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Abstract

The Runge-Kutta Discontinuous Galerkin (RKDG) method is a high-order technique for
addressing hyperbolic conservation laws, which has been refined over recent decades and is
effective in handling shock discontinuities. Despite its advancements, the RKDG method
faces challenges, such as stringent constraints on the explicit time-step size and reduced
robustness when dealing with strong discontinuities. On the other hand, the Gas-Kinetic
Scheme (GKS) based on a high-order gas evolution model also delivers significant accuracy
and stability in solving hyperbolic conservation laws through refined spatial and temporal
discretizations. Unlike RKDG, GKS allows for more flexible CFL number constraints and
features an advanced flow evolution mechanism at cell interfaces. Additionally, GKS’s com-
pact spatial reconstruction enhances the accuracy of the method and its ability to capture
stable strong discontinuities effectively. In this study, we conduct a thorough examination
of the RKDG method using various numerical fluxes and the GKS method employing both
compact and non-compact spatial reconstructions. Both methods are applied under the
framework of explicit time discretization and are tested solely in inviscid scenarios. We
will present numerous numerical tests and provide a comparative analysis of the outcomes
derived from these two computational approaches.

Keywords: discontinuous Galerkin, gas-kinetic scheme, conservation laws.

1. Introduction

In this paper, we address the solutions of one- and two-dimensional nonlinear hyper-
bolic conservation laws using the Runge-Kutta Discontinuous Galerkin (RKDG) method

∗Corresponding author
Email addresses: 2213411837@stu.xjtu.edu.cn (Yixiao Wang), jixing@xjtu.edu.cn (Xing Ji),

aachengang@xjtu.edu.cn (Gang Chen), makxu@ust.hk (Kun Xu)

Preprint submitted to Elsevier May 1, 2024

ar
X

iv
:2

40
4.

19
51

2v
1 

 [
m

at
h.

N
A

] 
 3

0 
A

pr
 2

02
4



and the Gas-Kinetic Scheme (GKS), evaluating their performance across various standard
test cases. The discontinuous Galerkin method, first proposed by Reed and Hill for neu-
tron transport [31], has seen substantial developments by Cockburn et al., establishing a
robust framework for solving nonlinear, time-dependent hyperbolic conservation laws with
explicit, strong stability-preserving Runge-Kutta time discretization methods [32, 7, 6, 8].
The RKDG method is particularly adept at capturing weak discontinuities and offers con-
siderable flexibility, ease of parallelization, and scalability to high-order cases. However,
it may produce significant oscillations when dealing with strong discontinuities, particu-
larly in high-order applications. To mitigate these oscillations, several nonlinear limiters
have been introduced. Classical minmod-type Total Variation Bounded (TVB) limiters help
restrict the solution’s slope [7], yet they may compromise accuracy in smoothly varying re-
gions by inaccurately identifying trouble cells. Recently, the oscillation-free Discontinuous
Galerkin (OFDG) methods have been developed [21, 22] , incorporating a damping term
proportional to the discontinuity’s intensity to better control spurious oscillations. These
methods, however, often require tighter CFL restrictions or the adoption of exponential
Runge-Kutta time discretization strategies. Additionally, limiters based on Weighted Es-
sentially Non-Oscillatory (WENO) and High-Order Weighted Essentially Non-Oscillatory
(HWENO) reconstructions have successfully merged the high accuracy of classical WENO
methods with the compactness of the DG method [16, 10, 12, 30, 29, 44, 46], albeit at the
cost of increased computational demands. Among these, the multi-resolution WENO lim-
iter stands out for its compact spatial stencil and straightforward implementation [43, 45],
making it a promising choice for inclusion in our study.

Over recent years, the Gas-Kinetic Scheme (GKS) has undergone systematic development
and has proven effective in solving Euler, Navier-Stokes (N-S) flows, and beyond [37, 36, 38].
GKS is grounded in gas kinetic theory at the mesoscopic scale, utilizing kinetic equations
such as the Bhatnagar-Gross-Krook (BGK) model to describe mesoscopic gas particle evo-
lution [1]. The macroscopic gas dynamic equations, including the N-S and Euler equations,
are derived from the BGK model using the Chapman-Enskog expansion [37, 5], which helps
in determining the time evolution of gas distribution function. A distinctive feature of GKS
is its approach in the flux evaluation at cell interfaces. Unlike traditional numerical fluxes,
GKS provides both the flux value and its time derivative, along with time-accurate flow
variables at the cell interface. This method has demonstrated high accuracy in smooth flow
regions while introducing necessary numerical dissipation to maintain robustness in discon-
tinuous areas, as highlighted in previous studies [15, 14]. The introduction of a two-stage
fourth-order time discretization framework [25], along with compact spatial discretization
techniques, has further enhanced the efficiency of the Compact Gas-Kinetic Scheme (CGKS).
These advancements make CGKS particularly adept at handling complex shock interactions,
positioning it as a highly effective tool in computational fluid dynamics simulations.

The primary differences between the RKDG method and the GKS are outlined as follows:
1. CFL Number Flexibility: GKS operates with fewer restrictions on the Courant-Friedrichs-
Lewy (CFL) number compared to RKDG. However, reaching the accuracy level of RKDG or
other high-order schemes can be challenging for GKS, mainly due to the constraints imposed
by its finite volume framework.
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2. Identification of Troubled Cells and Limiting: RKDG and GKS use markedly different
approaches for detecting troubled cells and applying limits to the numerical solution. These
differences stem from their unique ways of handling the evolution of degrees of freedom
within each cell.
3. Mathematical Formulation and Physical Foundation: RKDG is known for its straight-
forward mathematical formulation, though its performance can be problematic in regions
with strong discontinuities, where robustness tends to deteriorate quickly. In contrast, GKS,
while more complex in formulation and less straightforward to extend to very high orders, is
rooted in a physical model of gas dynamics [39], offering enhanced flexibility for managing
complex flow scenarios.
4. Degrees of Freedom and Computational Demands: RKDG allows for high accuracy with
limited mesh refinement due to ample degrees of freedom. However, increasing the order
of the scheme typically reduces the permissible time step size, demanding greater memory
bandwidth. On the other hand, the CGKS may have fewer degrees of freedom but achieves
high-order accuracy through spatial reconstruction. Its spatio-temporal coupling approach
relaxes CFL conditions for time advancement, although the computation of time-accurate
gas-kinetic flux terms can reduce its overall efficiency.

In this paper, we systematically compare these two advanced high-order methods by
solving 1-D and 2-D Euler equations for the first time. We note that recent developments,
such as the Reconstructed Discontinuous Galerkin (RDG) methods and Arbitrary DERiva-
tive Discontinuous Galerkin (ADER-DG) methods [24, 23, 17, 9], have addressed memory
overhead in the DG framework. While we continue to refine the efficiency of GKS, this
study focuses exclusively on the classical implementations of both methods. To ensure fair-
ness in our comparisons, both methods have been implemented by us using the same data
structures.

The structure of this paper is outlined as follows. Section 2 provides an overview of the
RKDG method, including a description of the multi-resolution WENO-type limiters applied
in both one-dimensional and two-dimensional scenarios. Section 3 introduces the GKS and
discusses the techniques used for compact spatial reconstruction within this framework.
Section 4 presents comparative analyses of the two methods, supported by results from
numerical tests. The final section offers concluding remarks and summarizes the key findings
of the study.

2. A brief review of the RKDG method

To solve the hyperbolic conservation laws, the first step is to give a partition of the

computational domain, including cells Ij =
[
xj− 1

2
, xj+ 1

2

]
, j = 1, · · · , N , where the cell

center is denoted by xj = 1
2

(
xj− 1

2
+ xj+ 1

2

)
, and the mesh size by ∆xj = xj+ 1

2
− xj− 1

2
.

The solution, as well as the test function space for the Galerkin method, is given by V k
h ={

p : p|Ij ∈ P k (Ii)
}
, where P k (Ii) is the space of polynomials of degree ⩽ k on the cell

Ii. In this paper, A local orthogonal basis over Ii

{
v
(j)
l (x), l = 0, 1, . . . , k

}
is used to avoid
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calculating mass term for better computational efficiency:

v
(j)
0 (x) = 1,

v
(j)
1 (x) =

√
12

(
x− xj
∆xj

)
,

v
(j)
2 (x) =

√
180

((
x− xj
∆xj

)2

− 1

12

)
,

v
(j)
3 (x) =

√
2800

((
x− xj
∆xj

)3

− 3

20

(
x− xj
∆xj

))
,

v
(j)
4 (x) =

√
44100

((
x− xj
∆xj

)4

− 3

14

(
x− xj
∆xj

)2

+
3

560

)
. . .

(1)

The one-dimensional solution uh(x, t) ∈ V k
h can be written as:

uh(x, t) =
k∑

l=0

u
(l)
j (t)v

(j)
l (x), x ∈ Ij, (2)

and the semi-discrete scheme is introduced to find a unique function uh(·, t) ∈ V k
h such

that for all discrete cells,∫
Ij

(uh)t vdx−
∫
Ij

f (uh) vxdx+ f̂j+ 1
2
v
(
x−
j+ 1

2

)
− f̂j− 1

2
v
(
x+
j− 1

2

)
= 0 (3)

holds for all test functions v ∈ V k
h . Same notations for numerical flux as in [46] are adopted.

For the two-dimensional case, the uniform mesh partition in the computational domain

is adopted, consisting of Iij =
[
xi− 1

2
, xi+ 1

2

]
×
[
yj− 1

2
, yj+ 1

2

]
, i = 1, 2, . . . , Nx and j =

1, 2, . . . , Ny. with the mesh size ∆xi = xi+ 1
2
−xi− 1

2
,∆yj = yj+ 1

2
− yj− 1

2
. The solution as well

as test function space is defined by Sk
h =

{
v(x, y) : v(x, y)|Ii,j ∈ Pk (Ii,j)

}
as the piecewise

polynomials space of degree at most k defined on Iij. A local orthonormal basis over Iij,
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{
v
(i,j)
l (x, y), l = 0, 1, . . . , K;K = (k+1)(k+2)

2
− 1
}
is adopted:

v
(i,j)
0 (x, y) = 1,

v
(i,j)
1 (x, y) = v

(i)
1 (x),

v
(i,j)
2 (x, y) = v

(j)
1 (y),

v
(i,j)
3 (x, y) = v

(i)
2 (x),

v
(i,j)
4 (x, y) = v

(i)
1 (x)v

(j)
1 (y),

v
(i,j)
5 (x, y) = v

(j)
2 (y),

v
(i,j)
6 (x, y) = v

(i)
3 (x),

v
(i,j)
7 (x, y) = v

(i)
2 (x)v

(j)
1 (y),

v
(i,j)
8 (x, y) = v

(i)
1 (x)v

(j)
2 (y),

v
(i,j)
9 (x, y) = v

(j)
3 (y),

v
(i,j)
10 (x, y) = v

(i)
4 (x),

v
(i,j)
11 (x, y) = v

(i)
3 (x)v

(j)
1 (y),

v
(i,j)
12 (x, y) = v

(i)
2 (x)v

(j)
2 (y),

v
(i,j)
13 (x, y) = v

(i)
1 (x)v

(j)
3 (y),

v
(i,j)
14 (x, y) = v

(j)
4 (y)

. . .

(4)

The two-dimensional solution uh(x, y, t) can be written as:

uh(x, y, t) =
K∑
l=0

u
(l)
i,j(t)v

(i,j)
l (x, y), (x, y) ∈ Ii,j, (5)

and a two-dimensional semi-discretization scheme is adopted to obtain a specific function
uh ∈ Sk

h such that for all discrete cells,∫
Ii,j

(uh)t vdxdy

=

∫
Ii,j

f (uh) vxdxdy −
∫
Ij

f̂i+ 1
2
(y)v

(
x−
i+ 1

2

, y
)
dy +

∫
Ij

f̂i− 1
2
(y)v

(
x+
i− 1

2

, y
)
dy

+

∫
Ii,j

g (uh) vydxdy −
∫
Ii

ĝj+ 1
2
(x)v

(
x, y−

j+ 1
2

)
dx+

∫
Ii

ĝi− 1
2
(x)v

(
x, y+

j− 1
2

)
dx

:= L(uh),

(6)

holds for all the test function v ∈ Sk
h, where the notations for numerical flux are referred to
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[46]. The Gaussian quadrature is used to calculate the integral in practice. As for the time
discretization, a third-order TVD Runge-Kutta method [32] is adopted:

u(1) = un +∆tL (un) ,
u(2) = 3

4
un + 1

4
u(1) + 1

4
∆tL

(
u(1)
)
,

un+1 = 1
3
un + 2

3
u(2) + 2

3
∆tL

(
u(2)
)
,

(7)

Thus, a fully discrete scheme in time and space is achieved.

2.1. Implementation of limiters

In this subsection, the implementation of limiters for RKDG is introduced, taking the
multi-resolution WENO-type limiters for illustration. It is crucial to indicate the trouble
cells appropriately, for the indicator would degrade the accuracy in smooth regions if it
indicates one mistakenly, or it may cause the program’s instability if it omits one that ought
to be modified. In comparing different trouble indicators [28], the KXRCF shock detection
technique developed in [18] is recommended. It divides the boundary of the target cell Iij
into two parts: ∂I−ij and ∂I+ij where, respectively, the flow is into (v⃗ · n⃗ < 0) and out of
(v⃗ · n⃗ > 0). The discontinuity detector is defined as∣∣∣∫∂I−i,j (uh(x, y, t)|Ii,j − uh(x, y, t)|Il

)
ds
∣∣∣

hRi,j
∣∣∂I−i,j∣∣ · |||ûh(x, y, t)∣∣∂Ii,j ||| ≥ Ck, (8)

where Ck is a constant set to be 1 in our work, here Il represents the adjacent cells sharing
the same boundary ∂I−ij with the target cell. |||ûh(x, y, t)∂Ii,j ||| is defined of the minimum
value of |uh(x, y, t)| in Gauss integral points along ∂Ii,j. hij is the radius of the circumscribed
circle in the target cell, the power of which, namely R, is recommended to be taken as 1 for
k=1 and 1.5 for k>1 case in [11].

The following gives a brief introduction of the multi-resolution WENO-type limiter. This
method fully utilizes the higher-order information in the solutions of the troubled cell and
takes advantage of the orthonormal basis to simplify the computation cost. It adopts a
WENO-Z-type scheme and follows the ideas of the CWENO schemes to construct smooth
indicators and weights for cells. Same notations in [43] are taken in the following, which
can be referred to for more details. The key procedure of the algorithm is to reconstruct the
modified polynomial unewh |Ii,j = pnew (x, y) on the target cell by

pnew (x, y) =

ℓ2∑
ℓ=ℓ2−1

ωℓ,ℓ2pℓ,ℓ2(x, y), ℓ2 = 1, 2, 3, 4, (9)

for different-order schemes, the provisional polynomials associated with the original solutions
and the weights ωℓ,ℓ2 associated with the WENO-Z-type coefficients are taken below.

Initially, we make projections for solutions of the trouble cells and their four adjacent
cells. A series of new polynomials are denoted by q

(ℓ)
i,j (x, y), q

(ℓ)
i−1,j(x, y), q

(ℓ)
i+1.j(x, y), q

(ℓ)
i,j+1(x, y)

6



and q
(ℓ)
i,j−1 respectively, where ℓ takes 0, 1, · · · , k. Owing to the application of the specified

basis, these can be easily obtained by the solutions contained in cells. For simplicity, the
subscripts of q

(ℓ)
i,j (x, y) are omitted.

Secondly, a series of limited polynomials pℓ,ℓ(x, y), ℓ = 1, . . . , k are obtained, together
with pℓ,ℓ+1(x, y), ℓ = 1, . . . , k − 1 through

pℓ,ℓ(x, y) =
1

γℓ,ℓ
q(ℓ)(x, y)− γℓ−1,ℓ

γℓ,ℓ
pℓ−1,ℓ(x, y), ℓ = 1, . . . , k (10)

and
pℓ,ℓ+1(x, y) = ωℓ,ℓpℓ,ℓ(x, y) + ωℓ−1,ℓpℓ−1,ℓ(x, y), ℓ = 1, . . . , k − 1 (11)

Here, γℓ−1,ℓ + γℓ,ℓ = 1, in which γℓ−1,ℓ and γℓ,ℓ are determined in advance. It should be
pointed out that these two coefficients are vital for the results of the simulations, and they
are chosen carefully case by case in our work. ωℓ−1,ℓ + ωℓ,ℓ = 1 yields for consistency at the
same time.

Next is to calculate the smoothness indicators for the corresponding polynomials. Due
to the compactness of this algorithm, only the information of the four adjacent cells is used
to construct β0,1 :

β0,1 = min (ςi,j−1, ςi,j+1, ςi−1,j, ςi+1,j) . (12)

Where, ςm,n is defined as:

ςm,n =

∫
Ii,j

(
∂

∂x
q(ℓ)m,n(x, y)

)2

+

(
∂

∂y
q(ℓ)m,n(x, y)

)2

dxdy (13)

and m,n refer to iterating over the four adjacent cells. Then, the smoothness indicators for
high-order polynomials are constructed:

βℓ,ℓ2 =
κ∑

|α|=1

∫
Ii,j

(∆xi∆yj)
|α|−1

(
∂|α|

∂xα1∂yα2
pℓ,ℓ2(x, y)

)2

dxdy, ℓ = ℓ2 − 1, ℓ2; ℓ2 = 1, 2, 3, 4

(14)
where κ = ℓ, α = (α1, α2), and |α| = α1 + α2, respectively. Then, the WENO-Z recipe [2, 4]
is adapted to get the relative difference between the smoothness indicators:

τℓ2 = (βℓ2,ℓ2 − βℓ2−1,ℓ2)
2 , ℓ2 = 1, 2, 3, 4, (15)

and nonlinear weights can be derived from

ωℓ1,ℓ2 =
ω̄ℓ1,ℓ2∑ℓ2
ℓ=1 ω̄ℓ,ℓ2

, ω̄ℓ1,ℓ2 = γℓ1,ℓ2

(
1 +

τℓ2
ε+ βℓ1,ℓ2

)
, ℓ1 = ℓ2 − 1, ℓ2; ℓ2 = 1, 2, 3, 4. (16)

Here, ε is take as 10−10 in our work. Finally, substitute the nonlinear weights for (9) to
obtain the reconstructed polynomial unewh |Ii,j = pnew (x, y).
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For two-dimensional Euler system equations

∂

∂t


ρ
ρµ
ρν
E

+
∂

∂x


ρµ

ρµ2 + p
ρµν

µ(E + p)

+
∂

∂y


ρν
ρµν

ρν2 + p
ν(E + p)

 = 0, (17)

a characteristic-wise [46] procedure is applied to the limitations.
When it comes to the time discretization, the modifications above are done to obtain the

unewh in each sub-time-step in Eq.(7), which substitutes the original solution in trouble cells
for time evolution.

3. A brief review of the gas-kinetic method

In this section, the gas-kinetic evolution model is introduced first. Then, the implemen-
tation of the spatial reconstruction is briefly reviewed.

3.1. Gas-kinetic evolution model

The two-dimensional gas-kinetic BGK equation [1] can be written as

ft + u · ∇f =
g − f

τ
, (18)

where f is the gas distribution function, g is the corresponding equilibrium state.
The equilibrium state is a Maxwellian distribution

g = ρ(
λ

π
)
K+2

2 eλ((u−U)2+(v−V )2+ξ2),

where λ = m/2kT , and m, k, T represents the molecular mass, the Boltzmann constant, and
temperature, K is the number of internal degrees of freedom, i.e. K = (4 − 2γ)/(γ − 1)
for two-dimensional flows, and γ is the specific heat ratio. The collision term satisfies the
following compatibility condition ∫

g − f

τ
ψdΞ = 0, (19)

where ψ = (1, u, v,
1

2
(u2+v2+ξ2)), dΞ = dudvdξ1...dξK , the internal variable ξ

2 = ξ21 +ξ
2
2 +

...+ξ2K . The connections between macroscopic mass ρ, momentum (ρU, ρV ), and energy ρE
with the distribution function f are

ρ
ρU
ρV
ρE

 =

∫
ψfdΞ. (20)
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Similar kinetic models for quantum gases with equilibrium Bose-Einstein or Fermi-Dirac
distributions have been constructed and studied as well [40].

Based on the Chapman-Enskog expansion for the BGK equation [37], the gas distribution
function in the continuum regime can be expanded as

f = g − τDug + τDu(τDu)g − τDu[τDu(τDu)g] + ...,

where Du = ∂/∂t+ u · ∇. By truncating on different orders of τ , the corresponding macro-
scopic equations can be derived. In this paper, only the Euler equations are discussed. Thus,
the zeroth-order truncation is taken, i.e. f = g.

Taking moments of the BGK equation Eq.(18) and integrating with respect to space, the
semi-discrete finite volume scheme can be written as

dW̄ij

dt
= − 1

∆x
(Fi+1/2,j(t)− Fi−1/2,j(t))−

1

∆y
(Gi,j+1/2(t)−Gi,j−1/2(t)),

where W̄ij is the cell averaged value of conservative variables, Fi±1/2,j(t) and Gi,j±1/2(t) are
the time-dependent numerical fluxes at cell interfaces in x and y directions. The Gaussian
quadrature is used to achieve the accuracy in space, such that

Fi+1/2,j(t) =
1

∆y

∫ yj+1/2

yj−1/2

Fi+1/2(y, t)dy =
2∑

ℓ=1

ωℓFi+1/2,jℓ(t), (21)

where ω1 = ω2 = 1/2 are weights for the Gaussian quadrature point yjℓ = yj +
(−1)ℓ

2
√
3
∆y,

ℓ = 1, 2, for a fourth-order accuracy. Fi+1/2,jℓ(t) are numerical fluxes and can be obtained
as follows

Fi+1/2,jℓ(t) =

∫
ψuf(xi+1/2, yjℓ , t, u, v, ξ)dΞ, (22)

where f(xi+1/2, yjℓ , t, u, v, ξ) is the gas distribution function at the cell interface. To construct
the numerical fluxes, the integral solution of BGK equation Eq.(18) is used

f(xi+1/2, yjℓ , t, u, v, ξ) =
1

τ

∫ t

0

g(x′, y′, t′, u, v, ξ)e−(t−t′)/τdt′ + e−t/τf0(−ut,−vt, u, v, ξ), (23)

where (xi+1/2, yjℓ) = (0, 0) is the location for flux evaluation, and xi+1/2 = x′ + u(t− t′) and
yjℓ = y′ + v(t− t′) are the trajectory of particles. f0 is the initial gas distribution function,
and g is the corresponding equilibrium state. The integral solution states a physical process
from the particle-free transport in f0 in the kinetic scale to the hydrodynamic flow evolution
in the integral of g term. The flow behavior at the cell interface depends on the ratio of
time step to the local particle collision time ∆t/τ .

To construct a time evolution solution of a gas distribution function at a cell interface

9



efficiently, a simplified third-order gas distribution proposed in [42] is adopted, which can
be written as

f(xi+1/2, yjℓ , t, u, v, ξ) = gc + Acgct+
1

2
acttg

ct2

− τ [(acxu+ acyv + Ac)g0 + (acxtu+ acytv + actt)g0t]

− e−t/τgc[1− (acxu+ acyv)t]

+ e−t/τgl[1− (axlu+ aylv)t]H(u)

+ e−t/τgr[1− (axru+ ayrv)t](1−H(u)), (24)

where the notations are introduced as follows

ax = (∂g/∂x)/g, ay = (∂g/∂y)/g, at = A = (∂g/∂t)/g,

axx = gxx/g, axy = gxy/g, ayy = gyy/g,

axt = gxt/g, ayt = gyt/g, att = gtt/g.

The determination of these coefficients is simplified as

⟨ax⟩ =
∂W

∂x
, ⟨ay⟩ =

∂W

∂y
, ⟨axu+ ayv + at⟩ = 0,

⟨axx⟩ =
∂2W

∂x2
, ⟨axy⟩ =

∂2W

∂x∂y
, ⟨ayy⟩ =

∂2W

∂y2
,

⟨axxu+ axyv + axt⟩ = 0,

⟨axyu+ ayyv + ayt⟩ = 0,

⟨axtu+ aytv + att⟩ = 0,

(25)

where the superscripts and subscripts on these coefficients ax, ..., att are omitted without
ambiguity and ⟨...⟩ are the moments of a gas distribution function defined by

⟨(. . .)⟩ =
∫
ψ(. . .)g dΞ. (26)

With the same third-order accuracy, the above simplified distribution function can speed
up the flux calculation 4 times in comparison to the complete gas distribution function in
2-D case. The details of the conservative variables’ reconstructions are shown in the next
subsection.

3.2. Implementation of the spatial reconstruction

The non-compact spatial reconstruction adopts the classical WENO-Z method and de-
tails are referred to [13].

For compact spatial reconstruction, the Hermite WENO(HWENO) is introduced. HWENO
was initially introduced to be one of the limiters of the RKDG method [29]. Varying from
the classical WENO scheme, it utilized the derivative information of the numerical solutions
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and made it possible to achieve a compact reconstruction scheme, from which the compact
spatial reconstruction of the gas-kinetic scheme was inspired.

For one-dimensional cases, HWENO can be used to reconstruct the two sides of the
interface value W l

i+1/2 and W r
i+1/2 at the interface xi+1/2 [27], where three sub-stencils are

selected,
S0 = {Ii−1, Ii} , S1 = {Ii, Ii+1} , S2 = {Ii−1, Ii, Ii+1} . (27)

The quantities used for each stencil are shown in Figure 1. Then, with the cell averaged

  

Figure 1: Stencils for one dimensional compact gas-kinetic scheme reconstruction.

value Wi and the reconstructed values Wi±1/2 on its two sides, a parabolic distribution of
the conservative variables inside Ii is obtained to cater to the need for reconstruction of f0.
Next, the compatibility condition is used to obtain the initial equilibrium state g0 with the
reconstructed W l

i+1/2 and W r
i+1/2,∫

ψgc dΞ = W c =

∫
u>0

ψgl dΞ +

∫
u<0

ψgr dΞ. (28)

To fully determine the slopes of the equilibrium state across the cell interface, the con-
servative variables across the cell interface are expanded as

W c(x) = W0+S1

(
x− xi+1/2

)
+

1

2
S2

(
x− xi+1/2

)2
+

1

6
S3

(
x− xi+1/2

)3
+

1

24
S4

(
x− xi+1/2

)4
,

(29)
where the derivatives are given by

W c
x = S1 =

[
− 1

12
(Wi+2 −Wi−1) +

5
4
(Wi+1 −Wi)

]
/∆x

W c
xx = S2 =

[
−1

8
(Wi+2 +Wi−1) +

31
8
(Wi+1 +Wi)− 15

2
W0

]
/∆x2.

(30)

Thus, the compact spatial reconstruction of the one-dimensional cases is fully given.
For two-dimensional cases, the direction-by-direction reconstruction strategy [41] is adopted.

For simplicity, the normal and tangential reconstruction procedure is illustrated briefly, more
details are referred to [14].

For a clear description of the algorithm, we focus on the reconstruction based on the Ii,j
whose x-direction index is i and y-direction index is j.

Step 1: Obtain the line-averaged non-central(left and right) values, Ŵ r
i−1/2,j, Ŵ

l
i+1/2,j as

well as their normal derivatives Ŵ r
x,i−1/2,j, Ŵ

l
x,i+1/2,j and second-order derivatives Ŵ r

xx,i−1/2,j,
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Ŵ l
xx,i+1/2,j by the cell-averaged values of conservative variables as well as their derivatives

in a stencil centered on Ii,j, consisting of three adjacent cells Ii−1,j, Ii,j and Ii+1,j, i.e.,
W̄i+k,j, k = 0,±1 and W̄x,i+k,j, k = ±1. In this step, a fifth-order WENO-Z-recipe HWENO
reconstruction is adopted and the stencil is presented in Figure 2(a).

Step 2: The central line averaged values Ŵ c
i+1/2,j are obtained by Eq.(28). Then, the

central line averaged normal derivatives Ŵ c
x,i+1/2,j and second-order derivatives Ŵ c

xx,i+1/2,j

are obtained via fifth-order linear reconstruction with the five adjacent information, i.e.,
the cell averaged value W̄x,i+k,j, k = −1, 0, 1, 2 and the line-averaged values Ŵ c

i+1/2,j. The

reconstruction stencil is presented in Figure 2(b).
Step 3: Obtain the values and their spatial derivatives at the Gaussian points, e.g.

Ẇ l,r
i+1/2,j,0, Ẇ

l,r
y,i+1/2,j,k, Ẇ

l,r
yy,i+1/2,j,k, k = 0, 1 with the reconstructed values Ŵ l,r

i+1/2,j+k,k =

0,±1,±2. Obtain the spatial derivatives at the Gaussian points, e.g. Ẇx,i+1/2,j, Ẇ
l,r
xy,i+1/2,j,k,

k = 0, 1 with the reconstructed derivatives Ŵ l,r
x,i+1/2,j+k, k = 0,±1,±2. Obtain the spatial

derivatives at the Gaussian points, e.g. Ẇ l,r
xx,i+1/2,j,k, k = 0, 1 with the reconstructed deriva-

tives Ŵ l,r
xx,i+1/2,j+k, k = 0,±1,±2. In this step, a fifth-order WENO reconstruction is adopted

and the stencil is presented in Figure 2(c).
Step 4: Obtain the central values and their spatial derivatives at the Gaussian points,

i.e. Ẇ c
i+1/2,j,k, Ẇ

c
y,i+1/2,j,k, Ẇ

c
yy,i+1/2,j,k, k = 0, 1 with the values reconstructed Ŵ c

i+1/2,j+k, k =

0,±1,±2. Obtain the central spatial derivatives at the Gaussian points, i.e. Ẇ c
x,i+1/2,j,k,

Ẇ c
xy,i+1/2,j,k, k = 0, 1 with the derivatives reconstructed Ŵ c

x,i+1/2,j+k, k = 0,±1,±2. Ob-

tain the central spatial derivatives at the Gaussian points, i.e. Ẇ c
xx,i+1/2,j,k, k = 0, 1 with

the derivatives reconstructed Ŵ c
xx,i+1/2,j+k, k = 0,±1,±2. In this step, a fifth-order linear

reconstruction is adopted and the stencil is the same as shown in Figure 2(c).
The reconstruction presented above is not entirely compact, as it incorporates a WENO5

reconstruction for the tangential part to ensure adequate accuracy. The complete stencil
utilized for reconstructing values associated with inner sides of Ii,j is depicted in Figure 2(d),
with the dashed line portion specifically designated for tangential reconstruction.

To resolve the problems with shock waves, characteristic variables are used, consistent
with the RKDG method. In CGKS, three vectors are stored in one specific cell in each time
step, Wij,Wx,ij and Wy,ij, namely cell-averaged values and two-dimensional cell-averaged
spatial derivatives respectively.

3.3. Two-stage fourth-order temporal discretization

The two-stage fourth-order temporal discretization [19] is based on the semi-discrete
finite volume scheme, which is written as

dWij

dt
= − 1

∆x
(Fi+1/2,j(t)− Fi−1/2,j(t))−

1

∆y
(Gi,j+1/2(t)−Gi,j−1/2(t)) := L(Wij),

where L is the numerical operator for spatial derivative of flux, F and G are obtained by
the Gaussian quadrature in Eq.(21). By adopting techniques in [25], this kind of temporal
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Figure 2: Stencils for two-dimensional compact gas-kinetic scheme reconstruction.

discretization is applied to the gas-kinetic scheme.
The foundation of this work is to introduce the time derivatives of the operator for the

spatial derivative and take advantage of the temporal accuracy of the gas-kinetic flux.
Consider the temporal evolution at tn, the Taylor expansion in time can be written as

W n+1 = W n +∆tL(W n) +
1

6
∆t2

∂

∂t
L(W n) +

1

3
∆t2

∂

∂t
L(W ∗), (31)

to achieve fourth-order accuracy in temporal evolution, the intermediate state is introduced
at half of the time step [19], which holds the expansion simultaneously:

W ∗ = W n +
1

2
∆tL(W n) +

1

8
∆t2

∂

∂t
L(W n), (32)

To obtain the complete temporal scheme, the temporal derivatives of fluxes ought to
be calculated, which are easy to implement, since the gas-kinetic flux has temporal third-
order accuracy. In practice, the temporal derivatives of fluxes can be derived by the linear
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approximation,

Fi+1/2,j(W
n, tn) = (4Fi+1/2,j(W

n,∆t/2)− Fi+1/2,j(W
n,∆t))/∆t,

∂tFi+1/2,j(W
n, tn) = 4(Fi+1/2,j(W

n,∆t)− 2Fi+1/2,j(W
n,∆t/2))/∆t2,

(33)

where the notation of the Integral Fi+1/2,j(W
n, δ) is defined as

Fi+1/2,j(W
n, δ) =

∫ tn+δ

tn

Fi+1/2,j(W
n, t)dt =

2∑
ℓ=1

ωℓ

∫ tn+δ

tn

∫
uψf(xi+1/2, yjℓ , t, u, v, ξ)dudvdξdt.

Similarly, the numerical fluxes Gi,j+1/2(W
n, t) in the y-direction can also be derived from

the algorithm above. Thus, the temporal derivatives of the spacial operator can be written
as

∂

∂t
L(W n

ij) = − 1

∆x
(∂tFi+1/2,j(W

n, tn)− ∂tFi−1/2,j(W
n, tn))

− 1

∆y
(∂tGi,j+1/2(W

n, tn)− ∂tGi,j−1/2(W
n, tn)). (34)

The point-wise values at a cell interface can be obtained by taking moments of the
time-dependent distribution function in Eq.(24)

Wi+1/2,jℓ(t) =

∫
ψf(xi+1/2, yjℓ , t, u, v, ξ)dΞ. (35)

The evolution of the gas distribution function with similar techniques [14] is obtained.
To utilize the two-stage, fourth-order temporal discretization for the gas distribution

function, the gas distribution function should be approximated by a quadratic polynomial,

f(t) = f(xi+1/2, yjℓ , t, u, v, ξ) = fn + fn
t (t− tn) +

1

2
fn
tt(t− tn)2.

the coefficients fn, fn
t and fn

tt can be determined

fn = f(0),

fn
t = (4f(∆t/2)− 3f(0)− f(∆t))/∆t,

fn
tt = 4(f(∆t) + f(0)− 2f(∆t/2))/∆t2.

Thus, f ∗ and fn+1 are entirely determined at the cell interface to evaluate macroscopic flow
variables.

4. Numerical examples

For the RKDG method, the CFL number of all cases is taken as 0.18 for third-order(P 2),
and 0.08 for fourth-order(P 4) both in one-dimensional and two-dimensional cases. Third-
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order Runge-Kutta method is adopted for evolution if not mentioned specifically. As shown
in [26], the Lax–Friedrichs(LF) flux costs the least CPU time, and the Harten–Lax–van
Leer(HLL) flux generally performs well, taking both accuracy and efficiency into account.
In this section, numerical tests will be presented to make comparisons between the RKDG
method with the gas-kinetic scheme. All simulations are for compressible inviscid flow.
Two numerical fluxes are used for the RKDG method in our work. However, there is little
difference in the performance of various numerical fluxes on two-dimensional discontinuity
problems. Thus, only LF flux is used in the double Mach reflection problem.

For the gas-kinetic scheme, the artificial collision time τ for inviscid flow is taken as

τ = ϵ∆t+ C|pl − pr
pl + pr

|∆t,

where ϵ = 0.01 and C = 1.
In our work, both the non-compact gas-kinetic scheme(GKS) in third-order and fifth-

order, as well as the fifth-order compact gas-kinetic scheme(CGKS), are tested in order to
make the comparison more comprehensive. At the same time, in order to ensure consistency
with the multi-resolution limiters, the WENO-Z recipe is used to measure the smoothness
indicator factor and nonlinear weights. The non-compact gas-kinetic scheme(GKS) for the
third-order is based on WENO3-type spatial reconstruction and for the fifth-order, WENO5-
type spatial reconstruction is used. The compact gas-kinetic scheme (CGKS), adopts the
fifth-order HWENO-Z reconstruction and a fourth-order in temporal reconstruction. Both
the non-compact and compact GKS use two-stage fourth-order time-stepping method.

The efficiency comparison cases are performed on CPU 12th Gen Intel(R) Core(TM) i7-
12700H @2.30GHz with one single processor running. The theoretical bandwidth of memory
is 38.4GB/s. data structures of both two methods are based on Array of Structures(AOS).
All the numerical results are obtained by our in-house C++ solver.

4.1. One dimensional accuracy tests

In this subsection, one dimensional advection of density perturbation is tested, and the
initial condition is given as follows

ρ(x) = 1 + 0.2 sin(πx), U(x) = 1, p(x) = 1, x ∈ [−1, 1].

With the periodic boundary condition, and the analytic solution is

ρ(x, t) = 1 + 0.2 sin(π(x− t)), U(x, t) = 1, p(x, t) = 1.

In this computation, the computational domain is partitioned by uniform meshes, and the
final time is t = 2s. And the classical fourth-order Runge-Kutta method [3] is adopted for
RKDG-P 4 method to guarantee that the spatial error dominates. The L1 and L2 errors,
along with their orders, are presented in Table 1-2 for the third-order RKDG and GKS, and
in Table 3-4 for the fifth-order. And we measure the efficiency of the method using the CPU
time calculated from the L1 and L2 errors, which is shown in Figure 2 and Figure 3.
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Ncell RKDG-P 2 with LF flux RKDG-P 2 with HLL flux
L1 error order L2 error order L1 error order L2 error order

20 3.00E-05 3.35E-05 1.72E-05 1.93E-05
40 3.93E-06 2.93 4.39E-06 2.93 2.17E-06 2.99 2.43E-06 3.00
80 4.98E-07 2.98 5.56E-07 3.00 2.72E-07 3.00 3.04E-07 3.00
160 6.25E-08 3.00 6.98E-08 3.00 3.40E-08 3.00 3.80E-08 3.00
320 7.81E-09 3.00 8.73E-09 3.00 4.25E-09 3.00 4.75E-09 3.00
640 9.77E-10 3.00 1.09E-09 3.00 5.31E-10 3.00 5.93E-10 3.00

Table 1: One dimensional advection of density perturbation: accuracy test for classical RKDG-P 2 method
without limiters.

Ncell Third-order GKS
L1 error order L2 error order

20 9.29E-04 1.03E-03
40 1.17E-04 2.99 1.30E-04 2.99
80 1.47E-05 3.00 1.62E-05 3.00
160 1.83E-06 3.00 2.03E-06 3.00
320 2.29E-07 3.00 2.53E-07 3.00
640 2.86E-08 3.00 3.16E-08 3.00

Table 2: One dimensional advection of density perturbation: accuracy test for third-order GKS at smooth
reconstruction.

Ncell RKDG-P 4 with LF flux RKDG-P 4 with HLL flux
L1 error order L2 error order L1 error order L2 error order

10 2.39E-07 2.69E-07 1.56E-07 1.73E-07
20 8.76E-09 4.77 9.79E-09 4.78 4.98E-09 4.97 5.57E-09 4.95
40 2.87E-10 4.93 3.21E-10 4.93 1.58E-10 4.98 1.77E-10 4.98
80 9.06E-12 4.98 1.02E-11 4.98 4.95E-12 4.99 5.55E-12 4.99
160 2.85E-13 4.99 3.19E-13 4.99 1.55E-13 4.99 1.75E-13 4.99

Table 3: One dimensional advection of density perturbation: accuracy test for classical RKDG-P 4 method
without limiters.

Ncell Fifth-order GKS Fifth-order CGKS
L1 error order L2 error order L1 error order L2 error order

10 8.49E-04 9.58E-04 1.53E-04 1.72E-04
20 2.81E-05 4.92 3.12E-05 4.94 4.80E-06 4.99 5.33E-06 5.01
40 8.89E-07 4.98 9.84E-07 4.99 1.50E-07 5.00 1.66E-07 5.00
80 2.78E-08 5.00 3.08E-08 5.00 4.73E-09 4.98 5.25E-09 4.98
160 8.7091E-10 5.00 9.65E-10 5.00 1.54E-10 4.94 1.72E-10 4.93

Table 4: One dimensional advection of density perturbation: accuracy test for fifth-order GKS and CGKS
at smooth reconstruction.
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Figure 3: Efficiency of simulation for smooth regions: comparisons between RKDG-P 2 method and third-
order GKS method. The left one is based on L1 error and the right one is based on L2 error.
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Figure 4: Efficiency of simulation for smooth regions: comparisons between RKDG-P 4 and fifth-order GKS
and CGKS. The left one is based on L1 error and the right one is based on L2 error.

According to the comparison of efficiency diagrams, it is apparent to see that in both
third-order and fifth-order cases, the RKDG method with either LF or HLL flux has less
error than the non-compact GKS in the smooth region. However, the CGKS is shown to
perform better than the RKDG-P 4 method with LF flux and HLL flux.

4.2. One dimensional problems with discontinuities

The first one is the Shu-Osher problem [32], which is used to test the performance of the
numerical methods in a domain consisting of both shocks and complex smooth regions. The
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Figure 5: Shu-Osher problem: the density distributions and local enlargement at t = 1.8s with 400 cells.
Left to right: RKDG-P 2 with third-order GKS, RKDG-P 4 with fifth-order GKS, RKDG-P 4 with fifth-order
CGKS.

initial conditions are

(ρ, U, p) =

{
(3.857134, 2.629369, 10.33333), −5 < x ≤ −4,

(1 + 0.2 sin(5x), 0, 1), −4 < x < 5,

and the computational domain is (-5,5). The density distributions at t = 1.8s of the two
methods against reference solution computed by the fifth-order WENO scheme with 10000
grid points are shown in Figure 4.

As an extension of the Shu-Osher problem, the Titarev-Toro problem [33] is tested as
well, and the initial conditions in this case are the following

(ρ, U, p) =

{
(1.515695, 0.523346, 1.805), −5 < x ≤ −4.5,

(1 + 0.1 sin(20πx), 0, 1), −4.5 < x < 5,

and the computational domain is (-5,5). The non-reflecting boundary condition is imposed
on left end, and the fixed wave profile is given on the right end in the two cases. The results
of the two methods together with the reference solution is computed by fifth-order WENO
scheme with 10000 grids are shown in Figure 5. As the results of the accuracy test, the
performance of the RKDG method for simulating complex structure with shock waves and
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Figure 6: Titarev-Toro problem: the density distributions and local enlargement at t = 5s with 1000 cells.
Left to right: RKDG-P 2 with third-order GKS, RKDG-P 4 with fifth-order GKS, RKDG-P 4 with fifth-order
CGKS.
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Figure 7: Double rarefaction waves: the density distributions and local enlargement at t = 0.15s with 400
cells. Left to right: RKDG-P 2 with third-order GKS, RKDG-P 4 with fifth-order GKS, RKDG-P 4 with
fifth-order CGKS.

acoustic waves is between GKS and CGKS.
The last case for one-dimensional problems is the double rarefaction wave problem [20].

The initial conditions are

(ρ, U, p) =

{
(1,−2, 0.4), 0 < x ≤ 0.5,

(1, 2, 0.4), 0.5 < x < 1,
(36)

19



Mesh RKDG-P 4 with LF flux RKDG-P 4 with HLL flux
L1 error order L2 error order L1 error order L2 error order

10 2.75E-06 3.43E-06 2.65E-06 3.28E-06
20 8.06E-08 5.09 1.01E-07 5.08 7.69E-08 5.11 9.51E-08 5.11
40 2.45E-09 5.04 3.10E-09 5.03 2.34E-09 5.04 2.91E-09 5.03
80 7.61E-11 5.01 9.64E-11 5.01 7.27E-11 5.01 9.02E-11 5.01
160 2.37E-12 5.00 3.01E-12 5.00 2.27E-12 5.00 2.81E-12 5.00

Table 5: Two dimensional advection of density perturbation: accuracy test for RKDG-P 4 with LF flux and
HLL flux without limiters

and the computational domain is (0,1). The case is hard to simulate because of the near-
vacuum region in the middle of domain. The results of the two methods together with
exact solution computed by the exact Riemann solver [34] are shown in Figure 6. What is
worth mentioning is that in this case, the CFL number of the RKDG method is set to be
0.12 for RKDG-P 2 method and 0.04 for RKDG-P 4 method to avoid calculating a negative
density. It is shown that the results simulated within GKS as well as CGKS have observable
numerical oscillations in the mid region, where the density is at its minimum. However, the
results calculated by RKDG have smaller numerical oscillations as the ones calculated by
GKS (CGKS).

4.3. Two dimensinal accuracy test

In this subsection, two dimensional advection of density perturbation is tested, and the
initial condition is given as follows

ρ(x, y) = 1 + 0.2 sin(π(x+ y)), U(x, y) = 1, V (x, y) = 1, p(x, y) = 1, x, y ∈ [−1, 1].

With the periodic boundary condition, and the analytic solution is

ρ(x, y, t) = 1 + 0.2 sin(π(x+ y − t)), U(x, y, t) = 1, V (x, y, t) = 1, p(x, y, t) = 1.

The simulation time is t = 2s in this case. And fourth-order Runge-Kutta method [3] is
adopted for RKDG-P 4 to guarantee that the spatial error dominates. The L1 and L2 errors
together with their orders are shown in Table 5-6 for the fifth-order RKDG and GKS(CGKS).
Also, the comparison of the efficiency is presented in Figure 7.

It is shown that the RKDG-P 4 method does perform better with extremely small errors
compared to the fifth-order GKS(CGKS) in the same uniform meshes. As for the efficiency,
RKDG-P 4 and the CGKS have similar performance, which is much better than the GKS’s.

4.4. Double Mach reflection problem

This problem was extensively studied by Woodward and Colella [35] for the inviscid
flow. The computational domain is [0, 4] × [0, 1], and a solid wall lies at the bottom of the
computational domain starting from x = 1/6. Initially, a right-moving Mach 10 shock is
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Figure 8: Efficiency of simulation for two dimensional smooth regions:comparisons between RKDG-P 4

method and fifth-order GKS/CGKS method. The left one is based on L1 error and the right one is based
on L2 error

.

Mesh Fifth-order GKS Fifth-order CGKS
L1 error order L2 error order L1 error order L2 error order

10 6.11E-03 3.35E-03 1.63E-04 1.81E-04
20 1.97E-04 4.96 1.09E-04 4.94 4.07E-06 5.33 4.60E-06 5.29
40 6.28E-06 4.97 3.48E-06 4.97 1.20E-07 5.09 1.34E-07 5.10
80 2.04E-07 4.94 1.13E-07 4.94 3.80E-09 4.98 4.26E-09 4.98
160 7.21E-09 4.82 4.01E-09 4.82 1.33E-10 4.83 1.50E-10 4.82

Table 6: Two dimensional advection of density perturbation: accuracy test for fifth-order GKS and CGKS
method with smooth reconstruction

positioned at (x, y) = (1/6, 0), and makes a 60◦ angle with the x-axis. The initial pre-shock
and post-shock conditions are

(ρ, U, V, p) = (8, 4.125
√
3,−4.125, 116.5),

(ρ, U, V, p) = (1.4, 0, 0, 1).

The reflecting boundary condition is used at the wall. While for the rest of the bottom
boundary, the exact post-shock condition is imposed. At the top boundary, the flow variables
are set to follow the motion of the Mach 10 shock. In this case, we tend to compare the
resolution of the two methods under the premise of almost the same computational load.
A baseline uniform mesh with 800 × 200 grid points is used for the two methods, and a
refined one (1600× 400) is used in the CGKS method to make the comparison fair. There
are 15 degrees of freedom contained in a single cell in the RKDG-P4 method, but only
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Scheme RKDG-P 4 CGKS CGKS
Mesh Number 800×200 800×200 1600×400
CPU time 749.179s 75.6s 588.577s

Table 7: Double Mach problems: the CPU time consumption for the first 0.02s simulation time

one and three degrees of freedom for each variable in the GKS and CGKS, respectively.
Thus, the refined one has similar degrees of freedom(1, 920, 000 totally) with the RKDG-P4
method(2, 400, 000 totally). As is shown in Figure 7 and Figure 8, the CGKS(refined one)
has a similar resolution with the RKDG-P 4 method. However, discrete local contours are
contained in the RKDG method even with the application of the trouble cell indicators.
The spurious oscillations are much smaller in the CGKS, which validates its better fidelity
on simulating high-speed compressible flow.

In this case, 16 CPU cores are used parallelly and the time consumption for the first 0.02s
simulation time is shown in Table 7. Under approximately the same degrees of freedom,
RKDG and CGKS seem to have similar resolutions, while the computational overhead of
CGKS is smaller.

5. Conclusion

In this paper, we systematically evaluate the performance of the RKDG method and the
GKS in terms of accuracy, efficiency, and resolution. We demonstrate significant improve-
ments in the efficiency of the GKS through the use of compact spatial reconstruction and a
simplified third-order gas distribution method. Notably, GKS exhibits higher efficiency than
the RKDG method in smooth flow regions. Importantly, GKS is capable of handling viscous
flows without additional computational demands, whereas implementing viscous terms in
the RKDG method requires further development, indicating a potentially higher efficiency
of the CGKS for real-world viscous flow simulations. During the implementation of these
methods, we encountered challenges in maintaining the stability of the RKDG method when
using multi-resolution WENO limiters. The coefficients γℓ−1,ℓ and γℓ,ℓ for the limiters proved
sensitive and required case-specific adjustments to achieve both robustness and accuracy in
capturing discontinuous solutions. Furthermore, the multi-resolution scheme tends to in-
correctly identify excessive extreme points in smooth regions, thereby attenuating extreme
values. Our comparative analysis highlights the robustness of the CGKS and the high accu-
racy of the RKDG method in multi-dimensional scenarios. Thus, integrating the strengths
of GKS’s relaxed CFL conditions and DG’s high accuracy, a hybrid scheme combining DG
and CGKS with h−p refinement emerges as a promising approach for effectively simulating
flows in both smooth and discontinuous regions. This development is part of our ongoing
research efforts.
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[9] Michael Dumbser and Martin Käser. An arbitrary high-order discontinuous galerkin method for elastic
waves on unstructured meshes—ii. the three-dimensional isotropic case. Geophysical Journal Interna-
tional, 167(1):319–336, 2006.

24



[10] Oliver Friedrich. Weighted essentially non-oscillatory schemes for the interpolation of mean values on
unstructured grids. Journal of computational physics, 144(1):194–212, 1998.

[11] Guosheng Fu and Chi-Wang Shu. A new troubled-cell indicator for discontinuous Galerkin methods
for hyperbolic conservation laws. Journal of Computational Physics, 347:305–327, 2017.

[12] Changqing Hu and Chi-Wang Shu. Weighted essentially non-oscillatory schemes on triangular meshes.
Journal of Computational Physics, 150(1):97–127, 1999.

[13] Xing Ji. High-order non-compact and compact gas-kinetic schemes. Hong Kong University of Science
and Technology (Hong Kong), 2019.

[14] Xing Ji, Liang Pan, Wei Shyy, and Kun Xu. A compact fourth-order gas-kinetic scheme for the Euler
and Navier–Stokes equations. Journal of Computational Physics, 372:446–472, 2018.

[15] Xing Ji, Fengxiang Zhao, Wei Shyy, and Kun Xu. A family of high-order gas-kinetic schemes and
its comparison with Riemann solver based high-order methods. Journal of Computational Physics,
356:150–173, 2018.

[16] Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of weighted ENO schemes. Journal of
computational physics, 126(1):202–228, 1996.
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