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This paper presents a multi-dimensional high-order discontinuous Galerkin (DG) method 
in an arbitrary Lagrangian–Eulerian (ALE) formulation to simulate flows over variable 
domains with moving and deforming meshes. It is an extension of the gas-kinetic DG 
method proposed by the authors for static domains (X. Ren et al., 2015 [22]). A moving 
mesh gas kinetic DG method is proposed for both inviscid and viscous flow computations. 
A flux integration method across a translating and deforming cell interface has been 
constructed. Differently from the previous ALE-type gas kinetic method with piecewise 
constant mesh velocity at each cell interface within each time step, the mesh velocity 
variation inside a cell and the mesh moving and rotating at a cell interface have been 
accounted for in the finite element framework. As a result, the current scheme is applicable 
for any kind of mesh movement, such as translation, rotation, and deformation. The 
accuracy and robustness of the scheme have been improved significantly in the oscillating 
airfoil calculations. All computations are conducted in a physical domain rather than in 
a reference domain, and the basis functions move with the grid movement. Therefore, 
the numerical scheme can preserve the uniform flow automatically, and satisfy the 
geometric conservation law (GCL). The numerical accuracy can be maintained even for a 
largely moving and deforming mesh. Several test cases are presented to demonstrate the 
performance of the gas-kinetic DG-ALE method.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Problems with variable domains are commonly present in many engineering applications, such as aeroelastic problems 
[1–4], thermoelastic, and insect flight problems [5]. Due to the complication of these problems, measurements are some-
times limited for capturing partial information of these complex flow phenomena. Fortunately, the numerical simulation 
gives us another choice to understand the flow problem. Generally, in order to resolve and capture these complex phenom-
ena, such as separations and vortices, a high order numerical method is necessary. Moreover, the numerical method used 
should be able to handle variable domains while maintaining a high order of accuracy.
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Most finite volume (FV) methods [6,7] are based on the piecewise constant representation of flow variables and resort to 
the reconstruction techniques to obtain high order accuracy in space. Generally, these methods are effective for structured 
meshes, but may face reconstruction problems on arbitrary grids, such as the multidimensional unstructured mesh cases, 
due to the adaptation of extended stencils. In order to avoid difficulties in the reconstruction, one possible way is to develop 
compact high order methods. The discontinuous Galerkin (DG) method [8,9] becomes one of these idealized choices. For 
the DG method, the higher accuracy is achieved by means of higher order polynomial approximation inside each cell. Only 
the information from adjacent cells with common cell interfaces is needed for the update of the degree of freedom within 
each cell. Therefore, the DG method can deliver higher order accurate solutions without solely relying on the reconstruction 
techniques and large stencils, but the smoothness of the solution seems required in order to faithfully use the DG method, 
especially for the Navier–Stokes solutions.

The arbitrary Lagrangian–Eulerian (ALE) method [10] is commonly used for simulations of flows involving moving bound-
aries. In the ALE description, the grids can be moved in any arbitrarily specified way independent of the flow motions. Due 
to its flexibility, large distortions of mesh can be handled in comparison with the Lagrangian framework. At the same time, 
the interfaces between different materials can be tracked much more easily in comparison with the purely Eulerian ap-
proach. Thus, combining a DG method for high-order accuracy with the ALE approach for its flexibility may provide us an 
effective way to simulate flows over deformable and movable domains.

In the past two decades, a number of DG methods in the ALE formulation have been proposed for both compressible 
[11–17] and incompressible flows [18–20]. An ALE matrix-free DG method was first presented by Lomtev et al. [11] for 
compressible viscous flows in two- and three-dimensional (2D and 3D) moving domains. A force-directed algorithm from 
graph theory is used to update the moving mesh while minimizing distortions. Klaij et al. [17] extended the ALE space-time 
DG method [13,14] from inviscid compressible flows to the compressible Navier–Stokes (NS) equations. Persson et al. [15]
introduced a continuous mapping between a fixed reference configuration and the time-dependent domain. The NS equa-
tions are reformulated as conservation laws for the independent variables in the reference configuration space and solved 
thereafter. An additional equation for the time evolution of the transformation Jacobian is used to preserve the freestream 
solution. Nguyen [16] presented an ALE DG method in which the geometric conservation law (GCL) is always satisfied, with 
the preservation of freestream solution. However, for all these DG methods, the equations with higher order derivatives 
must be transformed into a first order system in order to avoid the so-called “non-conforming problem”, and the inviscid 
and viscous fluxes are numerically treated differently. Besides, a separating temporal discretization, for instance, the total 
variation diminishing (TVD) Runge–Kutta method, is always needed to improve the stability and time accuracy.

Alternatively, the NS solutions can be recovered using a kinetic equation [21,22], in which a kinetic flux function includ-
ing both inviscid and viscous terms can be obtained through a kinetic evolution model. In the gas kinetic scheme, the fluxes 
are constructed based on the integral solution of the gas kinetic Bhatnagar–Gross–Krook (BGK) model, which presents a 
multiscale evolution process from an initial non-equilibrium to an equilibrium state. Different from the Riemann problem, 
the flow evolution from a higher order initial reconstruction is explicitly followed. Based on the multi-dimensional gas ki-
netic formulation, a spatial and temporal dependent gas distribution function can be evaluated explicitly, and the flux is 
just computed at the cell barycenter or the interface center rather than on each Gaussian Quadrature points. Jin and Xu [23]
proposed a 2nd order unified moving grid gas kinetic method in Eulerian space for viscous flow computations. A general-
ized coordinate transformation with arbitrary grid velocities is used to reformulate the gas kinetic BGK model in a moving 
frame reference and a unified direction splitting gas kinetic scheme is developed for viscous flow computations with moving 
meshes. Ni et al. [24] presented a 2nd order remapping-free ALE-type method, where the coupling of the fluid equations 
and GCL in [23] is removed. However, a piecewise constant grid velocity for each cell interface is used within each time 
step. It is a reasonable assumption for a 2nd order method, but not straightforward for a 3rd order method, where different 
grid velocity along a cell interface needs to be taken into account. For the traditional DG-ALE method [16], the Riemann 
solver is applied to each quadrature point, and the grid velocity distribution along the cell interface or inside the cell can 
be introduced implicitly. However, in the gas kinetic DG-ALE method, the higher-order gas-kinetic flux is a continuous func-
tion of space and time. How to couple this flux function with the DG formulation and a variation of mesh velocity needs 
investigated.

In this paper, a multi-dimensional 3rd order gas kinetic scheme with a grid velocity distribution is developed for flow 
simulations with moving or deforming meshes. The distribution of grid velocities inside a cell and along a cell interface can 
be varied within each time step and the GCL can be satisfied automatically. The paper is organized as follows. Section 2 is 
the construction of the numerical method. Section 3 shows some numerical examples and results. The last section draws 
the conclusion.

2. Multi-dimensional high-order ALE method based on gas kinetic theory

2.1. ALE formulation

Based on the 3D gas kinetic BGK model and the Chapman–Enskog expansion, the corresponding NS equations can be 
derived [21,22]:

∂ Q (x, t) + ∇ • F = 0, x ∈ �t, (1)

∂t
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where x = (x, y, z) is the space coordinates, t is the physical time, Q is the macroscopic conservative variables vector, F is 
the flux tensor, and �t indicates the time-dependent flow domain.

In the ALE description, a referential domain �0 is taken into account and the referential coordinates X = (X, Y , Z) are 
introduced to identify the gird nodes [10]. Here the reference domain is decomposed into a finite number of cells expressed 
as

�0 .= m∪
e=1

�0
e = {�0

1,�
0
2, · · · ,�0

m

}= {{X |X ∈ �0
1

}
,
{

X |X ∈ �0
2

}
, · · · ,{X |X ∈ �0

m

}}
, m ∈ N, (2)

where m is the number of cells. A Taylor series expansion at the barycenter of the reference cell is used to represent 
the approximate solution [22] and the basis functions are denoted by {υ0

0 (X) = 1, υ0
1 (X), · · · , υ0

l−1(X)} with l basis func-
tions.

The referential domain �0 is mapped into a time-dependent flow domain �t by using a time-dependent one-to-one 
mapping ϕt , which can be understood as the motion of grid nodes in the physical domain and can be represented by

ϕt(X) = x ∈ �t, X = φt(x) ∈ �0, (3)

in which φt is the inverse mapping of ϕt .
By using the mapping φt , one can obtain the time-dependent domain decomposition

�t .= m∪
e=1

�t
e = {�t

1,�
t
2, · · · ,�t
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}= {{x|φt(x) ∈ �0
1

}
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}
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m

}}
, m ∈N, (4)

and the corresponding basis functions are defined as

υt
i (x) = υ0

i

(
φt(x)

)= υ0
i (X), i = 0,1, · · · , l − 1. (5)

Therefore, the approximate polynomial solution in each cell can be written as

Q (x, t) = Q̄
t +

l−1∑
i=1

Q̂
t
i

(
υt

i (x) − ῡt
i

)= Q̄
t +

l−1∑
i=1

Q̂
t
i

(
υ0

i (X) − 1

|�t
e|
∫
�t

e

υ0
i (X)dx

)
, x ∈ �t

e, t ≥ 0, l ∈ N,

(6)

in which Q̄
t

is the time-dependent cell averaged conservative variables, |�t
e | is the time-dependent cell volume, and ῡt

i is 
the time-dependent mean value of the i-th basis function within the cell �t

e . Note that these basis functions are based on 
the time-independent reference cell, so the set of the basis is time-independent. However, due to the time-dependent cell 
shape, the cell mean value of the basis functions is time-dependent.

The fundamental ALE relation for the referential time derivation, Eulerian time derivative, and spatial gradient [10] is

∂ Q

∂t

∣∣∣∣
X

= ∂ Q

∂t
+ U g • ∇ Q , (7)

where Q is a scalar physical variable and U g = (U g, V g, W g) is the grid moving velocity. According to Eq. (7), the ALE 
formulation of Eq. (1) can be written as

∂ Q (x, t)

∂t

∣∣∣∣
X

+ Q ∇ • U g + ∇ • (F − Q U g) = 0, x ∈ �t . (8)

Using the Galerkin method, we have∫
�t

e

∂ Q (x, t)

∂t

∣∣∣∣
X
υt

jdx +
∫
�t

e

Q ∇ • U gυ
t
jdx +

∫
�t

e

∇ • (F − Q U g)υ
t
jdx = 0, j = 0,1, · · · , l − 1. (9)

According to the definition of the basis function Eq. (5), the referential time derivation of the basis function equals to 
zero, i.e.,

∂υt
j

∂t

∣∣∣∣
X

= dυ0
j (X)

dt
= 0, (10)

which implies basis functions move with the grid motion. Therefore, the Reynolds transport theorem can be rewritten as∫
�t

e

∂( Q υt
j)

∂t

∣∣∣∣
X

dx = d

dt

(∫
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e

Q υt
jdx

)
−
∫
�t

e

Q υt
j∇ • U gdx =

∫
�t

e

∂ Q

∂t

∣∣∣∣
X
υt

jdx. (11)
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Substituting Eq. (11) into Eq. (9), via integration by parts, one has

d

dt

(∫
�t

e

Q υt
jdx

)
+
∫

∂�t
e

υt
j(F − Q U g) • nds −

∫
�t

e

∇υt
j • (F − Q U g)dx = 0, (12)

where n is the outward normal unit vector of the corresponding cell interface ∂�t
e .

Finally, a DG method in the ALE formulation can be obtained by substituting the approximate solution (6) into the above 
expression,

Q̄
n+1∣∣�n+1

e

∣∣= Q̄
n∣∣�n

e

∣∣−
�t∫

0

( ∫
∂�t

e
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)
dt, (13)
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i j Q̂
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i =
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n
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n
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e
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�t

e
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)
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0

( ∫
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e

υt
j(F − Q U g) • nds

)
dt, j = 1, · · · , l − 1, (14)

in which Mn
ij = ∫

�n
e
υn

i υn
j dx − ῡn

i ῡn
j |�n

e |, Mn+1
i j = ∫

�n+1
e

υn+1
i υn+1

j dx − ῡn+1
i ῡn+1

j |�n+1
e |, and the superscripts “n” and “n + 1” 

are the time step indexes.
One should note that the above expressions are integrated in time explicitly without using any time discretized method. 

The grid velocity U g inside a cell and along a cell interface can be varied point by point. If we set the grid velocity to be 
zero, i.e., U g = 0, the method with static mesh in [22] can be exactly recovered. The critical problem is how to evaluate the 
flux terms in Eqs. (13) and (14) based on the gas kinetic scheme. In the previous gas kinetic scheme [23,24], a piecewise 
constant velocity is considered. However, for an arbitrary mesh motion, the grid velocity should not be constant inside the 
cell or along the cell interface. Based on our studying, a 2nd order method with a constant velocity assumption can give 
reasonable results. However, for higher order methods, the velocity variation inside a cell or along the cell interface must 
be considered. Thus, in the following, we will proposed a gas kinetic scheme with a mesh velocity distribution.

2.2. Gas kinetic flux scheme with a mesh velocity distribution

2.2.1. Gas kinetic flux inside a cell
The 3rd order NS gas distribution function within each control volume can be written as (see [22])

f (x, t, u, ξ) = f I + f V, (15)

f I = gc0(dc0
0 + dc0

1 υ ′′
1 + dc0

2 υ ′′
2 + dc0

3 υ ′′
3 + bc0

xyυ
′′
4 + bc0

xzυ
′′
5 + bc0

yzυ
′′
6 + bc0

xxυ
′′
7 + bc0

yyυ
′′
8 + bc0

zzυ
′′
9

)
, (16)

f V = −τ gc0(Dc0
0 + Dc0

1 υ ′′
1 + Dc0

2 υ ′′
2 + Dc0

3 υ ′′
3

)
, (17)

where u = (u, v, w) is the particle velocity vector, τ = μc0/pc0 is the particle collision time, μc0 is the dynamic viscosity, 
pc0 is the pressure, and υ ′′

1 = x − xc0, υ ′′
2 = y − yc0, υ ′′

3 = z − zc0, υ ′′
4 = υ ′′

1 υ ′′
2 , υ ′′

5 = υ ′′
1 υ ′′

3 , υ ′′
6 = υ ′′

2 υ ′′
3 , υ ′′

7 = 1
2 υ ′′

1 υ ′′
1 , υ ′′

8 =
1
2 υ ′′

2 υ ′′
2 , υ ′′

9 = 1
2 υ ′′

3 υ ′′
3 . The superscript “c0” indicates the initial barycenter of the cell for each time step. The equilibrium state 

gc0 is a Maxwellian distribution. All the coefficients, i.e., dc0
i (i = 0, 1, 2, 3), bc0

xy , bc0
xz , bc0

yz , bc0
xx , bc0

yy , bc0
zz , Dc0

i (i = 0, 1, 2, 3), for 
their definitions and evaluations can be found in [22].

Due to the relations of the gas distribution function f and the macroscopic variables F and Q , the volume integration 
in Eq. (14) can be expressed as
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(18)
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xx
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〉
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yy
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〉
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(19)

in which the notation 〈· · ·〉 is defined as

〈· · ·〉 =
∫

gc0(· · ·)ψd�, (20)

the vector of moments ψ is

ψ =
(

1, u, v, w,
1

2

(
u2 + v2 + w2 + ξ2))T

, (21)

the internal variable ξ2 = ξ2
1 + ξ2

2 + · · · + ξ2
K , the volume element in the phase space d� = dudvdwdξ1dξ2 · · ·dξK , K =

(5 − 3γ )/(γ − 1) is the total degree of freedom in the internal variable, γ is the specific heat ratio.
It should be noted that the grid velocity U g is a function of space and time, which cannot be moved outside of the 

space integration. In Section 2.4, we will show the method to define the grid velocity distribution. Besides, these space 
integrations, i.e., 

∫
�t

e
∇υt

jdx, 
∫
�t

e
∇υt

j • U gdx, 
∫
�t

e
υ ′′

i ∇υt
jdx, 

∫
�t

e
υ ′′

i ∇υt
j • U gdx, are time-dependent. Theoretically, they can 

be evaluated explicitly. However, it is quite complicated. Numerically, we can use the arithmetic mean values to represent 
them and the scheme can be rewritten as

�t∫
0

(∫
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e

∇υt
j • (F − Q U g)dx

)
dt =

�t∫
0

F 0dt • ∇υ j −
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)
, (22)
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)
,

in which these integrals are evaluated using Gaussian Quadrature rules and the number of quadrature points depends on 
the order of approximation. A quadrature rule for the integral of any function h(x) over a domain in the method is generally 
described as∫

�e

h(x)dx =
∑

i

wih(xi), (23)

where wi denotes the weight and xi is the coordinate of the i-th quadrature point.
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2.2.2. Gas kinetic flux at a cell interface
The cell-interface-flux evaluation with static mesh has been introduced in [22]. Due to the general discontinuous initial 

condition, the moments of a Maxwellian distribution function with bounded integration limits are also needed besides 
the ones with unbounded integration limits. If the cell interface is moving or deforming, the bounded integration limits 
are different from the stationary coordinate system and the method in [22] can’t be applied straightforwardly. In order to 
maintain the integration limits, which take account the particle transport across a moving cell interface, a flux evaluation 
scheme in a moving coordinate system [24] has been proposed. This previous scheme is based on the assumption that the 
mesh velocity is piecewise constant. It is a reasonable assumption for a 2nd order method, but not straightforward for a 3rd 
order method, which would lead to numerical oscillation and instability. To consider the mesh velocity distribution along 
the interface, we can write the mesh velocity for each point on the cell interface as

U g = U f c
g + U r

g, (24)

in which U f c
g = (U f c

g , V f c
g , W f c

g ) is the grid velocity at the interface barycenter. The interface flux F − Q U g in (12) is 
rewritten as

F − Q U g = F̄ − Q U r
g . (25)

In the right hand side, the first term is the mean flux with a piecewise constant mesh velocity U f c
g . For the second term, 

it is a correction on each interface point, which means the difference between the real flux crossing each interface point 
and the mean flux F̄ .

Firstly, we can evaluate the flux standing on a moving coordinate system with a moving velocity U f c
g . In this moving 

coordinate system, the initial transformation from Q to Q r needs to take the moving velocity into account as

Q =
(
ρ,ρU ,ρV ,ρW ,

1

2
ρ
[
(U )2 + (V )2 + (W )2]+ ρe

)T

, (26)

Q r =
(
ρ,ρU r,ρV r,ρW r,

1

2
ρ
[(

U r)2 + (V r)2 + (W r)2]+ ρe

)T

, (27)

in which ρand ρe are the density and thermal energy which have the same values in both coordinate systems, U r = U −U f c
g

is the relative velocity in the moving coordinate system. Based on the initial condition Q r , the gas distribution function f
in the moving reference of frame can be written as (see [22])

f
(
x, t, ur, ξ

)= f S + f D , (28)

f S = g f c0(d f c0
0 + d f c0

1 υ ′′′
1 + d f c0

2 υ ′′′
2 + d f c0

3 υ ′′′
3 + b f c0

xy υ ′′′
4 + b f c0

xz υ ′′′
5 + b f c0

yz υ ′′′
6 + b f c0

xx υ ′′′
7 + b f c0

yy υ ′′′
8 + b f c0

zz υ ′′′
9 )

− τ g f c0(D f c0
0 + D f c0

1 υ ′′′
1 + D f c0

2 υ ′′′
2 + D f c0

3 υ ′′′
3 ), (29)

f D = −g f c0e−t/τn

⎡
⎢⎢⎢⎢⎢⎣

1 − (t + τ )B f c0
0 + ( 1

2 t + τ )t(uB f c0
4 + v B f c0

5 + w B f c0
6 ) − τ A f c0

t + τ t B f c0
2

+ (a f c0
x − t B f c0

4 − τ D f c0
1 )υ ′′′

1 + (a f c0
y − t B f c0

5 − τ D f c0
2 )υ ′′′

2

+ (a f c0
z − t B f c0

6 − τ D f c0
3 )υ ′′′

3

+ (b f c0
xy υ ′′′

4 + b f c0
xz υ ′′′

5 + b f c0
yz υ ′′′

6 + b f c0
xx υ ′′′

7 + b f c0
yy υ ′′′

8 + b f c0
zz υ ′′′

9 )

⎤
⎥⎥⎥⎥⎥⎦

+ g∗ f c0e−t/τn

⎡
⎢⎢⎢⎢⎢⎣

1 − (t + τ )B∗ f c0
0 + ( 1

2 t + τ )t(uB∗ f c0
4 + v B∗ f c0

5 + w B∗ f c0
6 ) − τ A∗ f c0

t + τ t B∗ f c0
2

+ (a∗ f c0
x − t B∗ f c0

4 − τ D∗ f c0
1 )υ ′′′

1 + (a∗ f c0
y − t B∗ f c0

5 − τ D∗ f c0
2 )υ ′′′

2

+ (a∗ f c0
z − t B∗ f c0

6 − τ D∗ f c0
3 )υ ′′′

3

+ (b∗ f c0
xy υ ′′′

4 + b∗ f c0
xz υ ′′′

5 + b∗ f c0
yz υ ′′′

6 + b∗ f c0
xx υ ′′′

7 + b∗ f c0
yy υ ′′′

8 + b∗ f c0
zz υ ′′′

9 )

⎤
⎥⎥⎥⎥⎥⎦ ,

(30)

in which

g∗ f c0 = gLf c0 H
[
ur

n

]+ g R f c0(1 − H
[
ur

n

])
,

g∗ f c0(· · ·)∗ f c0 = gLf c0(· · ·)L f c0 H
[
ur

n

]+ g R f c0(· · ·)R f c0(1 − H
[
ur

n

])
, (31)

ur
n = ur • n is the relative particle velocity in the normal direction of the interface, H[ur

n] is the Heaviside function defined 
as

H
[
ur

n

]=
{

0, ur
n ≤ 0,

1, ur > 0.
(32)
n
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τ = μ f c0/p f c0 is the physical collision time, μ f c0 is the dynamic viscosity, and p f c0 is the pressure. τn is the numerical 
collision time [22], which controls the contributions of the non-equilibrium state and the equilibrium one in the discon-
tinuous part f D of the gas distribution function. υ ′′′

1 = x − x f c0, υ ′′′
2 = y − y f c0, υ ′′′

3 = z − z f c0, υ ′′′
4 = υ ′′′

1 υ ′′′
2 , υ ′′′

5 = υ ′′′
1 υ ′′′

3 , 
υ ′′′

6 = υ ′′′
2 υ ′′′

3 , υ ′′′
7 = 1

2 υ ′′′
1 υ ′′′

1 , υ ′′′
8 = 1

2 υ ′′′
2 υ ′′′

2 , υ ′′′
9 = 1

2 υ ′′′
3 υ ′′′

3 . The superscript “ f c0” indicates the initial barycenter of the cell 
interface for each time step, “R” indicates the right side of the cell interface, and “L” is the left side. The Maxwellian distri-
bution g R f c0, gLf c0, g f c0, and other parameters, i.e., d f c0

i (i = 0, 1, 2, 3), b f c0
xy , b f c0

xz , b f c0
yz , b f c0

xx , b f c0
yy , b f c0

zz , b∗ f c0
xy , b∗ f c0

xz , b∗ f c0
yz , 

b∗ f c0
xx , b∗ f c0

yy , b∗ f c0
zz , D f c0

i (i = 0, 1, 2, 3), B f c0
i (i = 0, 2, 4, 5, 6), B∗ f c0

i (i = 0, 2, 4, 5, 6), can be evaluated by using the method 
proposed in [22] which will not be repeated here.

In this paper, a simplified discontinuous part for providing numerical dissipation is used for the flux evaluation, leading 
to a more efficient scheme, as

f D = −g f c0e−t/τn + g∗ f c0e−t/τn . (33)

Actually, just the discontinuous jump of the pointwise values is considered in the simplified scheme and all spatial and 
temporal variation terms are removed from the complete formulation Eq. (30), which saves computational time greatly, but 
keeps the same accuracy as the original one in all test cases in this paper. The flux standing on the moving coordinate 
system can be written as

F̄
r − Q r U r

g = ( F̃
r
1, F̃

r
2, F̃

r
3, F̃

r
4, F̃

r
5

)T =
∫

ur f ψrd�r − U r
g

∫
f ψrd�r, (34)

where ψr = (1, ur, vr, wr, 12 ((ur)2 + (vr)2 + (wr)2 + ξ2))T, d�r = durdvrdwrdξ1 · · ·dξK .
Then, the fluxes across the moving cell interface in the stationary inertia reference of frame for all computational cells, 

which will be used in Eq. (13) and (14), are

F − Q U g = F̄ − Q U r
g =

∫
ur f ψd�r − U r

g

∫
f ψd�r

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

F̃
r
1

F̃
r
2 + U f c

g F̃
r
1

F̃
r
3 + V f c

g F̃
r
1

F̃
r
4 + W f c

g F̃
r
1

F̃
r
5 + U f c

g F̃
r
2 + V f c

g F̃
r
3 + W f c

g F̃
r
4 + 1

2 (U f c
g • U f c

g ) F̃
r
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (35)

Again, the time-dependent basis function integrations are defined as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

υ jn = 1

2

( ∫
∂�n

e

υn
j nnds +

∫
∂�n+1

e

υn+1
j nn+1ds

)
,

υ j U g • n = 1

2

( ∫
∂�n

e

υn
j U g • nnds +

∫
∂�n+1

e

υn+1
j U g • nn+1ds

)
,

υ ′′′
i υ jn = 1

2

( ∫
∂�n

e

(
υ ′′′

i υ j
)n

nnds +
∫

∂�n+1
e

(
υ ′′′

i υ j
)n+1

nn+1ds

)
,

υ ′′′
i υ j U g • n = 1

2

( ∫
∂�n

e

(
υ ′′′

i υ j
)n

U g • nnds +
∫

∂�n+1
e

(
υ ′′′

i υ j
)n+1

U g • nn+1ds

)
,

(36)

in which these integrals are evaluated using Gaussian Quadrature rules and the number of quadrature points depends on 
the order of approximation and the quadrature rule used.

2.3. One-to-one mapping

The initial domain is taken as the referential domain in this paper and the referential coordinates are equal to the initial 
space coordinates, i.e., X = x0 = (x0, y0, z0).

In the following, we will introduce the method to acquire the one-to-one mapping ϕt and its inverse mapping φt . For 
the sake of brevity, here we just take the hexahedral element as an example. The time-dependent one-to-one mappings ϕt

and φt are based on a transformation from an arbitrary hexahedral cell to a regular hexahedron as shown in Fig. 1.
Considering the trilinear mapping A with the properties

A(χ i) = (a1 + b1χi)(a2 + b2ηi)(a3 + b3ζi) = xi, i = 1,2, · · · ,8, (37)
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Fig. 1. An arbitrary hexahedral cell to a regular hexahedron.

Fig. 2. A sketch of the mesh velocity distribution on the cell interfaces.

in which a1, a2, a3, b1, b2, b3 are unknown coefficients, we have

x = A(χ) =
8∑

i=1

Nixi, (38)

with the shape functions N1 = 1
8 (1 − χ)(1 − η)(1 − ζ ), N2 = 1

8 (1 + χ)(1 − η)(1 − ζ ), N3 = 1
8 (1 + χ)(1 + η)(1 − ζ ), N4 =

1
8 (1 − χ)(1 + η)(1 − ζ ), N5 = 1

8 (1 − χ)(1 − η)(1 + ζ ), N6 = 1
8 (1 + χ)(1 − η)(1 + ζ ), N7 = 1

8 (1 + χ)(1 + η)(1 + ζ ), N8 =
1
8 (1 − χ)(1 + η)(1 + ζ ). Meanwhile, the inverse mapping B = A−1 can be obtained easily. Then, the one-to-one mappings 
can be defined as

xt = ϕt(X) = ϕt(x0)= At(B0(x0)), (39)

X = x0 = φt(xt)= A0(Bt(xt)), (40)

in which xt =At(χ), Bt(xt) = χ , B0(x0) = χ , x0 =A0(χ), xt ∈ �t
e, X = x0 ∈ �0

e , ∀e ∈ {1, 2, · · · , m}.

2.4. Grid velocity distribution

In the practice, the positions of grid nodes at the moving boundary Γ t are user prescribed or obtained from the struc-
ture response in applications of fluid–structure interaction at each time step. With the definition of the boundary nodes 
displacements as �x = xΓ n − xΓ 0

, various methods [25–28] can be used to compute the new positions of the inner nodes 
at each time step. In this paper, we adopt the method based on radial basis functions [28] to set the mesh nodes mo-
tion.

After the mesh nodes positions are determined, the one-to-one mapping mentioned above can be used to determine the 
quadrature points at time n and n + 1 which have the same referential quadrature point as

xn
i = An(B0(x0

i

))
, (41)

xn+1
i = An+1(B0(x0

i

))
. (42)

The grid velocity for i-th quadrature point is defined as

U g,i = xn+1
i − xn

i

�t
= An+1(B0(x0

i )) −An(B0(x0
i ))

�t
. (43)

Based on the above grid velocity definition on each quadrature point, the grid velocity distribution is obtained. Fig. 2
shows a mesh velocity distribution on the cell interfaces.
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2.5. Geometric conservation law (GCL)

Geometric conservation law (GCL) was originally discussed by Thomas and Lombard [29]. Generally, the preservation of a 
constant solution is often referred to as the GCL, which means that a uniform flow on a grid that moves arbitrarily in space 
as a function of time must be preserved for any numerical discretization scheme [15,16,30]. Here, we show the method 
proposed in this paper can preserve the uniform flow. Giving a constant solution Q (x, t) = Q 0, the flux inside a cell is 
rewritten as∫

�t
e

∇υt
j • (F − Q U g)dx = F ( Q 0) •

∫
�t

e

∇υt
jdx − Q 0

∫
�t

e

∇υt
j • U gdx, (44)

in which F ( Q 0) =
∫

ug( Q 0)ψd�, Q 0 = ∫ g( Q 0)ψd�. The flux at a cell interface is∫
∂�t

e

υt
j(F − Q U g) • nds = F ( Q 0) •

∫
∂�t

e

υt
jnds − Q 0

∫
∂�t

e

υt
j U g • nds. (45)

Then, Eq. (12) has the following expression

Q 0
d

dt

∫
�t

e

υt
jdx = F ( Q 0) •

(∫
�t

e

∇υt
jdx −

∫
∂�t

e

υt
jnds

)
− Q 0

(∫
�t

e

∇υt
j • U gdx −

∫
∂�t

e

υt
j U g • nds

)
. (46)

The first term on the right hand side is equal to zero according to the divergence theorem and Eq. (46) is simplified as

d

dt

∫
�t

e

υt
jdx +

∫
�t

e

∇υt
j • U gdx −

∫
∂�t

e

υt
j U g • nds = 0. (47)

The third term in the above equation can be further expanded as∫
∂�t

e

υt
j U g • nds =

∫
�t

e

∇ • (υt
j U g
)
dx =

∫
�t

e

∇υt
j • U gdx +

∫
�t

e

υt
j∇ • U gdx. (48)

Substituting Eq. (48) into (47), we have

d

dt

∫
�t

e

υt
jdx −

∫
�t

e

υt
j∇ • U gdx = 0. (49)

It is clearly seen that Eq. (49) is always satisfied due to the Reynolds transport theorem Eq. (11), which is based on the 
basis function definition in this paper. Thus, GCL is satisfied.

Numerically, we consider a uniform inviscid compressible flow in the domain [0, 10] × [−5, 5] × [0, 1] to validate our 
method. The initial condition is⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρ(x, y, z,0) = 1.0,

U (x, y, z,0) = 0.3,

V (x, y, z,0) = 0.7,

W (x, y, z,0) = 0.0,

p(x, y, z,0) = 1.0.

(50)

A perfect gas with specific heat ratio γ = 1.4 is considered. Periodic boundary conditions are applied in both x and y
directions, and a symmetric boundary condition is applied in the z direction. Three typical types of mesh motions are used 
for checking the GCL: a rigid translation Eq. (51), a rigid rotation Eq. (52) and a sinusoidal deformation Eq. (53), as following

x(t) = x0 + 1

2
sin

(
2πt

t0

)
, y(t) = y0 + 1

2
sin

(
2πt

t0

)
, z(t) = z0, (51)

x(t) = (x0 − 5
)

cos

(
t

5t0

)
− y0 sin

(
t

5t0

)
+ 5,

y(t) = (x0 − 5
)

sin

(
t

5t0

)
+ y0 cos

(
t

5t0

)
, z(t) = z0, (52)

x(t) = x0 + 1

2
sin

(
πx0

5

)
sin

(
π y0

5

)
sin

(
2πt

t0

)
,

y(t) = y0 + 1
sin

(
πx0)

sin

(
π y0)

sin

(
2πt

0

)
, z(t) = z0, (53)
2 5 5 t
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Fig. 3. The sample gird with 10 cells in x and y direction, and 1 cell in z direction.

in which t0 = 10, (x0, y0, z0) are the initial grid coordinates at t = 0, and (x, y, z) are the new coordinates which are time 
dependent. A sample uniform grid is used here for the calculation, see Fig. 3. The grid in the x–y plane is refined by 
quartering all cells for the convergence study, while one layer of grid in the z direction is kept. The spatial errors of the 
density ρ , the velocity U , and the pressure p at t = t0 are shown in Table 1. The results with static mesh are also listed 
there for reference. It is shown that all errors are significantly smaller than the previous results [16,30], which implies the 
satisfaction of the geometric conservation law.

Table 1
Errors of the numerical solutions versus free flow condition.

Meshes h Density U velocity Pressure

L1 error L∞ error L1 error L∞ error L1 error L∞ error

Static 1.000 8.46e−16 2.69e−15 1.08e−15 9.76e−15 8.46e−15 1.49e−14
0.500 7.79e−16 3.70e−15 5.38e−14 9.44e−13 2.45e−14 3.08e−13
0.250 1.95e−12 8.75e−12 1.31e−12 6.11e−12 9.65e−13 4.55e−12
0.125 2.14e−12 9.06e−12 1.39e−12 5.58e−12 8.64e−13 4.02e−12

A rigid translation 1.000 5.17e−13 1.73e−12 3.93e−13 1.09e−12 2.91e−13 9.15e−13
0.500 7.24e−13 2.33e−12 5.23e−13 1.67e−12 3.17e−13 1.11e−12
0.250 8.79e−13 2.93e−12 6.04e−13 1.98e−12 3.91e−13 1.84e−12
0.125 1.35e−12 4.93e−12 9.54e−13 3.44e−12 5.83e−13 3.48e−12

(continued on next page)
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Table 1 (continued)

Meshes h Density U velocity Pressure

L1 error L∞ error L1 error L∞ error L1 error L∞ error

A rigid rotation 1.000 4.54e−13 1.69e−12 3.45e−13 1.08e−12 2.49e−13 1.02e−12
0.500 8.48e−13 2.18e−12 5.95e−13 1.65e−12 3.35e−13 1.39e−12
0.250 1.07e−12 2.91e−12 7.33e−13 1.98e−12 3.53e−13 1.56e−12
0.125 1.61e−12 3.98e−12 1.13e−12 3.59e−12 4.99e−13 2.62e−12

A sinusoidal deformation 1.000 1.38e−12 3.95e−12 1.01e−12 2.68e−12 3.84e−13 1.57e−12
0.500 1.34e−12 4.24e−12 8.57e−13 2.65e−12 5.97e−13 2.22e−12
0.250 1.15e−12 3.93e−12 7.93e−13 2.41e−12 4.89e−13 2.33e−12
0.125 1.18e−12 4.55e−12 8.03e−13 3.10e−12 5.54e−13 3.10e−12

3. Numerical examples

3.1. Accuracy test – an isentropic vortex in freestream

A compressible isentropic vortex propagating in freestream is used for the accuracy test in this paper. Similar test cases 
have also been used by several authors [31–34]. It can be described as a perturbation added to a mean flow. The mean flow 
velocity U ∞ = (U∞, V∞, W∞), pressure p∞ , and density ρ∞ take the freestream condition. Initially, an isentropic vortex 
with no perturbation in entropy is added to the mean flow field. The initial conditions are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, y, z,0) = U∞ + δU (x, y, z,0) = U∞ − ε

2π
e

1−r2
2 (y − yc),

V (x, y, z,0) = V∞ + δV (x, y, z,0) = V∞ + ε

2π
e

1−r2
2 (x − xc),

W (x, y, z,0) = W∞ + δW (x, y, z,0) = 0.0,

T (x, y, z,0) = p∞
ρ∞

− δT (x, y, z,0) = p∞
ρ∞

− (γ − 1)ε2

8γπ2
e1−r2

,

S(x, y, z,0) = p∞
ρ

γ
∞

+ δS(x, y, z,0) = p∞
ρ

γ
∞

,

(54)

where (xc, yc, z) are the vortex center coordinates, r2 = (x − xc)
2 + (y − yc)

2, the specific heat ratio γ = 1.4, and the vortex 
strength ε = 5.0. The first case is a stationary vortex with the mean flow velocity to be zero, and the second case is a 
diagonally convecting vortex with the mean flow velocity U ∞ = (1.0, 1.0, 0.0). For both cases, ρ∞ = 1.0 and p∞ = 1.0.

The computational domain � is taken as [0, 10] × [−5, 5] × [0, 1], and the vortex is centered at (xc, yc, z) = (5.0, 0.0, z)
initially. Periodic boundary conditions are applied in both x and y directions, and the symmetry boundary condition is 
applied in the z direction. As a results of isentropy, the exact solution corresponds to a pure advection of the vortex with 
the mean flow velocity. The grids are the same as ones used for GCL test. Again, the three types of mesh motions, i.e., 
Eq. (51)–(53), are considered here. The spatial errors and the orders of accuracy are computed at t = 10 (one time period), 
which are shown in Table 2 and Table 3. The results show that the mesh moving or deforming leads to additional errors, 
however, the method is indeed a 3rd order accuracy, regardless the mesh movement.

Table 2
Errors and orders – stationary vortex.

Meshes h Density U velocity Pressure

L1 L1 L1

errors orders errors orders errors orders

Static 1.000 2.03e−1 – 5.70e−1 – 1.90e−1 –
0.500 2.67e−2 2.92 5.95e−2 3.26 2.72e−2 2.80
0.250 1.85e−3 3.85 4.97e−3 3.58 1.73e−3 3.98
0.125 9.42e−5 4.30 2.36e−4 4.40 9.10e−5 4.24

A rigid translation 1.000 9.48e−1 – 1.18e+0 – 9.56e−1 –
0.500 8.56e−2 3.47 1.08e−1 3.45 1.04e−1 3.20
0.250 6.11e−3 3.81 1.10e−2 3.29 7.10e−3 3.87
0.125 3.34e−4 4.19 5.97e−4 4.21 4.00e−4 4.15

A rigid rotation 1.000 2.58e−1 – 5.55e−1 – 2.13e−1 –
0.500 2.87e−2 3.17 6.44e−2 3.11 2.93e−2 2.86
0.250 1.91e−3 3.91 6.21e−3 3.37 1.70e−3 4.11
0.125 9.51e−5 4.33 3.81e−4 4.03 8.11e−5 4.39
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Table 2 (continued)

Meshes h Density U velocity Pressure

L1 L1 L1

errors orders errors orders errors orders

A sinusoidal deformation 1.000 4.95e−1 – 8.87e−1 – 4.23e−1 –
0.500 6.89e−2 2.84 1.26e−1 2.82 5.98e−2 2.82
0.250 6.55e−3 3.40 9.94e−3 3.66 3.93e−3 3.93
0.125 3.29e−4 4.31 6.10e−4 4.03 2.03e−4 4.28

Table 3
Errors and orders – diagonally convecting vortex.

Meshes h Density U velocity Pressure

L1 L1 L1

errors orders errors orders errors orders

Static 1.000 2.90e−1 – 6.56e−1 – 4.02e−1 –
0.500 2.75e−2 3.40 4.50e−2 3.87 3.08e−2 3.71
0.250 1.80e−3 3.93 2.50e−3 4.17 1.94e−3 3.99
0.125 1.09e−4 4.05 1.42e−4 4.14 1.34e−4 3.85

A rigid translation 1.000 3.82e−1 – 6.17e−1 – 4.73e−1 –
0.500 3.75e−2 3.35 5.01e−2 3.62 4.32e−2 3.45
0.250 2.82e−3 3.73 4.10e−3 3.61 3.57e−3 3.60
0.125 2.01e−4 3.81 3.10e−4 3.73 2.48e−4 3.85

A sinusoidal deformation 1.000 4.88e−1 – 7.85e−1 – 7.03e−1 –
0.500 6.20e−2 2.97 8.43e−2 3.22 7.94e−2 3.15
0.250 3.83e−3 4.02 5.95e−3 3.83 5.03e−3 3.98
0.125 2.59e−4 3.89 4.04e−4 3.88 3.33e−4 3.92

Fig. 4. Initial mesh (top) and zoomed-in meshes near the airfoil at two different angles of attack: α = αm (bottom-left) and α = αm + α0 (bottom-right).
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Fig. 5. Normal force coefficients, pitching moment coefficients versus angles of attack.

Fig. 6. Pressure coefficient distributions at different angles of attack.

3.2. Flow over an oscillatory pitching NACA0012 airfoil

Pitching around a given pivot point is an elementary motion for a 2D airfoil. In order to show the capability of the 
method to simulate this kind of problems, a NACA0012 airfoil is used here and the pitching axis is at the quarter chord 
from the leading edge. The inlet freestream condition has a Mach number Ma = 0.755, Reynolds number Re = 5.5 ×106, and 
the specific heat ratio γ = 1.4. The time-dependent angle of attack is prescribed by α(t) = αm + α0 sin(ωt) with the mean 
incidence αm = 0.016 degree, the pitching amplitude α0 = 2.51 degree, and the reduced frequency ωc/2U∞ = 0.0814. c is 
the chord length and U∞ is the freestream velocity, which is parallel to the x axis. The airfoil is placed in x–y plane and 
the pivot point coordinates are (xp, yp) = (−0.25, 0.0). The computational domain is [−30, 60] × [−30, 30] × [0, 1] with a 
symmetry boundary condition applied in the z direction. Fig. 4 shows the initial mesh and two instant zoomed-in meshes 
near the airfoil at different angles of attack. The cells near the airfoil are moving and deforming with the airfoil while the 
cells away from the airfoil are kept static. For the periodic motion, the flow field computed at α = αm is used as an initial 
condition.

The time-dependent normal force coefficients CN and pitching moment coefficients CM , defined in Eq. (55)–(56), are 
shown in Fig. 5. The numerical solutions are in good agreement with the experimental data reported by Landon [35]. Fig. 6
presents the detailed instantaneous pressure coefficient C p (Eq. (57)) distributions around the surfaces at different angles 
of attack. They are also in good agreement with the experimental data. Here we treat the flow problem as an inviscid one 
which may cause the small difference between the numerical results and the experimental data for

CN =
1∫ (

CLower
p − CUpper

p
)
dl, (55)
0
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Fig. 7. Meshes for simulation around the pitching airfoil NACA0015. Initial Coarse Mesh (top-left, middle-left). Coarse Mesh at 50 degree angle of attack 
(bottom-left). Initial Fine Mesh (top-right, middle-right). Fine Mesh at 50 degree angle of attack (bottom-right).

CM =
1∫

0

(
CLower

p − CUpper
p

)
(0.25 − l)dl, (56)

C p = (p − p∞)

1ρ U 2
, (57)
2 ∞ ∞
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Fig. 8. Lift coefficients and drag coefficients versus angles of attack.

in which l is the distance from the leading edge, (ρ∞, U∞, p∞) are the inlet freestream density, velocity and pressure, and 
the superscripts “Lower” and “Upper” denote lower and upper surfaces respectively.

3.3. Laminar flow around a rapidly pitching NACA0015 airfoil

Next, we test proposed method by simulating the laminar flow around a rapidly pitching airfoil. This test case has been 
used for validation by several authors [11,36,37]. NACA0015 airfoil is pitching upwards about a fixed axis. The pitching 
rate is ω(t) = ω0(1 − exp(−4.6t/t0)) rad/s, in which t0 = c/U∞ is a referential time when the pitching rate will reach 99% 
of its final rate, ω0 = 0.6U∞/c, U∞ is the freestream velocity, and c = 1 is the chord length. The fixed axis is located at 
the quarter chord from the leading edge. The Reynolds number is Re = 10,000 based on the chord length and freestream 
parameters, and the inlet Mach number is Ma = 0.2 with the specific heat ratio γ = 1.4. The flow field computed at zero 
degree angle of attack is used as initial condition.

The computational domain used here is the same as that in Section 3.2. The pivot point coordinates are located at 
(xp, yp) = (−0.25, 0.0). The initial mesh and mesh at 50 degree angle of attack in the x– y plane are shown in Fig. 7. One 
layer grid is used in the z direction. Here we define two meshes: Coarse Mesh: the number of nodes on the airfoil is 160, 
the minimum wall-normal spacing on the airfoil is 0.001 (around the leading edge and trailing edge), and the maximum 
spacing is about 0.003 (around the mid-chord); Fine Mesh: the number of nodes on the airfoil is 200, the minimum spacing 
on the airfoil is 0.0005 (around the leading edge and trailing edge), and the maximum spacing is about 0.0015 (around 
the mid-chord). The referential results in [36,37] were obtained using a mesh with the minimum spacing 0.0005. In our 
calculation, the cells near the airfoil are moving and deforming with the airfoil while cells away from it are kept static.

From the comparison, as shown in Fig. 8, the result with coarse mesh is in excellent agreement with the reference data, 
and the result with fine mesh has a little different with the reference, especially for the drag coefficient at large angles of 
attack. Since the fine mesh has better resolution of small scale flow structures at large angles of attack, the results with fine 
mesh should be more accuracy. Fig. 9 shows the instantaneous normalized vorticities ωzc/U∞ at different angles of attack 
and we can find that the fine mesh gives more detailed flow structures at large angles of attack.

Furthermore, the results with a piecewise constant grid velocity [24] and a variable mesh velocity along the cell interface 
proposed in this paper are compared with each other, shown in Fig. 10. It indicates that the mesh velocity treatment affects 
the results significantly and a variable mesh velocity along the cell interface is necessary for a high order method.

3.4. Flow over a high-frequency plunging SD7003 airfoil at low-Reynolds number

Flows over SD7003 airfoil with different motions have been experimentally studied in a water tunnel by McGowan et al. 
[38,39] and numerically studied by Visbal et al. [40]. In this section, the ALE method based on gas kinetic theory is used to 
simulate flow at Reynolds number Re = 10,000. For this low Reynolds number, transition does not occur over the airfoil at 
moderate angles of attack prior to stall [40].

The plunging motion is defined as h(t) = h0 sin(2kU∞t/c) with non-dimensional amplitude h0 = 0.05 and reduced fre-
quency k = 3.93. c = 1 is the chord length and the freestream velocity U∞ is parallel to the x axis. The airfoil is placed 
in the x–y plane with an initial angle of attack α0 = 4 degree. McGowan et al. [39] pointed out the Mach number must 
be low enough for high-reduced-frequency in order to reduce the compressibility effect. Here we take two Mach numbers 
Ma = 0.2 and 0.05 with the specific heat ratio γ = 5/3. The computational domain is [−20, 40] × [−20, 20] × [0, 1]. Fig. 11
presents the initial mesh and two instant zoomed-in meshes near the airfoil. The number of nodes on the airfoil is 200 
and the wall-normal spacing is 0.001. During the calculations, the mesh elements near the airfoil are moving and deforming 
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Fig. 9. The instantaneous normalized vorticities ωzc/U∞ at different angles of attack. 45 degree (top). 50 degree (middle). 57 degree (bottom). Coarse Mesh 
(left). Fine Mesh (right).
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Fig. 10. Comparison of the results with a piecewise constant grid velocity (up) and a variable grid velocity along the cell interface (low). Density contours 
(left). Pressure (middle). Total energy (right).

with the airfoil motion while the cells far away are kept static. Visbal et al. [40] used a sixth-order accurate algorithm with 
a fine mesh (wall-normal resolution 0.00005 and streamwise resolution 0.005). The flow field computed at h = 0.0 is used 
as initial condition.

Fig. 12 shows the time-dependent lift coefficients CL and drag coefficients C D . CL at Ma = 0.05 has a better agreement 
with the experimental data in [39] while the lift with Ma = 0.2 appears a phase lag. Besides, the vorticities are also com-
pared with the experiment data [38,39] in Fig. 13, and they are in good agreement with each other. This indicates the 
proposed method has the capacity to handle this kind of problems and gives reasonable results.

3.5. Hypersonic flow over two relatively moving cylinders

In this section, a hypersonic flow over two relatively moving cylinders is simulated to validate that the method for 
hypersonic flows. Two cylinders are moving forward with a Mach number 8.03 based the sound speed of upstream flow 
condition, while the rear one is periodically oscillating around the front cylinder center, as shown in Fig. 14. The cylinder has 
a radius 1 m and the distance between the two cylinder centers is 4 m. The far flow filed condition is T∞ = 124.94 K with 
the specific heat ratio γ = 1.4 and the specific gas constant R = 287.096 J/(kg K). The Reynolds number is Re = 1.835 × 105

with the cylinder moving velocity, cylinder radius, and the far field flow parameters. The cylinder has a constant temperature 
T w = 294.44 K. The trajectory of the center of the front cylinder is{

x1(t) = x10 − 1799.5t,

y1(t) = y10,
(58)

in which (x10, y10) is the initial coordinate for the front cylinder center and (x1(t), y1(t)) is its new coordinate for each 
time step. The center of the rear cylinder has the following motion{

x2(t) = (x20 − x10) cos(4000t) − (y20 − y10) sin(4000t) + x10 − 1799.5t,

y2(t) = (x20 − x10) sin(4000t) − (y20 − y10) cos(4000t) + y10,
(59)

where (x20, y20) is the initial coordinate for the rear cylinder center and (x2(t), y2(t)) is its new coordinates for each time 
step. Fig. 15 shows the comparison between the numerical results and the experimental data [41] and Fig. 16 shows the 
Mach number contours at different time. They are in good agreement and it indicates that the method proposed in this 
paper has the capacity to simulate the hypersonic flow with multiple moving objects.
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Fig. 11. Initial mesh (top) and two instant zoomed-in meshes near the airfoil: h = 0.0 (bottom-left) and h = h0 (bottom-right).

Fig. 12. Lift coefficients (left) and drag coefficients (right) versus normalized time t/T with T is the time period.
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Fig. 13. Comparison of the vorticities ωzc/U∞ . T is the time period.

4. Conclusions

A multi-dimensional high order DG-ALE method based on gas kinetic theory is introduced in this paper. It extends the 
third-order gas kinetic method from a static domain to the flow simulation over variable domain. A multi-dimensional gas 
kinetic model with an arbitrary mesh velocity distribution is proposed for the inviscid and viscous flow computations. Due 
to the spatial and temporal dependence of the gas distribution functions, the flux can be integrated within a cell and along a 
cell interface. At the same time, the flux can be integrated in time analytically without using any Runge–Kutta time-stepping 
method. The grid velocities inside a cell and along a cell interface can be arbitrarily chosen, such as interface translation 
and rotation, and the geometric conservation law can be satisfied accurately. The satisfaction of GCL has been proved 
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Fig. 14. Computational domain.

Fig. 15. Comparison of the numerical results with the experimental data. Pressure (left) and heat flux (middle) along the front cylindrical surface.

Fig. 16. Mach number contours at different time around the two moving cylinders.

mathematically and numerically. The numerical accuracy of the scheme is still maintained for a moving and deforming 
mesh. Several problems, i.e., flow over an oscillatory pitching NACA0012 airfoil, around a rapidly pitching NACA0015 airfoil, 
over a high-frequency plunging SD7003 airfoil, and two moving and oscillating cylinders, are computed to validate the 
numerical method. The current ALE-DG gas-kinetic scheme can be faithfully used for the study of oscillating bodies at 
modest flow speed.
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