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A B S T R A C T

High-order gas-kinetic scheme (HGKS) with 5th-order non-compact reconstruction has been well implemented
for implicit large eddy simulation (ILES) in nearly incompressible turbulent channel flows. In this study,
the HGKS with higher-order non-compact reconstruction and compact reconstruction will be validated in
turbulence simulation. For higher-order non-compact reconstruction, 7th-order reconstruction in both normal
and tangential directions are implemented. On the other hand, the compact HGKS with 5th-order compact
reconstruction in normal direction is developed. Current work aims to show the benefits of high-order non-
compact reconstruction and compact reconstruction for ILES. The accuracy of HGKS is verified by numerical
simulation of three-dimensional advection of density perturbation. For the non-compact 7th-order scheme, 16
Gaussian points are required on the cell-interface to preserve the order of accuracy. Then, HGKS with non-
compact and compact reconstruction is used in the three-dimensional Taylor–Green vortex (TGV) problem
and turbulent channel flows. Accurate ILES solutions have been obtained from HGKS. In terms of the physical
modeling underlying the numerical algorithms, the compact reconstruction has the consistent physical and
numerical domains of dependence without employing additional information from cells which have no any
direct physical connection with the targeted cell. The compact GKS shows a favorable performance for
turbulence simulation in resolving the multi-scale structures.
1. Introduction

Turbulence is a universal physical phenomenon and the research
of turbulence is of great significance to industry [1]. Recently, the
high-order scheme for industry flows becomes popular, i.e., aerospace
engineering applications [2]. The application of high-order methods
in industrial flows is still on going. Due to the multi-scale nature of
turbulence in space and time, it is a challenge to balance the accuracy
requirements and computational costs in the simulations.

Currently, there are four main approaches in numerical simulation
of turbulent flow: direct numerical simulation (DNS) [3–6], Reynolds
averaged Navier–Stokes (RANS) simulation [7–10], large eddy sim-
ulation (LES) [11–19], and hybrid RANS/LES methods(HRLM) [20].
Implicit LES (ILES) was proposed in 1992 [21], in which the numerical
dissipation can be used to replace the SGS dissipation in the turbulence
simulation. The ILES approach can overcome the problem of over-
dissipation that arises in explicit LES models [22,23]. Christer Fureby
and Fernando F. Grinstein constructed the monotonically integrated
LES (MILES) [24]. In this method, intrinsic nonlinear high-frequency
filters built into the convection discretization provide the implicit SGS
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models, which are coupled naturally to the resolvable scales of the
flow. Y. Bazilevs et al. developed variational multiscale residual-based
turbulence modeling [22], which can be derived completely from the
incompressible Navier–Stokes equations without employing any ad hoc
devices, such as eddy viscosities in the traditional LES models. I.W.
Kokkinakis and D. Drikakis used several high-resolution and high-
order finite volume schemes for the simulation of weakly compressible
turbulent channel flow and verified the advantage of the higher-order
scheme in ILES [23].

The gas-kinetic scheme (GKS) [25,26] is a finite volume method
based on the Bhatnagar–Gross–Krook (BGK) model [27] for the con-
struction of gas evolution model at a cell interface. In recent years,
in conjunction with weighted essentially non-oscillatory (WENO) re-
construction and two-stage fourth-order (S2O4) temporal discretiza-
tion [28,29], GKS has achieved great success in flow simulations with
high temporal and spatial resolutions. High-order GKS (HGKS) coupled
with the turbulence model has been effectively applied in RANS and
LES of turbulence [30]. The performance of HGKS with parallel compu-
tation has been investigated in the DNS of turbulence flows [31]. The
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comparison of the performance for ILES and LES with 5th-order GKS
has been studied, which shows that the high-order GKS can provide
appropriate numerical dissipation and is suitable for ILES of turbu-
lence [32]. The compact GKS (CGKS) has been developed in recent
years and successfully applied to compressible flow simulation, which
exhibits superiority compared with the non-compact scheme [33,34].
The GKS provides a time-accurate solution at a cell interface based on
the high-order gas evolution model. From the time-accurate solution,
both time-accurate flux function and flow variables can be obtained for
updating cell averaged conservative flow variables and gradients. Based
on cell-averaged flow variables and gradients, the compact reconstruc-
tion in GKS can be obtained. Compared with the non-compact scheme,
the compact scheme can achieve higher-order accuracy with the same
stencils. Additionally, the stencils used in compact scheme is less than
that used in the non-compact scheme for the same order of accuracy. In
order to simulate the complex geometries and flows, the non-compact
and compact HGKS have also been developed on unstructured mesh
in recent years. The third-order non-compact gas-kinetic scheme was
developed on the three-dimensional unstructured mesh for the numeri-
cal simulation of complex geometries and flows [35]. The higher-order
non-compact HGKS on unstructured mesh should be studied in the
future. For compact scheme, a 3rd-order accurate compact GKS has
been developed on the three-dimensional unstructured mesh [36].
Recently, a higher-order compact GKS up to 6th-order accuracy on
unstructured mesh in two-dimension was constructed and applied for
complex geometries and flows simulations [37]. The compact HGKS on
unstructured mesh in three-dimension should also be developed in the
future.

In this study, we develop the GKS with 7th-order non-compact
reconstruction in the normal and tangential directions, then investi-
gate the effect of improving the reconstruction order on turbulence
simulation. Following the idea of the compact GKS [33], we also
develop the HGKS with 5th-order compact reconstruction in the normal
direction and investigate the effect of compact reconstruction of GKS
on turbulence simulation. The three-dimensional advection of density
perturbation is tested to verify the accuracy of different schemes. The
three-dimensional Taylor–Green vortex and turbulent channel flows
are simulated by HGKS. For the high-order scheme, the numerical
dissipation is reduced, and the resolution is increased. The compact
reconstruction has the consistent physical and numerical domains of
dependence [33,34]. The compact GKS has a favorable performance
for turbulence simulation in resolving the multi-scale structure.

The remainder of this paper is organized as follows: Section 2 in-
troduces the HGKS. Section 3 presents the HGKS with the higher-order
non-compact and compact reconstruction. In Section 4, the accuracy
tests for the schemes are conducted. In Section 5, the schemes are
applied in TGV and turbulent channel flows. Section 6 is the discussion
and conclusion.

2. High-order gas kinetic scheme

The three-dimensional BGK equation can be written as [27]
𝜕𝑓
𝜕𝑡

+ 𝑢
𝜕𝑓
𝜕𝑥

+ 𝑣
𝜕𝑓
𝜕𝑦

+𝑤
𝜕𝑓
𝜕𝑧

=
𝑔 − 𝑓
𝜏

, (1)

here 𝑢, 𝑣,𝑤 is the particle velocity in three dimensions; 𝑔 denotes
he equilibrium state in the Maxwellian distribution and is approached
y 𝑓 ; and collision time 𝜏 denotes the average time interval between
uccessive particle collisions for the same particle. The collision term
atisfies the compatibility condition

∫
𝑔 − 𝑓
𝜏

𝝍d𝛯 = 0,

here 𝝍 = (1, 𝑢, 𝑣, 𝑤, 12 (𝑢
2 + 𝑣2 + 𝑤2 + 𝜉2))𝑇 , 𝜉2 = 𝜉21 + ⋯ + 𝜉2𝑁 , and

d𝛯 = d𝑢d𝑣d𝑤d𝜉1 …d𝜉𝑁 . Here, 𝑁 is the internal degree of freedom and
2

relates to the specific heat 𝛾, with 𝑁 = (5 − 3𝛾)(𝛾 − 1). 𝑓
The time-dependent gas distribution function at the cell interface
can be expressed as the integral solution of the BGK equation as
follows [26]:

𝑓 (𝒙𝑖+1∕2,𝑗𝑚 ,𝑘𝑛 , 𝑡, 𝒖, 𝜉) =
1
𝜏 ∫

𝑡

0
𝑔(𝒙′, 𝑡′, 𝒖, 𝜉)𝑒−(𝑡−𝑡′)∕𝜏d𝑡′

+ 𝑒−𝑡∕𝜏𝑓0(−𝒖𝑡, 𝜉),
(2)

where (𝑦𝑗𝑚 , 𝑧𝑘𝑛 ) is the Gaussian quadrature point of the cell interface
𝑦𝑗 × 𝑧𝑘; 𝒖 = (𝑢, 𝑣,𝑤)𝑇 is the particle velocity in three dimensions;
′ = 𝒙𝑖+1∕2,𝑗𝑚 ,𝑘𝑛 − 𝒖(𝑡 − 𝑡′) is the particle trajectory; 𝑓0 is the initial gas
istribution function at the beginning of each time step; and 𝑔 is the
orresponding equilibrium state.

Here, 𝑓0 is assumed to be

0 =

{

𝑔𝑙[1 + (𝑎𝑙𝑥 + 𝑏𝑙𝑦 + 𝑐𝑙𝑧) − 𝜏(𝑎𝑙𝑢 + 𝑏𝑙𝑣 + 𝑐𝑙𝑤 + 𝐴𝑙)], 𝑥 ≤ 0,
𝑔𝑟[1 + (𝑎𝑟𝑥 + 𝑏𝑟𝑦 + 𝑐𝑟𝑧) − 𝜏(𝑎𝑟𝑢 + 𝑏𝑟𝑣 + 𝑐𝑟𝑤 + 𝐴𝑟)], 𝑥 > 0,

(3)

where 𝑔𝑙 and 𝑔𝑟 are the Maxwellian distributions at the two sides of
the cell interface, 𝑎𝑙,𝑟, 𝑏𝑙,𝑟, 𝑐𝑙,𝑟 correspond to the coefficients in spatial
derivatives in the expansion of a Maxwellian and 𝐴𝑙,𝑟 correspond to
the coefficients in temporal derivatives.

Further, 𝑔 can be expressed as

𝑔 = 𝑔𝑐 (1 + 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝐴𝑡), (4)

where 𝑔𝑐 is the initial equilibrium state located at the cell interface,
which can be determined from the compatibility condition

∫ 𝑔𝑐𝝍d𝛯 = ∫𝑢>0
𝑔𝑙𝝍d𝛯 + ∫𝑢<0

𝑔𝑟𝝍d𝛯. (5)

Here, 𝑔𝑙 and 𝑔𝑟 are the initial equilibrium gas distribution functions
on both sides of the cell interface. The spatial microscopic coefficients,
𝑖.𝑒. , 𝑎𝑘, 𝑏𝑘, 𝑐𝑘, 𝑎, 𝑏 and 𝑐 can be calculated from the slope of macro
conserved quantities at the two sides of the cell interface 𝑸𝑘, and the
orresponding equilibrium state 𝑸𝑐

𝑎𝑘⟩ =
𝜕𝑸𝑘

𝜕𝑥
, ⟨𝑏𝑘⟩ =

𝜕𝑸𝑘

𝜕𝑦
, ⟨𝑐𝑘⟩ =

𝜕𝑸𝑘

𝜕𝑧

⟨𝑎⟩ = 𝜕𝑸𝑐

𝜕𝑥
, ⟨𝑏⟩ = 𝜕𝑸𝑐

𝜕𝑦
, ⟨𝑐⟩ = 𝜕𝑸𝑐

𝜕𝑧
,

where 𝑘 = 𝑙, 𝑟. The temporal microscopic coefficients, 𝑖.𝑒. , 𝐴𝑘 and 𝐴
can be determined from the compatibility condition [29]

⟨𝑎𝑘𝑢 + 𝑏𝑘𝑣 + 𝑐𝑘𝑤 + 𝐴𝑘
⟩ = 0, ⟨𝑎𝑢 + 𝑏𝑣 + 𝑐𝑤 + 𝐴⟩ = 0,

where 𝑘 = 𝑙, 𝑟 and ⟨...⟩ are the moments of the equilibrium 𝑔 and defined
by 𝜌⟨...⟩ = ∫ 𝑔(...)𝝍d𝛯.

As illustrated above, the equilibrium distribution functions 𝑔𝑙, 𝑔𝑟
nd 𝑔𝑐 , as well as the slopes 𝑎𝑘, 𝑏𝑘, 𝑐𝑘, 𝑎, 𝑏, and 𝑐 can be obtained from

the macroscopic conservative flow variables and their slopes around a
cell interface. The compact and non-compact high-order reconstruction
strategies are used to get the macroscopic variables and their slopes at
the Gaussian points around the cell interface. Substituting Eqs. (3) and
(4) into the formal solution of Eq. (2), the second-order gas distribution
function at the cell interface can be expressed as [26]

𝑓 (𝒙𝑖+1∕2,𝑗𝑚 ,𝑘𝑛 , 𝑡, 𝒖, 𝜉) = (1 − 𝑒−𝑡∕𝜏 )𝑔𝑐
+ ((𝑡 + 𝜏)𝑒−𝑡∕𝜏 − 𝜏)(𝑎𝑢 + 𝑏𝑣 + 𝑐𝑤)𝑔𝑐
+ (𝑡 − 𝜏 + 𝜏𝑒−𝑡∕𝜏 )�̄�𝑔𝑐
+ 𝑒−𝑡∕𝜏𝑔𝑙[1 − (𝜏 + 𝑡)(𝑎𝑙𝑢 + 𝑏𝑙𝑣 + 𝑐𝑙𝑤) − 𝜏𝐴𝑙]𝐻(𝑢)

+ 𝑒−𝑡∕𝜏𝑔𝑟[1 − (𝜏 + 𝑡)(𝑎𝑟𝑢 + 𝑏𝑟𝑣 + 𝑐𝑟𝑤) − 𝜏𝐴𝑟](1 −𝐻(𝑢)).
(6)

n the smooth-flow region, for the continuous flow variables at the cell
nterface, the gas distribution function can be simplified as

(7)
(𝒙𝑖+1∕2,𝑗𝑚 ,𝑘𝑛 , 𝑡, 𝒖, 𝜉) = 𝑔𝑐 [1 − 𝜏(𝑎𝑢 + 𝑏𝑣 + 𝑐𝑤 + 𝐴) + 𝑡𝐴].



Computers and Fluids 256 (2023) 105846W. Zhao et al.

w

H



w

−
(

−
G
p

𝑄

∫

t
w
G

3

w

Table 1
The positions and weights for the Gaussian points distribution.
Gaussian
points

Coordinates Weights

𝑥1
−1

2
√

3
𝛥𝑥 1

2

𝑥2
1

2
√

3
𝛥𝑥 1

2

𝑥1 −

√

15 + 2
√

30
140

𝛥𝑥
18 −

√

30
72

𝑥2 −

√

15 − 2
√

30
140

𝛥𝑥
18 +

√

30
72

𝑥3

√

15 − 2
√

30
140

𝛥𝑥
18 +

√

30
72

𝑥4

√

15 + 2
√

30
140

𝛥𝑥
18 −

√

30
72

Taking the moments of the BGK equation (𝑖.𝑒. , Eq. (1)) and integrating
ith respect to space, the finite volume scheme can be expressed as

d(𝑸𝑖𝑗𝑘)
d𝑡 = (𝑸𝑖𝑗𝑘). (8)

ere, the  operator is defined as

(𝑸𝑖𝑗𝑘) = − 1
|𝛺𝑖𝑗𝑘|

[∫𝑦𝑗×𝑧𝑘
(𝑭 𝑖+1∕2,𝑗,𝑘 − 𝑭 𝑖−1∕2,𝑗,𝑘)d𝑦d𝑧

+∫𝑥𝑖×𝑧𝑘
(𝑮𝑖,𝑗+1∕2,𝑘 −𝑮𝑖,𝑗−1∕2,𝑘)d𝑥d𝑧

+∫𝑥𝑖×𝑦𝑗
(𝑯 𝑖,𝑗,𝑘+1∕2 −𝑯 𝑖,𝑗,𝑘−1∕2)d𝑥d𝑦],

(9)

here |𝛺𝑖𝑗𝑘| is the control volume with 𝑥𝑖 = [𝑥𝑖 − 𝛥𝑥∕2, 𝑥𝑖 + 𝛥𝑥∕2], 𝑦𝑗 =
[𝑦𝑗 − 𝛥𝑦∕2, 𝑦𝑗 + 𝛥𝑦∕2], and 𝑧𝑘 = [𝑧𝑘 − 𝛥𝑧∕2, 𝑧𝑘 + 𝛥𝑧∕2], and 𝑭 ,𝑮,
and 𝑯 denote the fluxes of the conservative flow variables in three
dimensions.

Taking the time-dependent numerical flux in the 𝑥-direction as an
example [31],

∫𝑦𝑗×𝑧𝑘
𝑭 𝑖+1∕2,𝑗,𝑘d𝑦d𝑧 =

𝑐
∑

𝑚,𝑛=1
𝜔𝑚𝑛 ∫ 𝝍𝑢𝑓 (𝒙𝑖+1∕2,𝑗𝑚 ,𝑘𝑛 , 𝑡, 𝒖, 𝜉)d𝛯𝛥𝑦𝛥𝑧, (10)

where 𝑭 = (𝐹𝜌, 𝐹𝜌𝑈 , 𝐹𝜌𝑉 , 𝐹𝜌𝑊 , 𝐹𝜌𝐸 ) denote the fluxes of the conservative
flow variables, 𝜔𝑚𝑛 is the quadrature weight, (𝑦𝑗𝑚 , 𝑧𝑘𝑛 ) is the Gaussian
quadrature point of the cell interface 𝑦𝑗×𝑧𝑘, and 𝑐 = 2 and 4 correspond
to 4 and 16 Gaussian points used in the cell-interface, respectively. The
positions and weights for the Gaussian points 𝑥𝑖 in one-dimension are
shown in Table 1, where the width of the cell is 𝛥𝑥, and the coordinate
of the cell center-point is 0. It can be easily extended to two-dimension
through those parameters. For temporal updating, S2O4 time-accurate
discretization is adopted. Further details on time-accurate discretization
can be found in previous work [29].

3. Three-dimensional high-order non-compact reconstruction and
compact reconstruction

3.1. High-order non-compact reconstruction in three-dimension

The reconstruction order of HGKS for turbulence simulation in pre-
vious work is mainly 5th-order [31,32]. In the following, we introduce
the reconstruction method that improves the order to 7th-order. To get
the values of macroscopic conserved quantities and their slopes which
are used for the construction of smooth flux at the Gaussian points in
the cell interfaces, the direction by direction reconstruction strategy
is applied on rectangular meshes [38]. The details are illustrated as
follows:
3

i

Step 1: In the normal direction, the left and right face averaged
values at the cell interface can be reconstructed by 7th-order WENO
reconstruction [39] with the seven cell averaged values as the sub-
stencils. For the smooth flow cases, the linear weights in WENO are
used. The face averaged values in the equilibrium state can be ob-
tained by the compatibility condition. After that, a linear sixth-order
polynomial can be constructed using the cell averaged values, and the
first-order derivative for face averaged values can be calculated from
the polynomial, as shown in Section 3.1.1.

Step 2: In the horizontal direction, a linear sixth-order polyno-
mial can be constructed using the face averaged values (𝑄𝑐 )𝑗−𝑙,𝑘, 𝑙 =
3,… , 3, and the line averaged values and derivatives (𝑄

𝑐
)𝑗±1∕2,𝑘,

𝑄
𝑐
𝑦)𝑗±1∕2,𝑘 at 𝑦 = 𝑦𝑗𝑚 can be obtained from the polynomial, as shown

in Section 3.1.2.
Similarly we construct a linear sixth-order polynomial using the face

averaged derivatives (𝑄𝑐
𝑥)𝑗−𝑙,𝑘, 𝑙 = −3,… , 3. Then the derivatives for

line averaged values (𝑄
𝑐
𝑥)𝑗±1∕2,𝑘 at 𝑦 = 𝑦𝑗𝑚 can be obtained.

Step 3: In vertical direction, similarly, a linear sixth-order polyno-
mial can be constructed by using the line averaged values (𝑄

𝑐
)𝑗𝑚 ,𝑘+𝑙 , 𝑙 =

3,… , 3. Then the point values and derivatives (�̇�𝑐 )𝑗𝑚 ,𝑘𝑛 , (�̇�
𝑐
𝑧)𝑗𝑚 ,𝑘𝑛 at the

aussian points can be obtained. The spatial derivatives at the Gaussian
oint (�̇�𝑐

𝑥)𝑗𝑚 ,𝑘𝑛 , (�̇�
𝑐
𝑦)𝑗𝑚 ,𝑘𝑛 can be obtained in the same way.

3.1.1. Algorithm for linear 7th-order reconstruction at cell interface
To fully determine the slopes of the equilibrium state across the

cell interface, the variables across the cell interface 𝑄𝑐 (𝑥) are expanded
as [38]

𝑄𝑐 (𝑥) = 𝑄𝑐
𝑖+1∕2 + 𝑆1(𝑥 − 𝑥𝑖+1∕2) +

1
2
𝑆2(𝑥 − 𝑥𝑖+1∕2)2 +

1
6
𝑆3(𝑥 − 𝑥𝑖+1∕2)3

+ 1
24

𝑆4(𝑥 − 𝑥𝑖+1∕2)4 +
1
120

𝑆5(𝑥 − 𝑥𝑖+1∕2)5 +
1
720

𝑆6(𝑥 − 𝑥𝑖+1∕2)6,

(11)

where 𝑄𝑐
𝑖+1∕2 are the variables in equilibrium state at cell interface

𝑥 = 𝑥𝑖+1∕2. With the following conditions,

∫𝐼𝑖+𝑘
𝑄𝑐 (𝑥)d𝑥 = 𝑄𝑖+𝑘, 𝑘 = −2,… , 3, (12)

the derivatives are determined by (𝑄𝑐
𝑥)𝑖+1∕2 = 𝑆1.

3.1.2. Algorithm for linear 7th-order reconstruction at cell center
For the reconstruction of equilibrium state in horizontal and ver-

tical directions we use the smooth reconstruction. The algorithm for
smooth 7th-order reconstruction is explicated as follows. Firstly, we
construct a 7th-order polynomial expansion at the cell center by using
7 sub-stencils

𝑄𝑐 (𝑥) = 𝑄𝑐
𝑖 + 𝑆1(𝑥 − 𝑥𝑖) +

1
2
𝑆2(𝑥 − 𝑥𝑖)2 +

1
6
𝑆3(𝑥 − 𝑥𝑖)3

+ 1
24

𝑆4(𝑥 − 𝑥𝑖)4 +
1
120

𝑆5(𝑥 − 𝑥𝑖)5 +
1
720

𝑆6(𝑥 − 𝑥𝑖),
(13)

where 𝑄𝑐 (𝑥) are the variables in equilibrium state at coordinate 𝑥, and
𝑐
𝑖 are the variables in equilibrium state at cell center 𝑥 = 𝑥𝑖.

With the following conditions,

𝐼𝑖+𝑘
𝑄𝑐 (𝑥)d𝑥 = 𝑄𝑖+𝑘, 𝑘 = −3,… , 3, (14)

he coefficients of polynomials can be obtained. From the polynomial
e can calculate the point values and spatial derivative values at the
auss points.

.2. High-order compact reconstruction in three-dimension

Following the idea of the compact GKS [33], the algorithm for HGKS
ith 5th-order compact reconstruction in the normal direction can be

llustrated in Fig. 1, and described as follows:
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Fig. 1. Algorithm for compact GKS.
Step 1: By applying the Newton–Leibniz formula as shown in
Eq. (15) for the conservative variables in the cell-interface, we can
obtain the derivatives for conservative variables in the cell. In the
normal direction, based on the cell averages and cell averaged deriva-
tives, through applying the 5th-order Hermite weighted essentially
non-oscillatory (HWENO) reconstruction [40], the face averages 𝑄𝑙 and
4

𝑄𝑟 over cell interface can be obtained. For the smooth flow cases,
the linear weights in HWENO are used. Then by the compatibility
conditions, we get the equilibrium face average 𝑄𝑐 . The equilibrium
face-averaged derivatives 𝑄𝑥 are obtained by the linear 4th-order
polynomial. In tangential directions, we still use the 5th-order linear
reconstruction, variables and the derivatives at the Gaussian points can
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Fig. 2. The stencils for the non-compact and compact reconstruction.

be obtained. Then we can calculate the time dependent flux at 𝑡𝑛 at cell
interface. Additionally, the temporal evolution for the interface values
at time step 𝑡∗ can also be obtained. For the second-order GKS flux used
in this research, the temporal evolution for the interface values [33] can
be expressed as 𝑓 ∗ = 𝑓 𝑛 + 1

2𝛥𝑡𝑓
𝑛
𝑡 .

(

𝑄𝑥
)

𝑖 =
1
𝛥𝑥 ∫𝐼𝑖

𝜕𝑄
𝜕𝑥

d𝑥 = 1
𝛥𝑥

(

𝑄𝑖+1∕2 −𝑄𝑖−1∕2
)

. (15)

Step 2: Through the finite volume update by using the cell averages
and time-dependent flux at 𝑡𝑛, the cell averages at 𝑡∗ can be obtained.
From the temporal evolution for the interface values, we can obtain the
conservative variables on the cell-interface at 𝑡∗. Through the similar
reconstruction strategy as shown in step 1, the time-dependent flux and
temporal evolution for the interface values at 𝑡∗ can also be obtained.

Step 3: Through the finite volume update by using the cell averages
and time-dependent flux at 𝑡∗, we can obtain the cell averages at 𝑡𝑛+1.
Similarly, we can obtain the conservative variables in the cell-interface
at 𝑡𝑛+1 through the temporal evolution model as 𝑓 𝑛+1 = 𝑓 𝑛 + 𝛥𝑡𝑓 ∗

𝑡 .

3.3. The stencils for non-compact and compact reconstruction

The stencils used for the 5th-order non-compact [41] and compact
reconstruction [40] are compared as shown in Fig. 2. For the 5th-
order non-compact reconstruction, in order to reconstruct the values
on left and right interfaces of cell 𝐼𝑖, the five cell-averaged values in
cells 𝐼𝑖−2, 𝐼𝑖−1, 𝐼𝑖, 𝐼𝑖+1, 𝐼𝑖+2 are used. While for the 5th-order compact
reconstruction, the cell-averaged values in cells 𝐼𝑖−1, 𝐼𝑖, 𝐼𝑖+1 and the
cell-averaged derivatives in cells 𝐼𝑖−1, 𝐼𝑖+1 are used. To the same order,
the stencils for compact reconstruction are smaller than non-compact
reconstruction.

4. Accuracy test

The three-dimensional advection of density perturbation is tested
to verify the accuracy of HGKS with high-order non-compact recon-
struction and compact reconstruction. The initial condition is given as
follows:

𝜌(𝑥, 𝑦, 𝑧) = 1 + 0.2𝑠𝑖𝑛(𝜋(𝑥 + 𝑦 + 𝑧)), 𝑈𝑖(𝑥, 𝑦, 𝑧) = (1, 1, 1), 𝑝(𝑥, 𝑦, 𝑧) = 1.

(16)

The computation domain is [0, 2] × [0, 2] × [0, 2] in three-dimension. In
the computation, a series of uniform meshes with 𝑁3 cells are used. The
periodic boundary condition is adopted in all directions. The analytic
solution is:

𝜌(𝑥, 𝑦, 𝑧) = 1 + 0.2𝑠𝑖𝑛(𝜋(𝑥 + 𝑦 + 𝑧 − 𝑡)), 𝑈𝑖(𝑥, 𝑦, 𝑧) = (1, 1, 1), 𝑝(𝑥, 𝑦, 𝑧) = 1.

(17)
5

With the 𝑟𝑛th-order spatial reconstruction in normal directions, 𝑟𝑡th-
order spatial reconstruction in tangential direction and S2O4 temporal
discretization, the leading term of the truncation error [38] is 𝑂(𝛥𝑥𝑟𝑛 +
𝛥𝑦𝑟𝑡 + 𝛥𝑧𝑟𝑡 + 𝛥𝑡4), where 𝛥𝑥, 𝛥𝑦 and 𝛥𝑧 are the grid sizes in three
dimensions. The 𝐿1, 𝐿2 and 𝐿∞ errors and convergence orders at 𝑡 = 2
are presented. To keep the 𝑟th-order accuracy in the test, 𝛥𝑡 = 𝐶𝛥𝑥𝑟∕4

needs to be used for the 𝑟th-order scheme, where 𝛥𝑡 is the time step
and 𝐶 is the parameter range from 0 to 1. In this research we use
C=0.3 in all the test cases. To achieve a 2Mth- or (2M−1)th-order
spatial accuracy, at least 𝑀 × 𝑀 Gaussian points are required for
the cell interface [38]. The accuracy test for non-compact 5th-order
scheme are shown in Table 2. The accuracy test for non-compact 7th-
order scheme with 4 and 16 Gaussian points are shown in Table 3
and 4 respectively. It can be observed that when 4 Gaussian points are
used, the accuracy of 7th-order cannot be maintained, and the accuracy
will fall to 4th-order during mesh refinement. When it is increased
to 16 Gaussian points, the numerical scheme can maintain 7th-order
accuracy. Therefore, for high-order schemes, sufficient Gaussian points
are needed to maintain high-order accuracy. However, when 16 Gaus-
sian points used, the amount of calculation is almost twice that of 4
Gaussian points. Specifically, in order to test the efficiency of the 7th-
order non-compact schemes with different Gaussian points, we use the
channel flow simulation in which the grids are set as 64 × 96 × 64
in streamwise, normal-boundary and spanwise directions respectively,
and 16 cores are used for parallel computation. The central processing
unit (CPU) time (s/step) for the scheme with 4 Gaussian points is
0.961, while with 16 Gaussian points is 1.964. Therefore, for turbulence
simulation, in order to save computing resources, we use 4 Gaussian
points in the cell interface, but the results are still improved as shown
in the following section. The accuracy test for the compact 5th-order
scheme is shown in Table 5 and the compact GKS can also achieve the
designed accuracy.

5. ILES for turbulence simulation

In this section, we apply the high-order non-compact scheme and
compact scheme for turbulence simulation to investigate the effect
by improving the order of the GKS and the compact reconstruction.
Additionally, we also study the contribution of tangential flux to tur-
bulence simulation in GKS. So in the simulation, we compare the results
between the schemes with improvement of accuracy in the normal
direction only and in both normal and tangential directions. In the
following sections, the abbreviation ‘‘N7T5’’ indicates the scheme with
7th-order non-compact reconstruction in normal direction and 5th-
order non-compact reconstruction in tangential direction, and the ab-
breviation ‘‘C5T5’’ indicates the scheme with 5th-order compact recon-
struction in normal direction and 5th-order non-compact reconstruction
in tangential direction.

5.1. Taylor–Green vortex

Taylor–Green vortex is a classical problem and has been widely
studied [42–46]. The ILES of three-dimensional Taylor–Green vortex is
conducted. The flow is computed within a periodic square box defined
as −𝜋𝐿 ≤ 𝑥, 𝑦, 𝑧 ≤ 𝜋𝐿. With a uniform temperature, the initial condition
is given by [44]

𝑈1 =𝑉0 sin(
𝑥
𝐿
) cos(

𝑦
𝐿
) cos( 𝑧

𝐿
),

𝑈2 = − 𝑉0 cos(
𝑥
𝐿
) sin(

𝑦
𝐿
) cos( 𝑧

𝐿
),

𝑈3 =0,

𝑝 =𝑝0 +
𝜌0𝑉 2

0
16

(cos( 2𝑥
𝐿

) + cos(
2𝑦
𝐿

))(cos( 2𝑧
𝐿

) + 2).

(18)

In the computation, 𝐿 = 1, 𝑉0 = 1, 𝜌0 = 1, and the Mach number takes
𝑀 = 𝑉 ∕𝑐 = 0.1, where 𝑐 is the sound speed. The fluid is a perfect
0 0 0 0
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Table 2
Three-dimensional accuracy test: errors and convergence orders of 5th-order non-compact linear scheme with 4 Gaussian
points with 𝛥𝑡 = 0.3𝛥𝑥1.25.

Mesh number 𝐿1 error Order 𝐿2 error Order 𝐿∞ error Order

53 7.7945E−02 8.5715E−02 1.2043E−01
103 2.2295E−03 5.13 2.5293E−03 5.08 3.4448E−03 5.13
203 6.1034E−05 5.19 6.8179E−05 5.21 9.6405E−05 5.16
403 1.8262E−06 5.06 2.0315E−06 5.07 2.8729E−06 5.07
Table 3
Three-dimensional accuracy test: errors and convergence orders of 7th-order non-compact linear scheme with 4 Gaussian
points with 𝛥𝑡 = 0.3𝛥𝑥1.75.

Mesh number 𝐿1 error Order 𝐿2 error Order 𝐿∞ error Order

53 2.2004E−02 2.4067E−02 3.3999E−02
103 2.8164E−04 6.29 3.1237E−04 6.27 4.3516E−04 6.29
203 1.1384E−05 4.63 1.2593E−05 4.63 1.7619E−05 4.63
403 6.8005E−07 4.07 7.5457E−07 4.06 1.0640E−06 4.05
Table 4
Three-dimensional accuracy test: errors and convergence orders of 7th-order non-compact linear scheme with 16 Gaussian
points with 𝛥𝑡 = 0.3𝛥𝑥1.75.

Mesh number 𝐿1 error Order 𝐿2 error Order 𝐿∞ error Order

53 1.9758E−02 2.1738E−02 3.0528E−02
103 1.2131E−04 7.35 1.3509E−04 7.33 1.8743E−04 7.35
203 6.8894E−07 7.46 7.7024E−07 7.45 1.0892E−06 7.43
403 5.7266E−09 6.91 6.3566E−09 6.92 8.9783E−09 6.92
Table 5
Three-dimensional accuracy test: errors and convergence orders of 5th-order compact linear scheme with 4 Gaussian points
with 𝛥𝑡 = 0.3𝛥𝑥1.25.

Mesh number 𝐿1 error Order 𝐿2 error Order 𝐿∞ error Order

53 5.8230E−02 6.6867E−02 8.9970E−02
103 1.9314E−03 4.91 2.1135E−03 4.98 2.9841E−03 4.91
203 5.5572E−05 5.12 6.1476E−05 5.10 8.6024E−05 5.12
403 1.7123E−06 5.02 1.9003E−06 5.01 2.6829E−06 5.00
𝜀

𝜀

gas with 𝛾 = 1.4, Prandtl number is 𝑃𝑟 = 1, and Reynolds number 𝑅𝑒 =
1600. The characteristic convective time 𝑡𝑐 = 𝐿∕𝑉0. In the computation,
he grids of 2563 are used, which can not only get satisfactory numerical
esults but also show the differences between different schemes. The
ffect of grid size on simulation for Taylor–Green vortex has also been
iscussed in previous studies [47], where the various finer and coarser
rids are used for the cases. Several statistic quantities are computed
rom the flow as it evolves in time. The volume-averaged kinetic energy
𝑘 is defined by

𝑘 = 1
𝜌0𝛺 ∫𝛺

1
2
𝜌𝑈𝑖 ⋅ 𝑈𝑖d𝛺, (19)

where 𝛺 is the volume of the computational domain. The dissipation
rate of kinetic energy 𝜀(𝐸𝑘) is defined as

𝜀(𝐸𝑘) = −
d𝐸𝑘
d𝑡 . (20)

For the incompressible limit, the dissipation rate is related to the
integrated enstrophy [31]

𝜀(𝜁 ) = 2
𝜇
𝜌0

𝜁, 𝜁 = 1
𝜌0𝛺 ∫𝛺

1
2
𝜌𝜔𝑖 ⋅ 𝜔𝑖d𝛺, (21)

here vorticity is 𝜔𝑖 = 𝜀𝑖𝑗𝑘𝑈𝑘,𝑗 , 𝜀𝑖𝑗𝑘 is the alternating tensor and
𝑘,𝑗 = 𝜕𝑈𝑖∕𝜕𝑥𝑗 .

Fig. 3 shows the time history of average kinetic energy and the
ocal enlargement. The results of DNS-TGV are from the simulation
y HGKS in 10243 grids by Cao et al. [31]. In the 𝑡 almost from 0
o 15, ILES results are basically consistent with DNS. While in the 𝑡

nearly from 15 to 20, the results of ‘‘HGKS-N7T7’’ are better than other
schemes. So the high-order reconstruction in the tangential direction is
also important for the present ILES. The kinetic energy dissipation rates
𝜀(𝐸 ) and the local enlargement are shown in Fig. 4. The behaviors
6

𝑘

of the schemes in this statistics are similar to the time history of
average kinetic energy. Except for the 𝑡 almost from 15 to 20, the
results of the various schemes can match with DNS. In the 𝑡 nearly
from 15 to 20, the results of ‘‘HGKS-N7T7’’ are slightly closer to DNS
than other schemes. The enstrophy integral 𝜀(𝜁 ) and local enlargement
are shown in Fig. 5. It can be observed that both the higher-order
reconstruction and compact reconstruction can improve the numerical
results. Increasing the reconstruction order in the tangential direction
can also improve the results. Hunt et al. [48] identified vorticity of an
incompressible flow as connected fluid regions with a positive second
invariant of the velocity-gradient tensor as 𝑄 = (𝑈2

𝑖,𝑗 − 𝑈𝑖,𝑗𝑈𝑗,𝑖)∕2. Q-
criterion is an indication of vorticity prevailing overstrain and is helpful
in identifying vortex cores. The Q-criterion iso-surfaces show the ability
of the different schemes to resolve turbulent structures qualitatively.
The iso-surface of the second invariant of velocity gradient tensor 𝑄
colored by velocity magnitude at𝑡 = 5 for HGKS-N5T5 and HGKS-N7T7
are shown in Fig. 6. Velocity magnitude ranges from 0 to 0.2 and 20
equivalent levels are used. For the iso-surface of 𝑄 in TGV case, the
difference between different schemes is negligibly small.

In the numerical simulation, the overall dissipative behavior is
determined by both physical and numerical dissipation. For the cur-
rent study, the quantitative study of numerical dissipation is pre-
sented as well. The kinetic energy dissipation rate obtained from the
Navier–Stokes equations is the sum of three contributions [31]:

𝜀1 =
2𝜇
𝜌0𝛺 ∫𝛺

𝑆∗
𝑖𝑗 ∶ 𝑆∗

𝑖𝑗d𝛺,

2 =
𝜇𝑏
𝜌0𝛺 ∫𝛺

𝜃2d𝛺,

3 = − 1 𝑝𝜃d𝛺,

(22)
𝜌0𝛺 ∫𝛺
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𝑆
t

Fig. 3. The time history of kinetic energy 𝐸𝑘 and local enlargement.
Fig. 4. The time history of dissipation rate 𝜀(𝐸𝑘) and local enlargement.
Fig. 5. The time history of enstrophy 𝜀(𝜁 ) and local enlargement.
where 𝑆∗
𝑖𝑗 is the deviatoric part of the strain rate tensor 𝑆𝑖𝑗 , with

∗
𝑖𝑗 = 𝑆𝑖𝑗 − 𝛿𝑖𝑗𝑆𝑘𝑘∕3, 𝑆𝑖𝑗 = (𝑈𝑖,𝑗 + 𝑈𝑗,𝑖)∕2. The operator (∶) denotes

he product for second-order tensor, and 𝜇 is the bulk viscosity. In
7

𝑏

current HGKS, the inherent bulk viscosity reads 𝜇𝑏 = 2𝑁
3(𝑁+3)𝜇, where

𝑁 = 2 for the diatonic gas. 𝜃 = 𝑈𝑖,𝑖 denotes the divergence of turbulent
velocity. To suppress the error from numerical discretization, all spatial
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𝑈
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derivatives are computed by sixth-order central difference for three
components of dissipation rate. Therefore, the numerical dissipation
can be quantitatively computed by

𝜀num = 𝜀(𝐸𝑘) − (𝜀1 + 𝜀2 + 𝜀3). (23)

The temporal evolution of numerical dissipation is shown in Fig. 7.
By using the higher-order reconstruction or compact reconstruction,
the numerical dissipation during simulation can be reduced, and the
corresponding ILES results are improved as shown before. This obser-
vation quantitatively illustrates the advantages of using higher-order or
compact numerical schemes for ILES. The 5th-order scheme for ILES
is still over-dissipative, and reducing the numerical dissipation can
improve the results.

5.2. Turbulent channel flow

Turbulent channel flow has been widely studied by numerical sim-
ulation [3,5,23]. In this study, channel flow with friction Reynolds
numbers of 𝑅𝑒𝜏 = 180 and 395 is numerically investigated to show the
effect of using the higher-order scheme and the compact scheme.

The initial density and Mach number for the channel flow are set
to 𝜌 = 1 and 𝑀𝑎 = 0.1, respectively. The non-dimensional domain
size is set to (𝑥, 𝑦, 𝑧) ∈ [0, 2𝜋] × [−1, 1] × [0, 𝜋] in the streamwise,
normal-boundary, and spanwise directions, respectively [32]. For the
normal-boundary direction, the TANH function is used to generate the
non-uniform grids, 𝑖.𝑒. ,

𝑦 = tanh(𝑏𝑔(
𝜂

1.5𝜋
− 1))∕ tanh(𝑏𝑔) (24)

here 𝑦 ∈ [−1, 1] and 𝜂 ∈ [0, 3𝜋]. For 𝑅𝑒𝜏 = 180, we set 𝑏𝑔 = 2.
or 𝑅𝑒𝜏 = 395, we set 𝑏𝑔 = 2.5 to refine the grids in near wall
egion and get more accurate velocity profile. In the streamwise and
panwise directions, periodic boundary conditions are used for con-
erved variables and the derivatives. In the normal-boundary direction,
or conserved variables non-slip and isothermal boundary conditions
re imposed, whereas for the derivatives of conserved variables, the
oundary conditions are simplified as nonslip adiabatic boundary con-
itions. Because the derivative information is only used to construct
he reconstructed polynomials, the approximate treatment of boundary
onditions does not affect the flow field simulation. The ghost cells are
reated to implement boundary conditions for GKS. Assume 𝑀 ghost
ells are used for both boundaries, 𝑐𝑒𝑙𝑙(−𝑖) is the axisymmetric ghost cell
f 𝑐𝑒𝑙𝑙(𝑖) about the boundary. The indexes 𝑗, 𝑘 are omitted. The non-

slip adiabatic boundary condition for the derivatives of conservative
variables is given as follows, where 𝑥 denotes the normal direction,
and 𝑦, 𝑧 denote the tangential directions

(𝜌𝑥)−𝑖 = −(𝜌𝑥)𝑖, [(𝜌𝑼 )𝑥]−𝑖 = [(𝜌𝑼 )𝑥]𝑖, [(𝜌𝐸)𝑥]−𝑖 = −[(𝜌𝐸)𝑥]𝑖;

(𝜌𝑦)−𝑖 = (𝜌𝑦)𝑖, [(𝜌𝑼 )𝑦]−𝑖 = −[(𝜌𝑼 )𝑦]𝑖, [(𝜌𝐸)𝑦]−𝑖 = [(𝜌𝐸)𝑦]𝑖;

(𝜌𝑧)−𝑖 = (𝜌𝑧)𝑖, [(𝜌𝑼 )𝑧]−𝑖 = −[(𝜌𝑼 )𝑧]𝑖, [(𝜌𝐸)𝑧]−𝑖 = [(𝜌𝐸)𝑧]𝑖;

(25)

where 𝑖 = 1, 2,… ,𝑀 .
For numerical simulation of turbulent channel flow at 𝑅𝑒𝜏 = 180,

the grids are set to be 96 × 64 × 64 in normal-boundary, streamwise
and spanwise directions respectively, as shown in Table 6. The effect
of grid size on simulation for turbulent channel flows has also been
discussed in previous studies [32].

The initial streamwise velocity field is given by Poiseuille flow
added with white noise as 𝑈 (𝑦) = 1.5(1 − 𝑦2) + white noise. The
white noise is set as 10% amplitude of local streamwise velocity. The
setting of fluid viscosity is referred to previous study [31] and is
briefly illustrated below. The friction Reynolds number is defined as
𝑅𝑒𝜏 = 𝜌𝑈𝜏𝐻∕𝜇, where 𝐻 = 1, and the friction velocity 𝑈𝜏 is given by
𝑈𝜏 =

√

𝜏𝑤𝑎𝑙𝑙∕𝜌, where 𝜏𝑤𝑎𝑙𝑙 = 𝜇 𝜕𝑈
𝜕𝑦 |𝑤𝑎𝑙𝑙. The logarithmic formulation is

iven by 𝑈+ = ln 𝑌 +∕𝜅+𝐵, where 𝜅 = 0.40 and 𝐵 = 5.5 are selected for
he low-Reynolds-number turbulent channel flow [3]. The normalized
all distance and normalized velocity are defined as 𝑌 + = 𝜌𝑈 𝑦∕𝜇 and
8
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Table 6
Grid setup for simulation.
Case 𝑁𝑦∕𝛥𝑦+𝑚𝑖𝑛∕𝛥𝑦

+
𝑚𝑎𝑥 𝑁𝑥∕𝛥𝑥+ 𝑁𝑧∕𝛥𝑧+

G1/𝑅𝑒𝜏 = 180 96/0.29/7.76 64/17.66 64/8.33

G2/𝑅𝑒𝜏 = 395 96/0.58/20.83 96/25.84 96/12.92

𝑈+ = 𝑈∕𝑈𝜏 , respectively. The plus-velocity at the channel centerline is
estimated as

𝑈+
𝑐 = 2.5 ln 𝑌 +

𝑐 + 5.5 (26)

where 𝑌 +
𝑐 = 180 at the center line. The frictional velocity is determined

from the relation

𝑈𝜏 = 𝑈𝑐∕𝑈+
𝑐 (27)

where 𝑈𝑐 = 1 denotes the centerline velocity. The fluid viscosity is set
to 𝜇 = 𝜌𝑈𝜏𝐻∕𝑅𝑒𝜏 = 2.83 × 10−4.

For the turbulent channel flow at 𝑅𝑒𝜏 = 395, we use the same
method as described above to determine the fluid viscosity and set
𝜇 = 1.24 × 10−4. We use 963 grid points in the simulation, as shown in
Table 6. During the simulation, the flow is driven by an external force,
which maintains a constant flow flux in the streamwise direction [3].
After approximately 400 characteristic periodic time as 400 𝐻∕𝑈𝑐 , the
laminar flow fields transit to turbulence.

The efficiency for the non-compact scheme and compact scheme
are investigated, in which 4 Gaussian point are used in cell-interface
for both schemes. The central processing unit (CPU) time for different
schemes are shown in Table 7, in which the grids are set as 64 × 96 × 64
in streamwise, normal-boundary and spanwise direction, respectively,
and 16 CPU cores are used for parallel computation test. It can be
found that using higher-order reconstruction will increase the amount
of computation. Using compact reconstruction will also increase the
amount of computation, but the increment is relatively small.

The flow statistics considered in this study are described below.
For channel flow, the spatially average variable 𝜙 is calculated in the
homogeneous directions, 𝑖.𝑒. , the streamwise (𝑥) and spanwise (𝑧)
directions as ⟨𝜙⟩𝑥𝑧, where ⟨⟩𝑥𝑧 indicates the spatial averaging in the
𝑥−𝑧 plane. The mean velocity is calculated as 𝑈𝑎𝑣𝑒 = ⟨𝑈⟩𝑥𝑧. The velocity
fluctuating components 𝑈 ′

𝑖 are calculated as 𝑈 ′
𝑖 = 𝑈𝑖 − ⟨𝑈𝑖⟩𝑥𝑧.

The normalized Reynolds stresses are defined as

𝑅𝑆(𝑈 ′
𝑖𝑈

′
𝑗 ) =

⟨𝑈 ′
𝑖𝑈

′
𝑗 ⟩𝑥𝑧

(𝑈 𝜏 )2
, (28)

here 𝑈 𝜏 denotes the resolved friction velocity, which is used as
he normalization factor. The normalized root-mean-square of velocity
luctuation is defined as

𝑀𝑆(𝑈 ′
𝑖 ) =

⟨𝑈 ′2
𝑖 ⟩

1
2
𝑥𝑧

𝑈 𝜏

, (29)

The above-mentioned statistics are further averaged over the statistical
time, and 200 𝐻∕𝑈𝑐 is used as statistical time.

Tables 8 and 9 show the values of 𝑈𝜏 and 𝑅𝑒𝜏 calculated from the
imulated turbulent channel flows at 𝑅𝑒𝜏 = 180 and 𝑅𝑒𝜏 = 395, respec-
ively. It is shown that, when using the higher-order reconstruction or
ompact reconstruction, the values of 𝑅𝑒𝜏 are all improved.

.2.1. Mean flow velocity profiles
The mean flow velocity profiles normalized by the resolved value of

𝜏 for the channel flow at 𝑅𝑒𝜏 = 180 is shown in Fig. 8. All reference
ata are from DNS solution of incompressible turbulent channel flow
y Moser et al. [5]. The results from the 7th-order scheme are closer to
NS, as compared to the 5th-order scheme. Furthermore, improving the
rder in reconstruction from 5th to 7th in the tangential direction can
urther improve the results, especially in the near center-line region.
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Table 7
The CPU time (s/step) for different schemes.

The scheme HGKS-N5T5 HGKS-N7T5 HGKS-N7T7 HGKS-C5T5

The CPU time (s/step) 0.595 0.649 0.961 0.618
Table 8
Values of 𝑈𝜏 and 𝑅𝑒𝜏 for 𝑅𝑒𝜏 = 180 channel flow in 64 × 96 × 64 grids.

The schemes DNS HGKS-N5T5 HGKS-N7T5 HGKS-N7T7 HGKS-C5T5

𝑈𝜏 – 0.0515 0.0532 0.0536 0.0530
𝑅𝑒𝜏 178.12 171.33 177.04 178.44 176.27
Table 9
Values of 𝑈𝜏 and 𝑅𝑒𝜏 for 𝑅𝑒𝜏 = 395 channel flow in 963 grids.

The schemes DNS HGKS-N5T5 HGKS-N7T5 HGKS-N7T7 HGKS-C5T5

𝑈𝜏 – 0.0446 0.0469 0.0471 0.0467
𝑅𝑒𝜏 392.24 360.35 378.97 380.45 377.05
Fig. 6. The iso-surface of the second invariant of velocity gradient tensor 𝑄 colored by velocity magnitude at t = 5 for (a) HGKS-N5T5 and (b) HGKS-N7T7.
The results from 5th-order compact scheme are closer to DNS than that
from the 5th-order non-compact scheme.

The mean flow velocity profiles normalized by the resolved value of
𝑈𝜏 for the channel flow at 𝑅𝑒𝜏 = 395 is shown is Fig. 9. It is shown again
that increasing the order of the scheme or using the compact scheme
all can significantly improve the numerical results.

5.2.2. Turbulence intensities
For the channel flow at 𝑅𝑒𝜏 = 180, the normalized root-mean-square

fluctuation velocity profiles in the streamwise and normal-boundary
directions are shown in Fig. 10. In Fig. 11, the root-mean-square fluc-
tuation velocity profiles for the spanwise direction and the normalized
Reynolds stress profiles are presented. In terms of the solutions of
the root-mean-square fluctuation velocity in three directions and the
Reynolds stress, the higher-order schemes improve the accuracy of the
solution significantly both in near wall and near center-line region.
Additionally, the results from the 5th-order compact scheme appear
better than that from the 5th-order non-compact scheme.

Fig. 12 shows the normalized root-mean-square fluctuation velocity
profiles in the streamwise and normal-boundary directions at 𝑅𝑒𝜏 =
395. It can be observed that the results of 7th-order non-compact
scheme and 5th-order compact scheme are all closer to the results
of DNS than 5th-order non-compact scheme. The 5th-order compact
scheme can almost achieve the accuracy of the 7th-order non-compact
9

scheme. The root-mean-square fluctuation velocity profiles for the
spanwise direction and the normalized Reynolds stress profiles are
shown in Fig. 13. For those results, all the schemes can match the DNS
solution well.

5.2.3. Energy spectra
Figs. 14 and 15 show the energy spectra of the fluctuating velocity

components in the streamwise and spanwise directions of the turbulent
channel flow at 𝑅𝑒𝜏 = 180 for 𝑦+ = 30 and 180. In the low wavenumber
region, all ILES results can match with DNS results well. We observe
that the energy spectra at larger wavenumber is preserved by both 7th-
order non-compact scheme and 5th-order compact scheme. Thus, the
higher-order scheme and compact scheme can better resolve smaller
scale turbulent structures. Additionally, the results in the near wall
region (𝑦+ = 30) are improved more obviously than those in the
near center region (𝑦+ = 180). However, there is still a gap between
ILES results and DNS results in the high wavenumber region. Fur-
thermore, an unnatural leveling-off of the energy spectrum near the
cutoff wavenumber is apparent for all the ILES results; this is because
the mesh resolution in this area is too low. This phenomena is also
found in previous studies for ILES [23]. The results of energy spectra
of the fluctuating velocity component for the turbulent channel flow at

𝑅𝑒𝜏 = 395 show a similar behavior and are omitted here.
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Fig. 7. The time history of numerical dissipation 𝜀𝑛𝑢𝑚.

Fig. 8. Mean velocity profiles normalized by 𝑈𝜏 for 𝑅𝑒𝜏 = 180 on (a) linear–linear and (b) log–linear plots.

Fig. 9. Mean velocity profiles normalized by 𝑈𝜏 for 𝑅𝑒𝜏 = 395 on (a) linear–linear and (b) log–linear plots.
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Fig. 10. Root-mean-square fluctuation velocity profiles in (a) streamwise and (b) normal-boundary directions for 𝑅𝑒𝜏 = 180.

Fig. 11. (a) Root-mean-square fluctuation velocity profiles in spanwise direction and (b) Reynolds stress profiles for 𝑅𝑒𝜏 = 180.

Fig. 12. Root-mean-square fluctuation velocity profiles in (a) streamwise and (b) normal-boundary directions for 𝑅𝑒𝜏 = 395.
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Fig. 13. (a) Root-mean-square fluctuation velocity profiles in spanwise direction and (b) Reynolds stress profiles for 𝑅𝑒𝜏 = 395.
Fig. 14. Energy spectra at y+ = 30 (above) and y+ = 180 (below) in streamwise direction for 𝑅𝑒𝜏 = 180.
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.2.4. Turbulence structure
Figs. 16 and 17 show the Q-criterion iso-surfaces of the turbulent

hannel flow at 𝑅𝑒𝜏 = 180. As noted above, the Q-criterion iso-
urface indicates the ability of a numerical scheme to resolve turbulent
tructures. A higher-accuracy scheme corresponds to the resolution of
ore turbulent structures. We choose the approximate first peak point

f Reynolds number after 400 characteristic periodic time (𝑇 = 𝐻∕𝑈𝑐)
12

s the comparison time point. Specifically, the selected time points
for HGKS-N5T5, HGKS-N7T5, HGKS-N7T7, and HGKS-C5T5 are 414 𝑇 ,
415 𝑇 , 400 𝑇 , and 410 𝑇 respectively. It is shown that schemes with
he higher-order non-compact reconstruction and the compact recon-
truction resolve more vortex structures than 5th-order non-compact
GKS. It can also be observed that vortices located above the low-speed

treaks are ejected away from the wall and elongated in streamwise,
hich produces hairpin vortices stretched by the ambient shear. This
henomenon have also been reported by previous ILES studies [24].
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Fig. 15. Energy spectra at y+ = 30 (above) and y+ = 180 (below) in spanwise direction for 𝑅𝑒𝜏 = 180.
Fig. 16. Q-criterion iso-surfaces for (a) HGKS-N5T5 and (b) HGKS-N7T5 (iso-value = 0.5 colored by streamwise velocity) for 𝑅𝑒𝜏 = 180 channel flow.
The results of Q-criterion iso-surface for the turbulent channel flow at
𝑅𝑒𝜏 = 395 shows a similar behavior and are omitted here.

6. Discussion and conclusion

In this study, we develop the HGKS with 7th-order non-compact
reconstruction in the normal and tangential directions, as well as the
HGKS with 5th-order compact reconstruction in the normal direction,
13
which are used to investigate the performance of these schemes in
turbulence simulation. We apply the direction by direction reconstruc-
tion strategy on rectangular mesh in the three-dimensional simulation
to get the values of macroscopic conserved quantities, and use the
analytical solution of the kinetic model equation to get flux function
at the Gaussian points on the cell interfaces.

Firstly, we test the three-dimensional advection of density pertur-
bation to verify the accuracy of the code. With 16 Gaussian points on
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Fig. 17. Q-criterion iso-surfaces for (a) HGKS-N7T7 and (b) HGKS-C5T5 (iso-value = 0.5 colored by streamwise velocity) for 𝑅𝑒𝜏 = 180 channel flow.
the cell-interface, the 7th-order accuracy can be obtained, but when
4 Gaussian points are used, the order cannot be maintained, and the
accuracy will fall to 4th-order with mesh refinement. This illustrates
that for high-order schemes, sufficient Gaussian points are needed to
maintain high-order accuracy.

Then we apply the high-order scheme and the compact scheme for
turbulence simulation, in which three-dimensional TGV and turbulent
channel flows at 𝑅𝑒𝜏=180 and 395 are tested. If 16 Gaussian points
are used for turbulence simulation, the computational cost is too high.
So we still use 4 Gaussian points in the simulation. Various results are
obtained for the qualitative and quantitative comparisons. The results
obtained from 7th-order non-compact and 5th-order compact schemes
are much more accurate than that from the 5th-order non-compact
scheme. For the TGV case, the time history of kinetic energy, dissipation
rate and enstrophy are compared. The results show that both the
high-order reconstruction and compact reconstruction can improve the
numerical results. Increasing the reconstruction order in the tangential
direction can also improve the results. The time history of numerical
dissipation from different schemes is investigated. When increasing
the order of the reconstruction or using compact reconstruction, the
numerical dissipation decreases. The 5th-order scheme for ILES is
still over-dissipative. For turbulent channel flows, the mean velocity
profiles, Reynolds stress, energy spectra and Q-criterion iso-surfaces are
compared among different schemes. The results of 5th-order compact
scheme are close to those of the 7th-order non-compact scheme. Espe-
cially, compared with the DNS solution, the energy spectra at larger
wavenumber is preserved by both 7th-order non-compact scheme and
5th-order compact scheme. In general, the compact scheme can resolve
smaller-scale turbulent structures better.

Overall, we develop the HGKS with high-order non-compact and
compact reconstruction in three-dimension and apply the schemes in
ILES. For the high-order scheme, the numerical dissipation is reduced,
and the resolution is increased. HGKS with compact reconstruction
has smaller stencils. The compact reconstruction has the consistent
physical and numerical domains of dependence. The compact GKS
has a favorable performance for turbulence simulation in resolving its
multi-scale structure.

In the future work, we will investigate the performance of high-
order non-compact and compact reconstruction of HGKS for ILES at
high Reynolds numbers and high Mach numbers.
14
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