys., 28 (2020), pp. 539-590

In comparison with traditional WENO-type method, the above reconstruction has the
following properties.

• The new reconstruction is more expensive compared with the traditional WENO,
mainly due to the requirement of the high-order smooth indicator. However, its
benefit is not fully utilized when it is applied to schemes with Riemann solvers,
where only point-wise values are needed. But, it becomes natural and efficient
when it is used in GKS under the two-stage fourth-order formulation.

• The reconstruction is flexible with the location of Gaussian points since the linear
weights are independent of geometry. In fact, similar idea is also adopted by Zhu
et al. for designing new WENO scheme on triangular meshes recently [51].

3.2 Reconstruction equilibrium states gc,gc
x (Wc,Wc

x) locally

The reconstructions for the non-equilibrium states have the uniform order and can be
used to get the equilibrium state directly, such as gc,gc

x,gc
xx,··· by a suitable average of

gl,r,gl,r
x ,gl,r

xx,···. The simplest way is to use the arithmetic average, but it is only applicable
for smooth flow. To be consistent with the construction of gc, we make an analogy of the
kinetic-based weighting for gc

x,···, which are given by
ˆ

ψψψgcdΞ=Wc=

ˆ

u>0
ψψψgldΞ+

ˆ

u<0
ψψψgrdΞ,

ˆ

ψψψgc
xdΞ=Wc

x =

ˆ

u>0
ψψψgl

xdΞ+

ˆ

u<0
ψψψgr

xdΞ. (3.8)

This method has been used in an early version of second-order GKS [42]. In this way, all
components of the microscopic slopes across the interface have been obtained.

3.3 Reconstruction procedure on higher dimension

3.3.1 Two dimensional reconstruction

In 2D, the reconstructed values are

W l , W l
x, W l

y, Wr, Wr
x, Wr

y,

at each Gaussian point (xi+1/2,yjm), m=1,2. The reconstruction procedure for the Gaus-
sian point (i+1/2, jm), m=0,1 is summarized as follows. Here the time level n is omitted.

Step 1. According to the one dimensional WENO-AO reconstruction in Subsection 3.1,
the line averaged reconstructed values and derivatives

(Ql)i+1/2,j, (Qr)i+1/2,j, (Ql
x)i+1/2,j, (Qr

x)i+1/2,j

can be constructed by using the cell averaged values (Q)i+l,j, l =−2,··· ,2, and

(Q)i+l+1,j, l=−2,··· ,2.
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Step 2. Again with the one-dimensional WENO-AO reconstruction in Subsection 3.1
along the tangential direction, the values (the index i+1/2 is omitted)

(Ql)jm , (Qr)jm , (Ql
y)jm , (Qr

y)jm ,

can be constructed by using the line averaged values

(Ql)j+l, (Qr)j+l, l=−2,··· ,2,

with y= yjm , m=0,1. The details are given in Appendix A. In the same way, the

desired point-wise derivatives (Ql
x)jm , (Qr

x)jm , with y= yjm , m=0,1 can be deter-
mined with the method in Subsection 3.1 by using the line averaged derivatives
(Ql

x)j+l,(Q
r
x)j+l, l=−2,··· ,2.

Step 3. All the quantities related to the equilibrium states are obtain by the unified
weighting method in Subsection 3.2.

3.3.2 Three dimensional reconstruction

For the three dimensional computation, the reconstruction procedure for the cell interface
xi+1/2,j,k is given as an example. Again our target is to construct

W l , W l
x, W l

y, W l
z, Wr, Wr

x, Wr
y, Wr

z ,

at each Gaussian point (xi+1/2,yjm ,zkn
), m,n=1,··· ,2. The detailed procedure is given as

follows

Step 1. According to one dimensional WENO-AO reconstruction in Subsection 3.1, the
face averaged reconstructed values

(Ql)i+1/2,j,k, (Qr)i+1/2,j,k, (Ql
x)i+1/2,j,k, (Qr

x)i+1/2,j,k

can be obtained by using the cell averaged values (Q)i+l,j,k, l = −2,··· ,2, and

(Q)i+l+1,j,k, l=−2,··· ,2.

Then the face averaged spatial derivatives (Ql
x)i+1/2,j,k, (Qr

x)i+1/2,j,k can be con-
structed with the method in Subsection 3.1.

Step 2. With the one-dimensional WENO-AO reconstruction in Subsection 3.1 along the
horizontal direction, the line averaged values (the index i+1/2 is omitted)

(Ql)jm ,k, (Qr)jm ,k, (Ql
y)jm ,k, (Qr

y)jm ,k,

with y=yjm , m=0,1 are determined by using the face averaged values

(Ql)j+l,k, (Qr)j+l,k, l=−2,··· ,2.

In the same way, the line averaged derivatives (Ql
x)j±1/2,k, (Qr

x)j±1/2,k, (Ql
x)jm ,k,

(Qr
x)jm ,k, with y=yjm , m=0,1 can be constructed by using the face averaged deriva-

tives (Ql
x)j+l,k,(Qr

x)j+l,k, l=−2,··· ,2..
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Step 3. With one-dimensional WENO-AO reconstruction in the vertical direction, the
point values and derivatives

(Ql)jm ,kn
, (Qr)jm ,kn

, (Ql
z)jm ,kn

, (Qr
z)jm ,kn

are obtained by using the line averaged values

(Ql)jm ,k+l, (Qr)jm ,k+l, l=−2,··· ,2

with the exactly same method in Step 2, so are the quantities

(Ql
x)jm ,kn

, (Qr
x)jm ,kn

,

(Ql
y)jm ,kn

, (Qr
y)jm,kn

.

Remark 3.2. In summary, in the new scheme only the following three modules in the
reconstruction are needed in comparison with the previous 3-D HGKS in Remark 2.4,

• reconstruction of non-equilibrium states for face-averaged value;

• reconstruction of non-equilibrium states for line-averaged value;

• reconstruction of non-equilibrium states for point-wise value.

3.4 Improvements

The newly proposed reconstruction scheme has at least the following improvements in
comparison with the previous one.

• It becomes flexible to the reconstruction at the Gaussian points of the interface due
to the free choice of the linear weights. The new reconstruction method, like the so-
called multi-resolution WENO scheme [52], can be adopted naturally in the current
HGKS framework.

• Although the choice of the linear weights is not unique, the numerical solutions are
not sensitive to it [2].

• The reconstruction algorithm has been greatly simplified.

• The new reconstruction keeps the non-equilibrium states to have the same order of
accuracy as the equilibrium one.

• The new scheme becomes more robust and less sensitive to the definition of numer-
ical viscosity coefficient than the previous HGKS.
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Remark 3.3. For the smooth Euler solutions, the gas distribution function at a cell in-
terface i+1/2 depends on Wc

i+1/2 and (Wc
x)i+1/2 as shown in Eq. (2.21). With the linear

weights, both the fifth-order WENO and WENO-AO methods get to the same polynomi-
als reconstructed by the corresponding five cells and yield the same point-wise values

(W−
WENO)i+1/2=(W−

WENO−AO)i+1/2=
1

60
(27Wi+1+47Wi−13Wi−1+2Wi−2−3Wi+2),

(W+
WENO)i+1/2=(W+

WENO−AO)i+1/2=
1

60
(47Wi+1+27Wi−3Wi−1−13Wi+2+2Wi+3).

And clearly they will have the same (Wc)i+1/2. As for (Wc
x)i+1/2, the conventional recon-

struction gives

(Wc
x)i+1/2=

−15Wi+Wi−1+15Wi+1−Wi+2

12∆x
,

by the linear reconstruction in Sub-subsection 2.4.4. For the new method, it gets to

(W l
x)i+1/2=(pr5

i,3)x(xi+1/2)=
−15Wi+Wi−1+15Wi+1−Wi+2

12∆x
,

(Wr
x)i+1/2=(pr5

i+1,3)x(xi+1/2)=
−15Wi+Wi−1+15Wi+1−Wi+2

12∆x
.

Identical (Wc
x)i+1/2 has been obtained by the new method through Eq. (3.8). Therefore,

the new reconstruction procedure exactly recover the old one in the smooth case.

4 Numerical results

In this section, numerical tests from 1-D to 3-D will be presented to validate the new
reconstruction method. For the inviscid flow, the collision time τ is

τ= c1∆t+c2

∣

∣

∣

pl−pr

pl+pr

∣

∣

∣∆t.

Usually c1=0.05 and c2=1 are defined in the conventional HGKS. But, c1=0 can be safely
chosen for the new HGKS in most test cases. For the viscous flow, the collision time is
related to the viscosity coefficient,

τ=
µ

p
+c2

∣

∣

∣

pl−pr

pl+pr

∣

∣

∣
∆t,

where pl and pr denote the pressure on the left and right sides of the cell interface, µ is
the dynamic viscous coefficient, and p is the pressure at the cell interface. In smooth flow
regions, it reduces to τ = µ/p. The ratio of specific heats takes γ= 1.4. The reason for
including pressure jump term in the particle collision time is to add artificial dissipation
in the discontinuous region to enlarge the shock thickness to the scale of numerical cell
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size, and to keep the non-equilibrium dynamics in the shock layer through the kinetic
particle transport to mimic the real physical mechanism inside the shock layer. The time
step is determined by

∆t=CCFLMin
( ∆x

||U||+as
,
(∆x)2

4ν

)

,

where CCFL is the CFL number, ||U|| is the magnitude of velocities, as is the sound speed,
and ν=µ/ρ is the kinematic viscosity coefficient.

The current WENO5-AO GKS is compared with the WENO5-GKS in [31]. Both
schemes take the identical Gaussian points at each cell interface, and two stage fourth
order time marching strategy is used for the update of numerical solutions. The recon-
struction is based on characteristic variables for both schemes. Denote

F(W)=(ρU1,ρU2
1+p,ρU1U2,ρU1U3,U1(ρE+p))

in the local coordinate. The Jacobian matrix ∂F/∂W can be diagonalized by the right
eigenmatrix R. For a specific cell interface, R∗ is the right eigenmatrix of ∂F/∂W∗, and
W∗ are the averaged conservative flow variables from both sides of the cell interface. The
characteristic variables for reconstruction are defined as Q=R−1

∗ W. The WENO-Z type
weights are chosen to avoid the accuracy decrease around the physical extrema.

4.1 1-D test cases

4.1.1 Accuracy test in 1-D

The advection of density perturbation is tested, and the initial condition is given as fol-
lows

ρ(x)=1+0.2sin(πx), U(x)=1, p(x)=1, x∈ [0,2].

With the periodic boundary condition, the analytic solution is

ρ(x,t)=1+0.2sin(π(x−t)), U(x,t)=1, p(x,t)=1.

In the computation, a uniform mesh with N points is used. The collision time τ = 0 is
set since the flow is smooth and inviscid. The time step ∆t = 0.2∆x is fixed. Based on
the above reconstruction and time-marching method, the current scheme is expected to
present a fifth-order spatial accuracy and a fourth-order temporal accuracy as analyzed
in [13]. The L1, L2 and L∞ errors and the corresponding orders at t = 2 are given be-
low. Both WENO5-GKS and WENO5-AO-GKS are tested by replacing their non-linear
weights by the linear ones. It has been analyzed in Subsection 3.3 that the two schemes
become identical in this case. With the mesh refinement in Tables 1 and 2, the expected
orders of accuracy are obtained and the numerical errors are identical. Next, smooth indi-
cators are used to obtain the non-linear weights. Then WENO5-GKS follows the original
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Table 1: Accuracy test for the 1-D sin-wave propagation by the conventional reconstruction procedure with the
linear WENO5 reconstruction. ∆t=0.2∆x.

mesh length L1 error Order L2 error Order L∞ error Order

1/5 2.188290e-02 2.402055e-02 3.360007e-02

1/10 8.603723e-04 4.67 9.747310e-04 4.62 1.385732e-03 4.60

1/20 2.857557e-05 4.91 3.176742e-05 4.94 4.674622e-05 4.89

1/40 9.035141e-07 4.98 1.000819e-06 4.99 1.482588e-06 4.98

1/80 2.826315e-08 5.00 3.132381e-08 5.00 4.649773e-08 4.99

Table 2: Accuracy test for the 1-D sin-wave propagation by the conventional reconstruction procedure with the
linear WENO5-AO reconstruction. ∆t=0.2∆x.

mesh length L1 error Order L2 error Order L∞ error Order

1/5 2.188290e-02 2.402055e-02 3.360007e-02

1/10 8.603723e-04 4.67 9.747310e-04 4.62 1.385732e-03 4.60

1/20 2.857557e-05 4.91 3.176742e-05 4.94 4.674622e-05 4.89

1/40 9.035141e-07 4.98 1.000819e-06 4.99 1.482588e-06 4.98

1/80 2.826314e-08 5.00 3.132381e-08 5.00 4.649772e-08 4.99

Table 3: Accuracy test for the 1-D sin-wave propagation by the conventional reconstruction procedure with the
WENO5 reconstruction. ∆t=0.2∆x.

mesh length L1 error Order L2 error Order L∞ error Order

1/5 2.452730e-02 2.695828e-02 3.770457e-02

1/10 1.118455e-03 4.45 1.231008e-03 4.45 1.759656e-03 4.42

1/20 3.063525e-05 5.19 3.514416e-05 5.13 5.329365e-05 5.05

1/40 9.074879e-07 5.08 1.021807e-06 5.10 1.522067e-06 5.13

1/80 2.827664e-08 5.00 3.141615e-08 5.02 4.675543e-08 5.02

Table 4: Accuracy test for the 1-D sin-wave propagation by the new reconstruction procedure with the WENO5-
AO reconstruction. ∆t=0.2∆x. The linear weights are chosen as γHi=0.85, γLo=0.85.

mesh length L1 error Order L2 error Order L∞ error Order

1/5 2.190375e-02 2.404960e-02 3.365065e-02

1/10 8.607461e-04 4.67 9.753283e-04 4.62 1.388495e-03 4.60

1/20 2.859334e-05 4.91 3.177448e-05 4.94 4.681808e-05 4.89

1/40 9.036721e-07 4.98 1.000905e-06 4.99 1.483438e-06 4.98

1/80 2.826547e-08 5.00 3.132498e-08 5.00 4.650866e-08 5.00

reconstruction procedure in Subsection 2.4 and WENO5-AO-GKS takes the new recon-
struction procedure in Section 3. The expected orders have been obtained in Table 3 and
Table 4. In comparison of the results in Table 4 and Table 5, the use of the linear weights
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Table 5: Accuracy test for the 1-D sin-wave propagation by the new reconstruction procedure with the WENO5-
AO reconstruction. ∆t=0.2∆x. The linear weights are chosen as γHi=0.1, γLo =0.1.

mesh length L1 error Order L2 error Order L∞ error Order

1/5 2.397029e-02 2.643570e-02 3.664496e-02

1/10 9.827463e-04 4.61 1.121792e-03 4.56 1.842517e-03 4.31

1/20 2.927870e-05 5.07 3.225416e-05 5.12 4.527186e-05 5.35

1/40 9.050562e-07 5.02 1.002233e-06 5.01 1.481292e-06 4.93

1/80 2.826820e-08 5.00 3.132788e-08 5.00 4.650571e-08 4.99

Table 6: Accuracy test for the 1-D sin-wave propagation by the new reconstruction procedure with the WENO5
reconstruction. ∆t=0.2∆x.

mesh length L1 error Order L2 error Order L∞ error Order

1/5 2.779405e-02 3.037832e-02 4.278560e-02

1/10 2.277863e-03 3.61 2.526109e-03 3.59 3.587982e-03 3.58

1/20 2.273179e-04 3.32 2.519989e-04 3.33 3.581546e-04 3.32

1/40 2.646643e-05 3.10 2.937815e-05 3.10 4.163084e-05 3.10

1/80 3.247784e-06 3.03 3.606775e-06 3.03 5.104785e-06 3.03

for the WENO-AO reconstruction has almost no effect on the order of accuracy. If the
WENO5-AO reconstruction is replaced by WENO5 reconstruction in the new reconstruc-
tion procedure, only third-order accuracy can be achieved as shown in Table 6, due to
the low-order reconstruction for the non-equilibrium states described in Sub-subsection
2.4.2.

4.1.2 Acoustic wave

The initial conditions for a one-dimensional acoustic wave propagation are given as fol-
lows [1]

U=U∞+δU, δU=ǫa∞ cos(ωx), U∞=0,

ρ=ρ∞+δρ, δρ=ǫρ∞ cos(2ωx), ρ∞ =1.1771,

p

p∞

=
( ρ

ρ∞

)r
, p∞ =101325.0,

a∞ =

√

γ
p∞

ρ∞

,

where ǫ=10−5 is the magnitude of initial perturbation, and ω=6π is the wavenumber of
initial perturbations in velocity. The specific heat ratio is γ=1.4. An analytical solution [1]
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Figure 1: Acoustic wave. CFL=0.5. T=1. Mesh 40. (a) Comparisons between the conventional WENO-GKS
and new WENO-A-GKS. (b) Comparisons between different solvers. ρ′=ρ−ρ∞ is plotted.

is given from the approximate acoustic wave equation,

ρ(x,t)=ρ∞+
1

2
ǫρ∞[cos(2ω(x−a∞t))+cos(2ω(x+a∞t))

+cos(ω(x−a∞t))−cos(ω(x+a∞t))],

U(x,t)=
1

2
ǫa∞[cos(2ω(x−a∞t))−cos(2ω(x+a∞t))

+cos(ω(x−a∞t))+cos(ω(x+a∞t))],

p(x,t)=p∞+
1

2
γǫp∞[cos(2ω(x−a∞t))+cos(2ω(x+a∞t))

+cos(ω(x−a∞t))−cos(ω(x+a∞t))],

(4.1)

with the period T= 2π
ωa∞

≈9.6×10−4. The computational domain is [0,1/3] with periodic
boundary conditions on both sides. We follow the recipe in [49] for the numerical ini-
tialization. The numerical results after the wave propagates about 1,000 periods at t= 1
are used for comparison as shown in Fig. 1. From Fig. 1(a), the conventional fifth-order
WENO-GKS and new WENO-AO-GKS have almost the same long time behavior. The
relative error from both schemes is no more than 0.001% at each cell. It demonstrates
that the usage of the kinetic-style weighting to reconstruct the slopes of equilibrium state
in Section 3.2 instead of the pure linear interpolation in Section 2.4.4 will not introduce
extra numerical dissipation. It is observed from Fig. 1(b) that under the same WENO-AO
reconstruction, the gas-kinetic solver has significant superiority over the schemes based
on the Riemann solvers, such as HLLC in such a smooth case.
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4.1.3 One dimensional Riemann problems

The reference solutions for the following 1-D Riemann problems are obtained by
WENO5-GKS with 10000 uniform mesh points.

(a) Sod problem

The initial conditions for the Sod problem are given by

(ρ,U,p)=

{

(1,0,1), 0< x<0.5,

(0.125,0,0.1), 0.5≤ x<1,

where 100 uniform mesh points are used in simulation and the solutions are presented at
t= 0.2. We first compare the results by high-order Riemann solver-based methods with
the conventional HGKS. The same WENO5-Z reconstruction is used for all cases. From
the local enlargements in Fig. 2, the solutions from the Riemann solvers have almost no
undershoot around the corner of the rarefaction wave while the conventional WENO5-
GKS has an observable oscillation. Moreover, if the construction of the equilibrium state
in Section 2.4.4 for the conventional WENO5-GKS is replaced by the kinetic-weighting
method in Section 3.2 (named as “WENO5-GKS-Collision”), where the upwind mechan-
ics is introduced in the determination of gc

x, the oscillation could be significantly reduced.
Similarly the undershoot is essentially eliminated for the new WENO5-AO GKS as shown
in Fig. 3.
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Figure 2: Sod problem: the density distributions and local enlargements with 100 cells. The comparisons are
conducted between high-order Riemann solver based methods and GKS. CFL=0.5. T=0.2.

(b) Shu-Osher problem

The second test is the Shu-Osher problem [37], and the initial conditions are



X. Ji and K. Xu / Commun. Comput. Phys., 28 (2020), pp. 539-590 567

x

de
ns

ity

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1
Reference
WENO5-GKS
WENO5-AO-GKS

x

de
ns

ity

0.45 0.5 0.55 0.6 0.65 0.7

0.4

0.42

0.44

Reference
WENO5-GKS
WENO5-AO-GKS

Figure 3: Sod problem: the density distributions and local enlargements with 100 cells by the conventional
WENO5-GKS and new WENO5-AO-GKS. CFL=0.5. T=0.2.

(ρ,U,p)=

{

(3.857134,2.629369,10.33333), 0< x≤1,

(1+0.2sin(5x),0,1), 1< x<10.

The computational domain is [0,10]. The non-reflecting boundary condition is given
on the left, and the fixed wave profile is extended on the right. The computed density
profiles and local enlargements for the Shu-Osher problem with 200 mesh points at t=
1.8 are shown in Fig. 4(a). The performances of the conventional HGKS with WENO5
reconstruction and new HGKS with WENO5-AO reconstruction are almost identical in
resolving the sinusoidal wave on the right. However, the WENO5-GKS yields spurious
oscillations in the local enlargements around x= 2.4. Moreover, if the kinetic-weighting
treatment is applied for the equilibrium state, the resolutions for the smooth wave from
HGKS would be significantly reduced, as shown in Fig. 4(b). In contrast, the linear wave
could be resolved nicely by the new HGKS while no overshoot/undershoot occurs in the
corresponding locations.

(c) Blast wave problem

The initial conditions for the blast wave problem [41] are given as follows

(ρ,u,p)=











(1,0,1000), 0≤ x<0.1,

(1,0,0.01), 0.1≤ x<0.9,

(1,0,100), 0.9≤ x≤1.

400 equal spaced cells are used for computation and reflection boundary conditions are
applied at both sides. The density distribution and local enlargements for the new HGKS
at t=0.038 are presented in Fig. 5. The numerical collision time takes c1=0 and c2=1 and
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Figure 4: Shu-Osher problem: the density distributions and local enlargements with 200 cells. CFL = 0.5.
T=1.8.
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Figure 5: Blast wave problem: the density distribution and local enlargement with 400 cells. CFL = 0.5.
T=0.038.
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CFL=0.5 as usual. The traditional HGKS with WENO5-Z reconstruction could not pass
this case with the above settings c1=0.

4.2 2-D test cases

4.2.1 Accuracy test in 2-D

Similar to 1-D case, the advection of density perturbation for the inviscid flow is chosen
for accuracy test with the initial conditions

ρ(x,y)=1+0.2sin(π(x+y)), U(x,y)=(1,1), p(x,y)=1,

within a square domain [0,2]×[0,2]. N×N uniform mesh cells are used and the periodic
boundary conditions are applied in both directions. The analytic solution is

ρ(x,y,t)=1+0.2sin(π(x+y−t)), U(x,y,t)=(1,1), p(x,y,t)=1.

The time steps are calculated with a CFL=0.5. Both WENO5-GKS and WENO5-AO-GKS
are tested with the linear weights in Table 7 and Table 8. The results for the new method
with non-linear Z-type weights are shown in Table 9. The expected accuracy could be
achieved for all cases.

Table 7: Accuracy test for the 2-D sin-wave propagation by the linear WENO5 reconstruction. CFL=0.5.

mesh length L1 error Order L2 error Order L∞ error Order

1/5 3.074801e-02 3.439108e-02 4.765930e-02

1/10 1.320626e-03 4.54 1.453774e-03 4.56 2.064342e-03 4.53

1/20 4.240666e-05 4.96 4.726867e-05 4.94 6.900348e-05 4.90

1/40 1.377120e-06 4.94 1.529072e-06 4.95 2.235296e-06 4.95

1/80 4.771096e-08 4.85 5.307786e-08 4.85 7.646075e-08 4.87

Table 8: Accuracy test for the 2-D sin-wave propagation by the linear WENO5-AO reconstruction. CFL=0.5.

mesh length L1 error Order L2 error Order L∞ error Order

1/5 3.081177e-02 3.446190e-02 4.771748e-02

1/10 1.322377e-03 4.54 1.455598e-03 4.57 2.074481e-03 4.52

1/20 4.245123e-05 4.96 4.729387e-05 4.94 6.915239e-05 4.91

1/40 1.377684e-06 4.95 1.529528e-06 4.95 2.237970e-06 4.95

1/80 4.772228e-08 4.85 5.308750e-08 4.85 7.651685e-08 4.87

4.2.2 Two dimensional Riemann problems

The two dimensional Riemann problems [16] are widely used to check the performance
of a scheme for high speed compressible flow. The computational domain is [0,1]×[0,1]
and uniform meshes with mesh size 1/500 are used.
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Table 9: Accuracy test for the 2-D sin-wave propagation by the WENO5-AO reconstruction. CFL=0.5.

mesh length L1 error Order L2 error Order L∞ error Order

1/5 3.514097e-02 3.834933e-02 5.407085e-02

1/10 1.359913e-03 4.69 1.489563e-03 4.69 2.108134e-03 4.68

1/20 4.254036e-05 5.00 4.737104e-05 4.97 6.916339e-05 4.93

1/40 1.377826e-06 4.95 1.529673e-06 4.95 2.238071e-06 4.95

1/80 4.772252e-08 4.85 5.308776e-08 4.85 7.651741e-08 4.87

(a) Configuration 1

The Configuration 1 in [16] is tested. Initially, there are four 1-D rarefaction waves im-
posed as

(ρ,U1,U2,p)=



















(0.1072,−0.7259,−1.4045,0.0439), x<0.5, y<0.5,

(0.2579,0,−1.4045,0.15), x≥0.5, y<0.5,

(1,0,0,1), x≥0.5, y≥0.5,

(0.5197,−0.7259,0,0.4), x<0.5, y≥0.5.

The results at t= 0.2 for the original scheme and new one are given in Fig. 6. Although
the discontinuities are weak, the separated smooth tangential reconstructions as given in
Sub-subsection 2.4.5 for gc may lead to a negative temperature. As a result, a protector
must be added in the original HGKS, which replaces the reconstructed values by the
first-order reconstruction if there is negative temperature detected after performing the
high-order reconstruction. By contrast, no such problem exists in the new scheme. It
partially explains why the new method is more robust than the previous one in high-
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Figure 6: Two dimensional Riemann problems: the density distributions for Configuration 1. Left: the conven-
tional WENO5-GKS. Right: the new WENO5-AO-GKS. CFL=0.5. T=0.2. Mesh: 500×500.
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dimensional case, especially for the cases where the flow fields are extremely chaotic.
One outstanding example is the high-speed compressible isotropic turbulence as shown
latter.

(b) Configuration 6

The shear layer is one of the most distinguishable flow pattern for compressible flow.
Considering an ideal case, the initial conditions of Configuration 6 for four planar contact
discontinuities in [16] are given by

(ρ,U1,U2,p)=



















(1,−0.75,0.5,1), x<0.5, y<0.5,

(3,−0.75,−0.5,1), x≥0.5, y<0.5,

(1,0.75,−0.5,1), x≥0.5, y≥0.5,

(2,0.75,0.5,1), x<0.5, y≥0.5.

Induced by these discontinuities, the Kelvin-Helmholtz instabilities will be triggered due
to the numerical viscosities. It is commonly believed that the less numerical dissipation
corresponds to larger amplitude shear instabilities [35]. It can be clearly observed in Fig. 7
that the new WENO-AO-GKS presents more vortices than the conventional WENO-GKS.
The higher order accuracy for the initial non-equilibrium states in the new reconstruction
reduces the numerical dissipation.
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Figure 7: Two dimensional Riemann problems: the density distributions for Configuration 6. Left: the conven-
tional WENO5-GKS. Right: the new WENO5-AO-GKS. CFL=0.95. T=0.6. Mesh: 500×500.

In addition, the computational efficiency from different schemes is evaluated under
this case. Firstly, the computational cost for the new WENO-AO GKS and the conven-
tional WENO5-GKS is shown in Table 10. Different mesh sizes are tested for the compar-
ison of computation cost, and the CPU times are recorded after running 10 time steps for
each scheme with a single processor of Intel Xeon E5 2630v4 @2.20GHz. The WENO-AO
reconstruction is more expensive than the traditional WENO reconstruction. As a result,
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Table 10: Computational time (in seconds) of different schemes for the 2D Riemann problem.

Mesh size

CPU time Schemes
WENO5-GKS WENO5-AO-GKS

100×100 3.487 3.580

200×200 14.594 14.496

300×300 31.843 32.460

400×400 56.508 58.371

Table 11: Computational time (in seconds) of different solvers for the 2D Riemann problem with WENO-AO
reconstruction.

Mesh size

CPU time Solvers
Two-stage fourth-order GKS RK4 LF RK4 HLLC

100×100 3.580 3.821 3.886

200×200 14.496 16.013 16.337

300×300 32.460 35.943 36.512

400×400 58.371 63.574 64.736

the WENO5-AO-GKS is slightly more expensive than the WENO5-GKS. Then, the com-
putational cost among GKS with MSMD time marching strategy and Riemann solvers
with RK method is presented in Table 11. Note that even for the current 2-D inviscid flow
test case, the GKS always solves the N-S equations. If RK4 Riemann solver-based scheme
is extended to solve the N-S equations, the computational cost will be further increased.

4.2.3 Double Mach reflection

Designed by Woodward and Colella [41] the inviscid double Mach reflection problem
is widely chosen for testing the robustness of high-order methods. The computational
domain is [0,4]×[0,1]. Initially a right-moving Mach 10 shock with a 60◦ angle against
the x-axis is positioned at (x,y)=(1/6,0). The initial pre-shock and post-shock conditions
are

(ρ,U1,U2,p)=(8,4.125
√

3,−4.125,116.5),

(ρ,U1,U2,p)=(1.4,0,0,1).

The slip boundary condition is used at the wall starting from x = 1/6. The post-shock
condition is set for the rest of bottom boundary. At the top boundary, the values of ghost
cells follows the motion of the Mach 10 shock.

The density distributions and local enlargements with 960×240 uniform mesh points
at t=0.2 for the new method are shown in Fig. 8 and Fig. 9. Suitable numerical viscosities
could be added to suppress the spurious oscillations as shown in Fig. 8. The robustness
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Figure 8: Double Mach. Mesh 960×240. CFL=0.5. c1 =0.2, c2 =1.
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Figure 9: Double Mach. Mesh 960×240. CFL=0.8. c1 =0, c2 =1.

of the new GKS is well validated with increasing the CFL number to 0.8, whereas the
previous WENO-Z GKS could not survive under such a large time step.

4.2.4 Viscous shock tube

A viscous shock tube [15] is used to test the performance of the new scheme for low-
Reynolds number viscous flow with strong shocks. An ideal gas is at rest in a two-
dimensional unit box [0,1]×[0,1]. A membrane located at x=0.5 separates two different
states of the gas and the dimensionless initial states are

(ρ,U,p)=

{

(120,0,120/γ), 0< x<0.5,

(1.2,0,1.2/γ), 0.5< x<1,

where γ = 1.4 and Prandtl number Pr = 1. The Reynolds number is Re = 1/µ = 200.
Due to symmetry, the computational domain is [0,1]×[0,0.5] with a symmetric boundary
condition on the top boundary x ∈ [0,1], y = 0.5. Non-slip adiabatic conditions are im-
posed at the other three boundaries. The solution will develop complex two-dimensional
shock/shear/boundary-layer interactions. The dramatic changes for velocities above the
bottom wall introduce strong shear stress. This is a challenging problem for high-order
schemes. The traditional HGKS with WENOZ-type weights could barely pass this case.
The JS-weights are usually used instead. The density distributions with 500×250 uni-
form mesh points at t=1.0 from the new WENO5-AO GKS with WENOZ-type weights
are shown in Fig. 10. The density profiles along the bottom wall are also plotted and
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Figure 10: The density contours at t=1 for Re=200 viscous shock tube. CFL=0.3. Mesh: 500×250.
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Figure 11: The density profiles along the bottom wall at t=1 for the Re=200 viscous shock tube.

shown in Fig. 11. As a comparison, the result with a fine mesh from traditional GKS
in [31] is presented as a reference solution.

4.3 3-D test cases

4.3.1 Accuracy test in 3-D

Again, the advection of density perturbation for the inviscid flow is chosen for accuracy
test with the initial conditions

ρ(x,y,z)=1+0.2sin(π(x+y+z)), U(x,y,z)=(1,1,1), p(x,y,z)=1,
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Table 12: Accuracy test for the 3-D sin-wave propagation by the linear WENO5 reconstruction. CFL=0.5.

mesh length L1 error Order L2 error Order L∞ error Order

1/5 3.663706e-02 4.193181e-02 5.653477e-02

1/10 1.703100e-03 4.43 1.864335e-03 4.49 2.716494e-03 4.38

1/20 5.736655e-05 4.89 6.379782e-05 4.87 9.157851e-05 4.89

1/40 2.156770e-06 4.73 2.404525e-06 4.73 3.483348e-06 4.72

1/80 1.007190e-07 4.42 1.121499e-07 4.42 1.642770e-07 4.41

Table 13: Accuracy test for the 3-D sin-wave propagation by the linear WENO5-AO reconstruction. CFL=0.5.

mesh length L1 error Order L2 error Order L∞ error Order

1/5 3.670079e-02 4.201435e-02 5.672087e-02

1/10 1.705347e-03 4.43 1.866037e-03 4.49 2.699234e-03 4.39

1/20 5.741795e-05 4.89 6.382396e-05 4.87 9.178298e-05 4.88

1/40 2.157640e-06 4.73 2.405206e-06 4.73 3.478134e-06 4.72

1/80 1.007306e-07 4.42 1.121643e-07 4.42 1.642306e-07 4.40

Table 14: Accuracy test for the 3-D sin-wave propagation by the WENO5-AO reconstruction. CFL=0.5.

mesh length L1 error Order L2 error Order L∞ error Order

1/5 3.844360e-02 4.258855e-02 5.786851e-02

1/10 1.730289e-03 4.47 1.896111e-03 4.49 2.748198e-03 4.40

1/20 5.749100e-05 4.91 6.389466e-05 4.89 9.180468e-05 4.90

1/40 2.157708e-06 4.74 2.405289e-06 4.73 3.478366e-06 4.72

1/80 1.007306e-07 4.42 1.121644e-07 4.42 1.642308e-07 4.40

within a cubic domain [0,2]×[0,2]×[0,2]. The periodic boundary conditions are adopted
in all directions while N×N×N uniform mesh cells are used. The analytic solution is

ρ(x,y,z,t)=1+0.2sin(π(x+y+z−t)), U(x,y,z)=(1,1,1), p(x,y,z,t)=1.

The CFL=0.5 is used for computation. Both WENO5-GKS and WENO5-AO-GKS are
tested with the linear weights as shown in Table 12 and Table 13. The results for the new
method with non-linear Z-type weights are shown in Table 14. The expected accuracy is
confirmed.

4.3.2 Three dimensional Taylor-Green vortex

The direct numerical simulation (DNS) of a three-dimensional Taylor-Green vortex [8] is
conducted to validate the new HGKS for nearly incompressible viscous flow. The initial
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flow field is given by

U1=V0sin
( x

L

)

cos
( y

L

)

cos
( z

L

)

,

U2=−V0cos
( x

L

)

sin
( y

L

)

cos
( z

L

)

,

U3=0,

p= p0+
ρ0V2

0

16

(

cos
(2x

L

)

+cos
(2y

L

))(

cos
(2z

L

)

+2
)

,

within a periodic cubic box −πL≤ x,y,z≤πL. The density distribution is given by re-
taining the constant temperature. In the computation, L= 1,V0= 1,ρ0 = 1, and the Mach
number takes M0=V0/as=0.1, where as is the sound speed. The characteristic convective
time tc=L/V0. The specific heat ratio γ=1.4 and the Prandtl number is Pr=1. Numerical
simulations are conducted with Reynolds number Re=1600.

Two global quantities are investigated in the current study as the flow evolves in time.
The first one is the volume-averaged kinetic energy

Ek =
1

ρ0Ω

ˆ

Ω

1

2
ρU·UdΩ,

where Ω is the volume of the computational domain. Then the dissipation rate of the
kinetic energy is given by

εk =−dEk

dt
.

The linear weights of reconstruction and the smooth flux function are adopted in this
case. The numerical results of the current scheme with 1283 and 1963 mesh points for
the normalized volume-averaged kinetic energy and dissipation rate are presented in
Fig. 12, which agree well with the data in [8]. The iso-surfaces of Q criterion colored by
Mach number at t=5 and 10 are shown in Fig. 13. The vortex structures become denser
and smaller with the time increment.

4.3.3 Compressible isotropic turbulence

A decaying homogeneous isotropic compressible turbulence is computed within a square
box defined as −π ≤ x,y,z ≤ π, and the periodic boundary conditions are used in all
directions [34]. Given spectrum with a specified root mean square U′

U′=
〈〈U·U

3

〉〉1/2
,

a divergence-free random velocity field U0 is initialized, where << ···>> is a volume
average over the whole computational domain. The specified spectrum for velocity is
given by

E(k)=A0k4exp(−2k2/k2
0),
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Figure 12: Taylor-Green vortex: Re = 1600. The time history of kinetic energy by the new reconstruction
procedure with the linear WENO5-AO reconstruction. CFL=0.5.
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Figure 13: Taylor-Green vortex: the iso-surfaces of Q criterion colored by Mach number at time t= 5, 10 for
Re=1600. 1963 mesh is used. The x-y plane is shown.

where A0 is a constant to set initial kinetic energy, k is the wave number, k0 is the wave
number at spectrum peaks. The initial volume averaged turbulent kinetic energy K0 and
the initial large-eddy-turnover time τ0 are given by

K0=
3A0

64

√
2πk5

0, τ0=

√

32

A0
(2π)1/4k−7/2

0 .



578 X. Ji and K. Xu / Commun. Comput. Phys., 28 (2020), pp. 539-590

The Taylor micro-scale λ corresponding Reynolds number Reλ and turbulence Mach
number Mat are given as

λ2=
(U′)2

<< (∂1U1)2>>
, Mat=

√
3U′

<< cs >>
=

√
3U′

√
γT0

,

Reλ=
<<ρ>>U′λ
<<µ>>

=
(2π)1/4

4

ρ0

µ0

√

2A0k3/2
0 .

The dynamic viscosity is determined by the power law

µ=µ0

( T

T0

)0.76
,

where µ0 and T0 can be determined from Reλ and Mat with initialized U′ and ρ0=1. The
time history of the kinetic energy, root-mean-square of density fluctuation are defined as

K(t)=
1

2
<ρU·U>, ρrms(t)=

√

< (ρ−ρ)2>.

The previous direct numerical simulations by the conventional WENO-GKS [30] have
shown the complex structures due to the random initial flow field. When the Mach num-
ber gets higher, the stronger shocklets generate complex shock-vortex interactions. It be-
comes very challenging for high-order methods by increasing the turbulent Mach num-
ber. Thus, a series of turbulent Mach numbers have been chosen to test the robustness
of the current scheme. A fixed Reλ =72 is used. Uniform meshes with 643 and 1283 cells
are used in the simulations. The other parameters, i.e., A0=1.3×10−4, k0 =8, are chosen
according to [30]. The maximum Mach number in the flow filed is about three times of
the initial turbulent Mach number. When Mat = 0.5, the pure smooth GKS solver and
the WENO-AO reconstruction with linear weights can be used. The equilibrium state is
obtained by the arithmetic average of the non-equilibrium states to further reduce the nu-
merical dissipations. As a result, the time history of normalized kinetic energy K(t)/K0,
normalized root-mean-square of density fluctuation ρrms(t)/Ma2

t agree well with the ref-
erence data with 643 cells, as shown in Fig. 14. If the non-linear weights are used, more
numerical dissipations are introduced, and the decaying process is far away from the
reference data under 643 cells. The differences between the numerical results with linear
and non-linear weights are negligible with 1283 cells.

With further increasing of Mat, the schemes could not survive with the pure smooth
flux solver and linear reconstruction. The full gas-kinetic flux solver should be used, and
theoretically the conventional WENO-GKS degrades to third-order accuracy due to the
low-order reconstructions for the non-equilibrium states. For the new HGKS, it gives a
strictly fifth-order spatial accuracy for both equilibrium and non-equilibrium states once
the WENO5-AO-Z reconstruction is applied. In order to improve the robustness of the
scheme, the following five treatments could possibly protect the program from blowing
up:
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Figure 14: Compressible isotropic turbulence with Mat =0.5. Left: K(t)/K0. Right: ρrms(t)/Ma2
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Figure 15: Compressible isotropic turbulence: Comparison between the conventional and new HGKS.

• Use the full GKS solver.

• Change the WENOZ-type weights to WENO-JS weights.

• When detecting negative temperature (lambda) for face-averaged/line-
averaged/point-wise values, the first-order reconstruction is used.

• Modify τ from τ = µ
p +δp∆t to τ = µ

p +∑
5
1δQ∆t, where Q means all five primitive

variables, operator δQ= |Ql−Qr|
|Ql |+|Qr| .

• Take smaller CFL number.

A systematical comparison of the performance of different higher-order GKS with the
increasing of Mach number is given in Table 15. Especially, the cases with Mat =0.8 and



580 X. Ji and K. Xu / Commun. Comput. Phys., 28 (2020), pp. 539-590

Table 15: The validation of conventional and new HGKS under different turbulence Mach number Mat. The
CFL number takes 0.5 and the WENO-Z type reconstruction is used if the setting is not specified. Mesh size:
643.

Mach number Traditional WENO5-GKS New WENO5-AO GKS

Mat≤0.5
Smooth reconstruction

Smooth GKS solver
Smooth reconstruction

Smooth GKS solver

Mat=0.8
Full GKS solver

Limiting of negative temperature

Full GKS solver

No limitation

Mat=1.0
Full GKS solver

Limiting of negative temperature

CFL=0.25

Full GKS solver

Limiting of negative temperature

Mat=1.2

Only WENO-JS reconstruction
Full GKS solver

Limiting of negative temperature

Modification of τ
CFL=0.25

Full GKS Solver
Limiting of negative temperature

1.0 are chosen to compare the performance of the two schemes, shown in Fig. 15. Nu-
merical results with 643 and 1283 cells are presented. The WENO-GKS shows more rapid
dissipation rates under these cases. The visualized results are given in Fig. 16, where
the iso-surfaces of Q criterion and the selected surface slice of Mach number distribution
at z=−π are plotted. The complex vortexes and widespread shocklets could be clearly
observed. Lastly, the time histories of the statistical quantities with respect of different
Mach numbers are shown in Fig. 17. Generally the kinetic energy gets dissipated more
rapidly with the increase of Mat. More data have been provided in [40]. This case at
higher Mach numbers will be further explored by HGKS.
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Figure 16: Compressible homogeneous turbulence with Mat = 1. Left: iso-surfaces of Q criterion colored by
Mach number at time t/τ0=1 with 643 cells; right: the Mach number distribution with z=−π at time t/τ=1.
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Figure 17: Compressible isotropic turbulence: Comparison with different Mat numbers by the new HGKS. Mesh:
643. CFL=0.5.

5 Conclusion

The gas-kinetic scheme is based on a high-order gas evolution model for the flux eval-
uation. The kinetic model equation is used in the construction of a time dependent gas
distribution at a cell interface. Similar to the generalized Riemann problem, the initial
condition of flow variables in GKS is a piecewise continuous polynomial on both sides
of a cell interface with a possible discontinuity between them. In the previous GKS, the
standard WENO-type reconstruction is used, where only point-wise values at the cell
interface are reconstructed and have the corresponding order of accuracy. However, the
GKS not only requires the point-wise values, but also the slopes of flow variables. As
a result, the use of the point-wise values from the standard WENO reconstruction and
the enforcement of cell averaged flow variables cannot get a reconstructed polynomial
inside each cell with the same order of accuracy as the original order of WENO recon-
struction. At the same time, in the previous GKS both initial non-equilibrium states and
the equilibrium one have to be reconstructed separately. In order to further improve
GKS, especially for the construction of higher-order GKS, the WENO-AO reconstruction
has been adopted in this paper, where a whole polynomial inside each cell is obtained
directly with the WENO-type reconstruction. Even though the schemes based on the
Riemann solver cannot get full benefits from WENO-AO reconstruction because only
point-wise values are required in the Riemann solution, the GKS is able to utilize the
whole polynomial from WENO-AO. Therefore, the initial non-equilibrium states inside
the cell in the current HGKS can achieve the same order of accuracy of the WENO recon-
struction. Besides the improvement of order of accuracy in the initial non-equilibrium
states, the equilibrium state in the HGKS is obtained through a dynamic modeling, such
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as the particle collisions from the non-equilibrium distribution functions, and the sepa-
rate reconstruction for the equilibrium state in the previous GKS is avoided. In the new
HGKS, both initial non-equilibrium and equilibrium states can achieve the same order
of accuracy. Due to the absence of equilibrium reconstruction, the new scheme becomes
simpler and is more flexibility in dealing with the WENO procedure at arbitrary Gaus-
sian points than the previous scheme. The computational efficiency has been improved
as well in the current approach. The WENO-Z-type weights can be used directly in the
WENO-AO reconstruction in the current HGKS and the scheme has the same robust-
ness as the previous one with the WENO-JS-weights. Another distinguishable feature of
HGKS is the use of multi-stage multi-derivative approach as the time-stepping method.
More specifically, with two stages a fourth-order time accuracy has been obtained. This
benefits solely from the time accurate flux function in GKS. Many numerical experiments
are included to validate the efficiency, robustness, and accuracy of the scheme. Accuracy
tests from 1D to 3D show that the scheme meets its designed accuracy. The scheme inher-
its less numerical viscosity, reduces the spurious oscillation at weak discontinuities, and
has a better shear instability resolution. In the compressible isotropic turbulence simu-
lation, the scheme shows favorable robustness in capturing multi-dimensional shocklet
and resolve the small vortex structure accurately. The reconstruction scheme is very im-
portant for the quality of GKS. Combining the excellent reconstruction technique and the
physically reliable evolution model, a higher-order gas-kinetic scheme with enhanced
performance for the Euler and Navier-Stokes equations has been developed. The further
extension of the reconstruction procedure to high-order compact GKS on unstructured
mesh will be investigated.
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Appendix A: Reconstruction at Gaussian points

Reconstruction are needed at the Gaussian points in multi-dimensional case. Two Gaus-
sian points are used in the current fourth-order scheme. Starting from the same stencils
above, the point-wise values from each sub-stencil at the Gaussian point xi−1/2

√
3 are

pr3
0 (xi−1/2

√
3)=(1−

√
3/4)Q̄0+(4Q̄−1−Q̄−2)/(4

√
3),

pr3
1 (xi−1/2

√
3)= Q̄0+(Q̄−1−Q̄1)/(4

√
3),

pr3
2 (xi−1/2

√
3)=(3(4+

√
3)Q̄0+

√
3(−4Q̄1+Q̄2))/12,
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pr5
3 (xi−1/2

√
3)=(4314Q̄0+(4+500

√
3)Q̄−1−(1+70

√
3)Q̄−2,

+(4−500
√

3)Q̄1+(−1+70
√

3)Q̄2)/4320,

and the first-order derivatives are

(pr3
0 )x(xi−1/2

√
3)=−((−9+

√
3)Q̄0−2(−6+

√
3)Q̄−1+(−3+

√
3)Q̄−2)/(6∆x),

(pr3
1 )x(xi−1/2

√
3)=−(−2

√
3Q̄0+(3+

√
3)Q̄−1+(−3+

√
3)Q̄1)/(6∆x),

(pr3
2 )x(xi−1/2

√
3)=−((9+

√
3)Q̄0−2(6+

√
3)Q̄1+(3+

√
3)Q̄2)/(6∆x),

(pr5
3 )x(xi−1/2

√
3)=(48

√
3Q̄0−(72+26

√
3)Q̄−1+(9+2

√
3)Q̄−2,

+(72−26
√

3)Q̄1−(9−2
√

3)Q̄2)/(108∆x).

The point-wise values and linear weights at another Gaussian point xi+1/2
√

3 are

pr3
0 (xi+1/2

√
3)=(3(4+

√
3)Q̄0+

√
3(−4Q̄−1+Q̄−2))/12,

pr3
0 (xi+1/2

√
3)= Q̄0+(−Q̄−1+Q̄1)/(4

√
3),

pr3
0 (xi+1/2

√
3)=(1−

√
3/4Q̄0)+(4Q̄1−Q̄2)/(4

√
3),

pr5
3 (xi+1/2

√
3)=(4314Q̄0+(4−500

√
3)Q̄−1−(1−70

√
3)Q̄−2,

+(4+500
√

3)Q̄1−(Q̄2+70
√

3)Q̄2)/4320,

and the first-order derivatives are

(pr3
0 )x(xi+1/2

√
3)=((9+

√
3)Q̄0−2(6+

√
3)Q̄−1+(3+

√
3)Q̄−2)/(6∆x),

(pr3
1 )x(xi+1/2

√
3)=(−2

√
3Q̄0+(−3+

√
3)Q̄−1+(3+

√
3)Q̄1)/(6∆x),

(pr3
2 )x(xi+1/2

√
3)=((−9+

√
3)Q̄0−2(−6+

√
3)Q̄1+(−3+

√
3)Q̄2)/(6∆x),

(pr5
3 )x(xi+1/2

√
3)=−((48

√
3Q̄0+(72−26

√
3)Q̄−1−(9−2

√
3)Q̄−2,

−(72+26
√

3)Q̄1+(9+2
√

3)Q̄2)/(108∆x)).

Appendix B: Calculation of GKS flux function in 1-D

This appendix presents some details for the implementation of gas-kinetic flux solver
[42–44].

For a clearer illustration, the final form of the gas kinetic distribution function along
a cell interface xi+1/2 in Eq. (2.19) is listed here again

f (xi+1/2,t,u,ξ)=(1−e−t/τ)gc+((t+τ)e−t/τ−τ)acugc

+(t−τ+τe−t/τ)Acgc

+e−t/τgl [1−(τ+t)al u−τAl)]H(u)

+e−t/τgr [1−(τ+t)aru−τAr)](1−H(u)). (B.1)
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The f (xi+1/2,t,u,ξ) on LHS is a function of physical space (x,t) and phase space (u,ξ).
The interface point xi+1/2=0 is assumed. All coefficients on the RHS are evaluated at this
point, i.e., gc = gc(xi+1/2=0,t=0,u,ξ).

Moment calculation

In the flux calculation according to Eq. (B.1), the moments of Maxwellian distribution
functions, i.e., gc, gl and gr , will be evaluated. The general formulas of moment evalua-
tions are given first.

For a one-dimensional Maxwellian distribution

g=ρ
( λ

π

)
K+1

2
e−λ((u−U)2+ξ2),

the moments of g is defined as

ρ〈|··· |〉=
ˆ

(···)gdΞ,

the general moment formula becomes

〈|unξ2l |〉= 〈|un|〉〈|ξ2l |〉,

where n, l are integers (owing to the symmetrical property of ξ, the moments of ξ are
always even-order). With the integral from −∞ to +∞, we have

〈|u0|〉=1,

〈|u1|〉=U,

···

〈|un+2|〉=U〈|un+1|〉+ n+1

2λ
|〈un|〉.

Due to the Heaviside function, the half integral from 0 to +∞ is denoted as 〈|··· |〉>0, and
from −∞ to 0 as 〈|··· |〉<0,

〈|u0|〉>0=
1

2
erfc(−

√
λU),

〈|u1|〉>0=U〈|u0|〉>0+
1

2

e−λU2

√
πλ

,

···

〈|un+2|〉>0=U〈|un+1|〉>0+
n+1

2λ
〈|un|〉>0,
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and

〈|u0|〉<0=
1

2
erfc(

√
λU),

〈|u1|〉<0=U〈|u0|〉<0−
1

2

e−λU2

√
πλ

,

···

〈|un+2|〉<0=U〈|un+1|〉<0+
n+1

2λ
〈|un|〉<0,

where erfc is the standard complementary error function. The moments of 〈|ξ2l |〉 from
−∞ to +∞ are

〈|ξ0|〉=1,

〈|ξ2|〉=
( K

2λ

)

,

〈|ξ2l |〉= K+2(l−1)

2λ
〈|ξ2(l−1)|〉.

Derivatives in macroscopic flow variables and microscopic distribution
function

Once the reconstruction for macroscopic flow derivatives is finished, the microscopic
derivatives al,r,e,Al,r,e in Eq. (B.1) can be obtained in the following way.

From the Taylor expansion of a Maxwellian distribution, all microscopic derivatives
shall have in the following form

a= a1+a2u+a3
1

2
(u2+ξ2)= aβψβ,

A=A1+A2u+A3
1

2
(u2+ξ2)=Aβψβ.

According to the relation between distribution function and the macroscopic vari-
ables in Eq. (2.8), we have

ˆ

ψψψagdΞ=
∂W

∂x
,

which could be expanded as








b1

b2

b3









=
1

ρ

∂W

∂x
=

1

ρ









∂ρ
∂x

∂(ρU)
∂x

∂(ρE)
∂x









= 〈|αβψβψα|〉= 〈|ψαψβ|〉









a1

a2

a3









. (B.2)

Denoting M= 〈|ψαψβ|〉, the above equations become a linear system

Ma=b, (B.3)
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and the coefficient matrix M is given by

M=





〈|u0|〉 〈|u1|〉 〈|ψ3|〉
〈|u1|〉 〈|u2|〉 〈|u1ψ3|〉
〈|ψ3|〉 〈|u1ψ3|〉 〈|ψ2

3|〉



=





1 U B1

U U2+1/2λ B2

B1 B2 B3



,

where

B1=
1

2

(

U2+V2+
K+1

2λ

)

,

B2=
1

2

(

U3+
(K+3)U

2λ

)

,

B3=
1

4

(

U4+
(K+3)(U2)

λ
+
(K+1)(K+3)

4λ2

)

.

Denoting

R3=2b3−
(

U2+
K+1

2λ

)

b1, R2=b2−Ub1,

the solution of Eq. (B.3) can be written as

a3=
4λ2

K+1
(R4−2UR2),

a2=2λR2−Ua3,

a1=b1−Ua2−
1

2
a3

(

U2+
K+1

2λ

)

.

Thus, once the reconstructions for macroscopic flow variables and their derivatives are
provided, the micro first-order spatial derivatives can be calculated.

According to the compatibility condition Eq. (2.7), the corresponding Euler equations
can be derived

〈au+A〉=0.

Then the coefficient A for the temporal evolution of a equilibrium state can be obtained
by solving the following equation

〈A〉=−〈au〉.
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Time Integration for third-order flux solver

Since the distribution function is time dependent, the total transport in one time step
from tn to tn+∆t yields

Fi+1/2(W
n,δ)=

ˆ tn+δ

tn

Fi+1/2(W
n,t)dt

=

ˆ tn+δ

tn

ˆ

uψ f (xi+1/2,t,u,ξ)dΞdt

=

ˆ ˆ tn+δ

tn

uψ f (xi+1/2,t,u,ξ)dtdΞ,

where
ˆ tn+δ

tn

u f (xi+1/2,t,u,ξ)dt

=(τe−t/τ+δ−τ)ugc

+{τ[τ−e−t/τ(δ+τ)−τ(e−t/τ−1)]−τδ}u2acgc

+[1/2δ2−τ2(e−t/τ−1)−τδ]uAcgc

+τ(1−e−t/τ)[H(u)ugl+(1−H(u))ugr ]

+[τ(e−t/τ(δ+τ)−τ)+τ2(e−t/τ−1)][H(u)u2al gl+(1−H(u))u2ar gr]

+τ2(e−t/τ−1)[H(u)uAlgl+(1−H(u))uArgr ].

In smooth case, it could be simplified as

ˆ tn+δ

tn

u f (xi+1/2,t,u,ξ)dt=δugc−τδu2acgc+[1/2δ2−τδ]uAcgc.
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