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This paper presents an extension of previous work (Sun et al., 2015 [22]) of the unified gas 
kinetic scheme (UGKS) for the gray radiative transfer equations to the frequency-dependent
(multi-group) radiative transfer system. Different from the gray radiative transfer equations, 
where the optical opacity is only a function of local material temperature, the simulation 
of frequency-dependent radiative transfer is associated with additional difficulties from the 
frequency-dependent opacity. For the multiple frequency radiation, the opacity depends 
on both the spatial location and the frequency. For example, the opacity is typically a 
decreasing function of frequency. At the same spatial region the transport physics can be 
optically thick for the low frequency photons, and optically thin for high frequency ones. 
Therefore, the optical thickness is not a simple function of space location. In this paper, 
the UGKS for frequency-dependent radiative system is developed. The UGKS is a finite 
volume method and the transport physics is modeled according to the ratio of the cell size 
to the photon’s frequency-dependent mean free path. When the cell size is much larger 
than the photon’s mean free path, a diffusion solution for such a frequency radiation will 
be obtained. On the other hand, when the cell size is much smaller than the photon’s 
mean free path, a free transport mechanism will be recovered. In the regime between the 
above two limits, with the variation of the ratio between the local cell size and photon’s 
mean free path, the UGKS provides a smooth transition in the physical and frequency space 
to capture the corresponding transport physics accurately. The seemingly straightforward 
extension of the UGKS from the gray to multiple frequency radiation system is due to 
its intrinsic consistent multiple scale transport modeling, but it still involves lots of work 
to properly discretize the multiple groups in order to design an asymptotic preserving 
(AP) scheme in all regimes. The current scheme is tested in a few frequency-dependent 
radiation problems, and the results are compared with the solutions from the well-defined 
implicit Monte Carlo (IMC) method. The UGKS is much more efficient than IMC, and the 
computational times of both schemes for all test cases are listed. The UGKS seems to be 
the first discrete ordinate method (DOM) for the accurate capturing of multiple frequency 
radiative transport physics from ballistic particle motion to the diffusive wave propagation.
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1. Introduction

To solve the radiative transfer equations is very challenging, but it is important in astrophysics, inertial confinement 
fusion, and high temperature flow systems. Due to the complexity of the system, its study attracts continuous attention 
from national laboratories and academic institutes. This paper presents a continuous effort to develop a useful and reliable 
computational method for multiple scale radiative transport system.

In a previous work, we have developed an asymptotic preserving unified gas kinetic scheme (UGKS) for the gray ra-
diative transfer equations [22]. Here an extension of the scheme to frequency-dependent radiative transfer system will be 
developed. The radiative transfer equations are the modeling equations in the kinetic level, where the photon transport 
and collision with material are taken into account. This system can present different limiting solutions with the changing 
of the scales. For the gray radiative transfer equations, the opacity is just a function of the material temperature. There-
fore, the spatial cells can be classified as optical thick and optical thin regions, and a domain decomposition method with 
different numerical discretization in different regions can be developed. However, for the frequency-dependent radiative 
transfer equations, the opacity is typically a decreasing function of frequency. A spatial region can be optically thick for 
low frequency photon, but optically thin for high frequency ones. It becomes challenging to develop a reliable asymptotic 
preserving scheme for simulating different frequency photon transport efficiently.

The radiative transfer equations model the radiation intensity transport and energy exchange with the background ma-
terial. The properties of the background material influence greatly on the behavior of radiation transfer. For a low opacity 
(background) material, the interaction between the radiation and material is weak, and the radiation propagates in a trans-
parent way. The numerical method in this regime can be well developed by tracking the particle streaming transport. 
However, for a high opacity (background) material, there is severe interaction between radiation and material with a dimin-
ishing photon mean free path. As a result, the diffusive radiative behavior will emerge. In order to solve the kinetic scale 
based radiative transfer equations numerically, a straightforward way is to use a spatial mesh size which is comparable with 
photon’s mean-free path, i.e., the so-called optical thin cell, and the transport equation can be discretized directly, such as 
using upwind approach for photon transport. This kind of method is basically a single scale method, where the numerical 
resolution down to the mean free path is used everywhere in the computation. Most Monte Carlo methods for transport 
equations belong to this category as well. In this kind of methods, to take such a small cell size will be associated with 
huge computational cost in the optical thick regime. In order to use a large cell size in comparison with the mean free 
path in the optical thick region, instead of decoupling the particle transport and collision in the numerical discretization, 
the coupled transport and collision has to be taken into account in the design of the scheme.

One of the idealized multiscale methods is to develop the so-called asymptotic preserving (AP) scheme for the kinetic 
equation. When holding the mesh size and time step fixed and as the Knudsen number going to zero, the AP scheme 
should automatically recover the discrete diffusion solution. AP schemes were first studied in the numerical solution of 
steady neutron transport problems by Larsen, Morel and Miller [17], Larsen and Morel [16], and then by Jin and Levermore 
[10,11], and the others. For unsteady problems, one of the AP schemes was constructed based on a decomposition of the 
distribution function between an equilibrium part and its non-equilibrium derivation, see Klar [13,14], and Jin, Pareschi and 
Toscani [12] for details. The development of an AP-type discrete ordinate method (DOM) for the multi-frequency radiative 
transfer equation coupled with material energy equation is an extremely difficult numerical problem [7,8,21], where most 
well-validated approaches are the Monte Carlo methods.

The UGKS is one of the AP schemes for the transport equations [4,9,24,26]. It not only recovers accurate limiting so-
lutions, such as ballistic transport and diffusion propagation, but also presents reliable solution in the whole transition 
regime. In UGKS, the mesh size is used directly as a modeling scale for identifying transport dynamics. When the mesh 
size is on the order of mean free path, the kinetic transport mechanism, such as the modeling process of the Boltzmann 
equation, is recovered in the numerical evolution [25]. When the mesh size is much larger than the mean free path, the 
hydrodynamic scale physics, such as the Navier–Stokes (NS) solutions for the flow system and the diffusion equation for the 
radiative transfer, is obtained. Between these two limits, a smooth transition is constructed and used for the capturing of 
non-equilibrium phenomena. In UGKS the mesh size and time step are dynamic variables in the evolution model. It may not 
be difficult to accept this kind of concept if we can realize that all fluid dynamic equations, such as the Boltzmann equation 
and the NS equations, are constructed based on their specific modeling scales with the corresponding dynamics. More or 
less the UGKS is using the mesh size and time step to model the dynamics and get the solutions without going through the 
partial differential equations step [24].

In this paper, an AP UGKS (AP-UGKS) will be developed for the frequency-dependent radiative equations, which are 
composed of radiation transport and material energy equation. In terms of dynamic modeling, the frequency-dependent 
radiation system is much more complicated. Within the same spatial cell, both optical thin and thick dynamics can appear 
for different frequency photons. Not only for the capturing of limiting solutions, accurate solution in the whole transition 
regime is required in order to capture the dynamics of a continuum spectrum in the frequency domain. The critical ingredi-
ent of UGKS is the use of an un-splitting treatment of photon’s transport and collision and its automatic recovery of optical 
thin and thick transport mechanism. The importance of the coupling of transport and collision has been emphasized in a 
recent paper for the development of AP schemes [5]. The basic steps of AP-UGKS are the following. The multi-group method 
is first used to discretize the frequency variable, and the discrete-ordinate method (DOM) is employed to discretize the an-
gular distribution of photon’s movement. A time evolution integral solution of radiation intensity at different frequency is 
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constructed for the flux evaluation at a cell interface. In order to evaluate the source terms inside each cell for the ra-
diation intensity update, the macroscopic radiation energy equations at each frequency and the material energy equation 
are solved first at the next time level for the update of macroscopic radiation energy and material temperature. Then, the 
updated macroscopic quantities are used in UGKS for the full determination of the multi-group radiation intensity inside 
the cell. For the multiple frequency radiative transfer, much numerical work is involved in the numerical discretization in 
the radiation frequency space and their coupling. Also, due to the complicated nature of such a system, we can only find 
the numerical examples, which have been previously tested by the Monte Carlo methods. We could not find any other DOM 
for the multiple frequency radiative transfer system [8,21].

This paper is organized as follows. Section 2 introduces the model equations of the frequency-dependent radiative trans-
fer. Section 3 is the construction of the unified scheme for such a system. Section 4 gives the asymptotic preserving analysis. 
In Section 5 many frequency-dependent numerical tests are included to demonstrate the accuracy and robustness of the new 
scheme, and its efficiency comparison with Monte Carlo method. A conclusion is given in the last section.

2. System of frequency-dependent radiative transfer equations

The frequency-dependent radiative transfer equations describe the radiative transfer and the energy exchange between 
radiation and material. The equations can be written in following scaled form:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε2

c

∂ I

∂t
+ ε �� · ∇ I = σ

(
B(ν, T ) − I

)
,

ε2C v
∂T

∂t
≡ ε2 ∂U

∂t
=

∫
4π

∞∫
0

σ
(

I − B(ν, T )
)
dνd ��.

(2.1)

Here I(t, �r, ��, ν) is the radiation intensity, �r is the spatial variable, �� is the angular variable, t is the time, and ν ∈ (0, +∞)

is the frequency variable. Here T (�r, t) is the material temperature, σ(�r, ν, T ) is the opacity, c is the speed of light, ε > 0
is the Knudsen number, and U (�r, t) is the material energy density. For the simplicity of presentation, we have omitted the 
internal source and scattering terms in (2.1). In addition, the Planck function B(ν, T ) is defined by

B(ν, T ) = 2hν3

c2

1

ehν/kT − 1
, (2.2)

where h is Planck’s constant and k is Boltzmann’s constant.
The material temperature T (�r, t) and the material energy density U (�r, t) are related by

∂U

∂T
= C V > 0,

where CV (�r, t) is the heat capacity.
As the parameter ε → 0, Larsen et al. [18] have shown that, away from boundaries and initial times, the intensity I

approaches to a Planckian at the local temperature, i.e.,

I(0) = B(ν, T (0)),

and the corresponding local temperature T (0) satisfies the following nonlinear diffusion equation,

∂

∂t
U (T (0)) + a

∂

∂t
(T (0))4 = ∇ · ac

3σR
∇(T (0))4, (2.3)

where a is the radiation constant given by

a = 8πk4

15h3c3
,

and σR is the Rosseland mean opacity defined by

1

σR
=

∫ ∞
0

1
σ (�r,ν,T )

∂ B(ν,T )
∂T dν∫ ∞

0
∂ B(ν,T )

∂T dν
.

The asymptotic analysis was also presented in [2].
An asymptotic preserving (AP) scheme for the frequency-dependent radiation transfer equations (2.1) is a numerical 

scheme which discretizes (2.1) in such a way that it leads to a correct discretization of the diffusion limit (2.3) when ε is 
small, and the scheme should be uniformly stable in ε .

The limiting equation (2.3) is what we would like to get in the AP scheme for (2.1) in the optical thick region. For 
simplicity, we consider here the two-dimensional Cartesian spatial case for problem (2.1). Thus in this case, the angle 
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direction is denoted by �� = (μ, ξ), with μ = √
1 − ζ 2 cos θ , ξ = √

1 − ζ 2 sin θ , ζ ∈ [−1, 1] as the cosine value of the angle 
between the propagation direction �� and the z-axis, and θ ∈ [0, 2π) as the angle between the projection vector of �� onto 
the xy-plane and the x-axis. Due to the symmetry of angular distribution in the two-dimensional Cartesian case, we need 
to consider ζ ≥ 0 only.

3. UGKS for frequency-dependent radiative transfer equations

In this section, based on the UGKS framework in [9,20,22,26], we will present the AP-UGKS for the frequency-dependent 
radiative transfer system (2.1).

3.1. Frequency space discretization

For the system (2.1), we first give the discretization of frequency variable ν . A standard way is to apply a multi-group 
method. In the multi-group method, the frequency variable ν is divided into discrete frequency intervals and “groups” the 
photons according to these intervals [1]. Let G be the positive integer number, we discretize the continuous frequency space 
(0, +∞) by G discrete frequency intervals (νg− 1

2
, νg+ 1

2
) with g = 1, · · · , G , and ν 1

2
= 0, νG+ 1

2
= +∞. Once the boundaries 

of the groups are defined, we can integrate the first equation in (2.1) over the frequency interval,
ν

g+ 1
2∫

ν
g− 1

2

(
ε

c
∂t I + �� · ∇ I

)
dν =

ν
g+ 1

2∫
ν

g− 1
2

σ

ε

(
B(ν, T ) − I

)
dν. (3.1)

For equation (3.1), the radiation intensity in different groups and the corresponding group opacities are given by

I g =
ν

g+ 1
2∫

ν
g− 1

2

I(t,�r, ��,ν)dν, (3.2)

and

σ e
g =

ν
g+ 1

2∫
ν

g− 1
2

σ B(ν, T )dν

ν
g+ 1

2∫
ν

g− 1
2

B(ν, T )dν

,

σ a
g =

ν
g+ 1

2∫
ν

g− 1
2

σ Idν

ν
g+ 1

2∫
ν

g− 1
2

Idν

. (3.3)

For Planck function B(ν, T ) on the right hand side of equation (3.1), it is also integrated over the frequency interval

φg =
ν

g+ 1
2∫

ν
g− 1

2

B(ν, T )dν. (3.4)

With these notations in (3.2), (3.3), and (3.4), equation (2.1) goes to an equivalent multi-group radiative transfer system:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε2

c

∂ I g

∂t
+ ε �� · ∇ I g = (σ e

g φg − σ a
g I g) (g = 1, · · · , G),

ε2C v
∂T

∂t
≡ ε2 ∂U

∂t
=

g=G∑
g=1

∫
(σ a

g I g − σ e
g φg)d ��.

(3.5)
4π
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It should be pointed out that the absorption opacity σ a
g is a weighted integration with the unknown function I . Usually, 

the unknown function I in this opacity integration is replaced by the Planck function with the radiation temperature Tr
instead of the material temperature T . For this purpose, we define the radiation temperature and the absorption opacity in 
the following ways,

acT 4
r =

∫
4π

+∞∫
0

Id ��dν =
g=G∑
g=1

∫
4π

I gd ��,

σ a
g =

ν
g+ 1

2∫
ν

g− 1
2

σ B(ν, Tr)dν

ν
g+ 1

2∫
ν

g− 1
2

B(ν, Tr)dν

. (3.6)

Up to now, the discretization of the frequency variable is finished.

3.2. Discrete ordinate method

For the angular variable, as done for the usual discrete ordinate method for equation (3.5), we first give the propagation 
direction (μ, ξ) a discrete value. As in [19] for example, we use the even integer N as the discrete ordinate order, then 
obtain the discrete directions ��m � (μm, ξm) and their corresponding integration weights ωm for m = 1, · · · , M , with M =
N(N + 2)/2. For each direction (μm, ξm), we get the discrete equation for the multi-group radiative transfer equations (3.5):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε2

c

∂ Im,g

∂t
+ ε ��m · ∇ Im,g = (σ e

g φg − σ a
g Im,g) (g = 1, · · · , G, m = 1, · · · , M),

ε2C v
∂T

∂t
≡ ε2 ∂U

∂t
=

g=G∑
g=1

m=M∑
m=1

(σ a
g Im,g − σ e

g φg)ωm.

(3.7)

Let xi = ix, y j = jy and tn = nt (i, j, n ∈ Z) be the uniform mesh in Cartesian coordinates, where x, y and t
are the mesh sizes in the x-, y-directions and the time step in t-direction. Let (i, j) denote the cell {(x, y); xi−1/2 < x <
xi+1/2, y j−1/2 < y < y j+1/2}, where xi−1/2 = (i − 1

2 )x and y j−1/2 = ( j − 1
2 )y are the cell interfaces.

In the following, we use the notation In
i, j,m,g as the cell averaged value of intensity variable Im,g at time tn in cell (i, j)

with cell center (xi, y j). Then, we integrate equation (3.7) over the cell (i, j) from time tn to tn + t . A conservative finite 
volume numerical scheme for the equation (3.7) is of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

In+1
i, j,m,g = In

i, j,m,g + t

x
(Fi−1/2, j,m,g − Fi+1/2, j,m,g) + t

y
(Hi, j−1/2,m,g − Hi, j+1/2,m,g)

+ ct

ε2

{
(σ e

g φ̃g,i, j − σ a
g Ĩ i, j,m,g)

}
,

ε2C v T n+1
i, j = ε2C v T n

i, j + t
g=G∑
g=1

m=M∑
m=1

(σ a
g Ĩ i, j,m,g − σ e

g φ̃g,i, j)ωm,

(3.8)

where Fi−1/2, j,m,g and Hi, j−1/2,m,g are the time-dependent numerical fluxes in the x- and y-directions across the cell 
interfaces. And the terms in the equations of (3.8) are given by

Fi−1/2, j,m,g = c

εt

tn+1∫
tn

μm Im,g(t, xi− 1
2
, y j,μm, ξm)dt,

Hi, j−1/2,m,g = c

εt

tn+1∫
tn

ξm Im,g(t, xi, y j− 1
2
,μm, ξm)dt,

φ̃g,i, j = 1

txy

tn+1∫
n

xi+1/2∫
x

y j+1/2∫
y

φg(t, x, y)dxdydt,
t i−1/2 j−1/2



W.J. Sun et al. / Journal of Computational Physics 302 (2015) 222–238 227
Ĩ i, j,m,g = 1

xyt

tn+1∫
tn

xi+1/2∫
xi−1/2

y j+1/2∫
y j−1/2

Im,g(t, x, y,μm, ξm)dxdydt. (3.9)

In order to update the system (3.8), we need to determine all terms in (3.9) explicitly. First, the term Ĩ i, j,m,g in (3.9) can 
be approximated implicitly by

Ĩ i, j,m,g ≈ In+1
i, j,m,g,

which can be combined with the solution on the left hand side of Eq. (3.8).

3.3. UGKS: microscopic inner loop

The key for UGKS is to model the time-dependent interface fluxes Fi−1/2, j,m,g and Hi, j−1/2,m,g in Eq. (3.9). The radiation 
intensity at a cell interface is based on an evolution solution of the transport equation with initial value In

i, j,m,g [20,22,26]. 
This evolution solution covers different flow regimes from the ballistic transport to the hydrodynamic wave propagation 
[24]. The real solution used for the flux evaluation depends on the ratio of the time step to the local particle collision time.

For the x-direction flux Fi−1/2, j,m,g , the radiation intensity is obtained by solving the following initial value problem at 
the cell boundary x = xi−1/2, y = y j :⎧⎨

⎩
ε

c
∂t Im,g + μm∂x Im,g = 1

ε
(σ e

g φg − σ a
g Im,g),

Im,g(x, y j, t)|t=tn = Im,g,0(x, y j, tn).

(3.10)

Thus, a time-dependent evolution solution can be obtained,

Im,g(t, xi−1/2, y j,μm, ξm) = e−λg,i−1/2, j(t−tn) Im,g,0

(
xi−1/2 − cμm

ε
(t − tn)

)

+
t∫

tn

e−λg,i−1/2, j(t−s)
cσ e

g,i−1/2, j

ε2
φg

(
s, xi−1/2 − cμm

ε
(t − s)

)
ds, (3.11)

where λg = cσ a
g /ε2 and λg,i−1/2, j denote the value of λg at the corresponding cell boundary. Substituting

Im,g(t, xi−1/2, y j, μm, ξm) of (3.11) into (3.9), and integrating it with respect to time t from tn to tn+1, we can get the 
numerical flux Fi−1/2, j,m,g in the x-direction. The numerical flux Hi, j−1/2,m,g in the y-direction can be constructed simi-
larly.

The solution in Eq. (3.11) depends on two functions, which need to be modeled numerically. The first one is Im,g (t, x, y j)

at tn around (xi−1/2, y j), which is the initial condition for function Im,g,0(x, y j, tn), and the other one is the function 
φg(t, x, y) between the time steps tn and tn+1 around the cell boundary (xi−1/2, y j).

The initial condition Im,g,0(x, y j, tn) at the beginning of each time step in (3.10) can be approximated by a piecewise 
linear function:

Im,g,0(x, y j, tn) =
{

In
i−1, j,m,g + δx In

i−1, j,m,g(x − xi−1), if x < xi−1/2,

In
i, j,m,g + δx In

i, j,m,g(x − xi), if x > xi−1/2.
(3.12)

Here δx In
i−1, j,m,g, δx In

i+1, j,m,g are the reconstructed slopes through the second order MUSCL limiter [23].

The function φg(x, y j, t) between the time steps tn and tn+1 around the cell boundary (xi−1/2, y j) is modeled by a 
piecewise continuous polynomial as:

φg(x, y j, t) = φn+1
g,i−1/2, j + δtφ

n+1
g,i−1/2, j(t − tn+1)

+
{

δxφ
n+1,L
g,i−1/2, j(x − xi−1/2), if x < xi−1/2,

δxφ
n+1,R
g,i−1/2, j(x − xi−1/2), if x > xi−1/2.

(3.13)

Here the left and right one-sided finite differences are given by

δxφ
n+1,L
g,i−1/2, j = φn+1

g,i−1/2, j − φn+1
g,i−1, j

x/2
, δxφ

n+1,R
g,i−1/2, j = φn+1

g,i, j − φn+1
g,i−1/2, j

x/2
.

And for the time derivative δtφ
n+1
g,i−1/2, j , we use

δtφ
n+1
g,i−1/2, j = φn+1

g,i−1/2, j − φn
g,i−1/2, j

.

t



228 W.J. Sun et al. / Journal of Computational Physics 302 (2015) 222–238
The cell boundary value φn+1
g,i−1/2, j and the cell center values φn+1

g,i, j and φn+1
g,i−1, j will be determined later. Given the above 

constructions, the numerical flux

Fi−1/2, j,m,g = cμm

εt

tn+1∫
tn

Im,g(t, xi−1/2, y j,μm, ξm)dt

can be exactly computed by using the expressions (3.11), (3.12) and (3.13),

Fi−1/2, j,m,g = Ag,i−1/2, jμm(I−i−1/2, j,m,g1μm>0 + I+i−1/2, j,m,g1μm<0) + C g,i−1/2, jμmφn+1
g,i−1/2, j

+ D g,i−1/2, j(μ
2
mδxφ

n+1,L
g,i−1/2, j1μm>0 + μ2

mδxφ
n+1,R
g,i−1/2, j1μm<0)

+ B g,i−1/2, j(μ
2
mδx In

i−1, j,m,g1μm>0 + μ2
mδx In

i, j,m,g1μm<0)

+ E g,i−1/2, jμmδtφ
n+1
g,i−1/2, j, (3.14)

where I−i−1/2, j,m,g and I+i−1/2, j,m,g are values at boundary, which are given by

I−i−1/2, j,m,g = Ii−1, j,m,g + x

2
δx In

i−1, j,m,g,

I+i−1/2, j,m,g = Ii, j,m,g − x

2
δx In

i, j,m,g .

The coefficients in (3.14) are

Ag = c

εtλg
(1 − e−λgt),

C g = c2σ e
g

tε3λg

(
t − 1

λg
(1 − e−λgt)

)
,

D g = − c3σ e
g

tε4λ2
g

(
t(1 + e−λgt) − 2

λg
(1 − e−λgt)

)
,

B g = − c2

ε2λ2
gt

(1 − e−λgt − λgte−λgt),

E g = c2σ e
g

ε3λ3
gt

(
1 − e−λgt − λgte−λgt − 1

2
(λt)2

)
, (3.15)

with λg = cσ a
g /ε2. With the expression (3.15), we have

Ag,i−1/2, j = Ag(t, ε, λg,i−1/2, j),

C g,i−1/2, j = C g(t, ε,σ e
g,i−1/2, j, λg,i−1/2, j),

D g,i−1/2, j = D g(t, ε,σ e
g,i−1/2, j, λg,i−1/2, j),

B g,i−1/2, j = B g(t, ε, λg,i−1/2, j),

E g,i−1/2, j = E g(t, ε,σ e
g,i−1/2, j, λg,i−1/2, j). (3.16)

It should be emphasized here that even with the interface solution (3.11), in order to obtain a consistent limiting diffusive 
flux, the coefficients, such as σ e

g,i−1/2, j and λg,i−1/2, j at a cell boundary, have to be properly defined by using the values 
from the two neighboring cells in the above expression (3.16).

The boundary flux Hi, j− 1
2 ,m,g in the y-direction can be constructed in the same way. This completes the construction of 

the numerical boundary fluxes for multi-group radiative transfer equations (3.8).

3.4. UGKS: macroscopic inner loop

To complete the construction of numerical scheme for (3.7), the detailed expressions φ̃g in (3.8), and φn+1
g,i−1/2, j , φ

n+1
g,i, j , 

and φn+1
g,i−1, j in (3.13), have to be given. Following the methodology of UGKS, we will first evaluate the macroscopic radiation 

energy and material temperature at next time level through the following macroscopic equations. First, let’s take the angular 
integration of the first equation in (3.5) and obtain the following system for macroscopic variables:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε2

c

∂ρg

∂t
+ ε∇ · 〈 ��I g〉 = (4πσ e

g φg − σ a
g ρg) (g = 1, · · · , G),

ε2C v
∂T

∂t
≡ ε2 ∂U

∂t
=

g=G∑
g=1

(σ a
g ρg − 4πσ e

g φg),

(3.17)

where ρg = ∫
4π I gd �� and 〈 ��I g〉 is the angular vector integration given by

〈 ��I g〉 =
∫

4π

��I gd ��.

The numerical discretization for the above macroscopic equations (3.17) can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρn+1
g,i, j = ρn

g,i, j + t

x
(�n+1

g,i−1/2, j − �n+1
g,i+1/2, j) + t

y
(�n+1

g,i, j−1/2 − �n+1
g,i, j+1/2)

+ ct

ε2

(
4π(σ e

g )n+1
i, j φn+1

g,i, j − (σ a
g )n+1

i, j ρn+1
g,i, j

)
(g = 1, · · · , G)

C v T n+1
i, j = C v T n

i, j + t

ε2

g=G∑
g=1

(
(σ a

g )n+1
i, j ρn+1

g,i, j − 4π(σ e
g )n+1

i, j φn+1
g,i, j

)
,

(3.18)

where the cell interface fluxes are given by

�n+1
g,i−1/2, j = c

εt

tn+t∫
tn

〈�x I g〉(xi−1/2, y j, t)dt,

�n+1
g,i+1/2, j = c

εt

tn+t∫
tn

〈�x I g〉(xi+1/2, y j, t)dt,

�n+1
g,i, j−1/2 = c

εt

tn+t∫
tn

〈�y I g〉(xi, y j−1/2, t)dt,

�n+1
g,i, j+1/2 = c

εt

tn+t∫
tn

〈�y I g〉(xi, y j+1/2, t)dt. (3.19)

With the cell interface intensity I g (g = 1, · · · , G) in (3.11), we can get the explicit expression for all terms in (3.19). For 
example, at the cell interface in the x-direction, we can get

�n+1
g,i−1/2, j = c

εt

tn+t∫
tn

〈�x I g〉(xi−1/2, y j, t)dt

=
M∑

m=1

ωm Fi−1/2, j,m,g

= An+1
g,i−1/2, j

M∑
m=1

ωmμm(In
i−1, j,m,g1μm>0 + In

i, j,m,g1μm<0)

+ 4π Dn+1
g,i−1/2, j

3

(
φn+1

g,i, j − φn+1
g,i−1, j

x

)

+ Bn+1
g,i−1/2, j

M∑
m=1

ωmμ2
m(δx In

i−1, j,m,g1μm>0 + δx In
i, j,m,g1μm<0), (3.20)

where the expressions of An+1
g,i−1/2, j , Bn+1

g,i−1/2, j and Dn+1
g,i−1/2, j in (3.20) are the same as the parameters Ag,i−1/2, j , B g,i−1/2, j , 

and D g,i−1/2, j in (3.16), but with the following definitions for the cell interface values (σ a
g )i−1/2, j and (σ e

g )i−1/2, j ,
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(σ a
g )n+1

i−1/2, j = 2(σ a
g )n+1

i, j (σ a
g )n+1

i−1, j

(σ a
g )n+1

i, j + (σ a
g )n+1

i−1, j

,

(σ e
g )n+1

i−1/2, j = 2(σ e
g )n+1

i, j (σ e
g )n+1

i−1, j

(σ e
g )n+1

i, j + (σ e
g )n+1

i−1, j

. (3.21)

Up to now, with the given interface fluxes in (3.19), the equations (3.18) become a coupled nonlinear system for the 
macroscopic quantities T n+1

i, j and ρn+1
g,i, j (g = 1, · · · , G), where the parameters (σ a

g )n+1
i, j and (σ e

g )n+1
i, j depend implicitly on 

the material temperature T n+1
i, j . This nonlinear system can be solved by an iterative method, which is given below.

Algorithm for solving (3.18). Based on the initial radiation intensity In
i, j,m,g and T n

i, j , we have ρn
g,i, j and φn

g,i, j . Find ρn+1
g,i, j

and T n+1
i, j in equations (3.18).

1) Set the initial iterative value ρn+1,0
g,i, j = ρn

g,i, j and T n+1,0
i, j = T n

i, j ;
2) For s = 0, · · · , S .

2.1) Compute the coefficients (σ a
g )

n+1,s
i, j , (σ e

g )
n+1,s
i, j , An+1,s

g,i−1/2, j, B
n+1,s
g,i−1/2, j and Dn+1,s

g,i−1/2, j , which are functions of T n+1,s
i, j .

2.2) Find ρn+1,s+1
g,i, j and T n+1,s+1

i, j of the following iterative system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρn+1,s+1
g,i, j = ρn

g,i, j + t

x
(�

n+1,s
g,i−1/2, j − �

n+1,s
g,i+1/2, j) + t

y
(�

n+1,s
g,i, j−1/2 − �

n+1,s
g,i, j+1/2)

+ ct

ε2

(
4π(σ e

g )
n+1,s
i, j φ̄

n+1,s+1
g,i, j − (σ a

g )
n+1,s
i, j ρn+1,s+1

g,i, j

)
,

C v T n+1,s+1
i, j = C v T n

i, j + t

ε2

G=G∑
g=1

(
(σ a

g )
n+1,s
i, j ρn+1,s+1

g,i, j − 4π(σ e
g )

n+1,s
i, j φ̄

n+1,s+1
g,i, j

)
,

φ̄
n+1,s+1
g,i, j = φ

n+1,s
g,i, j +

(
∂φg

∂T

)n+1,s

i, j
(T n+1,s+1

i, j − T n+1,s
i, j ),

∂φg

∂T
=

ν
g+ 1

2∫
ν

g− 1
2

∂ B(ν, T )

∂T
dν,

(3.22)

where (∂φg/∂T )
n+1,s
i, j is a function of T n+1,s

i, j , and the interface numerical flux �n+1,s
g,i−1/2, j has the same form as 

(3.20), which can be written as

�
n+1,s
g,i−1/2, j = An+1,s

g,i−1/2, j

M∑
m=1

ωmμm(In
i−1, j,m,g1μm>0 + In

i, j,m,g1μm<0)

+ 4π Dn+1,s
g,i−1/2, j

3

(
φ

n+1,s+1
g,i, j − φ

n+1,s+1
g,i−1, j

x

)

+ Bn+1,s
g,i−1/2, j

M∑
m=1

ωmμ2
m(δx In

i−1, j,m,g1μm>0 + δx In
i, j,m,g1μm<0).

2.3) For the system (3.22), use the Gauss–Sedel iteration to solve the resulting linear algebraic equations.
2.4) Compute the relative iteration error. Stop the iteration when convergent condition is reached.

3) Update the solutions ρn+1
g,i, j = ρn+1,s+1

g,i, j (g = 1, · · · , G) and T n+1
i, j = T n+1,s+1

i, j .

End

After obtaining T n+1
i, j in the macroscopic variable equations (3.17), we get φn+1

g,i, j (g = 1, · · · , G) through (3.4). Then, φ̃g,i, j

in (3.9) is set by

φ̃g,i, j = φn+1
g,i, j, (3.23)

and the cell interface value φn+1
g,i−1/2, j in (3.13) takes

φn+1
g,i−1/2, j = 1

(φn+1
g,i−1, j + φn+1

g,i, j) (g = 1, · · · , G). (3.24)

2
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Fig. 1. The flowchart of UGKS.

The cell interface opacities (σ a
g )i−1/2, j and (σ e

g )i−1/2, j are determined by (3.21) with the above updated material tempera-

ture T n+1
i, j from the macro equations (3.17).

3.5. UGKS: update of radiation intensity

With the determination of the macroscopic radiation energy ρn+1
g,i, j and material temperature T n+1

i, j at the next time level, 
the interface flux function for the radiation intensity of the system (3.9) is fully obtained. The radiative transfer equation in 
(3.7) can be solved by the following scheme

In+1
i, j,m,g = In

i, j,m,g + t

x
(Fi−1/2, j,m,g − Fi+1/2, j,m,g) + t

y
(Hi, j−1/2,m,g − Hi, j+1/2,m,g)

+ ct

ε2

(
(σ e

g )n+1
i, j φn+1

g,i, j − (σ a
g )n+1

i, j In+1
i, j,m,g

)
, (3.25)

where the opacities (σ e
g )n+1

i, j and (σ a
g )n+1

i, j are fully defined by the updated material temperature T n+1
i, j of the macro equations 

(3.17).
The final step is to solve the second equation of (3.7) to obtain the final material temperature with the newly updated 

value In+1
i, j,m,g . This material temperature is directly given by

T n+1
i, j = C v T n

i, j + t
∑g=G

g=1

∑M
m=1 ωm((σ a

g )n+1
i, j In+1

i, j,m,g − (σ e
g )n+1

i, j φn+1
g,i, j)/ε

2

C v
. (3.26)

This completes the construction of the AP-UGKS for the frequency-dependent radiation transfer equations (2.1). We summa-
rize the steps of AP-UGKS.

Loop of the AP-UGKS. Given In
i, j,m,g and T n

i, j at time step n, evaluate ρn
g,i, j and φn

g,i, j , and find In+1
i, j,m,g and T n+1

i, j at time step 
n + 1.

1) Solve the system (3.18) to obtain T n+1
i, j and ρn+1

g,i, j , then φn+1
g,i, j ;

2) Use the obtained values T n+1
i, j and φn+1

g,i, j from the above step, to solve the resulting equation (3.25) to get In+1
i, j,m,g ;

3) Based on the solution In+1
i, j,m,g , to get the new value T n+1

i, j by using the explicit expression (3.26);
4) Goto 1) for the next computational step.

In order to understand the algorithm clearly, the flowchart for the computation procedures is given in Fig. 1.

4. Asymptotic analysis of UGKS

In this section, we shall analyze the asymptotic properties of the UGKS for radiative transfer system. The methods in 
[20,22] will be used for the analysis. The property of the scheme is mainly determined by the numerical flux, which is 
controlled through the ε-dependent coefficients in (3.16). These coefficient functions satisfy the following Proposition 1.
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Proposition 1. Let the multi-group opacities σ e
g and σ a

g be positive. Then as ε tends to zero, we have

• Ag(t, ε, λg) tends to 0;
• B g(t, ε, λg) tends to 0;
• D g(t, ε, σ e

g , λg) tends to −cσ e
g /((σ a

g )2).

Thus, the corresponding macroscopic diffusion flux (Diff)n+1
g,i−1/2, j , defined by

(Diff)n+1
g,i−1/2, j =

〈
cμ

εt

tn+1∫
tn

I g(t, xi−1/2, y j,μ, ξ)dt

〉

=
∫

4π

cμ

εt

tn+1∫
tn

I g(t, xi−1/2, y j,μ, ξ)dtdμdξ, (4.1)

has the limiting solution

(Diff)n+1
g,i−1/2, j =

M∑
m=1

ωmμm Im,g(t, xi−1/2, y j,μm, ξm)

−→
ε→0

−4π

( cσ e
g,i−1/2, j

6(σ a
g,i−1/2, j)

2
δxφ

n+1,L
g,i−1/2, j + cσ e

g,i−1/2, j

6(σ a
g,i−1/2, j)

2
δxφ

n+1,R
g,i−1/2, j

)

= −4πcσ e
g,i−1/2, j

3(σ a
g,i−1/2, j)

2

φn+1
i, j − φn+1

i−1, j

x
. (4.2)

The limiting solution (4.2) gives the numerical flux of an asymptotic diffusion equation, the so-called standard three points 
scheme for the diffusive flux in the one-dimensional case. It will become the five points scheme in the two-dimensional 
case.

With the Proposition 1 and the relation (4.2), it can be shown that the UGKS constructed in the last section is an 
asymptotic preserving method through the following Proposition 2.

Proposition 2. Let parameter σ be positive. Then, as ε tends to zero, the numerical scheme given by (3.18), (3.25), and (3.26) ap-
proaches to the standard implicit diffusion scheme for the diffusion limit equation (2.3).

Proof. Firstly, on the order of ε−2 in (3.25), as the parameter ε tends to zero, we have

(σ a
g )n+1

i, j In+1
i, j,m,g → (σ e

g )n+1
i, j φn+1

g,i, j.

Summing the above equation over the group index g , and by the definitions of σ a
g and σ e

g in (3.3), we get

+∞∫
0

σ I(tn+1,�ri, j, ��m, ν)dν →
+∞∫
0

σ B(tn+1, ν, T n+1
i, j )dν,

which implies

In+1
i, j,m,g → φn+1

g,i, j (g = 1, · · · , G, m = 1, · · · , M),

(σ a
g )n+1

i, j → (σ
p
g )n+1

i, j ,

(σ e
g )n+1

i, j → (σ
p
g )n+1

i, j =
∫ ν

g+ 1
2

ν
g− 1

2

σ(ν, T n+1
i, j )B(ν, T n+1

i, j )dν

∫ ν
g+ 1

2
ν

g− 1
2

B(ν, T n+1
i, j )dν

. (4.3)

Multiplying the first equation with integration weighting function ωm and summing the resulting equation over the angle 
variable, then as ε → 0, we have

ρn+1 → 4πφn+1 . (4.4)
g,i, j g,i, j
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Secondly, on the order of ε−1 in (3.25), such as the flux F n+1
i−1/2, j,m,g given by (3.14), the macro flux �n+1

g,i−1/2, j in equation 
(3.20) can be obtained by multiplying the flux F n+1

i−1/2, j,m,g with the integration weight ωm and summing over the angle 
variable. By Proposition 1, as ε → 0 we get

�n+1
g,i−1/2, j → −4πc(σ e

g )n+1
i−1/2, j

3[(σ a
g )n+1

i−1/2, j]2

φn+1
g,i, j − φn+1

g,i−1, j

x
= − 4πc

3(σ
p
g )n+1

i−1/2, j

φn+1
g,i, j − φn+1

g,i−1, j

x
. (4.5)

Similarly, as the parameter ε → 0, the other macroscopic interface fluxes will go to

�n+1
g,i+1/2, j → − 4πc

3(σ
p
g )n+1

i+1/2, j

φn+1
g,i, j − φn+1

g,i+1, j

x
,

�n+1
g,i, j−1/2 → − 4πc

3(σ
p
g )n+1

i, j−1/2

φn+1
g,i, j − φn+1

g,i, j−1

y
,

�n+1
g,i, j+1/2 → − 4πc

3(σ
p
g )n+1

i, j+1/2

φn+1
g,i, j − φn+1

g,i, j+1

y
. (4.6)

Thirdly, multiplying the integration weight ωm to equation (3.25) and summing over the angle variable and frequency 
variable, as the parameter ε → 0, we have

G∑
g=1

ρn+1
g,i, j =

G∑
g=1

{
ρn

g,i, j + t

x

(
− 4πc

3(σ
p
g )n+1

i−1/2, j

φn+1
g,i, j − φn+1

g,i−1, j

x
+ 4πc

3(σ
p
g )n+1

i+1/2, j

φn+1
g,i, j − φn+1

g,i+1, j

x

)

+ t

y

(
− 4πc

3(σ
p
g )n+1

i, j−1/2

φn+1
g,i, j − φn+1

g,i, j−1

y
+ 4πc

3(σ
p
g )n+1

i, j+1/2

φn+1
g,i, j − φn+1

g,i, j+1

y

)

− ct
M∑

m=1

ωm((σ a
g )n+1

i, j In+1
i, j,m,g − (σ e

g )n+1
i, j φn+1

g,i, j)/ε
2

}
. (4.7)

The combination of the two equations (4.7) and (3.26) gives

G∑
g=1

ρn+1
g,i, j =

G∑
g=1

{
ρn

g,i, j + t

x

(
− 4πc

3(σ
p
g )n+1

i−1/2, j

φn+1
g,i, j − φn+1

g,i−1, j

x
+ 4πc

3(σ
p
g )n+1

i+1/2, j

φn+1
g,i, j − φn+1

g,i+1, j

x

)

+ t

y

(
− 4πc

3(σ
p
g )n+1

i, j−1/2

φn+1
g,i, j − φn+1

g,i, j−1

y
+ 4πc

3(σ
p
g )n+1

i, j+1/2

φn+1
g,i, j − φn+1

g,i, j+1

y

)}
− cC v(T n+1

i, j − T n
i, j). (4.8)

Due to the relations (4.4) and (3.4), we get⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g=G∑
g=1

4πφn+1
g,i, j =

∞∫
0

B(ν, T n+1
i, j )dν = acT n+1

i, j ,

g=G∑
g=1

ρn+1
g,i, j =

g=G∑
g=1

4πφn+1
g,i, j = acT n+1

i, j .

As a result, equation (4.8) becomes a standard five points scheme for the diffusion limit equation (2.3). This shows that the 
current scheme for the frequency-dependent radiative transfer equations (2.1) is an asymptotic preserving (AP) method. �

The usefulness of UGKS is not limited for the recovery of the kinetic and diffusive limiting solutions. Accurate solutions 
can be obtained in the whole transition regime as well.

5. Numerical tests

This section presents a number of examples to validate the proposed AP scheme for frequency-dependent radiative 
transfer equations. In the computations, the unit of length is taken to be centimeter (cm), mass unit is gramme (g), time 
unit is nanosecond (ns), temperature unit is kilo electronvolt (keV), and energy unit is 109 Joules (GJ). Under the above units, 
the speed of light is 29.98 cm/ns, and the radiation constant a is 0.01372 GJ/(cm3 keV4). The time step is determined by 
t = CFL ∗ min(x, y)/c. The Courant number CFL takes a value 0.8 in the following numerical tests.
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Fig. 2. Results at 1 ns for Case 1 of Example 1 with homogeneous opacity σ0 = 10 keV7/2/cm.

Fig. 3. Results at 1 ns for Case 1 of Example 1 with homogeneous opacity σ0 = 100 keV7/2/cm.

It should be pointed out that in the following cases the opacity for the reference results of Implicit Monte Carlo (IMC) 
simulations is evaluated by the Planck averaging method. However, the UGKS method uses simple group integration aver-
aging. In order to compare the computational time of UGKS and IMC, both codes are running in the ThinkPad X250(Intel(R) 
Core(TM) i7-5600U) machine. The IMC results are obtained by using 1.5 million particles in the computations.

Example 1. (See [6].) In this example, we consider a one-dimensional Cartesian coordinate with a constant heat capacity 
Cv = 0.1 GJ/keV/cm3 and an opacity of the form

σ(x, ν, T ) = σ0(x)

(hν)3
√

kT
.

The initial material temperature is 10−3 keV, and the initial radiation intensity is given by a Planck distribution evaluated at 
the same temperature. The incident radiation intensity on the left boundary is also given by a Planck distribution, but it is 
associated with a temperature of 1 keV. A reflective boundary condition is used on the right boundary. This test will cover 
three cases with different optical opacity specified by σ0. To represent the frequency-dependent opacity, the UGKS employs 
30 frequency groups spaced logarithmically between 10−4 keV and 100 keV. The multi-group opacities are evaluated simply 
by averaging it over each group.

Case 1: Several homogeneous problems are tested in a domain of 5 cm thickness with σ0 = 10 keV7/2/cm, 100 keV7/2/cm, 
and 1000 keV7/2/cm. In all three cases, a uniform spatial mesh is used with cell size x = 0.005 cm and a running time 
of 1 ns. Figs. 2–4 present the material and radiation temperatures computed from both UGKS and IMC. Note that in Figs. 3
and 4 only the portions with large material temperature variation are shown. The material temperature from UGKS agrees 
well with the IMC result.

Case 2: In this case, we consider the first heterogeneous problem, which covers a domain of 3 cm thickness divided by 
an optically thin region 0 cm < x < 2 cm and an optically thick region 2 cm < x < 3 cm, where σ0 is defined by

σ0(x) =
{

10 keV7/2/cm, 0 cm < x < 2 cm,
7/2
1000 keV /cm, 2 cm < x < 3 cm.
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Fig. 4. Results at 1 ns for Case 1 of Example 1 with homogeneous opacity σ0 = 1000 keV7/2/cm.

Fig. 5. Results at 1 ns for Case 2 of Example 1 with the first heterogeneous opacities.

In the computation, the cell size is x = 0.02 cm in the optically thin region and x = 0.005 cm in the optically thick 
region. The simulation runs up to the time of 1 ns. Fig. 5 shows the UGKS and IMC results, where good agreement has been 
obtained.

Case 3: In this case, we consider the second heterogeneous problem in a domain of 1.5 cm thickness, but with reversed 
locations for the optically thin and thick regions. Specifically, this domain is composed of an optically thick region in 
0 cm < x < 0.5 cm and an optically thin region in 0.5 cm < x < 1.5 cm with σ0 given by

σ0(x) =
{

1000 keV7/2/cm, 0 cm < x < 0.5 cm,

10 keV7/2/cm, 0.5 cm < x < 1.5 cm.

A spatial mesh with cell size x = 0.02 cm in the optically thin region and x = 0.005 cm in the optically thick region is 
used. The simulation runs up to a time of 5 ns. Fig. 6 presents the UGKS and IMC solutions. There are slight differences 
between these two solutions in the optical thin region.

The computational time of UGKS and IMC for all three cases is shown in Table 1. Generally, the UGKS is much more 
efficient than IMC method with the same spatial mesh size, especially for the optical thick case.

Example 2 (Larsen’s test problem). (See [3,15].) For this problem, the frequency variable ν is logarithmically spaced with 50
groups between hνmin = 10−5 keV and hνmax = 10 keV. Group g is defined by νg− 1

2
≤ ν ≤ νg+ 1

2
, where

ν 1
2

= νmin, νg+ 1
2

=
(

νmax

νmin

) 1
50

νg− 1
2
.

The computational domain is divided into three regions with different cell size,

x =
⎧⎨
⎩

0.10 cm, 0 cm < x < 1 cm,

0.02 cm, 1 cm < x < 2 cm,
0.20 cm, 2 cm < x < 4 cm.
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Fig. 6. Results at 5 ns for Case 3 of Example 1 with the second heterogeneous opacities.

Table 1
The computation time of UGKS and IMC for Example 1.

Example 1 UGKS IMC

Case 1 σ0 = 10 21 minutes 96 minutes
σ0 = 100 22 minutes 173 minutes
σ0 = 1000 40 minutes 1344 minutes

Case 2 1st heterogeneous problem 8 minutes 363 minutes

Case 3 2nd heterogeneous problem 34 minutes 5184 minutes

Fig. 7. Results of Larsen’s tests (Example 2) at 900 ps.

The opacity models photo-ionization absorption,

σ(ν, T , x) = γ (x)
1 − e−hν/kT

(hν)3
,

where

γ (x) =
⎧⎨
⎩

1 keV3/cm, 0 cm < x < 1 cm,

1000 keV3/cm, 1 cm < x < 2 cm,

1 keV3/cm, 2 cm < x < 4 cm.

The heat capacity Cv keeps a constant value 5.109 × 1014 erg keV−1 cm−3. The initial material temperature is given by 
T (x, 0) = 10−3 keV, which is in equilibrium with the initial radiation intensity. No radiation enters from the left boundary, 
but a steady, direction-dependent, 1 keV Planckian distribution of photons enters from the right boundary. The simulation 
runs up to a time of 900 ps. Fig. 7 shows good agreement between UGKS and IMC solutions in the middle opacity thick 
region. But small differences appear between these two solutions in both opacity thin regions. The computational cost of 
UGKS and IMC for this case is given in Table 2.
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Table 2
The computation time of UGKS 
and IMC for Example 2.

UGKS IMC

2 minutes 63 minutes

6. Conclusion

To numerically simulate multiple frequency radiative transfer in different regimes is difficult for discrete ordinate method 
(DOM). In this paper we extend the unified gas kinetic scheme from the gray radiative transfer equations to the frequency-
dependent radiative transfer system. The key point for the success of UGKS is the un-splitting treatment of photon transport 
and collision with material in the evaluation of a time-dependent radiation intensity at a cell interface for flux construction, 
where this evolution solution covers different transport regimes. This approach is different from many single scale operator 
spitting methods, where the transport and collision are numerically treated separately, such as the Monte Carlo method. 
In order to capture a valid physical solution, the operator splitting method usually requires a time step being less than 
the particle collision time. The current UGKS captures the radiative diffusion process in the optical thick region, and the 
ballistic photon transport in the optical thin regime. Between these limits, the UGKS presents a smooth transition with the 
variation of the ratio between the time step and local photon’s collision time. Many numerical examples, which have been 
previously tested by the Monte Carlo methods, are calculated by the current DOM-type UGKS as well. The UGKS may be 
the first DOM which has been used for a full comparison with the IMC method, where comparable solutions are obtained. 
But, the UGKS is much more efficient than IMC, and its solutions don’t sensitively depend on the mesh size and time step. 
The methodology of unified scheme is general and can be used in many other multiple scale transport processes, such as 
rarefied gas flow, plasma, and neutron transport.
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