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Abstract
In the previous study [J. Comput. Phys. 417 (2020) 109558], under arbitrary-Lagrangian-
Eulerian (ALE) formulation a high-order gas-kinetic scheme has been developed for the
computation of two-dimensional flows. For the three-dimensional flows, due to the distorted
mesh, it becomes more difficult to develop robust high-order ALE methods with the precise
preservation of geometric conservation law. In this paper, the high-order gas-kinetic ALE
scheme will be constructed for three-dimensional flows. The key ingredients of the scheme
are the use ofweighted essentially non-oscillatory (WENO) scheme for spatial reconstruction
and the two-stage fourth-order discretization for temporal evolution. In the ALE formulation,
in order to release the problems associated with mesh distortion and non-coplanar vertexes
of a control volume, in the spatial reconstruction the selection of candidate stencils and the
topologically independent linearweights have to be carefully designed. In the surface integrals
for the flux transport, a bilinear interpolation is used to parameterize both grid coordinates
and grid moving velocity with the preservation of the geometric conservation law. In the
computation, the grid velocity is determined by the variational formulation based Lagrangian
nodal solver. Numerical examples are presented to evaluate the accuracy, robustness, and the
preservation of geometric conservation law of the current scheme.
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1 Introduction

In the computational fluid dynamics, there exist two coordinate systems to describe flow
motions, i.e. Eulerian and Lagrangian methods. Considerable progress has been made in the
numerical simulations from both methods. The Eulerian methods describe the flow motions
with time-independent mesh, while the mesh moves with fluid velocity in the Lagrangian
formulation. Generally, the Lagrangian methods can be classified into the staggered methods
and cell-centered methods. The staggered methods [10,11,13] define physical variables of
density, internal energy and pressure at zone centers, but velocities are defined at grid points.
The artificial viscosity is needed to resolve the shock. The cell-centered methods [29–31]
define the physical variables and velocities at zone centers, which need to solve the Riemann
problem on the cell boundary. The Lagrangian methods can track the material interfaces
clearly, but have intrinsic difficulties to tackle themultidimensional flow problemswith large-
deformation, such as the flow associated with shear and vorticity. In Eulerian methods [42],
the mesh is fixed in space and the fluid moves through it. The Eulerian methods are relatively
simple, but smear the contact discontinuities and slip lines badly. Integrating the advantages
of Eulerian and Lagrangian methods, the arbitrary Lagrangian-Eulerian (ALE) method was
originally developed by Hirt [19]. The essence of ALE methods is that the mesh motion can
be chosen arbitrarily, providing additional flexibility and accuracy. Generally, there are two
types of ALE methods, i.e. the direct and indirect ALE methods. It is common to separate
the indirect ALE methods into three distinct stages, i.e., Lagrangian stage, rezoning stage
[9], and remapping stage [24]. In the Lagrangian stage, the solution and computational mesh
are updated simultaneously. To release the error due to mesh deformation, the computational
mesh is adjusted to the optimal position in the rezoning stage. In the remapping stage, the
Lagrangian solution is redistributed into the rezoned mesh. Further developments and great
achievements have been made for the indirect ALE method [2,3,28]. As the unsteady flow
calculations with moving boundaries and interfaces become important, such as the flutter
simulation of wings and turbo-machinery blades, the methods with dynamically deforming
computational domain are required. In order to incorporate with the boundary deformation
dynamically, the rezoning and remapping stages are required every step, which reduce the
efficiency of computation. Based on the unified coordinate transformation, the moving mesh
methods were developed for Euler and Navier-Stokes equations [21,22]. With the integral
form of the fluid dynamic equations, the remapping-free ALE gas-kinetic schemes were
developed [32,47]. They can be considered as a direct ALE method, in which the remapping
stage is avoided and the grid velocity can be chosen arbitrarily in the flux calculation. In
the framework of one-step ADER-WENO schemes [43,44], significant progresses of direct
ALE method have also been made for three-dimensional flows [5–7]. The high order direct
ALE schemes with topology changes were also developed [17,18]. With the curvilinear
finite elements methods, a general framework of high-order Lagrangian discretization was
proposed for compressible shock hydrodynamics equations [1,15].

In the past decades, the gas-kinetic schemes (GKS) based on Bhatnagar-Gross-Krook
(BGK) model [4,14] have been developed systematically for computations from the low
speed flow to supersonic ones [45,46]. Different from the classical numerical methods based
on Riemann fluxes [42], the gas-kinetic scheme presents a gas evolution process from kinetic
scale to hydrodynamic scale. Both inviscid and viscous fluxes can be recovered from a time-
dependent andmulti-dimensional gas distribution function at a cell interface. Recently, based
on the time-dependent flux function, a two-stage fourth-order method was developed for the
Lax-Wendroff type flow solvers [27], particularly applied for the hyperbolic conservation
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laws [36,38]. With the two-stage temporal discretization, a reliable framework was provided
for constructing fourth-order and even higher-order temporal accuracy. More importantly,
this scheme is as robust as the second-order one and works perfectly from the subsonic to
hypersonic flows. A high-order WENO-IMEX scheme for the BGKmodel is also developed
on general polygonal meshes [8].

Recently, with the third-order WENO scheme on unstructured meshes [20,48], a high-
order ALE gas-kinetic scheme was developed for two-dimensional computations [38], in
which the expected order of accuracy is achieved and geometric conservation law is preserved.
In this paper, the high-order ALE gas-kinetic scheme will be extended to three-dimensional
flows. In the classical WENO scheme, the linear weights are obtained by solving the linear
system, which is dependent on the geometrical topology. However, in the ALE computa-
tions, the efficiency will be reduced dramatically for solving the linear weight every time
step. In order to achieve the order of accuracy and improve the efficiency, a newly developed
WENO scheme [37] is used, in which the ideas of simpleWENO reconstruction [49–51] and
central WENO reconstruction [25,26] are adopted. A simple strategy of selecting stencils
for reconstruction is adopted and the topology independent linear weights are chosen, which
improve the efficiency and robustness of the classical WENO reconstruction. For the three-
dimensional ALE computation, it is also common to generate the meshes with non-coplanar
vertexes, which introduce extra difficulties for three-dimensionalmethods. The trilinear inter-
polation is used to parameterize hexahedron cells for the evolution of cell averaged variables.
For the surface integral of numerical fluxes, the bilinear interpolation is used to parameterize
both grid coordinates and grid velocities. Taken the variation of grid velocity into account,
the geometric conservation law can be preserved. Numerical examples are presented to val-
idate the accuracy, robustness, and geometry conservation law of the current scheme. In the
computations, the mesh velocity can be given by the variational approach [40] for local mesh
adaptation, and the Lagrangian nodal solver [29] for tracking material interface.

This paper is organized as follows. In Sect. 2, the gas-kinetic scheme in ALE formulation
is introduced. The implementation of high-order scheme is presented in Sect. 3, including
numerical fluxes, spatial reconstruction and temporal discretization. Section 4 includes the
numerical examples. The last section is the conclusion.

2 Gas-Kinetic Scheme in ALE Formulation

The three-dimensional BGK equation [4,14] can be written as

ft + u fx + v fy + w fz = g − f

τ
, (1)

where u = (u, v, w) is the particle velocity, f is the gas distribution function, g is the three-
dimensional Maxwellian distribution and τ is the collision time. The collision term satisfies
the compatibility condition ∫

g − f

τ
ψdΞ = 0, (2)

where ψ = (ψ1, ..., ψ5)
T =

(
1, u, v, w,

1

2

(
u2 + v2 + w2 + ς2))T

, the internal variable

ς2 = ς2
1 + ... + ς2

K , dΞ = dudvdwdς1...dςK , γ is the specific heat ratio and K =
(5 − 3γ )/(γ − 1) is the degree of freedom for three-dimensional flows. According to the
Chapman-Enskog expansion for BGK equation, the macroscopic governing equations can
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be derived [45,46]. In the continuum region, the BGK equation can be rearranged and the
gas distribution function can be expanded as

f = g − τDug + τDu(τDu)g − τDu[τDu(τDu)g] + ...,

where Du = ∂

∂t
+ u · ∇. With the zeroth-order truncation f = g, the Euler equations can

be obtained. For the first-order truncation

f = g − τ(ugx + vgy + wgz + gt ),

the Navier-Stokes equations can be obtained. With higher-order truncations, the Burnett and
super-Burnett equations can be obtained as well.

In this paper, a high-order gas-kinetic scheme (HGKS)will be constructed in the arbitrary-
Lagrangian-Eulerian (ALE) framework for three-dimensional flows. The BGK equation on
moving reference can be written as

ft + (
u −Ug) fx + (

v − V g) fy + (
w − Wg) fz = g − f

τ
, (3)

where Ug = (Ug, V g,Wg) is the grid velocity given arbitrarily. Taking moments of Eq. (3)
and integrating with respect to space, the semi-discretized finite volume scheme can be
expressed as

d(|Ωi |Qi )

dt
= −L(Ωi , Qi ), (4)

where Qi is the cell averaged conservative value of Ωi and |Ωi | is the volume of Ωi . The
operator L is defined as

L(Ωi , Qi ) = −
6∑

p=1

Fp(t) = −
6∑

p=1

∫∫
Σp

F(Q, t)dσ, (5)

where Σp is the cell interface of Ωi , n is the outer normal direction and the numerical flux
is given as

F(Q, t) =
∫

ψ f (x, t, u, ς)
(
u − Ug) · ndΞ.

The structured mesh is used in this paper, and the extension to unstructured mesh will be
considered in the future.

For simplicity, the grid velocity is assumed to be constant during a time interval. For two-
dimensional computations, the segments of each cell keep straight with constant grid velocity,
and no special treatment is needed in the computation. However, for three-dimensional com-
putations, the vertexes might become non-coplanar even with constant grid velocity, which
introducesmore difficulties to preserve the order of accuracy and geometric conservation law.
Thus, a trilinear interpolation is introduced for hexahedron cell with non-coplanar vertexes

X(ξ, η, ζ ) =
8∑

i=1

xiψi (ξ, η, ζ ),

where (ξ, η, ζ ) ∈ [−1/2, 1/2]3, xi is the vertex of a hexahedron and ψi is the base function
given as follows

ψ1 = 1

8
(1 − 2ξ)(1 − 2η)(1 − 2ζ ), ψ2 = 1

8
(1 − 2ξ)(1 − 2η)(1 + 2ζ ),
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ψ3 = 1

8
(1 − 2ξ)(1 + 2η)(1 − 2ζ ), ψ4 = 1

8
(1 − 2ξ)(1 + 2η)(1 + 2ζ ),

ψ5 = 1

8
(1 + 2ξ)(1 − 2η)(1 − 2ζ ), ψ6 = 1

8
(1 + 2ξ)(1 − 2η)(1 + 2ζ ),

ψ7 = 1

8
(1 + 2ξ)(1 + 2η)(1 − 2ζ ), ψ8 = 1

8
(1 + 2ξ)(1 + 2η)(1 + 2ζ ).

With the trilinear interpolation, the triple integral over a control volume can be simply given
by Gaussian quadrature as follows∫∫∫

Ω

xa ybzcdxdydz =
∫∫∫

Ω

xa ybzc(ξ, η, ζ )

∣∣∣ ∂(x, y, z)

∂(ξ, η, ζ )

∣∣∣dξdηdζ

=
2∑

l,m,n=1

ωlmnx
a ybzc(ξl , ηm, ζn)

∣∣∣ ∂(x, y, z)

∂(ξ, η, ζ )

∣∣∣
(ξl ,ηm ,ζn)

ΔξΔηΔζ,

where ωlmn is the quadrature weight and (ξl , ηm, ζn) is the quadrature point. For each cell
interface, the trilinear interpolation reduces to a bilinear interpolation. For example, the cell
interface with ξ = −1/2 is defined as

X(η, ζ ) =
4∑

i=1

xiφi (η, ζ ), (6)

where (η, ζ ) ∈ [−1/2, 1/2]2, xi is the vertex of the interface and φi is the base function

φ1 = 1

4
(1 − 2η)(1 − 2ζ ), φ2 = 1

4
(1 − 2η)(1 + 2ζ ),

φ3 = 1

4
(1 + 2η)(1 − 2ζ ), φ4 = 1

4
(1 + 2η)(1 + 2ζ ).

With the parameterized cell interface, the local coordinate (nx , ny, nz) can be given by the
procedure as follows

nx = (
Xη × Xζ

)
/‖Xη × Xζ ‖,

nz = Xζ /‖Xζ ‖,
ny = nz × nx . (7)

With the constant grid velocity during a time interval, the velocity of curved interface can be
given by the bilinear interpolation as well

Ug(η, ζ ) =
4∑

i=1

Ug
i (t)φi (η, ζ ), (8)

whereUg
i is the constant grid velocity. The procedure above is the key to achieve the geometric

conservation law.
With the parameterized cell interface, the numerical flux is provided by Gaussian quadra-

ture of surface integral over the cell interface

Fp(t) =
∫∫

Σp

F(Q, t)dσ =
∫ 1/2

−1/2

∫ 1/2

−1/2
F(Q(X(η, ζ )), t)‖Xη × Xζ ‖dηdζ

=
2∑

m1,m2=1

ωm1,m2Fm1,m2(Q, t)‖Xη × Xζ ‖m1,m2ΔηΔζ, (9)
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where ωm1,m2 is the quadrature weight. The numerical flux Fm1,m2(Q, t) can be obtained by
taking moments of the gas distribution function

Fm1,m2(t) =

⎛
⎜⎜⎜⎜⎜⎝

Fρ
m1,m2

FρU
m1,m2

FρV
m1,m2

FρW
m1,m2

FρE
m1,m2

⎞
⎟⎟⎟⎟⎟⎠

=
∫

ψ f (xm1,m2 , t, u, ς)(u − Ug
m1,m2) · nm1,m2dΞ,

where nm1,m2 is the outer normal direction, xm1,m2 is the coordinate of quadrature point
and Ug

m1,m2 is the velocity of quadrature point given by the bilinear interpolation Eq.(6) and
Eq.(8). In the actual computation, the numerical flux can be obtained by taking moments of
gas distribution function in local coordinate, and the component-wise form can be written as

F̃m1,m2(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

F ρ̃
m1,m2

F ρ̃U
m1,m2

F ρ̃V
m1,m2

F
˜ρW
m1,m2

F ρ̃E
m1,m2

⎞
⎟⎟⎟⎟⎟⎟⎠

=
∫

ũ

⎛
⎜⎜⎜⎜⎝

1
ũ
ṽ

w̃
1
2 (̃u

2 + ṽ2 + w̃2 + ς2)

⎞
⎟⎟⎟⎟⎠ f (xm1,m2 , t, ũ, ς)dΞ̃ , (10)

where the relative particle velocity in the local coordinate Eq.(7) is given by

ũ = (u − Ug
m1,m2) · (nx , ny, nz)m1,m2 .

Each component of Fm1,m2(t) can be given by the combination of F̃m1,m2(t) as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fρ
m1,m2

=F ρ̃
m1,m2

,

FρU
m1,m2

=Ug
m1,m2F

ρ̃
m1,m2

+ a11F
ρ̃U
m1,m2

+ a12F
ρ̃V
m1,m2

+ a13F
˜ρW
m1,m2

,

FρV
m1,m2

=V g
m1,m2F

ρ̃
m1,m2

+ a21F
ρ̃U
m1,m2

+ a22F
ρ̃V
m1,m2

+ a23F
˜ρW
m1,m2

,

FρW
m1,m2

=Wg
m1,m2F

ρ̃
m1,m2

+ a31F
ρ̃U
m1,m2

+ a32F
ρ̃V
m1,m2

+ a33F
˜ρW
m1,m2

,

FρE
m1,m2

=F ρ̃E
m1,m2

+ 1

2
(Ug

m1,m2)
2 + (V g

m1,m2)
2 + (Wg

m1,m2)
2)F ρ̃

m1,m2

+ (a11U
g
m1,m2 + a21V

g
m1,m2 + a31W

g
m1,m2)F

ρ̃U
m1,m2

+ (a12U
g
m1,m2 + a22V

g
m1,m2 + a32W

g
m1,m2)F

ρ̃V
m1,m2

+ (a13U
g
m1,m2 + a23V

g
m1,m2 + a33W

g
m1,m2)F

˜ρW
m1,m2

.

where (ai j ) is denoted as the inverse matrix of (nx , ny, nz)m1,m2 . Therefore, the time-
dependent numerical fluxes with mesh velocity Fp(t) in Eq.(9) over cell interface �p can be
constructed.
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3 Implementation of High-Order Scheme

3.1 Numerical Flux

To obtain the numerical flux, the gas distribution function needs to be constructed at quadra-
ture point, which can be provided by the integral solution of BGK equation Eq.(1) as follows

f (xm1,m2 , t, u, ς) = 1

τ

∫ t

0
g
(
x′, t ′, u, ς

)
e−(t−t ′)/τdt ′ + e−t/τ f0(−ut, ς),

where ũ in Eq. (10) is denoted as u for simplicity, u = (u, v, w) is the particle velocity in
the local coordinate, xm1,m2 = x′ +u(t − t ′) is the trajectory of particles, f0 is the initial gas
distribution function and g is the corresponding equilibrium state. With the reconstruction
of macroscopic variables, the second-order gas distribution function can be expressed as

f (xm1,m2 , t, u, ς) = (
1 − e−t/τ ) g0 + (

(t + τ) e−t/τ − τ
)
(a1u + a2v + a3w) g0

+ (
t − τ + τe−t/τ ) Āg0

+ e−t/τ gr [1 − (τ + t)
(
ar1u + ar2v + ar3w

) − τ Ar )]H(u)

+ e−t/τ gl [1 − (τ + t)
(
al1u + al2v + al3w

)
− τ Al)](1 − H(u)),

(11)

where H(u) is the Heaviside function, gl , gr are the equilibrium states corresponding to the
reconstructed variables Ql , Qr at both sides of cell interface. The equilibrium state g0 and
corresponding conservative variables Q0 are given by the compatibility condition Eq. (2)

∫
ψg0dΞ = Q0 =

∫
u>0

ψgldΞ +
∫
u<0

ψgrdΞ.

The coefficients in Eq. (11) can be obtained by the reconstructed directional derivatives and
compatibility condition

〈
ak1

〉
= ∂Qk

∂nx
,
〈
ak2

〉
= ∂Qk

∂ny
,
〈
ak3

〉
= ∂Qk

∂nz
,
〈
ak1u + ak2v + ak3w + Ak

〉
= 0,

〈a1〉 = ∂Q0

∂nx
, 〈a2〉 = ∂Q0

∂ny
, 〈a3〉 = ∂Q0

∂nz
,
〈
a1u + a2v + a3w + A

〉 = 0,

where k = l, r and 〈...〉 is the moment of the equilibrium g defined by

〈...〉 =
∫

g(...)ψdΞ.

The spatial derivatives
∂Ql,r

∂nx
,
∂Ql,r

∂ny
,
∂Ql,r

∂nz
can be determined by spatial reconstruction. In

the classical gas-kinetic scheme, an extra reconstruction is needed for the equilibrium part,
which introduces extra difficulty for the genuinemultidimensional scheme [38]. In this paper,
the spatial derivatives of the equilibrium part can be given by

∂Q0

∂nx
=

∫
u>0

ψal1gldΞ +
∫
u<0

ψar1grdΞ,

∂Q0

∂ny
=

∫
u>0

ψal2gldΞ +
∫
u<0

ψar2grdΞ,
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∂Q0

∂nz
=

∫
u>0

ψal3gldΞ +
∫
u<0

ψar3grdΞ.

More details of gas-kinetic scheme can be found in [45].

3.2 Temporal Discretization and Geometrical Conservation Law

Recently, a two-stage fourth-order temporal discretization was developed for Lax-Wendroff
flow solvers, such as the generalized Riemann problem (GRP) solver [27] and gas-kinetic
scheme (GKS) [36]. Consider the following time-dependent equation

∂Q

∂t
= L(Q),

whereL is an operator for spatial derivative of flux, the flow variable Qn+1 at tn+1 = tn +Δt
can be updated with the following formula

Q∗ = Qn + 1

2
ΔtL (

Qn) + 1

8
Δt2

∂

∂t
L(Qn),

Qn+1 = Qn + ΔtL (
Qn) + 1

6
Δt2

(
∂

∂t
L (

Qn) + 2
∂

∂t
L (

Q∗)) .

It can be proved that for hyperbolic equations the above temporal discretization provides a
fourth-order time accurate solution [27,36]. To implement the two-stage fourth-order method
for Eq.(4),L and ∂tL at the initial and intermediate stages need to be given. For the stationary
mesh, they can be simply given as follows

L (
Ωn

i , Qn
i

) = −
6∑

p=1

F
n
p, ∂tL

(
Ωn

i , Qn
i

) = −
6∑

p=1

∂tF
n
p. (12)

To determine these coefficients, the time dependent numerical flux Fp(t) in Eq. (9) can be
approximate as a linear function

Fp(t) = F
n
p + ∂tF

n
p(t − tn). (13)

For the gas-kinetic scheme, the gas evolution is a relaxation process from kinetic to hydro-
dynamic scale through the exponential function, and the corresponding flux is a complicated
function of time. In order to obtain the time derivatives of the flux function, the flux func-
tion should be approximated as a linear function of time within a time interval. Integrating
Eq. (13) over [tn, tn + Δt/2] and [tn, tn + Δt], we have the following two equations

⎧⎪⎪⎨
⎪⎪⎩
F
n
pΔt + 1

2
∂tF

n
pΔt2 =

∫ t+nΔt

tn
Fp(t)dt,

1

2
F
n
pΔt + 1

8
∂tF

n
pΔt2 =

∫ tn+Δt/2

tn
Fp(t)dt .

(14)

The coefficients Fn
p and ∂tF

n
p can be obtained by solving the linear system, and L (

Ωn
i , Qn

i

)
and ∂tL

(
Ωn

i , Qn
i

)
can be given by Eq. (12). More details for two-stage fourth-order method

can be found in [36].
For the ALE computation, the variation of geometrical variable and grid velocity need

to be considered for the numerical flux. Otherwise, the geometrical conservation law (GCL)
can not be preserved. Generally, the geometric conservation law is often referred as the
preservation of free stream, which means that a uniform flow on a grid that moves arbitrarily
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in space as a function of time must be preserved for any numerical discretization scheme
[35,41]. In this section, a brief analysis for GCL is given. For simplicity, a stationary uniform
flow with ρ = 1 is considered. For a cell interface of Ωi , which is denoted as X1X2X3X4,
the grid velocity of X i is U

g
i , and Ug

i is constant in a time step. The hexahedron swept by
such interface during a time interval [tn, tn + t] is parameterized by

X (ξ, η, ζ ) =
4∑

i=1

(
X iψi (ξ, η, ζ ) +

(
X i + Ug

i Δt
)

ψi+4 (ξ, η, ζ )
)

= X + 1

2
(t − tn)(1 + 2ξ)Ug,

where X and Ug are given by Eq. (6) and (8). The volume of such hexahedron can be
calculated as

V (t) =
∫ 1/2

−1/2

∫ 1/2

−1/2

∫ 1/2

−1/2
|Xξ ,Xη,Xζ |dξdηdζ.

According to the Gaussian quadrature, the volume can be expressed as follows

V (t) =
2∑

m1,m2=1

ωm1,m2

(∣∣Ug, Xη, Xζ

∣∣ (t − tn) + Vm1,m2(t)
)
ΔηΔζ,

where

Vm1,m2 (t) =
(
1

2

(∣∣∣Ug, Xη,Ug
ζ

∣∣∣ +
∣∣∣Ug,Ug

η, Xζ

∣∣∣
)

(t − tn)2 + 1

3

∣∣∣Ug,Ug
η,Ug

ζ

∣∣∣ (t − tn)3
)
m1,m2

.

For such steady uniform flow, we have the density flux Fρ
m1,m2 = −Ug

m1,m2 and the first term
can be rewritten as

∣∣Ug, Xη, Xζ

∣∣
m1,m2

= Ug
m1,m2 · nm1,m2

∥∥Xη × Xζ

∥∥
m1,m2

= −Fρ
m1,m2

∥∥Xη × Xζ

∥∥
m1,m2

,

where nm1,m2 is the unit outer normal direction of quadrature point, and this term is identical
with Eq. (12). The later three terms represent the variation of geometry, and can be also
written as the flux form∣∣∣Ug,Ug

η, Xζ

∣∣∣
m1,m2

= −(F1)
ρ
m1,m2

∥∥∥Ug
η × Xζ

∥∥∥
m1,m2

,

∣∣∣Ug, Xη,U
g
ζ

∣∣∣
m1,m2

= −(F2)
ρ
m1,m2

∥∥∥Xη × Ug
ζ

∥∥∥
m1,m2

,

∣∣∣Ug,Ug
η,U

g
ζ

∣∣∣
m1,m2

= −(F3)
ρ
m1,m2

∥∥∥Ug
η × Ug

ζ

∥∥∥
m1,m2

,

where (Fi )
ρ
m1,m2 is the density flux in normal direction (ni )m1,m2

(Fi )
ρ
m1,m2

= −Ug
m1,m2 · (ni )m1,m2

and the normal directions are given by

(n1)m1,m2 =
(
Ug

η × Xζ

)
/

∥∥∥Ug
η × Xζ

∥∥∥
m1,m2

,

(n2)m1,m2 =
(
Xη × Ug

ζ

)
/

∥∥∥Xη × Ug
ζ

∥∥∥
m1,m2

,

(n3)m1,m2 =
(
Ug

η × Ug
ζ

)
/

∥∥∥Ug
η × Ug

ζ

∥∥∥
m1,m2

.
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The local coordinate can be obtained by the similar procedure of orthogonalization Eq. (7).
Thus, the integrated extra flux at the quadrature point can be written as

Vm1,m2(t) =
(1
2

(
F1

∥∥∥Ug
η × Xζ

∥∥∥
+ F2

∥∥∥Xη × Ug
ζ

∥∥∥
)
(t − tn)

2 + 1

3
F3

∥∥∥Ug
η × Ug

ζ

∥∥∥(t − tn)
3
)
m1,m2

,

where (F1)m1,m2 , (F2)m1,m2 , (F3)m1,m2 are the fluxes in the local coordinate related to
(ni )m1,m2 . The total numerical flux Fp(t) in Eq. (9) can be modified as

Fp(t) =
2∑

m1,m2=1

ωm1,m2

(
Fm1,m2(Q, t)

∥∥Xη × Xζ

∥∥
m1,m2

+ ∂tVm1,m2(t)
)
ΔηΔζ.

To implement the two-stage fourth-order method, the similar procedures given by Eq. (13)
and Eq. (14) are used. Both the order of accuracy and geometric conservation law can be
preserved.

3.3 Spatial Reconstruction

In the classicalWENOschemes [20,39], the high-order accuracy is achieved by the non-linear
combination of lower order polynomials. For example, to achieve a third-order accuracy, a
quadratic polynomial P2(x) and some linear polynomials P1

j (x), j = 1, ..., M are con-
structed based on the candidate stencils. The linear weights γ j are determined according to
the following relation

P2(xG) =
M∑
j=1

γ j P
1
j (xG),

where M is the number of candidate linear polynomials and xG is the Gaussian quadrature
point. Linear weights can be obtained by solving a linear system, and the non-linear weights
are introduced to deal with the discontinuities. However, the very large linear weights and
negative weights appear with the lower mesh quality. In order to improve the robustness of
WENO schemes, an optimization approach is given to deal with the very large linear weights
[48]. With the two-stage temporal discretization and improved WENO scheme, the high-
order ALE gas-kinetic scheme works well for two-dimensional computations, especially for
the flows with strong discontinuities [38].

However, the linear weights need to be updated every time step when the mesh is moving,
and the efficiencywill be reducedgreatly for three-dimensionalALEcomputations.Due to the
distorted meshes, the robustness of WENO reconstruction is also reduced. To overcome the
drawbacks above, the newly developed third-order WENO scheme [37] is used for spatial
reconstruction during the moving-mesh procedure, in which the ideas of simple WENO
reconstruction [49–51] and central WENO reconstruction [25,26] are adopted. With the
reconstructed quadratic polynomial from large stencil and linear polynomials from sub-
stencils, the linear weights are chosen as positive numbers with the requirement that their
sum equals one and be independent of local mesh topology. With the construction of non-
linear weights, the accuracy can be achieved. More importantly, the robustness is as well as
the classical one-dimensional WENO scheme.

For the third-order WENO scheme, a quadratic polynomial and several polynomials are
needed to achieve the expected accuracy. In this section, we consider the structured mesh for
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Fig. 1 Stencils of cell Ωi jk (red
cubic) for three-dimensional
reconstruction

simplicity. To construct the quadratic polynomial, a large stencil shown in Fig. 1 for the call
Ωi jk is selected and the index of elements is rearranged as follows

S = {Ωi+i0, j+ j0,k+k0 , i0, j0, k0 = −1, 0, 1, i0 · j0 · k0 	= ±1}
= {Ωn, n = 0, ..., 18}.

where Ω0 = Ωi jk . With the large stencil, a quadrature polynomial is constructed

P0(x) = Qi jk +
2∑

|n|=1

an pn(x),

where Qi jk is the cell averaged conservative variables over Ωi jk , n = (n1, n2, n3), |n| =
n1 + n2 + n3 and

pn(x) = xn1 yn2 zn3 − 1∣∣Ωi jk
∣∣
∫∫∫

Ωi jk

xn1 yn2 zn3dV .

For the linear polynomials, too many sub-stencils are used in the previous paper [37], and
another type of sub-stencils are given as follows

S′
1 = {Ωi jk,Ωi+1, j,k,Ωi, j+1,k,Ωi, j,k+1}, S′

5 = {Ωi jk,Ωi+1, j,k,Ωi, j+1,k,Ωi, j,k−1},
S′
2 = {Ωi jk,Ωi−1, j,k,Ωi, j+1,k,Ωi, j,k+1}, S′

6 = {Ωi jk,Ωi−1, j,k,Ωi, j+1,k,Ωi, j,k−1},
S′
3 = {Ωi jk,Ωi+1, j,k,Ωi, j−1,k,Ωi, j,k+1}, S′

7 = {Ωi jk,Ωi+1, j,k,Ωi, j−1,k,Ωi, j,k−1},
S′
4 = {Ωi jk,Ωi−1, j,k,Ωi, j+1,k,Ωi, j,k+1}, S′

8 = {Ωi jk,Ωi−1, j,k,Ωi, j+1,k,Ωi, j,k−1}.
For simplicity, the index of elements of the sub-stencils is also rearranged as follows

S′
m = {Ωm

n′ , n′ = 0, ..., 4}.
The linear polynomials are constructed on candidate sub-stencils

Pm(x) = Qi jk +
∑
|n|=1

bmn pn(x),
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where m = 1, ...8. With the following constrains

Qn = 1

|Ωn |
∫∫∫

Ωn

P0(x)dV ,

Qm
n′ = 1

|Ωn |
∫∫∫

Ωm
n′
Pm(x)dV ,

the coefficients of P0(x) and Pm(x),m = 1, ..., 8 can be fully determined. Therefore, the
reconstructed point-value of the conservative variables Q(xG) at Gaussian quadrature point
can be given by the following non-linear combination

Q(xG) = ω0

(
1

γ0
P0(xG) −

8∑
m=1

γm

γ0
Pm(xG)

)
+

8∑
m=1

ωm Pm(xG). (15)

The non-linear weights ωm and normalized non-linear weights ωm are defined as

ωm = ωm∑8
m=0 ωm

, ωm = γm

[
1 +

( τ

βm + ε

)]
,

where ε is a small positive number and the parameter τ is chosen as

τ =
8∑

m=1

( |β0 − βm |
8

)
.

The smooth indicator βm is defined as

βm =
rm∑

|l|=1

∣∣Ωi jk
∣∣ 2|l|3 −1

∫
Ωi jk

(
∂ l Pm

∂
l1
x ∂

l2
y ∂

l3
z

(x, y, z)

)2

dV ,

where r0 = 2 and rm = 1,m 	= 0. It can be proved that Eq. (15) ensures the third order of
accuracy for the current scheme. With the reconstructed polynomial, the spatial derivatives
at Gaussian quadrature point, which will be used in the gas-kinetic solver, can be given as
follows

∂x Q(xG) = ω0

( 1

γ0
∂x P0(xG) −

8∑
m=1

γm

γ0
∂x Pm(xG)

)
+

8∑
m=1

ωm∂x Pm(xG),

∂y Q(xG) = ω0

( 1

γ0
∂y P0(xG) −

8∑
m=1

γm

γ0
∂y Pm(xG)

)
+

8∑
m=1

ωm∂y Pm(xG),

∂z Q(xG) = ω0

( 1

γ0
∂z P0(xG) −

8∑
m=1

γm

γ0
∂z Pm(xG)

)
+

8∑
m=1

ωm∂z Pm(xG).

Thus, the spatial reconstruction is fully given. With the reconstructed variables, the gas
distribution function can be determined completely.

In order to eliminate the spurious oscillation and improve the stability, the reconstruction
can be performed for the characteristic variables in localmoving coordinate for eachGaussian
quadrature point. The characteristic variable is defined as ω = R−1Q, where Q is variable
in the local moving coordinate with the grid velocity taken into account, and where R is
the right eigenmatrix of Jacobian matrix (∂F/∂Q)G at Gaussian quadrature point. With the
reconstructed variable, the conservative variables can be obtained by the inverse projection. To
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Fig. 2 Flow chart of high-order ALE gas-kinetic scheme

improve the robustness, a simple limiting procedure is used. For the reconstructed variables
Pm(xG),m = 0, ..., 8 from quadrature and linear polynomials, if any one value of the
densities ρm(xG) and pressures pm(xG),m = 0, ..., 8 become negative, the derivatives are
set as zero and first-order reconstruction is adopted (Fig. 2).

3.4 MeshVelocity

In the scheme above, the grid velocity Ug can be arbitrary for the control volume. The
strategies of mesh velocity are given and the different methods are chosen according to the
requirement of numerical cases.

1. The mesh velocity can be specified directly. This is the simplest type of mesh velocity
and is mainly adopted in the accuracy tests in this paper.

2. The mesh velocity can be determined by the cell centered Lagrangian nodal solver [31],
which is a three-dimensional extension of [29,30]. Denote C(p) is the set of control
volumes that share the common vertex p, FP (cp) is the set of faces of cell c that share
the common vertex p, S f and Nc

f are the area and unit outward normal direction of face
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f , the grid velocity U p can be given by the geometrical variables and cell averaged flow
variables

Ug
p = M

−1
p

∑
c∈C(p), f ∈FP (cp)

[
S f pcNc

f + Mpc f Uc

]
,

where ρc,Uc, pc, ac is density, fluid velocity, pressure, sound speed and

Mp =
∑

c∈C(p), f ∈FP (cp)

Mpc f =
∑

c∈C(p), f ∈FP (cp)

S f ρcac(Nc
f ⊗ Nc

f ).

The matrix Mp is symmetric positive definite. Therefore, the system will always admit
a unique solution, and the coordinate of each point can be given by

xn+1
i jk = xni jk + Ug

i jkΔt .

3. The mesh velocity can be determined by the variational approach [40], and the corre-
sponding Euler-Lagrange equations can be obtained from

(ωxξ )ξ + (ωxη)η + (ωxζ )ζ = 0,

(ωyξ )ξ + (ωyη)η + (ωyζ )ζ = 0,

(ωzξ )ξ + (ωzη)η + (ωzζ )ζ = 0,

where (x, y, z) and (ξ, η, ζ ) denote the physical and computational coordinates, ω is
the monitor function and can be chosen as a function of the flow variables, such as the
density, velocity, pressure, or their gradients. In the numerical tests, without no special
statement, the monitor function takes the form

ω =
√
1 + α|∇ρ|2.

A second-order central difference scheme is used to discretize the Euler-Lagrange equa-
tions. The Jacobian iterative method is used to solve the discretized equations with
boundary condition, and the coordinate of xn+1

i jk can be obtained. Actually, we do not
need the converged solutions, only four or five iterative precess is enough to provide the
local refined mesh. Thus, the mesh distribution can be directly generated and the grid
velocity is obtained by

Ug
i jk = xn+1

i jk − xni jk
Δt

.

More details can be found in [40].

With theLagrangian velocity and adaption velocity, themeshes becomedistorted and com-
putation might break down as shown in Fig. 11. Therefore, the meshes need to be smoothed
by the following procedure

x̃n+1
i jk = (4xn+1

i jk + xn+1
i−1, j,k + xn+1

i+1, j,k + xn+1
i, j−1,k

+ xn+1
i, j+1,k + xn+1

i, j,k−1 + xn+1
i, j,k+1)/10,

where x̃n+1
i jk is the coordinate of smoothed mesh. With the new mesh point, the new grid

velocity is replaced by

Ug
i jk = x̃n+1

i jk − xni jk
Δt

.
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Fig. 3 Accuracy test: moving-mesh Type 2 at t = 0.5 with 16 × 16 × 16 cells

Table 1 Accuracy test: the advection of density perturbation with uniform stationary meshes

mesh L1 error Order L2 error Order

16 × 16 × 16 1.4612E-01 5.7820E-02

32 × 32 × 32 2.0241E-02 2.8517 7.9355E-03 2.8651

64 × 64 × 64 2.5712E-03 2.9768 1.0083E-03 2.9763

128 × 128 × 128 3.2240E-04 2.9955 1.2633E-04 2.9966

This procedure is conducted for some certain steps, which can be considered as a simple
rezoning stage in the classical ALE methods. In all the following tests, the mesh is smoothed
every 20 steps to avoid the tangling of the mesh for the Lagrangian velocity.

The mesh velocities at Gaussian quadrature points can be obtained by the bilinear inter-
polation of mesh velocity at the grid points. For each Gaussian quadrature point, the constant
mesh velocity is also used in the time interval [tn, tn + Δt]. Thus, we have fully given the
numerical scheme.

4 Numerical Tests

In this section, numerical tests for the inviscid flows will be presented to validate the perfor-
mance of current scheme. The collision time τ for the flows with discontinuities takes

τ = εΔt + C

∣∣∣∣ pl − pr
pl + pr

∣∣∣∣Δt,

where ε = 0.01 and C = 1, pl and pr denote the pressure on the left and right sides of the
cell interface. For the inviscid smooth flows and the gas distribution function reduces to

f
(
xm1,m2 , t, u, ς

) =g0
(
1 + Āt

)
.

The computation can be simplified greatly. Without special statement, the specific heat ratio
γ = 1.4 and the CFL number CFL = 0.35 are used in the computation.
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Table 2 Accuracy test: the advection of density perturbation with mesh velocities Type 1- Type 4

L1 error Order L2 error Order

Type 1

16 × 16 × 16 1.6475E-01 6.4872E-02

32 × 32 × 32 2.3757E-02 2.7938 9.4385E-03 2.7809

64 × 64 × 64 3.0657E-03 2.9540 1.2195E-03 2.9521

128 × 128 × 128 3.8585E-04 2.9901 1.5341E-04 2.9908

Type 2

16 × 16 × 16 1.4708E-02 5.8174E-02

32 × 32 × 32 2.0355E-02 2.8531 7.9957E-03 2.8630

64 × 64 × 64 2.5906E-03 2.9740 1.0163E-03 2.9758

128 × 128 × 128 3.2667E-04 2.9873 1.2811E-04 2.9878

Type 3

16 × 16 × 16 1.5108E-01 5.9875E-02

32 × 32 × 32 2.0965E-02 2.8493 8.3161E-03 2.8479

64 × 64 × 64 2.6675E-03 2.9744 1.0577E-03 2.9748

128 × 128 × 128 3.3443E-04 2.9957 1.3264E-04 2.9953

Type 4

16 × 16 × 16 1.5521E-01 6.1490E-02

32 × 32 × 32 2.1794E-02 2.8322 8.6659E-03 2.8269

64 × 64 × 64 2.7846E-03 2.9684 1.1074E-03 2.9680

128 × 128 × 128 3.4951E-04 2.9940 1.3901E-04 2.9939

4.1 Accuracy Test

The advection of density perturbation for three-dimensional flows is presented to test the
order of accuracy. For this case, the physical domain is [0, 2] × [0, 2] × [0, 2] and the initial
condition is set as follows

ρ0(x, y, z) = 1 + 0.2 sin(π(x + y + z)), p0(x, y, z) = 1,

U0(x, y, z) = 1, V0(x, y, z) = 1, W0(x, y, z) = 1.

The periodic boundary conditions are applied at boundaries, and the exact solution is

ρ(x, y, z, t) = 1 + 0.2 sin(π(x + y + z − t)), p(x, y, z, t) = 1,

U (x, y, z, t) = 1, V (x, y, z, t) = 1, W (x, y, z, t) = 1.

As reference, the uniform stationary meshes with Δx = Δy = Δz = 2/N are tested. The
L1 and L2 errors and orders of accuracy at t = 2 are presented in Table 1. To validate the
order of accuracy with moving-meshes, the following four time dependent moving meshes
are considered

Type 1 :

⎧⎪⎨
⎪⎩
xi = ξi + 0.1 sin(πξi ) sin(πη j ) sin(πζk) sin π t,

y j = η j + 0.1 sin(πξi ) sin(πη j ) sin(πζk) sin π t,

zk = ζk + 0.1 sin(πξi ) sin(πη j ) sin(πζk) sin π t,

(16)
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Table 3 Isotropic vortex propagation: L2 errors and orders for stationary meshes and moving-meshes

Stationary meshes Moving-meshes
3D mesh L2 error Order L2 error Order

16 × 16 × 3 1.0602E-01 1.0656E-01

32 × 32 × 6 1.8726E-02 2.5012 1.9073E-02 2.4820

64 × 64 × 12 2.7360E-03 2.7749 2.8362E-03 2.7495

128 × 128 × 24 3.5119E-04 2.9617 4.5136E-04 2.6516

Type 2 :

⎧⎪⎨
⎪⎩
xi = ξi + Ri jk sin(πξi ) sin(πη j ) sin(πζk) sin π t,

y j = η j + Ri jk sin(πξi ) sin(πη j ) sin(πζk) sin π t,

zk = ζk + Ri jk sin(πξi ) sin(πη j ) sin(πζk) sin π t,

(17)

Type 3 :

⎧⎪⎨
⎪⎩
xi = ξi + 0.05 sin(πξi ) sin π t,

y j = η j + 0.05 sin(πη j ) sin π t,

zk = ζk + 0.05 sin(πζk) sin π t,

(18)

Type 4 :

⎧⎪⎨
⎪⎩
xi = ξi + 0.05(sin(πξi ) + sin(πξi ) sin(πη j ) sin(πζk)) sin π t,

y j = η j + 0.05(sin(πη j ) + sin(πξi ) sin(πη j ) sin(πζk)) sin π t,

zk = ζk + 0.05(sin(πζk) + sin(πξi ) sin(πη j ) sin(πζk)) sin π t,

(19)

where (ξ, η, ζ ) ∈ [0, 2] × [0, 2] × [0, 2], (ξi , η j , ζk) are given uniformly with Δξ = Δη =
Δζ = 2/N and Ri jk ∈ [−0.25Δξ, 0.25Δξ ] is the randomly given number. The mesh with
Type 2 velocity at t = 0.5 are given in Fig. 3 as example. The periodic boundary condition
is imposed for the mesh. The L1 and L2 errors and orders of accuracy at t = 2 are presented
in Table 2 from Type 1 to Type 4, where the expected orders of accuracy are achieved by the
current scheme.

The second one is the isotropic vortex propagation problem. It is a non-linear case for
accuracy test, and the three-dimensional code is run for the original two-dimensional problem.
The mean flow is (ρ,U , V ,W , p) = (1, 1, 1, 0, 1), and an isotropic vortex is added to the
mean flow, i.e., with perturbation in U , V and temperature T = p/ρ, and no perturbation in
entropy S = p/ργ . The perturbation is given by

(δU , δV , δW ) = ε

2π
e

(1−r2)
2 (−y, x, 0), δT = − (γ − 1)ε2

8γπ2 e1−r2 , δS = 0,

where r2 = x2 + y2 and the vortex strength ε = 5. The computational domain is
[0, 10] × [0, 10] × [0, 1], the periodic boundary conditions are imposed on the boundaries
in all directions. The exact solution is the perturbation which propagates with the velocity
(1, 1, 0). For the accuracy with moving-mesh velocity, the following time dependent meshes
are considered as follows⎧⎪⎨

⎪⎩
xi = ξi + 0.05 sin(πξi ) sin(πη j ) sin 0.2π t,

y j = η j + 0.05 sin(πξi ) sin(πη j ) sin 0.2π t,

zk = ζk,

where (ξi , η j , ζk) are given uniformly with Δξ = Δη = Δζ = 10/N . The mesh velocity
can be directly given during a time step. The L2 errors and orders at t = 10 are presented in
Table 3. As reference, the errors and orders of accuracy with stationary meshes are also given
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Fig. 4 Isotropic vortex propagation: the density and mesh distributions with 64× 64 cells at t = 2.5 and 7.5

Table 4 Steady isotropic vortex:
L2 errors and orders at t = 1 and
2

t = 1 t = 2

3D mesh L2 error Order L2 error Order

16 × 16 × 3 5.7987E-02 8.8941E-02

32 × 32 × 6 1.3800E-02 2.0709 2.0232E-02 2.1361

64 × 64 × 12 2.0308E-03 2.7645 3.4747E-03 2.5416

128 × 128 × 24 2.5678E-04 2.9834 5.2166E-04 2.7357

in Table 3. The expected accuracy is obtained with the moving-mesh procedure as well. The
density and mesh distributions with 64 × 64 cells at t = 2.5 and 7.5 are given in Fig. 4,
where the vortex is well preserved with the moving-mesh procedure.

To test the accuracy with Lagrangian velocity, the steady isotropic vortex with mean
flow (ρ,U , V ,W , p) = (1, 0, 0, 0, 1) is tested. The identical isotropic vortex is added to
the mean flow, and the same computational domain and initial meshes are used. With the
periodic boundary condition, the exact solution is the steady vortex and grid pints move with
the flow velocity, which is given by the Lagrangian nodal solver [31]. The L2 errors and
orders at t = 1 and 2 are presented in Table 4. The expected accuracy is also obtained even
with the highly distorted meshes. The density and mesh distributions with 64 × 64 cells at
t = 1, 2 and 3.5 are given in Fig. 5, where the vortex is preserved very well at t = 3.5 with
the highly distorted mesh. With a few more steps, the computation will brake down.

4.2 Geometric Conservation Law

In this case, the geometric conservation law is tested, which is mainly about the maintenance
of uniform flow passing through the moving-mesh. The initial condition is given as follows

ρ0(x, y, z) = 1, p0(x, y, z) = 1, U0(x, y, z) = 1, V0(x, y, z) = 1, W0(x, y, z) = 1.

The above moment of computational mesh is used, and the periodic boundary conditions are
adopted as well. The L1 and L2 errors at t = 0.5 are given in Table 5 from Type 1 to Type 4.
The results show that the errors reduce to the machine zero, which implies the satisfaction of
geometric conservation law. For the mesh velocity Type 1 and Type 2, Vm1,m2(t) is always
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Fig. 5 Steady isotropic vortex: the density and mesh distributions with 64 × 64 cells at t = 1, 2 and 3.5

0, the geometric conservation law can be simply preserved. For the mesh velocity Type 3
and Type 4, the geometrical variation needs to be included in the numerical fluxes in order
to preserve the geometric conservation law.

4.3 Riemann Problem

As an extension of the Sod problem, the spherically symmetric Sod problem is considered,
and the initial conditions are given by

(ρ,U , V ,W , p) =
{

(1, 0, 0, 0, 1), 0 ≤ √
x2 + y2 + z2 ≤ 0.5,

(0.125, 0, 0, 0, 0.1), 0.5 <
√
x2 + y2 + z2 ≤ 1.

The computational domain is (x, y, z) ∈ [0, 1]×[0, 1]×[0, 1], and the symmetric boundary
condition is imposed on the plane with x = 0, y = 0 and z = 0, and the non-reflection
boundary condition is imposed on the plane with x = 1, y = 1 and z = 1. The exact solution
of spherically symmetric problem can be given by the following one-dimensional system
with geometric source terms

∂Q

∂t
+ ∂F(Q)

∂r
= S(Q),
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Fig. 7 Riemann problem: the 3D mesh and density distribution with adaptive velocity
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Fig. 8 Riemann problem: the density and pressure profiles with respect to radius r with Lagrangian and
adaptive velocities
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Table 5 Accuracy test: geometric
conservation law for
moving-mesh Type 1–Type 4

L1 error L2 error

Type 1

16 × 16 × 16 1.1925E-14 5.4002E-15

32 × 32 × 32 3.1108E-14 1.4144E-14

64 × 64 × 64 7.7908E-14 3.6674E-14

128 × 128 × 128 1.8682E-13 8.9173E-14

Type 2

16 × 16 × 16 1.1949E-14 5.4535E-15

32 × 32 × 32 2.7951E-14 1.2703E-14

64 × 64 × 64 6.2853E-14 2.8663E-14

128 × 128 × 128 1.3732E-13 6.2618E-14

Type 3

16 × 16 × 16 2.9113E-14 1.2682E-14

32 × 32 × 32 8.2226E-14 3.6947E-14

64 × 64 × 64 1.9279E-13 8.7113E-14

128 × 128 × 128 5.9072E-13 2.6789E-13

Type 4

16 × 16 × 16 2.0825E-14 9.4588E-15

32 × 32 × 32 7.7791E-14 7.2702E-14

64 × 64 × 64 7.2621E-13 5.4365E-13

128 × 128 × 128 2.0065E-12 1.1122E-12

where

Q =
⎛
⎝ ρ

ρU
ρE

⎞
⎠ , F(Q) =

⎛
⎝ ρU

ρU 2 + p
U (ρE + p)

⎞
⎠ , S(Q) = −d − 1

r

⎛
⎝ ρU

ρU 2

U (ρE + p)

⎞
⎠ .

The radial direction is denoted by r , U is the radial velocity, d is the number of space
dimensions. Initially, 50 × 50 × 50 cells are equally distributed. The adaptive velocity and
Lagrangian velocity are chosen as mesh velocities. For the adaptive procedure, the parameter
α in themonitor function takes 1. The smooth procedure is used every 20 steps for the adaptive
velocity and Lagrangian velocity. The three-dimensional mesh and density distributions at
t = 0.25 are presented in Figs. 6 and 7, and the density and pressure profiles along y = z = 0
at t = 0.25 with respect to radius r are presented in Fig. 8. The numerical solutions agree
well with the exact solutions. Due the local mesh adaptation, the discontinuities are well
resolved by the current scheme.

4.4 Sedov Problem

This is a three-dimensional explosion problem to model blast wave from an energy deposited
singular point, which is a standard benchmark problem for the Lagrangian method and ALE
method. Due to the increased distortion undergone by the elements, the three-dimensional
Sedov problem is more challenging than its two-dimensional counterpart. Similar with the
two-dimensional case, the fluid is modeled by the ideal gas EOS with γ = 1.4. The initial
density has a uniform unit distribution, and the pressure is 10−6 everywhere, except in the
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Fig. 9 Sedov problem: the three-dimensional density and pressure distributions at t = 1 with 20 × 20 × 20
cells
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Fig. 10 Sedov problem: the density and pressure in all cells with respect to the radius r at t = 1 with
20 × 20 × 20 cells

cell containing the origin. For this cell containing the origin, the pressure is defined as
p = (γ − 1)ε0/V , where ε0 = 0.106384 is the total amount of released energy and V is
the cell volume. The computation domain is [0, 1.2] × [0, 1.2] × [0, 1.2] and the symmetric
boundary condition is imposed on the plane with x = 0, y = 0 and z = 0, and the non-
reflection boundary condition is imposed on the plane with x = 1.2, y = 1.2 and z = 1.2.
Initially, 20 × 20 × 20 cells are equally distributed. The solution consists of a diverging
infinite strength shock wave whose front is located at radius r = 1 at t = 1 [23]. Due to
the singularity at the origin, a small CFL number CFL = 0.01 is used. After 10 steps,
a normal CFL number CFL = 0.35 is used. The Lagrangian velocity is chosen as mesh
velocities and the smooth procedure is used every 20 time steps. The mesh distribution with
pure Lagrangian velocity is given in Fig. 11 with 20× 20× 20 cells at t = 0.028, where the
mesh is distorted severely and the computation will soon break down. It shows the impact
of mesh smooth procedure, i.e. ALE procedure. The three-dimensional density and pressure
distributions and the density and pressure in all cells with respect to the radius r at t = 1 are
given in Fig. 9 and Fig. 10. As reference, the density and pressure profiles long y = z = 0 at
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Fig. 11 Sedov problem: mesh
distribution with pure Lagrangian
velocity with 20 × 20 × 20 cells
at t = 0.028
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Fig. 12 Sedov problem: the density and pressure profiles long y = z = 0 at t = 1 for ALE computation with
20× 20× 20 cells, and for stationary mesh computation with 20× 20× 20, 40× 40× 40 and 80× 80× 80
cells

t = 1 with 20× 20× 20, 40× 40× 40 and 80× 80× 80 stationary cells as well as the ALE
results with 20 × 20 × 20 cells are given in Fig. 12. Compared with the numerical results
with stationary meshes, the ALE scheme resolves the peak of shock pretty well even with
much less number of cells.

4.5 Noh Problem

This case is a three-dimensional extension of Noh problem [33], which is also a benchmark
case for Lagrangian and ALE codes. The initial domain is (x, y, z) ∈ [0, 1.2] × [0, 1.2] ×
[0, 1.2]. The gas is initiated with ρ = 1, e = 10−4, γ = 5/3, and the initial velocity
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Fig. 13 Noh problem: the mesh distributions with 36 × 36 × 36 and 72 × 72 × 72 cells at t = 0.6

Fig. 14 Noh problem: the density distributions with 36 × 36 × 36 and 72 × 72 × 72 cells at t = 0.6

Fig. 15 Noh problem: the density distributions in all cells with 36×36×36 and 72×72×72 cells at t = 0.6
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Fig. 16 Saltzman problem: the initial mesh
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Fig. 17 Saltzman problem: the density and pressure distributions in all cells at t = 0.6

U = (U , V ,W ) is given by

U = −x√
x2 + y2 + z2

, V = −y√
x2 + y2 + z2

,W = −z√
x2 + y2 + z2

.

A spherical shock wave is generated at the origin and further propagates. The final time is
chosen at t = 0.6. At this time, the exact solution is given by the position of shock at rs = 0.2,
and the post-shock density is ρ = 64 and p = 64/3, whereas the preshock density is given
as a function of radius r = √

x2 + y2 + z2, i.e., ρ = (1 + t/r)2 [34]. Initially, the uniform
hexahedral cells are used to represent the initial domain. The symmetric boundary condition
is imposed on the plane with x = 0, y = 0 and z = 0. For the other three boundaries,
the non-reflective boundary condition is used. The Lagrangian velocity is chosen for mesh
movement and the smooth procedure is used every 20 time steps. The three-dimensional
mesh and density distributions at t = 0.6 are presented in Figs. 13 and 14 with 36× 36× 36
and 72×72×72 cells. The density distributions with respect to r are given in Fig. 15, which
agree well with the exact solution.

4.6 Saltzman Problem

In this case, we consider the Saltzman problem, which is about the motion of a planar shock
wave on a skewedCartesian grid. This case is also awell known case to validate the robustness
of Lagrangian and ALE codes. It was initially defined for two-dimensional flows, and we
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Fig. 18 Saltzman problem: the meshes at t = 0.6, 0.75 0.85 and 0.9

consider the three-dimensional extension of this case [12,16]. The computational domain is
[0, 1] × [0, 0.1] × [0, 0.1], and the initial mesh shown in Fig. 16 is given by the following
transformation

xi jk = ξi + (
0.5η j + ζk − 15η jζk

)
sin (πξi ) ,

yi jk = η j ,

zi jk = ζk,

where (ξ, η, ζ ) ∈ [0, 1] × [0, 0.1] × [0, 0.1], and (
ξi , η j , ζk

)
are given uniformly with

Δξ = Δη = Δζ = 0.01. An ideal monatomic gas with ρ = 1, e = 10−4, γ = 5/3 is filled
in the box. The left-hand sidewall acts as a pistonwith a constant velocityUpis = 1, and other
boundaries are reflective walls. As a consequence, a strong shock wave is generated from the
left end. For this case, the purely Lagrangian method will cause mesh deformation, and the
ALEmethod works well because of the properly modified mesh velocity. In the computation,
the Lagrangian velocity is chosen as mesh velocities and the smooth procedure is used every
20 time steps. At time t = 0.6, the shock is expected to be located at x = 0.8, and the
post shock solutions are ρ = 4 and p = 1.333. The density and pressure distributions with
respect to x are given in Fig. 17. The numerical results agree well with the exact solutions.
The shock wave will hit the face x = 1 at time t = 0.75 and be reflected by the solid wall.
A second shock wave is produced which is traveling back towards to the piston. Finally,
the computation stops t = 0.9 when the reflecting shock wave hits the piston. The mesh
distributions at t = 0.6, 0.75, 0.85 and 0.9 are given in Fig. 18. These results demonstrate
that our 3D scheme behaves similarly with the 2D calculation.

123



Journal of Scientific Computing             (2021) 88:8 Page 27 of 29     8 

5 Conclusion

In the paper, a high-order gas-kinetic ALE scheme has been developed for three-dimensional
flows. With the introduction of grid velocity in the BGK equation, the semi-discretized finite
volume scheme is constructed in the ALE formulation. The newly developed third-order
WENO reconstruction and two-stage fourth-order temporal discretization are used in the
scheme. The main requirement for the scheme is to keep the order of accuracy and preserve
the geometric conservation law. For the surface integral of numerical fluxes, a bilinear inter-
polation is used to parameterize the grid coordinate and its velocity. With the account of the
variation of grid velocitywithin the interface surface, the geometric conservation lawhas been
preserved. In theWENO reconstruction, a simple strategy of selecting stencils is adopted and
the topologically independent linear weights are chosen for the improvement of the efficiency
and robustness of the classical WENO scheme. Numerical examples from the smooth flows
to the flows with strong discontinuities are presented to validate the accuracy, robustness, and
geometrical conservation law. In these numerical examples, the grid velocity is determined
by the variational approach for local mesh adaptation and by the Lagrangian nodal solver for
tracking material interface. The extension of the current scheme to unstructured mesh will
be considered in the future.
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