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In this paper, a high-order multi-dimensional gas-kinetic scheme is presented for both 
inviscid and viscous flows in arbitrary Lagrangian-Eulerian (ALE) formulation. Compared 
with the traditional ALE method, the flow variables are updated in the finite volume 
framework, and the rezoning and remapping steps are not required. The two-stage fourth-
order method is used for the temporal discretization, and the second-order gas-kinetic 
solver is applied for the flux evaluation. In the two-stage method, the spatial reconstruction 
is performed at the initial and intermediate stages, and the computational meshes are 
determined by the mesh velocity. In the moving mesh procedure, the mesh may distort 
severely and the mesh quality is reduced. To achieve the accuracy and improve the 
robustness, the newly developed WENO method [40] on quadrilateral meshes is adopted at 
each stage. The Gaussian quadrature is used for flux calculation. For each Gaussian point, 
the WENO reconstruction is performed in local moving coordinate, where the variation of 
mesh velocity along cell interface is taken into account. Numerical examples are presented 
to validate the performance of current scheme, where the mesh adaptation method and 
the cell centered Lagrangian method are used to provide mesh velocities.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In the computational fluid dynamics, there exist two coordinate systems to describe flow motions, where the Eulerian 
system describes flow motions with time-independent mesh and the mesh moves with the fluid velocity in the Lagrangian 
system. Considerable progress has been made over the past decades for the numerical simulations based on these two 
descriptions [3,24,36]. The Eulerian system is relatively simple, but it smears contact discontinuities and slip lines badly. For 
the computation with fixed boundaries, the Eulerian system could work effectively. However, in the problems with moving 
boundaries and bodies, it becomes difficult for the Eulerian method. On the other hand, the Lagrangian system could resolve 
contact discontinuities sharply, but the computation can easily break down due to mesh deformation. In order to avoid 
mesh distortion and tangling in the Lagrangian method, a widely used arbitrary-Lagrangian-Eulerian (ALE) technique was 
developed [14]. Generally, there are two types of ALE method, i.e. the direct method and indirect ALE method. The indirect 
ALE method contains three main stages, i.e. Lagrangian stage, rezoning stage and remapping stage. In the Lagrangian stage, 
the solution and the computational mesh are updated simultaneously. To release the error due to mesh deformation, the 
computational mesh is adjusted to the optimal position in the rezoning stage. In the remapping stage, the Lagrangian 
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solution is transferred into the rezoned mesh. For indirect ALE method, because it is based on a pure Lagrangian phase, the 
curvilinear grids have to be used to achieve very high-order accuracy. Further developments and great achievements have 
been made for the ALE method [1,20,10,37].

In the past decades, the gas-kinetic scheme (GKS) based on the Bhatnagar-Gross-Krook (BGK) model [4,6] has been 
developed systematically for computations from low speed flow to supersonic one [38,39]. Different from the numerical 
methods based on the Riemann flux [36], GKS presents a gas evolution process from kinetic scale to hydrodynamic scale, 
where both inviscid and viscous fluxes are recovered from a time-dependent and multi-dimensional gas distribution function 
at a cell interface. Recently, based on the time-dependent flux function, a two-stage fourth-order method was developed 
for Lax-Wendroff type flow solvers, particularly applied for the hyperbolic conservation laws [23,9,27–29]. Under the multi-
stage multi-derivative framework, a reliable two-stage fourth-order GKS has been developed, and even higher-order of 
accuracy can be achieved. More importantly, this scheme is as robust as the second-order scheme and works perfectly from 
subsonic to hypersonic flows. Based on the unified coordinate transformation [12], the second-order gas-kinetic scheme was 
developed under the moving-mesh framework [15,16]. With the integral form of the fluid dynamic equations, a second-order 
remapping-free ALE gas-kinetic scheme was developed [26], in which the rezoning and remapping stages in the indirect ALE 
method are avoided. It can be considered as a direct ALE method, in which the grid velocity can be chosen arbitrarily in 
the flux calculation. For the indirect ALE method, the Lagrangian part has to be compatible with the geometric conservation 
law. However, for the direct ALE method, all those considerations vanish, as the grid displacement does not have to be 
physically related to problem under consideration. For the second-order scheme, a piecewise constant mesh velocity at each 
cell interface is considered. For the higher-order schemes, the variation of the mesh velocity along cell interface needs to be 
taken into account. Otherwise, the geometric conservation law may be violated during the mesh rotating and deformation. 
Recently, a one-stage DG-ALE gas-kinetic method was developed, especially for the oscillating airfoil calculations [32]. The 
variation of mesh velocity is considered in the time dependent flux calculation along a cell interface, and the geometric 
conservation law can be satisfied accurately. However, the one-stage gas evolution model and DG framework become very 
complicated, and the efficiency of the DG-ALE-GKS becomes low due to the severely constrained time step from the DG 
formulation.

In this paper, with the arbitrary Lagrangian-Eulerian (ALE) formulation, a high-order moving-mesh gas-kinetic scheme is 
developed for the inviscid and viscous flows, and it extends the gas-kinetic scheme from the static domain to the variable 
one. Compared with the traditional ALE method, the flow variables are updated in the finite volume framework, and the 
rezoning and remapping steps are not required. To deal with the distorted mesh generated in the moving-mesh process, a 
third-order WENO scheme [40] is used, in which the optimization approach for linear weights and the non-linear weights 
with new smooth indicator improves the robustness of WENO scheme. The two-stage fourth-order method is used for the 
temporal discretization. The computational meshes at the initial and intermediate stages are given by the mesh velocity, and 
the WENO reconstruction is performed at the initial and intermediate stage respectively. The mesh velocity inside each cell 
interface are considered and the WENO reconstruction is performed at each Gaussian quadrature point in the local moving 
coordinate. Thus, the accuracy and geometric conservation law can be well preserved by the current scheme even with the 
largely deforming mesh. Numerical examples are presented to validate the performance of current scheme, where the mesh 
adaptation method and the cell centered Lagrangian method are used to provide the mesh velocity.

This paper is organized as follows. In Section 2, the gas-kinetic scheme on moving-mesh is introduced. The extension of 
the two-stage temporal discretization to moving mesh system is presented in Section 3. In Section 4, we give the WENO re-
construction on unstructured quadrilateral meshes. Section 5 includes numerical examples to validate the current algorithm. 
The last section is the conclusion.

2. Gas-kinetic scheme on moving-meshes

The two-dimensional BGK equation can be written as [4,6],

ft + u fx + v f y = g − f

τ
, (1)

where f is the gas distribution function, g is the corresponding equilibrium state, and τ is the collision time. The collision 
term satisfies the compatibility conditionˆ

g − f

τ
ψd� = 0, (2)

where ψ = (1, u, v, 
1

2
(u2 + v2 + ξ2)), d� = dudvdξ1...dξ K , K is the number of internal degrees of freedom, i.e. K = (4 −

2γ )/(γ − 1) for two-dimensional flows, and γ is the specific heat ratio. In the continuum regime, the gas distribution 
function can be expanded as

f = g − τ Du g + τ Du(τ Du)g − τ Du[τ Du(τ Du)g] + ...,

where Du = ∂/∂t + u · ∇ . With the zeroth order truncation, i.e. f = g , the Euler equations can be obtained. For the Navier-
Stokes equations, the first order truncation is used
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Fig. 1. Schematic for moving control volume: �(t) moves from [abcd] at tn to [ABC D] at tn+1.

f = g − τ (ugx + vg y + gt).

With the higher order truncations, the Burnett and super-Burnett equations can be obtained [38,39].
In this paper, the high-order ALE gas-kinetic scheme will be constructed in the moving-mesh framework. As shown in 

Fig. 1, a quadrilateral cell �(t) moves from [abcd] at tn to [ABC D] at tn+1 with grid velocity U g = (U g, V g), which varies 
along each segment. The boundary is given by

∂�i(t) =
⋃
m

	im(t),

where 	im(t) is the line segment of boundary. For simplicity, the mesh velocity is set to be constant during a time interval, 
and the segments keep straight during a time step. Standing on the moving reference, the BGK equation Eq. (1) becomes

ft + (u − U g) fx + (v − V g) f y = g − f

τ
. (3)

Taking moments of the kinetic equation Eq. (3) and integrating with respect to space, the finite volume scheme can be 
expressed as

d(|�i |W i)

dt
= −

∑
m

Fim(t), (4)

where W i is the cell averaged conservative value over �i , |�i| is the area of �i and Fim(t) is the time dependent fluxes 
across cell interface 	im , which is a line integral over 	im

Fim(t) =
ˆ

	im

(

ˆ
ψ f (x(s), t, u, ξ)(u − U g) · nimd�)ds,

where f (x(s), t, u, ξ) is the gas distribution function in the global coordinate and nim = (Lim, Mim) is the outer normal 
direction of 	im . To simplify calculation and achieve high-order spatial accuracy, Gaussian quadrature is used for flux calcu-
lation

Fim(t) = |	im|
2∑

p=1

ωi,mp Fi,mp (t),

where xi,mp is Gaussian quadrature point of the segment 	im , ωi,mp is the quadrature weight and U g
i,mp

is the grid velocity 
of quadrature point. The numerical flux at xi,mp is defined as

Fi,mp (t) =

⎛⎜⎜⎜⎝
F ρ

i,mp

F m
i,mp

F n
i,mp

F E
i,mp

⎞⎟⎟⎟⎠ =
ˆ

ψ f (xi,mp , t, u, ξ)(u − U g
i,mp

) · nimd�.

In the formulation above, the grid velocity varies along a cell interface. Therefore, the translation, rotation and deforma-
tion are taken into account. With identified normal direction, the relative particle velocity at Gaussian point in the local 
coordinate is defined as
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{
ũ = (u − U g

i,mp
)Lim + (v − V g

i,mp
)Mim,

ṽ = −(u − U g
i,mp

)Mim + (v − V g
i,mp

)Lim.
(5)

In the actual computation, the spatial reconstruction, which will be presented in the later section, is performed in a local 
moving coordinate. With the reconstructed variables, the gas distribution function is obtained at Gaussian quadrature point. 
The numerical flux can be obtained by taking moments of it, and the component-wise form can be written as

F̃ i,mp (t) =

⎛⎜⎜⎜⎜⎜⎝
F ρ̃

i,mp

F ρ̃U
i,mp

F ρ̃V
i,mp

F ρ̃E
i,mp

⎞⎟⎟⎟⎟⎟⎠ =
ˆ

ũ

⎛⎜⎜⎝
1
ũ
ṽ

1
2 (̃u2 + ṽ2 + ξ2)

⎞⎟⎟⎠ f (xi,mp , t, ũ, ξ)d�̃,

where f (xi,mp , t, ̃u, ξ) is the gas distribution function in the local coordinate. According to Eq. (5), the fluxes in the inertia 
frame of reference can be obtained as a combination of the fluxes in the moving frame of reference⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F ρ
i,mp

=F ρ̃
i,mp

,

F ρU
i,mp

=(
U g

i,mp
F ρ̃

i,mp
+ Lim F ρ̃U

i,mp
− Mim F ρ̃V

i,mp

)
,

F ρV
i,mp

=(
V g

i,mp
F ρ̃

i,mp
+ Mim F ρ̃U

i,mp
+ Lim F ρ̃V

i,mp

)
,

F ρE
i,mp

=(
F ρ̃E

i,mp
+ 1

2
((U g

i,mp
)2 + (V g

i,mp
)2)F ρ̃

i,mp

+ (LimU g
i,mp

+ Mim V g
i,mp

)F ρ̃U
i,mp

+ (−MimU g
i,mp

+ Lim V g
i,mp

)F ρ̃V
i,mp

)
.

(6)

To construct the gas distribution function in the local coordinate, the integral solution of the BGK equation is used

f (xi,mp , t, u, ξ) = 1

τ

tˆ

0

g(x′, y′, t′, u, v, ξ)e−(t−t′)/τ dt′ + e−t/τ f0(−ut,−vt, u, v, ξ), (7)

where ũ is simply denoted as u, xi,mp = (xi,mp , yi,mp ) is the location of Gaussian quadrature point, xi,mp = x′ + u(t − t′) is 
the trajectory of particle, f0 is the initial gas distribution function, and g is the corresponding equilibrium state. According 
to the integral solution Eq. (7), f (xi,mp , t, u, ξ) at the cell interface can be expressed as [39,38]

f (xi,mp , t, u, ξ) =(1 − e−t/τ )g0 + ((t + τ )e−t/τ − τ )(a1u + a2 v)g0

+(t − τ + τe−t/τ ) Ā g0

+e−t/τ gr[1 − (τ + t)(a1ru + a2r v) − τ Ar)]H(u)

+e−t/τ gl[1 − (τ + t)(a1lu + a2l v) − τ Al)](1 − H(u)), (8)

where the coefficients in Eq. (8) can be determined by the reconstructed directional derivatives and compatibility condition

〈ak
1〉 = ∂Wk

∂n
, 〈ak

2〉 = ∂Wk

∂τ
, 〈ak

1u + ak
2 v + Ak〉 = 0,

〈a1〉 = ∂W

∂n
, 〈a2〉 = ∂W

∂τ
, 〈a1u + a2 v + A〉 = 0,

where k = l, r, n and τ are local normal and tangential direction and 〈...〉 are the moments of the equilibrium g and defined 
by

〈...〉 =
ˆ

g(...)ψd�.

The spatial derivatives will be obtained by the WENO reconstruction, which will be given later. More details of the gas-
kinetic scheme can be found in [38].

In the scheme above, the grid velocity U g can be arbitrary for the control volume. The Eulerian governing equation is 
obtained with U g = 0, and the Lagrangian form is obtained with U g = U , where U is the fluid velocity. In this paper, the 
structured meshes are used in the moving mesh computation for simplicity, while the unstructured reconstruction is used 
to deal with the distorted meshes. The strategies of mesh velocity are given as follows
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1. The mesh velocity is specified directly. This is the simplest type of mesh velocity and is mainly adopted in the accuracy 
tests in this paper.

2. The mesh velocity can be given by the fluid velocity, and the cell centered Lagrangian nodal solver is used [24]. Denote 
U p as the vertex fluid velocity of control volume, U c as cell averaged fluid velocity, C(p) as the set of control volumes 
that share the common vertex p, the mesh velocity can be obtained by solving the following linear system∑

c∈C(p)

Mpc U p =
∑

c∈C(p)

lpc pcnpc +Mpc U c,

where

Mpc = ρcac[l−pc(n
−
pc ⊗ n−

pc) + l+pc(n
+
pc ⊗ n+

pc)],
lpcnpc = l−pcn−

pc + l+pcn+
pc,

where pp− and pp+ are the line segments of c that share the vertex p. l−pc, l+pc and n−
pc, n+

pc are the half lengthes and 
outer normal directions of the two segments. The matrix Mpc is symmetric positive definite. Therefore, the system will 
always admit a unique solution.

3. The mesh velocity can be determined by the variational approach [34], and the corresponding Euler-Lagrange equations 
can be obtained from

(ωxξ )ξ + (ωxη)η = 0,

(ωyξ )ξ + (ωyη)η = 0,

where (x, y) and (ξ, η) denote the physical and computational coordinates, ω is the monitor function and can be 
chosen as a function of the flow variables, such as the density, velocity, pressure, or their gradients. In the numerical 
tests, without no special statement, the monitor function takes the form

ω =
√

1 + α|∇ρ|2.
The mesh distribution in the physical space can be directly generated, and more details can be found in [34].

Due to the features of moving-mesh methods, the structured meshes are adopted in the computations. In order to avoid 
mesh distortion, the new meshes obtained by the Lagrangian method and adaption method are smoothed by the following 
smooth procedure for the structured meshes

x̃n+1
i j =(4xn+1

i j + xn+1
i−1, j + xn+1

i+1, j + xn+1
i, j−1 + xn+1

i, j+1)/8,

where xn+1
i j is the coordinate of the grid points obtained above. This procedure is conducted for some certain steps. With 

the smoothed mesh, the grid velocity Ug
i j = (U g

ij, V
g
ij) can be determined as follows

U g
i j = x̃n+1

i j − xn
i j

�t
.

The mesh velocities at Gaussian quadrature points can be obtained by the linear interpolation of mesh velocity at the grid 
points. For each Gaussian quadrature points, the constant mesh velocity is also used in the time interval [tn, tn + �t].

3. Two-stage temporal discretization

A two-stage fourth-order temporal discretization was developed for Lax-Wendroff flow solvers, such as the generalized 
Riemann problem (GRP) solver [2] and the gas-kinetic scheme [22]. Consider the following time-dependent equation

∂ w

∂t
= L(w), (9)

with the initial condition at tn , i.e.,

w(t = tn) = wn,

where L is an operator for spatial derivative of flux. Introducing an intermediate state at t∗ = tn + �t/2,

w∗ = wn + 1

2
�tL(wn) + 1

8
�t2 ∂

∂t
L(wn), (10)
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Fig. 2. Schematic for a moving control volume: �(t∗) = [a′b′c′d′] is the intermediate one at t∗ = tn + �t/2 and a′, b′, c′, d′ are the mid-points of 
aA, bB, cC, dD .

the state w at tn+1 = tn + �t can be updated with the following formula

wn+1 = wn + �tL(wn) + 1

6
�t2( ∂

∂t
L(wn) + 2

∂

∂t
L(w∗)

)
. (11)

It can be proved that Eq. (10) and Eq. (11) provide a fourth-order time accurate solution for Eq. (9) at t = tn + �t . The 
details of proof can be found in [23].

To achieve the high-order spatial and temporal accuracy, the two-stage temporal discretization can be extended to the 
moving mesh computation Eq. (4), where the operator L is denoted as

L(�i, W i) = −
∑

m

Fim(t).

As shown in Fig. 2, the coordinate of the local moving reference and the length of cell interface are both time-dependent, 
which is critical for accuracy and geometry conservation law. In the two-stage method, the variables are defined and the 
reconstruction is performed at tn and t∗ = tn + �t/2, respectively. Due to the constant velocity for each vertex, the inter-
mediate control volume at t∗ moves to �(t∗) = [a′b′c′d′] exactly, where a′, b′, c′, d′ are the mid-points of aA, bB, cC, dD . To 
implement the two-stage method, the WENO reconstruction is performed with the re-distributed meshes at tn and t∗ . With 
the reconstructed variables, L(W ) and temporal derivative ∂tL(W ) for �i at tn can be written as

L(�n
i , W n

i ) = −
∑

m

∑
p

ωmp F n
i,mp

|	X
im|,

∂tL(�n
i , W n

i ) = −
∑

m

∑
p

ωmp (∂t F n
i,mp

|	X
im| + (F ′)n

i,mp
|	U

im|),

where F n
i,mp

and ∂t F n
i,mp

can be given by the linear combination of F̃ n
i,mp

and ∂t F̃ n
i,mp

according to Eq. (6). To determine the 
coefficients F̃ n

i,mp
and ∂t F̃ n

i,mp
, the time dependent numerical flux in the local coordinate can be expanded as the linear form

F̃ i,mp (t) = F̃ n
i,mp

+ ∂t F̃ n
i,mp

(t − tn). (12)

Integrating Eq. (12) over [tn, tn + �t/2] and [tn, tn + �t], we have the following two equations

F̃ n
i,mp

�t + 1

2
∂t F̃ n

i,mp
�t2 = F̂(xi,mp ,�t),

1

2
F̃ n

i,mp
�t + 1

8
∂t F̃ n

i,mp
�t2 = F̂(xi,mp ,�t/2),

where

F̂(xi,mp , δ) =
tn+δˆ

tn

F̃ i,mp (t)dt =
tn+δ¨

tn

ũψ̃ f (xi,mp , t, ũ, ξ)d�dt.

The coefficients ̃F n
i,mp

and ∂t F̃ n
i,mp

can be determined by solving the linear system. Similarly, L(�∗
i , W

∗
i ) and temporal deriva-

tive ∂tL(�∗, W ∗) at the intermediate state can be constructed as well. More details of the two-stage fourth-order scheme 
i i
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Fig. 3. Stencils for third-order schemes on quadrilateral meshes.

can be found in [23,27]. In the moving-mesh procedure, the geometrical conservation law (GCL) need to be considered. 
Generally, the preservation of free stream is often referred as the geometric conservation law, which means that a uniform 
flow on a grid that moves arbitrarily in space as a function of time must be preserved for any numerical discretization 
scheme [35,31,25]. As shown in Fig. 2, the segment ab is considered as example, and the quadrilateral abb′a′ is swept by ab
during a time interval [tn, tn + �t]. (U g

a , V g
a ) and (U g

b , V g
b ) are denoted as the grid velocity in local coordinate of 	ab . The 

area of abB A can be also calculate from location of four vertexes

VabB A = 1

2
(U g

a + U g
b )|	X

ab|�t + 1

2
(U g

a V g
b − U g

b V g
a )�t2, (13)

where |	X
ab| is the length of ab. Meanwhile, for stationary uniform flow with ρ = 1, we have ∂t F n

i,mp
= 0 and F ρ

i,mp
=

−ρU g
i,mp

. Eq. (13) can be also rewritten by the Gaussian quadrature

VabB A = −
∑

p

ωmp

(
F n

i,mp
|	X

ab|�t + 1

2
(F ′)i,mp |	U

ab|�t2),
where |	U

ab| = |UaUb| and

−F ρ
i,mp

|	X
im| = U g

i,mp
(yb − ya) − V g

i,mp
(xb − xa) = U g

i,mp
· n⊥|	X

ab|,
−(F ′)ρi,mp

|	U
im| = U g

i,mp
(Vb − Va) − V g

i,mp
(Ub − Ua) = U g

i,mp
· n′⊥|	U

ab|.
Therefore, another flux (F ′)i,mp needs to be calculated and the GCL can be preserved. More studies about GCL will be 
invested in the future.

Remark 1. With the two-stage method, the moving-mesh technique can be extended the three-dimensional hexahedron 
meshes. For the three-dimensional flows, the cell with non-coplanar vertexes may be commonly generated. The trilinear 
interpolation is used to parameterize the hexahedron, and the bilinear interpolation is used to parameterize the interface of 
hexahedron. More details can be found in [30].

4. WENO reconstruction

During the moving-mesh procedure, the mesh becomes distorted even with the structured meshes, and the develop-
ment of robust high-order scheme on a low quality mesh is demanding. Recently, a third-order WENO reconstruction is 
constructed on quadrilateral meshes [40], in which high-order accuracy is achieved and robustness is improved. In this sec-
tion, we briefly review such scheme with unstructured stencil, and the extension to the structured mesh is straightforward. 
The unstructured version for moving-mesh computation will be developed in the future for the problem with complicated 
geometry.

To achieve the third-order accuracy, a general selection of stencil is given in Fig. 3 and the following quadratic polynomial 
P 2(x, y) can be constructed
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P 2(x, y) = W i0 +
5∑

k=1

ak pk(x, y), (14)

where W i0 is the cell average value of W (x, y) over cell �i0 and pk(x, y), k = 1, ..., 5 are basis functions, which are given 
as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1(x, y) = x − 1∣∣�i0

∣∣
¨

�i0

xdxdy,

p2(x, y) = y − 1∣∣�i0

∣∣
¨

�i0

ydxdy,

p3(x, y) = x2 − 1∣∣�i0

∣∣
¨

�i0

x2dxdy,

p4(x, y) = y2 − 1∣∣�i0

∣∣
¨

�i0

y2dxdy,

p5(x, y) = xy − 1∣∣�i0

∣∣
¨

�i0

xydxdy.

(15)

With the following constraint over the cell �i j , i j ∈ S = {i0, i1, ..., i12},

1∣∣�i j

∣∣
ˆ

�i j

P 2(x, y)dxdy = W i j ,

the coefficients a = (a1, ..., a5) in Eq. (14) can be fully given, where W i j is the cell averaged variables over cell �i j . Similar 
with the standard WENO reconstruction [13], twelve sub-stencils S j, j = 1, ..., 12 are selected from the large stencil given 
in Fig. 3

P 1
1 on S1 = {i0, i1, i2}, P 1

2 on S2 = {i0, i2, i3}, P 1
3 on S3 = {i0, i3, i4},

P 1
4 on S4 = {i0, i4, i1}, P 1

5 on S5 = {i0, i1, i5}, P 1
6 on S6 = {i0, i1, i6},

P 1
7 on S7 = {i0, i3, i7}, P 1

8 on S8 = {i0, i3, i8}, P 1
9 on S9 = {i0, i4, i9},

P 1
10 on S10 = {i0, i2, i10}, P 1

11 on S11 = {i0, i2, i11}, P 1
12 on S12 = {i0, i4, i12}.

Twelve candidate linear polynomials P 1
j corresponding to the candidate sub-stencils can be constructed as follows

1∣∣�S j,k

∣∣
ˆ

�S j,k

P 1
j (x, y)dxdy = W S j,k , k = 0,1,2,

where �S j,k is the (k + 1)-th cell in the sub-stencils S j , and W S j,k is the cell averaged value over cell �S j,k .

With point value of the quadratic polynomial P 2(x, y) and linear polynomials P 1
j at the Gaussian quadrature point 

(xG , yG), a standard procedure of WENO scheme is adopted to obtain the linear weights γ j [13]. However, in the traditional 
WENO reconstruction, the very large linear weights and negative weights appear with the lower mesh quality. In order to 
improve the robustness of WENO schemes, an optimization approach is given to deal with the very large linear weights. 
The weighting parameters is introduced for each cell, such that the ill cell contributes little to the quadratic polynomial in 
Eq. (14). For quadrilateral meshes, the weighting parameters are defined for each cell⎧⎨⎩d j = 1, j = 1, ...,4,

d j = 1

max(1,
∣∣γ j

∣∣) , j = 5, ...,12.

The optimized coefficients a = (a1, ..., a5) of the quadratic polynomial in Eq. (14) are given by the following weighted linear 
system

5∑
d j · A jkak = d j · (W i j − W i0).
k=1
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With the procedure above, the maximum γ j becomes the order O (1) [40].
To deal with the negative linear weights, the splitting technique [33] is considered for the optimized approach as follows

γ̃ +
j = 1

2
(γ j + θ

∣∣γ j
∣∣), γ̃ −

j = γ̃ +
j − γ j,

where θ = 3 is taken in numerical tests. The scaled non-negative linear weights γ ±
j and nonlinear weights δ±

j are given by

γ ±
j = γ̃ ±

j

σ± , σ± =
∑

j

γ̃ ±
j ,

δ±
j = α±

j∑
l=1 α±

l

, α±
j = γ ±

j

(β̃±
j + ε)2

,

where ε is a small positive number, β̃ j
±

is a new smooth indicator defined on unstructured meshes

β̃ j
± = β j

(
1 + γ ±

j β j + (γ ±
j β j)

2),
where β j is defined as

β j =
K∑

|α|=1

|�||α|−1
¨

�

(
Dα P 1

j (x, y)
)2

dxdy,

α is a multi-index, and D is the derivative operator. With the new smooth indicator, the accuracy keeps the original order 
in smooth regions with I S = h2(1 + O (h)). The final reconstructed variables at the Gaussian quadrature point can be written 
as

R(xG , yG) =
∑

j

(δ+
j P 1

j (xG , yG) − δ−
j P 1

j (xG , yG)).

Compared with the traditional high-order schemes with Riemann solvers, an extra reconstruction for the equilibrium 
state is needed. With the reconstructed variables Wl and Wr at both sides of cell interface, the variables at the cell interface 
can be determined by the compatibility condition Eq. (2) as followsˆ

ψ gG d� = W G =
ˆ

u>0

ψ gld� +
ˆ

u<0

ψ grd�, (16)

where gl and gr are the equilibrium states corresponding to Wl and Wr respectively. To third-order accuracy, the Taylor 
expansion corresponding to equilibrium state at the Gaussian quadrature point is expressed as

W (x, y) = W G + W n(x − xG) + W τ (y − yG)

+1

2
W nn(x − xG)2 + W nτ (x − xG)(y − yG) + 1

2
W ττ (y − yG)2,

where n, τ are local normal and tangential directions. With the following constrains

1∣∣�i j

∣∣
ˆ

�i j

W (x, y)dxdy = W i j , i j ∈ T = {i0, i1, ..., i7},

the spatial derivatives can be obtained by the least square methods, where the stencil for equilibrium state reconstruction 
is given in Fig. 4. For most mesh generation method, there are at least five elements in the above stencil, which guarantees 
the least square method solvable. Based on the spatial reconstructions, the reconstructed variables and the gas distribu-
tion functions in the local moving coordinate can be obtained, and the flow variables can be updated by the two-stage 
framework.

Remark 2. The current scheme improves robustness of classical WENO scheme and works well for two-dimensional flows. 
However, the selection of stencils becomes more complicated for three-dimensional flows. In addition, the linear weights 
need to be calculated twice every stage, which reduces the efficiency greatly. With the newly developed gas-kinetic scheme 
with WENO-AO reconstruction [30], the time independent linear weights are used and the reconstructed polynomial over 
the whole control can be given. Thus, the reconstruction procedure as well as the gas-kinetic flux solver can be simplified 
greatly.
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Fig. 4. Stencils for equilibrium state of third-order scheme on quadrilateral meshes.

5. Numerical tests

In this section, numerical tests for both inviscid and viscous flows are presented to validate our numerical scheme. For 
the inviscid flow, the collision time τ takes

τ = ε�t + C | pl − pr

pl + pr
|�t,

where ε = 0.01 and C = 1. For the viscous flow, we have

τ = μ

p
+ C | pl − pr

pl + pr
|�t,

where pl and pr denote the pressure on the left and right sides of the cell interface, μ is the dynamic viscous coefficient, 
and p is the pressure at the cell interface. The ratio of specific heats takes γ = 1.4. To validate the WENO based gas-
kinetic scheme, the accuracy test on the unstructured quadrilateral meshes is presented with the stationary mesh first. 
For the moving-mesh computation, the structured meshes are used to avoid the distortion of computational mesh, while 
the procedure of reconstruction is still based on the unstructured code. The flow chart for the high-order ALE scheme 
is presented in Fig. 5. In order to eliminate the spurious oscillation and improve the stability, the reconstruction can be 
performed for the characteristic variables. The characteristic variables are defined as ω = R−1W , where R is the right 
eigenmatrix of Jacobian matrix nx(∂ F/∂W )G + ny(∂G/∂W )G at Gaussian quadrature point. With the reconstructed values, 
the conservative variables can be obtained by the inverse projection.

5.1. Accuracy tests

The first accuracy test is two-dimensional advection of density perturbation. The computational domain is [0, 2] × [0, 2]
and the initial conditions are given as follows

ρ0(x, y) =1 + 0.2 sin(π(x + y)), p0(x, y) = 1,

U0(x, y) = 1, V 0(x, y) = 1.

The periodic boundary conditions are imposed at boundaries and the exact solutions are

ρ(x, y, t) =1 + 0.2 sin(π(x + y − t)), p(x, y, t) = 1,

U (x, y, t) = 1, V (x, y, t) = 1.

The accuracy on unstructured quadrilateral and triangular meshes are tested, and the mesh with cell size h = 1/16 is given 
in Fig. 6 as reference. The L1 and L2 errors and convergence orders are presented in Table 1 and Table 2, and the expected 
order is achieved. For the accuracy with moving-mesh, the structured meshes are used. Three kinds of time dependent 
meshes are given

Type-1 :
{

x(t) = x0 + 0.05 sinπt sinπx0 sinπ y0,

y(t) = y0 + 0.05 sinπt sinπx0 sinπ y0.
(17)
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Fig. 5. Flow chart of high-order ALE gas-kinetic scheme.

Fig. 6. Advection of density perturbation: quadrilateral and triangular meshes with h = 1/16.

Type-2 :
{

x(t) = x0 + 0.05 sinπt sin 2πx0 sin 2π y0,

y(t) = y0 + 0.05 sinπt sin 2πx0 sin 2π y0.
(18)

Type-3 :
{

x(t) = x0 + 0.05 sinπt sinπx0,

y(t) = y0 + 0.05 sinπt sinπ y0,
(19)

where (x0, y0) is denoted as the initial mesh. The mesh velocity can be directly given during a time step. Initially, N × N
cells are distributed uniformly. The L1 and L2 errors and orders of accuracy at t = 2 with N2 cells are presented in Table 3, 
Table 4 and Table 5 for three types of moving-mesh, and the computational meshes with largest deformation at t = 0.5
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Table 1
Advection of density perturbation: WENO-3rd on quadrilateral meshes.

mesh L1 error Order L2 error Order

1/8 1.3752E-02 1.5288E-02
1/16 1.4112E-03 3.28 1.5684E-03 3.28
1/32 2.0183E-04 2.80 2.2400E-04 2.80
1/64 2.3544E-05 3.09 2.6098E-05 3.10

Table 2
Advection of density perturbation: WENO-3rd on triangular meshes.

mesh L1 error Order L2 error Order

1/8 4.8752E-03 5.4117E-03
1/16 6.4576E-04 2.92 7.1650E-04 2.92
1/32 8.2542E-05 2.97 9.1507E-05 2.97
1/64 1.0308E-05 3.00 1.1427E-05 3.00

Table 3
Advection of density perturbation: L1 and L2 errors and orders for moving-mesh Type-1.

mesh L1 error Order L2 error Order

202 3.2472E-02 1.7989E-02
402 4.2331E-03 2.93 2.3494E-03 2.93
802 5.3331E-04 2.98 2.9571E-04 2.99
1602 6.6761E-05 2.99 3.7016E-05 2.99

Table 4
Advection of density perturbation: L1 and L2 errors and orders for moving-mesh Type-2.

mesh L1 error Order L2 error Order

202 3.3873E-02 1.8770E-02
402 4.5521E-03 2.89 2.5410E-03 2.88
802 5.7874E-04 2.97 3.2386E-04 2.97
1602 7.2641E-05 2.99 4.0674E-05 2.99

Table 5
Advection of density perturbation: L1 and L2 errors and orders for moving-mesh Type-3.

mesh L1 error Order L2 error Order

202 3.2267E-02 1.8112E-02 .
402 4.2342E-03 2.9298 2.3846E-03 2.9251
802 5.3338E-04 2.9888 3.0062E-04 2.9877
1602 6.6778E-05 2.9977 3.7644E-05 2.9974

are shown in Fig. 7. As reference, the errors and orders of accuracy with stationary meshes are also given in Table 6. The 
expected order of accuracy is well kept with the moving-mesh procedure.

The second one is isotropic vortex propagation problem, which is a non-linear case for accuracy test. The mean flow is 
(ρ, u, v, p) = (1, 1, 1, 1), and an isotropic vortex is added to the mean flow, i.e., with perturbation in u, v and temperature 
T = p/ρ , and no perturbation in entropy S = p/ργ . The perturbation is given by

(δu, δv) = ε

2π
e

(1−r2)
2 (−y, x),

δT = − (γ − 1)ε2

8γπ2
e1−r2

, δS = 0,

where r2 = x2 + y2 and the vortex strength ε = 5. The computational domain is [0, 10] ×[0, 10], the periodic boundary con-
ditions are imposed on the boundaries in both x and y directions. The exact solution is the perturbation which propagates 
with the velocity (1, 1). For the accuracy with moving-mesh velocity, the following time dependent meshes are considered 
as follows

Type-III :
{

x(t) = x0 + 0.05 sin 0.2πt sinπx0 sinπ y0,

y(t) = y0 + 0.05 sin 0.2πt sinπx0 sinπ y0,
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Fig. 7. Advection of density perturbation: computational mesh with 402 cells at t = 0.5 for moving-mesh Type-1, Type-2 and Type-3.

Table 6
Advection of density perturbation: L1 and L2 errors and orders with stationary meshes.

mesh L1 error Order L2 error Order

202 3.1442E-02 1.7398E-02
402 4.0849E-03 2.94 2.2654E-03 2.98
802 5.1443E-04 2.94 2.8496E-04 2.99
1602 6.4388E-05 2.99 3.5669E-05 2.99

Table 7
Isotropic vortex propagation: L2 errors and orders for stationary meshes (left) and moving-
meshes (right).

stationary meshes moving-meshes

mesh L2 error Order L2 error Order

402 7.4765E-02 7.5223E-02
802 1.2993E-02 2.5245 1.3235E-02 2.5067
1602 1.8030E-03 2.8492 1.8555E-03 2.8345
3202 2.2982E-04 2.9718 2.5870E-04 2.8424

where (x0, y0) is denoted as the initial mesh. Initially, the N × N cells are uniformly distributed. The mesh velocity can be 
directly given during a time step. The L2 errors and orders at t = 10 are presented in Table 7. As reference, the errors and 
orders of accuracy with stationary meshes are also given in Table 7. The expected accuracy is obtained with the moving-
mesh procedure as well. The density distributions for moving-mesh with 80 × 80 cells at t = 2.5 and 7.5 are also given in 
Fig. 8, where the vortex is well preserved with the moving-mesh procedure.

5.2. Geometric conservation law

The geometric conservation law (GCL) is also tested by the time dependent meshes. The computational domain is [0, 2] ×
[0, 2], and the initial condition is

ρ0(x, y) = 1, p0(x, y) = 1, U0(x, y) = 1, V 0(x, y) = 1.

The periodic boundary conditions are adopted as well. The time dependent meshes are given by Eq. (17), Eq. (18) and 
Eq. (19). The L1 and L2 errors at t = 2 with N2 cells are given in Table 8 for three types of moving-mesh. The errors reduce 
to the machine zero. The geometric conservation law is well preserved by the current scheme.

5.3. One dimensional Riemann problems

In this case, the one-dimensional Riemann problems are tested. The first one is Sod problem, and the initial condition is 
given as follows

(ρ, U , p) =
{

(1,0,1), 0 ≤ x < 0.5,

(0.125,0,0.1), 0.5 ≤ x ≤ 1.

The second one is Lax problem, and the initial condition is given as follows
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Fig. 8. Isotropic vortex propagation: density distributions for moving-mesh with 80 × 80 cells at t = 2.5 and 7.5.

Table 8
Accuracy test: geometric conservation law for mesh velocities Type-I and Type-II.

mesh Type-1 mesh Type-2 mesh Type-3

mesh L1 error L2 error L1 error L2 error L1 error L2 error

102 8.51E-15 5.31E-15 9.20E-15 5.72E-15 2.33E-14 1.51E-14
202 1.90E-14 1.22E-14 2.03E-14 1.27E-14 5.08E-14 3.34E-14
402 4.65E-14 3.01E-14 4.49E-14 2.90E-14 6.85E-14 4.27E-14
802 9.32E-14 5.99E-14 1.02E-13 6.69E-14 2.43E-13 1.58E-13

Fig. 9. One dimensional Riemann problem: the density distributions for Sod problem at t = 0.2 (left) and Lax problem at t = 0.16 (right).

(ρ, U , p) =
{

(0.445,1.198,3.528), 0 ≤ x < 0.5

(0.5,0.5,0.571), 0.5 ≤ x ≤ 1.

In the computation, these two cases are tested in the domain [0, 1] × [0, 0.1] and non-reflection boundary condition is 
adopted at the boundaries of computational domain. Initially, 100 × 10 cells are equally distributed. The adaptation velocity 
and Lagrangian velocity are chosen as mesh velocities. For the adaptive procedure, the parameter α in the monitor function 
takes 0.1 for Sod problem and 0.02 for Lax problem. The density distributions for Sod problem at t = 0.2 and Lax problem 
at t = 0.16 with x = 0 are presented in Fig. 9. The histories of mesh distribution from adaptation velocity and Lagrangian 
velocity are presented in Fig. 10 and Fig. 11. The numerical solutions agree well with the exact solutions. Due the local mesh 
adaptation, the discontinuities are well resolved by the current scheme. For the one-dimensional case, the grid velocity can 
given by the compatibility condition Eq. (16), which also works well for the Riemann problems.
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Fig. 10. One dimensional Riemann problem: the mesh evolution with adaptation velocity for Sod problem (left) and Lax problem (right).

Fig. 11. One dimensional Riemann problem: the mesh evolution with Lagrangian velocity for Sod problem (left) and Lax problem (right).

Fig. 12. Triple-point problem: the mesh distribution with 180 × 60 cells with Larangian velocity (top) and adaptation velocity (bottom).

5.4. Triple-point problem

The triple-point problem was widely used to validate to the performance of Larangian and ALE methods with large mesh 
deformation [11,19]. The initial condition is given as follows

(ρ, U , V , p) =

⎧⎪⎨⎪⎩
(1,0,0,1), (x, y) ∈ D1 = [0,1] × [0,3],
(0.125,0,0,0.1), (x, y) ∈ D2 = [1,9] × [0,1.5],
(1,0,0,0.1), (x, y) ∈ D3 = [1,9] × [1.5,3].

The non-reflective boundary conditions are used at all boundaries. Left from x = 1, a high pressure is located in D1, which 
generates a shock wave propagating to the right, and no waves are generated at the beginning at the domain D2 ∪ D3. 
Initially, 3N × N cells are equally distributed. The adaptation velocity and Lagrangian velocity are chosen as mesh velocities. 
For the adaptive procedure, the parameter α in the monitor function takes 0.05. The mesh distribution with 180 × 60 cells 
for Larangian and adaptation velocity at t = 4 are presented in Fig. 12. The density distribution with 180 × 60 cells for 
Larangian and adaptation velocity are given in Fig. 13, where a vortex appears and swirls the flows around the triple point 
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Fig. 13. Triple-point problem: the density distribution with Larangian velocity (left) and (right) adaptation velocity with 180 × 60 cells.

due to the different shock speeds over the vertical line. With the local mesh refinement, the interaction of contacts can be 
well captured.

5.5. Two-dimensional Riemann problems

In this case, the two-dimensional Riemann problems for Euler equations are presented [21]. The computation domain is 
[0, 1] × [0, 1] and the non-reflection condition is used for the boundaries, and N × N cells are equally distributed initially. 
The adaptation velocity is chosen as mesh velocity. The initial condition is given as follows

(ρ, U , V , p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1,0.75,−0.5,1), x > 0.5, y > 0.5,

(2,0.75,0.5,1), x < 0.5, y > 0.5,

(1,−0.75,0.5,1), x < 0.5, y < 0.5,

(3,−0.75,−0.5,1),x > 0.5, y < 0.5.

This case is the interaction of four contact discontinuities with same signs J−
12 J−

32 J−
41 J−

34, where J−
lr represents the negative 

contact discontinuity connecting the l and r areas

J−
lr : wl = wr, pl = pr, w ′

l ≥ w ′
r,

where wl, wr are the normal velocities and w ′
l , w

′
r are the tangential velocities. The parameter α in the monitor function 

takes 0.1. The density distribution and computational mesh with 100 × 100 cells are given in Fig. 14 at t = 0.4. The density 
distribution with 400 × 400 cells is given in Fig. 15. For this case, the instantaneous interaction of contacts results in a 
complex wave pattern, and the instability of shear appears due to the local mesh adaptation and mesh refinement. As 
a reference, the numerical results with stationary mesh is given in Fig. 15 as well. The nonlinear combination of linear 
polynomial smears the discontinuities.

5.6. Viscous shock tube

This problem was introduced to test the performances of current scheme for viscous flows [7]. In this case, an ideal gas 
is at rest in a two-dimensional unit box [0, 1] × [0, 1]. A membrane located at x = 0.5 separates two different states of the 
gas and the dimensionless initial states are

(ρ, U , p) =
{

(120,0,120/γ ), 0 < x < 0.5,

(1.2,0,1.2/γ ), 0.5 < x < 1,

where γ = 1.4, Reynolds number Re = 200 and Prandtl number Pr = 0.73. In the computation, this case is tested in the 
physical domain [0, 1] × [0, 0.5], a symmetric boundary condition is used on the top boundary x ∈ [0, 1], y = 0.5. Non-
slip boundary condition for velocity, and adiabatic condition for temperature are imposed at solid wall boundaries. The 
membrane is removed at time zero and wave interaction occurs. A boundary layer is generated at the beginning, and a 
shock moves to the right followed by a contact discontinuity. After reflected by the end wall, the discontinuities interact 
with the boundary layer.
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Fig. 14. Two dimensional Riemann problem: the density distribution (left) and mesh distribution (right) for four contact discontinuity interaction with 
100 × 100 cells.

Fig. 15. Two dimensional Riemann problem: the density distribution on moving-mesh (left) and stationary mesh (right) for four contact discontinuity 
interaction with 400 × 400 cells.

Due to the inviscid and viscous coupling of gas-kinetic scheme, the current ALE method can be extended to computation 
for Navier-Stokes equations. To well resolve the complicated two-dimensional shock/shear/boundary-layer interactions, an 
anisotropy mesh needs to be generated during this procedure. Deferent monitor functions for x and y coordinates takes

ωx =
√

1 + 0.0001|∂x(logρ)|2,
and

ωy =
√

1 + 0.01|∂y(logρ)|2 + 0.01|∂y

√
U 2 + V 2|.

The computational mesh with 100 × 50 cells at t = 0.25, 0.5, 0.75 and 1 are given in Fig. 16 to present the adaptation 
procedure. The density distributions on the mesh with 500 × 250 and 700 × 350 cells are presented in Fig. 17 as well. As 
shown in Table 9, the height of primary vortex predicted by the current scheme agrees well with the reference data [18]. 
However, due to the nonlinear combination of linear polynomial, the current scheme is more dissipative than the fifth-order 
WENO reconstruction on structured meshes. Currently, the development of higher-order WENO on unstructured meshes is 
in progress.
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Fig. 16. Viscous shock tube: the computational mesh at t = 0.25,0.5,0.75 and 1.

Fig. 17. Viscous shock tube: the density distributions on the mesh with 500 × 250 and 700 × 350 cells.

Table 9
Viscous shock tube: comparison of primary vortex heights among different schemes.

Scheme AUSMPW+ [18] M-AUSMPW+ [18] WENO-GKS GKS-ALE

Height 0.163 0.168 0.171 0.164
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Fig. 18. Sedov problem: the mesh and density distribution at t = 1 with 40 × 40 cells.

Fig. 19. Sedov problem: the density and pressure distribution along the diagonal line t = 1.

5.7. Sedov blast wave problem

This is a two-dimensional explosion problem to model blast wave from an energy deposited singular point, which is a 
standard benchmark problem for the Lagrangian method. The fluid is modeled by the ideal gas EOS with γ = 1.4. The initial 
density has a uniform unit distribution, and the pressure is 10−6 everywhere, except in the cell containing the origin. To 
run the case with smaller initial pressure, the positivity preserving technique may be considered in the future. For this cell 
containing the origin, the pressure is defined as p = (γ − 1)ε0/V , where ε0 = 0.244816 is the total amount of released 
energy and V is the cell volume. The reflection condition is used for the left and bottom boundaries, and non-reflection 
condition is used for the right and top boundaries. The computation domain is [0, 1.2] × [0, 1.2] and 40 × 40 cells are 
equally distributed initially. The density distribution at t = 1 is given in Fig. 18. The solution consists of a diverging infinite 
strength shock wave whose front is located at radius r = 1 at t = 1 [17]. The density and pressure profile along the diagonal 
line t = 1 are given in Fig. 19, and the numerical results agrees well with the exact solutions.

5.8. Saltzman problem

This is a benchmark test case for Lagrangian and ALE codes, which tests the ability to capture the shock propagation 
with a systematically distorted mesh [8,5]. The computational domain is [0, 1] × [0, 0.1]. The initial mesh, which is given in 
Fig. 20, is expressed as

xij = i�x + (10 − j)�y sin(
iπ

100
),

yij = j�y,
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Fig. 20. Saltzman problem: the initial mesh distribution.

Fig. 21. Saltzman problem: the density and pressure distribution in all the cells at t = 0.6.

Fig. 22. Saltzman problem: the mesh distribution at t = 0.6, 0.75 0.9 and 0.99.

where �x = �y = 0.01, and i = 0, ..., 100, j = 0, ..., 10. An ideal monatomic gas with ρ = 1, e = 10−4, γ = 5/3 is filled in 
the box. The left-hand side wall acts as a piston with a constant velocity U p = 1, and other boundaries are reflective walls. 
As a consequence, a strong shock wave is generated from the left end. For this case, the purely Lagrangian method will 
cause mesh deformation, and the ALE method works well because of the proper choice mesh velocity. At time t = 0.6, the 
shock is expected to be located at x = 0.8, and the post shock solutions are p = 4 and p = 1.333. The density and pressure 
distribution in all the cells is given in Fig. 21. The numerical results agrees well with the exact solutions. The shock wave 
will hit the face x = 1 at time t = 0.75 and be reflected by the solid wall. A second shock wave is produced which is 
traveling back towards the piston. Finally, the computation stops t = 0.99 because the shock wave generated by the wall 
collision matches the piston. The mesh distributions at t = 0.6, 0.75 0.9 and 0.99 are given in Fig. 22.

6. Conclusion

With the arbitrary Lagrangian-Eulerian (ALE) formulation, a high-order moving-mesh gas-kinetic scheme is presented for 
the inviscid and viscous flows. It extends the third-order gas kinetic method from a static domain to the flow simulation 
over a variable domain. In the moving-mesh procedure, the mesh becomes distorted, and a newly developed WENO re-
construction is used, in which the optimization approach for linear weights and the non-linear weights with new smooth 
indicator are proposed to improve the robustness of reconstruction. The two-stage fourth-order method is used for the 
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temporal discretization, and the second-order gas-kinetic solver is used for the flux calculation. In the two-stage method, 
the spatial reconstruction is performed at the initial and intermediate stages, while the computational meshes are given 
through a specified mesh velocity. To take the variation of mesh velocity along each cell interface into account, the WENO 
reconstruction is performed at each Gaussian quadrature point in the local moving coordinate. The analysis for geometric 
conservation law is also given. Numerical examples are presented to validate the performance of current scheme, where the 
mesh adaptation method and the cell centered Lagrangian method can be used to provide mesh velocity.
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