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ABSTRACT
This paper extends the high-order compact gas-kinetic scheme (CGKS) to flow simulations on a
rotating coordinate frame. The kinetic equation with the inclusion of centrifugal and Coriolis accel-
erations is used in the construction of the scheme. With the updates of both cell-averaged flow
variables and their gradients in the rotating and stationary domains, a third-order compact recon-
struction isdevelopedwith sliding interfacebetween them. Tocapture shockwaves andcomplicated
wave interactions, the HWENO-type non-linear reconstruction and gradient compression factors are
incorporated in the scheme. For achieving high-order time accuracy, based on the time-accurate
flux function the multi-stage multi-derivative time stepping method is implemented in the scheme
for the fourth-order time accuracy with two stages. The CGKS is validated in cases from subsonic
acoustic wave propagation to high Mach number shock interaction. The compact scheme achieves
high-order accuracy and remarkable robustness.
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1. Introduction

Flow simulations with rotating parts, including turbo
machinery, helicopters, tilt rotors and ship propellers,
have significant industrial applications. The compu-
tational domain is usually divided into moving and
stationary parts with a sliding interface between them.
This paper is about the development of a high-order
compact gas-kinetic scheme on a rotating coordinate
frame and connect its solution with the stationary
domain through a sliding interface.

The gas-kinetic scheme (GKS) is a kinetic theory-
based numerical method to solve the Euler and
Navier–Stokes equations (Xu 2001). Under the initial
condition of a generalised Riemann problem, a time-
accurate gas distribution function is constructed in
GKS to calculate the numerical fluxes and evaluate the
time-dependent flow variables at a cell interface. As a
result, both cell-averaged flow variables and their gra-
dients can be updated. Therefore, the HWENO-type
method and the two-step multi-resolution WENO
reconstruction can be used in the scheme for the high-
order spatial data reconstruction (Zhu and Qiu 2018;
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Ji et al. “Two-Step Multi-Resolution” 2021). At the
same time, due to the time-accurate flux function,
the multi-stage multi-derivative (MSMD) method is
adopted to update the solutionwith high-order tempo-
rary accuracy. Specifically, the two-stage fourth-order
(S2O4) time stepping method is used in the compact
GKS (CGKS) (Li and Du 2016; Li 2019). The CGKS
has been constructed on both structured and unstruc-
tured meshes in 2D and 3D cases (Ji et al. 2018; Ji
et al. “Compact high-order gas-kinetic” 2021; Zhao
et al. 2019, 2020, 2022). To further improve the robust-
ness of the scheme in high-speed flow simulations, the
following modelling has been further incorporated in
the scheme. First, the evolution of possible discontinu-
ous flow variables at different sides of a cell interface is
constructed for updating reliable cell averaged gradi-
ent of flow variables (Zhao et al. “Direct modeling for
computational” 2023; Zhao et al. “High-order com-
pact gas-kinetic” 2023). Second, the nonlinear lim-
iting process is implemented on the high-order time
derivative of the flux function under MSMD frame-
work. Equipped with the above remedies, the CGKS
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on 3Dunstructuredmesh is extremely robust in hyper-
sonic flow computation and is able to use a large time
step, such as CFL number ≈ 0.8, in the fourth-order
compact scheme. Alternatively, a gradient compres-
sion factor is designed to improve the robustness and
efficiency of CGKS in cases with low-quality mesh (Ji,
Shyy, and Xu 2021).

There are two ways to solve the flow problems with
a rotating mesh movement. The first one is the arbi-
trary Lagrangian–Eulerian (ALE)-basedmovingmesh
method (Hirt, Amsden, and Cook 1974; Zhang and
Liang 2015; Duan, Jia, and Wang 2020). These meth-
ods are similar to the methods under the unified coor-
dinates (Hui and Xu 2012; Jin and Xu 2007), where
flow variables and geometric conservation laws have
to be solved simultaneously. Another approach fixes
the coordinate on a rotating frame. In such non-inertia
reference of the frame, the centrifugal and Coriolis
forces will appear in the kinetic governing equation
(Zhou 2019). In this paper, we are going to develop
the GKS by following the second approach. With the
inclusion of external forces in the kinetic equation,
the CGKS can be constructed with the inclusion of
the forcing effect on the particle trajectory (Xu 2002;
Luo, Xu, and Liu 2011). The corresponding macro-
scopic governing equations solved by the CGKS will
be derived using the Chapman–Enskog expansion.

The sliding-mesh method has been developed for
many years. Johnstone, Chen, and Sandberg (2015)
proposed a novel sliding-mesh method based on
a characteristic interface condition. Their new slid-
ing gird technique requires only a single layer of
halo nodes in the communication process. Ramírez
et al. (2015) developed a high-order slidingmesh inter-
face to simulate unsteady viscous flow. Both com-
pressible inviscid flow and incompressible viscous flow
were simulated with the moving least squares (MLS)
(Cueto-Felgueroso et al. 2007) reconstruction at the
sliding interface. All the above sliding mesh meth-
ods are for the non-compact schemes. The high-
order compact schemes have many advantages in
comparison with non-compact ones due to the com-
pact stencils around the sliding interface. Many high-
order compact schemes have been developed based
on the evolution of cell’s inner degrees of freedom,
such as discontinuous Galerkin (DG) (Cockburn and
Shu 1998), spectral difference (SD) (Liu, Vinokur, and
Wang 2006), flux reconstruction (FR) (Huynh 2007)
and correction procedure via reconstruction (CPR)

(Haga, Gao, and Wang 2011). Based on FR/CPR
scheme, Duan, Jia, and Wang (2020) developed a slid-
ing mesh method by using an auxiliary Cartesian grid
to exchange information between the sliding interface.
Based on the SDmethod, Zhang and Liang (2015) used
mortar elements to project flow variables and fluxes
back and forth. To improve the adaptability of geom-
etry, Zhang, Qiu, and Liang (2018) extended their
work to deal with arbitrarily non-uniformmesh for the
FR method. Recently, Gao (2022) developed a three-
dimension sliding mesh method based on the mortar
approach and applied it to the turbine and noise prob-
lem. By adopting Sutherland–Hodgman algorithm
(Sutherland and Hodgman 1974), the polygon clip-
ping method can be used to deal with complicated
geometry. In the current study, a third-order finite vol-
umeCGKS only requiresNeumann neighbouring cells
in the reconstruction. Therefore, it becomes straight-
forward to construct the corresponding CGKS with
sliding mesh. Here, a ghost cell will be created by
merging several cells in the reconstruction around the
sliding interface. To ensure the conservative property,
the mortar interface is generated for the calculation of
fluxes.

This paper is organised as follows. The kinetic BGK
equation and GKS in a rotating coordinate frame will
be introduced in Section 2. Section 3 is about the
two-stage four-order time integrating method for the
solution updates with source terms. Section 4 concen-
trates on the initial reconstruction. The treatment of
the sliding interface is presented in Section 5. Many
test cases will be used to validate the current method
in Section 6. The last section is the conclusion.

2. Gas-Kinetic Scheme

2.1. BGK Equation in Rotating Framework

The gas-kinetic BGK equation in a rotating frame is

∂f
∂t

+ w · ∇xf + aw · ∇wf = g − f
τ

,

where f = f (x, t,w, ξ) is the gas distribution function,
g is the corresponding equilibrium state and τ is the
collision time. w = (w1,w2,w3) is the particle veloc-
ity in the rotating frame. And the acceleration in the
rotating frame is

aw = dw
dt

= −� × (� × r)− 2(� × w),
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where � is the angular velocity of the rotating frame
and r is a position vector from the origin of rotation
to the position of the particle. −� × (� × r) is the
centrifugal force and −2(� × w) is the Coriolis force.
Denote v = (v1, v2, v3) as the particle velocity in abso-
lute inertia reference of frame, the relationship among
velocities is

v = U + w,

whereU = � × r is the convection velocity due to the
frame rotation. According to av = dv

dt = dw
dt + (� ×

w), the acceleration term in the rotating frame can be
expressed as −(� × v) · ∇vf . Then the BGK equation
becomes

∂f
∂t

+ w · ∇xf − (� × v) · ∇vf = g − f
τ

, (1)

where f can be defined by absolute velocity v, such
as f = f (x, t, v, ξ). The collision term in the above
equation describes the evolution process from a non-
equilibrium state to an equilibrium one with the satis-
faction of compatibility condition

∫
g − f
τ

�dvd� = 0,

where � = (1, v1, v2, v3, 12(v
2
1 + v22 + v23 + ξ 2))T and

d� = dξ1 · · · dξK (K is the number of internal degree
of freedom, i.e. K = 2 for three-dimensional diatomic
gas). Based on the Chapman–Enskog Expansion (see
Appendix 1), the Euler andN–S equations in the rotat-
ing frame can be obtained. The N–S equations in a
rotating frame are

∂ρ

∂t
+ ∇ · ρ(V − U) = 0,

∂ρV
∂t

+ ∇ · [ρ(V − U)V + pI − σ ] = −� × ρV ,

∂ρE
∂t

+ ∇ · [ρH(V − U)+ pV − κ∇T − σ · V] = 0,

where ρ,V , p,T,E,H and σ are the density, absolute
velocity, pressure, temperature, energy, enthalpy and
viscosity stress of fluid. With the gradient of temper-
ature ∇T and viscosity stress σ equal to zero, the N–S
equations become Euler equations.

2.2. Finite VolumeMethod

The whole domain
 is discretised into small cells
i


 =
⋃

i, 
i

⋂

j = φ(i �= j).

The boundary can be expressed as

∂
i =
Nf⋃
p=1

�ip.

Takingmoments of the BGKequation (1) and integrat-
ing over the cell 
i, the semi-discretised form of the
finite volume scheme can be written as

dWi

dt
= − 1

|
i|
Nf∑
p=1

∫
�ip

F(W) · npdS + S(W)

:= LF (W)+ S(W), (2)

whereWi is the cell average conservative value, |
i| is
the volume of cell
i, F is the flux via cell surface, np =
(n1, n2, n3)T is the normal direction of cell surface and
S is the source term due to rotation. The integration of
flux can be approximated by Gaussian integrating (the
index i is omitted)∫

�p

F(W) · npdS ≈ |Sp|
Mp∑
k=1

ωkF(xp,k, t) · np,k,

where |Sp| is the cell surface area, ωk is the weight of
Gaussian integrating and xp,k is the position of Gaus-
sian points on the cell surface. To calculate the flux
through the surface, we can use coordinate transform

F(xp,k, t) · np = T−1F̃(TW) = T−1F̃(W̃),

where T = diag(1,T′, 1) is rotating matrix, and

T′ =

⎛⎜⎜⎝
n1 n2 n3

−n2 n1 + n23
1+n1 − n2n3

1+n1

−n3 − n2n3
1+n1 1 − n23

1+n1

⎞⎟⎟⎠ , n1 �= −1,

and when n1 = −1, T′ becomes diag(−1,−1, 1). And
the flux can be evaluated by

F̃ =
∫

f (x̃p,k, t, ṽ, ξ)w̃1�̃dvd�, (3)

where the origin point of the local coordinate is
x̃p,k = (0, 0, 0) with x-direction in np, and �̃ =
(1, ṽ1, ṽ2, ṽ3, 12(ṽ

2
1 + ṽ22 + ṽ23 + ξ 2))T . Themicroscopic

velocities in local coordinate are given by ṽ = T′v and
w̃1 = n1w1 + n2w2 + n3w3.
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2.3. Gas EvolutionModel

To construct the numerical fluxes at x = (0, 0, 0)T , the
integral solution of the BGK equation (1) is

f (x, t, v, ξ) = 1
τn

∫ t

0
g(x′, t′v′, ξ)e−(t−t′)/τndt′

+ et/τn f0(x0, v0), (4)

where the partial absolute velocity is

v = v′ +
∫ t

t′
avdt̃

= v′ +
[
v′ −

(
v′ · �




)
�




]
(1 − cos
(t − t′))

−
(

�



× v′

)
sin
(t − t′)

≈ v′ − (� × v′)(t − t′).

In the rotating frame, the particle velocity and trajec-
tory become w′ − (� × v′)(t − t′) and

x ≈ x′ + w′(t − t′)+ 1
2
(� × v′)(t − t′)2.

In Equation (4), f0 is the initial gas distribution func-
tion and g is the corresponding equilibrium state.
(x0, v0) are the initial position and velocity by trac-
ing back particles (x, v) at time t back to t = 0. τn is
the numerical collision time (Luo and Xu 2013). For
inviscid flow, it set as

τn = C1�t + C2
|pl − pr|
pl + pr

�t,

and for viscous flow, it is

τn = τ + C2
|pl − pr|
pl + pr

�t,

where pl and pr denote the pressure on the left and
right sides of the cell interface. In this paper, we have
C1 = 0.01,C2 = 5.0.

Before the construction of the initial distribution
function f0 and equilibrium state g, we first denote

a = (a1, a2, a3) = ∇xg/g,A = gt/g.

In the following derivation, quadratic terms of time
will be ignored directly. With the consideration of

possible discontinuity at a cell interface, the initial
distribution is constructed as

f0(x0, v0) = f l0(x0, v0)(1 − H(x1))+ f r0 (x0, v0)H(x1),
(5)

where H is the Heaviside function. f l0 and f r0 are
the initial gas distribution functions on the left and
right sides of the interface, which are determined by
corresponding initial macroscopic variables and their
spatial derivatives. With the second-order accuracy,
f k0 (x0, v0) is constructed by Taylor expansion around
(x, v)

f k0 (x0, v0) = f kG(x, v)− wt · ∇xf kG + (� × v)t · ∇vf kG
(6)

for k = l, r. Due to Chapman–Enskog expansion, f kG is
given by

f kG = gk[1 − τ(Ak + ak · w)] + τ(� × v) · ∇vgk,
(7)

where gk is the equilibrium distribution function
defined by the macroscopic variables Wk at the both
sides of a cell interface, ak are defined by the spatial
derivatives of gk

aki =
(
∂gk

∂ρk
∂ρk

∂xi
+ ∂gk

∂Vk
1

∂Vk
1

∂xi
+ ∂gk

∂Vk
2

∂Vk
2

∂xi

+ ∂gk

∂Vk
3

∂Vk
3

∂xi
+ ∂gk

∂λk
∂λk

∂xi

)
/gk

= aki1 + aki2v1 + aki3v2 + aki4v3

+ aki5
1
2
(v21 + v22 + v23ξ

2),

and

Ak = Ak
1 + Ak

2v1 + Ak
3v2 + Ak

4v3

+ Ak
5
1
2
(v21 + v22 + v23ξ

2)

are determined by compatibility condition∫
(f kG − gk)�dvd� = 0. (8)

Substituting Equations (6) and (7) into (5), the initial
gas distribution has the following form:

f0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
gl
[
1 − (

al · w) t − τ
(
Al + al · w)]

+(t + τ)
(
� × v) · ∇vgl

)
, x1 < 0,

gr [1 − (ar · w) t − τ (Ar + ar · w)]
+(t + τ)

(
� × v) · ∇vgr

)
, x1 ≥ 0.

(9)
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Then, the equilibrium distribution is defined by the
Taylor expansion

g(x′, t′, v′) = g(x, 0, v)+ ∇xg · (x′ − x)

+ ∇vg · (v′ − v)+ gtt
′

= g(x, 0, v)− ∇xg · w(t − t′)

+ ∇vg · (� × v) (t − t′)+ gtt
′

= g(x, 0, v)
{
1 − a · w(t − t′)+ At′

}
+ ∇vg · (� × v) (t − t′), (10)

where g and a are determined from the reconstruction
of macroscopic flow variables presented in Section 4.5,
and A is obtained by compatibility condition (8). By
substituting Equations (9) and (10) into Equation (4)
and keeping the second-order accuracy, the solution at
a cell interface becomes

f (x, t, v, ξ)

= (1 − e−t/τn )ḡ + e−t/τn
[
H (w1) gl + (1 − H (w1)) gr

]
+ tĀḡ

− τ
(
1 − e−t/τn

) [
(a · w) ḡ − (� × v) · ∇vḡ + Āḡ

]
− τe−t/τnH (w1)

[(
al · w

)
gl − (� × v) · ∇vgl + Algl

]
− τe−t/τn (1 − H (w1))

[(
ar · w) gr − (� × v) · ∇vgr + Argr

]
+ te−t/τn

[
(a · w) ḡ − H (w1)

(
al · w

)
gl

− (1 − H (w1))
(
ar · w) gr] . (11)

The fluxes in Equation (3) can be obtained by taking
the moments of the above distribution function. The
calculation of moments can be found in Appendix 2.

2.4. Evolution of the Cell-Averaged Spatial
Gradients

By taking moments of the above gas distribution func-
tion in Equation (11), the time-accurate conservative
flow variables at a cell interface can be also obtained as

Wp,k(tn+1) = T′
(∫

�̃f (x̃p,k, tn+1, ṽ, ξ)dvd�
)
.

(12)
According to Divergence theorem, the cell averaged
gradients over cell
i at time tn+1 are

∇Wn+1
i = 1

|
i|
Nf∑
p=1

∫
�ip

Wn+1npdS, (13)

where the surface integration can be calculated by
Gaussian quadrature (the index i is omitted)∫

�p

Wn+1npdS ≈
Mp∑
k=1

|Sp|ωkWp,k(tn+1)np,k. (14)

Besides evaluating the cell averaged gradients, the
solution updates of the scheme are presented next.

3. Solution Updates and Temporal
Discretisation

According to the semi-discretisation equation (2), the
right side contains two parts, the net flux LF and the
source term. The two-stage fourth-order (S2O4) tem-
poral discretisation is adopted here for the solution
updates (Li and Du 2016),

W∗′
i = Wn

i + 1
2
�tLF

(
Wn

i
) + 1

8
�t2

∂

∂t
LF

(
Wn

i
)
,

W∗
i = W∗′

i +
∫ tn+ 1

2�t

tn
S(W∗′

i )dt,

W(n+1)′
i = Wn

i +�tLF
(
Wn

i
)

+ 1
6
�t2

(
∂

∂t
LF

(
Wn

i
) + 2

∂

∂t
LF

(
W∗

i
))

Wn+1
i = W(n+1)′

i +
∫ tn+�t

tn
S(W(n+1)′

i )dt.

The source term only appears in moment equations
(dρVdt = −� × (ρV)), which is integrated as∫ tn+�t

tn
−� × (ρV)dt

= −
(
ρnVn × �




)
sin (
�t)

−
[
ρnVn −

(
ρnVn · �




)
�




]
(1 − cos (
�t)).

The time-dependent gas distribution function at
Gauss points on the interfaces is updated by

f ∗ = f n + 1
2
�tf nt ,

f n+1 = f n +�tf ∗t ,

where the time-dependent conservative values at each
Gauss point can be obtained by Equation (12). Then by
Equations (13) and (14), the cell-averaged slopes can
be updated.
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4. HWENO Reconstruction

The third-order compact reconstruction (Ji et al. 2020)
is adopted here with cell-averaged values and cell-
averaged first-order spatial derivative. To capture
shock, WENO weights (Zhu and Shu 2020) and gra-
dient compression factor (CF) (Ji, Shyy, and Xu 2021)
are used. In this work, we further improve the WENO
procedures and CF with the consideration of simplic-
ity and robustness. Only one large stencil and one sub
stencil are involved in the newWENO procedure.

4.1. Third-Order Compact Reconstruction for Large
Stencil

Firstly, a linear reconstruction is presented. To achieve
a third-order accuracy in space, a quadratic polyno-
mial p2 is constructed as follows:

p2 = a0 + 1
h
[a1(x − x0)+ a2(y − y0)+ a3(z − z0)]

+ 1
2h2

[a4(x − x0)2 + a5(y − y0)2

+ a6(z − z0)2] + 1
h2

[a7(x − x0)(y − y0)

+ a8(y − y0)(z − z0)+ a9(x − x0)(z − z0)],

where h = V
maxj Sj (V is the volume of cell and Sj is the

area of cell’s surface) is the cell size, and (x0, y0, z0) is
the coordinate of cell centre.

The p2 on
0 is constructed on the compact stencil
S including 
0 and its all von Neumann neighbours

m(m = 1, . . . ,Nf , where Nf = 6 for hexahedron cell
or Nf = 5 for triangular prism). The cell averages Q
over 
0 and 
m and cell averages of space partial
derivatives Qx,Qy and Qz over 
m are used to obtain
p2.

The polynomial p2 is required to exactly satisfy cell
averages over both
0 and
m (m = 1, . . . ,Nf )∫∫∫


0

p2dV = Q0|
0|,
∫∫∫


m

p2dV = Qm|
m|,

with the following condition satisfied in a least-square
sense: ∫∫∫


m

∂

∂x
p2dV = (

Qx
)
m |
m|∫∫∫


m

∂

∂y
p2dV = (

Qy
)
m |
m|

∫∫∫

m

∂

∂z
p2dV = (

Qz
)
m |
m|.

To solve the above system, the constrained least-square
method is used.

4.2. Green–Gauss Reconstruction for the Sub Stencil

The classical Green–Gauss reconstruction with only
cell-averaged values is adopted to provide the linear
polynomial p1 for the sub stencil.

p1 = Q + x ·
Nf∑
m=1

Qm + Q0
2

Smnm,

where Sm is the area of the cell’s surface and nm is the
surface’s normal vector.

4.3. Gradient Compression Factor

The CF was first proposed in Ji, Shyy, and Xu (2021).
Here several improvements have been made: there is
no ε in the improved expression of CF; the difference
ofMach number is added for improving the robustness
under strong rarefaction waves. Denote αi ∈ [0, 1] as
gradient compression factor at targeted cell
i

αi =
m∏
p=1

Mp∏
k=0

αp,k,

where αp,k is the CF obtained by the kth Gaussian
point at the interface p around cell 
i, which can be
calculated by

αp,k = 1
1 + A2 ,

A = |pl − pr|
pl

+ |pl − pr|
pr

+ (Maln − Marn)
2

+ (Malt − Mart)
2,

where p is the pressure, Man and Mat are the Mach
numbers defined by normal and tangential velocity,
and superscript l, r denote the left and right values of
the Gaussian points.

Then, the updated slope is modified by

∇̃W
n+1
i = αi∇Wn+1

i ,

and the Green–Gauss reconstruction is modified as

p1 = Q + αx ·
Nf∑
m=1

Qm + Q0
2

Smnm.
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4.4. Non-LinearWENOWeights

To deal with discontinuity, the idea of multi-resolution
WENO reconstruction is adopted (Ji, Shyy, and
Xu 2021; Zhu and Shu 2020). Here only two polyno-
mials are chosen

P2 = 1
γ2

p2 − γ1

γ2
p1, P1 = p1.

Here, we choose γ1 = γ2 = 0.5. So the quadratic poly-
nomial p2 can be written as

p2 = γ1P1 + γ2P2. (15)

Then, we can define the smoothness indicators

βj =
rj∑

|α|=1



2
3 |α|−1

∫∫∫



(
Dαpj(x)

)2 dV ,
where α is a multi-index andD is the derivative opera-
tor, r1 = 1, r2 = 2. Special care is given forβ1 for better
robustness

β1 = min(β1,Green−−Gauss,β1,least−square),

where β1,Green−Gauss is the smoothness indicator def-
ined byGreen–Gauss reconstruction and β1,least−square
is the smoothness indicator defined by second-order
least-square reconstruction. Then the smoothness
indicators βi are non-dimensionalised by

β̃i = βi

Q2
0 + β1 + 10−40 .

The nondimensionalised global smoothness indicator
σ̃ can be defined as

σ̃ =
∣∣∣β̃1 − β̃0

∣∣∣ 43 .
Therefore, the corresponding non-linear weights are
given by

ω̃m = γm

(
1 +

(
σ̃

ε + β̃m

)2
)
, ε = 10−5,

ω̄m = ω̃m∑
ω̃m

, m = 1, 2.

Replacing γm in Equation (15) by ω̄m, the final non-
linear reconstruction can be obtained

R(x) = ω̄2P2 + ω̄1P1.

The desired non-equilibrium states at Gaussian points
become

Ql,r
p,k = Rl,r

(
xp,k

)
,
(
Ql,r
xi

)
p,k

= ∂Rl,r

∂xi

(
xp,k

)
.

4.5. Reconstruction of Equilibrium States

After reconstructing the non-equilibrium state, a
kinetic weighted average method can be used to
get equilibrium states and tangential derivatives (Ji
et al. 2020),∫

ḡ�dvd� = W0 =
∫
w̃1>0

gl�dvd�

+
∫
w̃1<0

gr�dvd�,∫
āiḡ�dvd� = ∂W0

∂ x̃i
=
∫
w̃1>0

alig
l�dvd�

+
∫
w̃1<0

ari g
r�dvd�, i = 2, 3.

For the normal derivatives, the above solution is fur-
ther modified according to the idea in linear diffu-
sive generalised Riemann problem (dGRP) (Gassner,
Lörcher, and Munz 2007)∫

ā1ḡ�dvd� = ∂W0

∂ x̃1
=
∫
w̃1>0

al1g
l�dvd�

+
∫
w̃1<0

ar1g
r�dvd�+ Wr − W l

(xrc − xlc) · n ,
(16)

where xrc and xlc are the coordinates of left and right
cell centroids, and n is the normal vector of inter-
face. By adding a penalty term in Equation (16), the
whole scheme is essentially free from the odd-even
decoupling phenomenon (Blazek 2015).

5. SlidingMeshMethod

To simulate the problem with the sliding interface, the
computational domain is divided into rotating and sta-
tionary parts. The whole computational algorithm is
shown as Algorithm 1, where the bold text is spe-
cial treatments relating to the sliding interface. The
detailed algorithm will be discussed in the following
sections.

5.1. EstablishMortar by Polygon Clipping

To communicate the information between the rotating
part and the stationary part, the mortar elements need
to be established. As shown in Figure 1(a), the rotat-
ing and stationary parts overlap on the same circle but
do not have common interfaces. So, new mortar inter-
faces, as shown by black dotted lines in Figure 1(b),
need to be defined.
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Algorithm 1 CGKS with sliding interface
1: Label the interface between the rotor and stator, and the neighbour cells of the interface
2: Initial rotation angle α = 0
3: while the computation uncompleted do
4: calculate the time step�t according to CFL number
5: rotate the interface α, establish mortars
6: for i=1,2(for S2O4) do
7: define boundary condition for ghost cell
8: reconstruct the cell distribution except the adjoint cells of the sliding interface
9: reconstruct the adjoint cells of sliding interface
10: define boundary condition at boundary Gaussian point
11: evolution for interfaces
12: evolution for mortars
13: update cell average conservative values
14: add source term for the rotating domain
15: update cell average first-order spatial derivatives of conservative values except the adjoint cells of the

sliding interface
16: update cell average first-order spatial derivatives of conservative values for the adjoint cells of the

sliding interface
17: end for
18: α = α + ω ∗�t
19: end while

The in-house 3-D code based on prismmesh is used
for the current simulation. The interfaces between
the rotating part and the stationary part are sur-
face meshes. The Sutherland–Hodgman algorithm
(Sutherland and Hodgman 1974) is used for clipping
the intersecting polygon of the two connected ele-
ments on the interface. This method is an effective and
accurate algorithm for convex polygon clipping, which
could deal with triangles, quadrangles, and so on. We
triangulate the clipped polygon to make the algorithm
easily adapt to different intersecting polygons.

As shown in Figure 1(a), the sliding interface is a
cylindrical surface, but straight-edge meshes are used
in the computation. We transform this interface into
the cylindrical coordinate and consider that all the
nodes have the same radius, so the polygon clipping
process is done in θ − z plane. As shown in Figure 1(c),
the black dotted lines show generated mortars by two
interfaces, where the red line shows the inner part and
the blue line the outer part.

5.2. Reconstruction for SlidingMesh

To reconstruct the adjoint cells of the sliding interface,
the same stencils are used for these cells. However,

one of the interfaces is the sliding interface, so there
is no directly jointing neighbour cell at this inter-
face. As shown in Figure 2, the right face of cell
0 is a sliding interface, where two cells (cell 4 and
cell 5) joint with cell 0. Under this condition, a
ghost cell is created by merging cell 4 and cell 5.
For third-order reconstruction, the new constraints
become∫∫∫


4+
5

p2dV = Q4|
4| + Q5|
5|,∫∫∫

4+
5

∂

∂x
p2dV = (

Qx
)
4 |
4| + (

Qx
)
5 |
5|,∫∫∫


4+
5

∂

∂y
p2dV = (

Qy
)
4 |
4| + (

Qy
)
5 |
5|,∫∫∫


4+
5

∂

∂z
p2dV = (

Qz
)
4 |
4| + (

Qz
)
5 |
5|.

And for second-order Green–Gauss reconstruction,
the cell-averaged conservative flow variables of the
ghost cell are obtained by the volume-weighted aver-
ages of the values in cell 4 and cell 5. In addition, special
treatment should be taken due to coordinate transfor-
mation. As shown in Figure 3, the rotor has rotated
by a certain degree, and the cells 0, 1, 2 and 3 have
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Figure 1. Polygon clipping process: (a) the intersecting of two meshes in 2-D, (b) the mortars in 2-D and (c) clipping result.

moved to the position of 0′, 1′, 2′, 3′. However, the gov-
erning equations in the related framework are used to
simulate the rotation effect. So the cells are still in the
position of 0, 1, 2, 3. To reconstruct cell 0, we need
to rotate cells 4 and 5 to the position 4′ and 5′ with a
transformation of both geometry information and cell-
average values, including conservation values and their
spatial derivatives.

5.3. Flux Evaluation viaMortars and Cell-Average
Slope Update

After the mortars are created, the origin interface will
be replaced by mortars. So we need to set Gaussian
points (as shownby black dots in Figure 1c) in themor-
tars, and the left and right values of Gaussian points
can be obtained by reconstruction. After reconstruc-
tion, the fluxes via mortar and point-wise conserva-
tive variables of Gaussian points on mortars can be
updated.

6. Numerical Experiments

In the following cases, the three-dimensional solver
is used to solve two-dimensional problems. Two lay-
ers and periodic boundary conditions are used in
the z direction. The time step is given by �t =
min�ti, where �ti is the time step defined in each
cell

�ti = CCFL
hi

|V − U|i + ci + 2νi/hi
,

where CCFL is the CFL number, |V − U|i, ci, and νi =
(μ/ρ)i are the magnitude of related velocities, sound
speed and kinematic viscosity coefficient of cell i. Here,
we set the CFL number as 0.5 if no specified.

6.1. Isentropic Vortex Propagation

The isentropic vortex propagation problem is selected
to test the solver for inviscid flow. The computation
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Figure 2. Reconstruction stencil for sliding mesh.

domain is [0, 1] × [0, 1]. The flow at time t is

(U,V) = (U0,V0)+ κ

2π
e0.5(1−r2)(−ȳ, x̄),

T = 1 − (γ − 1)κ2

8γπ2 e1−r2

S = 1,

T = p
ρ
, S = p

ργ
,

where the non-dimensional coordinate is (x̄, ȳ) =
( x−xr

r0 , y−xr
r0 ), r0 = 0.05, the radius r = √

x̄2 + ȳ2, and
the vortex strength κ = 5. The (xr, yr)depends on time

xr = x0 − U0t, yr = y0 − V0t.

In our simulation, we choose (x0, y0) = (0.5, 0.5) and
the background velocity (U0,V0) = (1, 1). Periodic
boundary conditions are applied in both the x and y
directions.

The computation domain is divided into two parts:
the rotating inner part with a radius of 0.2 and the
stationary outer part. The angular speed of the rotat-
ing part is set as ω = 2π . Both the rotating and sta-
tionary cases are calculated to test the method. Four
meshes with cell number 1754 × 2, 7122 × 2, 29324 ×
2, 120252 × 2 are used, the time step is set as 8e−4,
4e−4, 2e−4, 1e−4 correspondingly. The coarsestmesh
is shown in Figure 4.

To validate the accuracy of the scheme, the density
error is defined at t = 1, when the vortex has trav-
elled for one period. The errors and numerical orders
of the rotating and the stationary cases are shown in

Figure 3. Coordinate transformation.
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Figure 4. The coarsest mesh used for isentropic vortex propaga-
tion(the inner black circle indicates sliding interface).

Table 1. ω = 2π rad/s.

Mesh ErrorL1 OL1 ErrorL2 OL2 ErrorL∞ OL∞

1754 × 2 5.80E−04 7.89E−03 3.97E−01
7122 × 2 2.23E−04 1.38 2.87E−03 1.46 1.47E−01 1.44
29324 × 2 4.35E−05 2.36 5.23E−04 2.46 2.20E−02 2.74
120252 × 2 7.15E−06 2.61 6.99E−05 2.90 3.94E−03 2.48

Tables 1 and 2. For both the stationary and rotating
cases, the numerical orders are close to the theoret-
ical third-order accuracy; and the error of the rotat-
ing case is slightly larger than that of the stationary
case.

The density and x-velocity contours of the rotat-
ing case by the finest mesh at t = 0.1

√
2 are shown in

Figure 5, when the centre of the vortex is located on

Table 2. ω = 0.

Mesh ErrorL1 OL1 ErrorL2 OL2 ErrorL∞ OL∞

1754 × 2 5.80E−04 7.89E−03 3.97E−01
7122 × 2 2.23E−04 1.38 2.87E−03 1.46 1.47E−01 1.44
29324 × 2 4.35E−05 2.36 5.23E−04 2.46 2.20E−02 2.74
120252 × 2 7.15E−06 2.61 6.99E−05 2.90 3.94E−03 2.48

the sliding interface. No distortion can be observed in
the contour, which implies that the vortex can prop-
agate through the sliding interface without reflection
and deformation.

6.2. FlowOver a Rotating Ellipse Cylinder

This case is selected to verify the method for subsonic
viscous flow.The incomeflow is set asρ∞ = 1.0, p∞ =
1/γ ,U∞ = 0.05, which has a Mach number of 0.05.
The ellipse, with a major axis length of A = 1.0 and
a minor axis length of B = 0.5, rotates counterclock-
wise at an angular speed of ω = π/40. The Reynolds
number based on the length of the ellipse major axis
and the incoming velocity is Re = 200. The sliding
interface is located at r = 1.5. The computation mesh
is plotted in Figure 6 with total 31516 × 2 elements.
160 nodes are used to discretise the ellipse, and the
height of the first layer near the ellipse is 5 × 10−3.
The adiabatic non-slip wall is set on the ellipse surface,
and the far-field boundary condition is set at the outer
boundary.

The lift and drag coefficients in one period are
shown in Figure 7. The present numerical result is
plotted by line, and reference data by Zhang and
Liang (2015) is shown by symbols. The lift and drag
coefficients agreewell with the reference data. Also, the

Figure 5. The density and velocity in x-direction contours of rotating case by finest mesh at t = 0.1
√
2.
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Figure 6. The mesh used in rotating ellipse cylinder case.

Figure 7. The lift and drag coefficients in one period (Lines: The
present numerical result, Symbols: Reference data by Zhang and
Liang (2015)).

vorticity contours and streamlines at different times in
one period are plotted in Figure 8. It can be observed
that a clockwise vortex and a counterclockwise vor-
tex generate around the ends of the ellipse. From the
time t = 0 to t = 3/8T, the clockwise vortex sheds off
from the leading edge and hits the trailing edge. While
from time t = 1/2T to time t = 7/8T, a counterclock-
wise vortex slowly emerges and then goes downstream
without reattaching to the ellipse. This makes the flow
not fully symmetric in a periodic cycle. And the whole
process repeats as the ellipse rotates.

6.3. Stirred Tank

This case is a 2-D laminar case as proposed in
Zhang and Liang (2015). The computational domain
is composed of several parts: a r = 0.5 cylinder located
on the original point, an outer wall with a radius of 5,
six uniformly distributed agitating blades with a thick-
ness of 0.1, each extending from r = 1 to r = 2, four
baffles with same thickness and height 1 installed on
the outer wall. The computational domain is split into
two parts, an inner rotating part, and an outer fixed
part. The sliding interface is located at r = 3.

The initial condition is set as ρ0 = 1.0, p0 =
1.0/γ , u = v = 0. The inner part with the cylinder
and six blades rotates at angular speed ω = 0.2, so the
Mach number defined by cylinder surface velocity is
Mi = 0.05. And the Reynolds number defined by the
diameter of the inner cylinder and the angular speed
is Re = ρωd2/μ = 100. Nonslip wall boundary con-
ditions are applied to all boundaries. The adiabatic
wall boundary condition is adopted on the six blades,
and the isothermal wall condition is used on other
walls. The mesh used in the computation is plotted in
Figure 9, with 10242 × 2 elements.

The density contours at different times are plotted
in Figure 10. At the timeωt = 0.25, the fluid is pushed
and squeezed by blades, so large fluctuations can be
observed. Soon the fluid becomes very chaotic due to
the baffles and the outer wall. At the time ωt = 1.5,
vortical structures are generated by flow passing the
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Figure 8. The vorticity contours and streamlines at different in a periodic: (a) t = 0, (b) t = 1
8T , (c) t = 1

4T , (d) t = 3
8T , (e) t = 1

2T , (f )
t = 5

8T , (g) t = 3
4T , (h) t = 7

8T .

Figure 9. Meshused in stirred tank case (red dotted lines indicate
sliding interfaces).

baffles and associated with bouncing pressure waves,
blades-induced vortices, unsteady boundary layers,
etc. As the blade continues to rotate for a longer time,
the chaotic flow structure slowly dissipates, and the
flow structure becomes organised. Finally, the flow
field reaches a quasi-steady state in the rotating ref-
erence framework and changes little with time. The
density variation becomes smaller and smaller, and
the contour closes to uniform in the circumferential
direction. The radial gradient of density is caused by
centrifugal force.

6.4. Ma = 3 Cylinder

A steady supersonic flow is used to show the influ-
ence of sliding mesh in discontinuous flow. There is
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Figure 10. The density contour of stirred tank: (a)ωt = 0.25, (b) ωt = 1.5, (c)ωt = 14 and (d)ωt = 100.

a cylinder with radius r = 0.5 located at centre, and
the computational domain is a cylindrical domainwith
radius R = 10. The whole domain is divided into three
parts: fromR1 = 0.5 toR2 = 1, fromR = 1 toR = 1.5
and from R = 1.5 to R = 10. In the simulation, the
second part rotates at angular speedω = 1, so the slid-
ing interfaces are located at R = 1 and R = 1.5. And
zero angular speed ω = 0 case is also calculated for
comparison. The inviscid slipwall boundary condition
is used on the cylinder surface, and the far-field bound-
ary condition with income Mach number 3 is used
on the outer boundary. As shown in Figure 11, total
6320 × 2 elements are used in the simulation, and red
dotted lines indicate the sliding interfaces. As shown
in Figure 12, the Mach number and static pressure

contours are plotted. No oscillation can be observed
near the shock. Overall, no rotating and rotating mesh
cases agree well with each other. In the Mach num-
ber contours, slight asymmetry can be observed in
the wake of the cylinder, where the density and pres-
sure are very low, and the non-linear weights become
sensitive to the local geometry.

6.5. Three Cylinders Rotating at Supersonic Speed

This is an unsteady case with complicated shock inter-
actions, which was used to illustrate the applicability
of the diffuse interface model (Kemm et al. 2020).
The computational domain is [−2, 2] × [−2, 2]. Three
cylinders with radius ri = 0.2 are located at position
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Figure 11. Mesh used inMa=3 cylinder (red dotted lines indicate
sliding interfaces).

(x, y) = (R0 cosψi,R0 sinψi), where R0 = 1.0. These
cylinders rotate clockwise at the same angle speedω =
3, which yields a Mach 3 speed at the location of the
cylinders. The sliding interface is at the position of
r = 1.5. The periodic boundary condition is applied in
the x and y directions. Themesh is plotted in Figure 13
and total 90036 × 2 elements are used.

The density contours are shown in Figure 14. The
shocks emerge in the front of cylinders and then inter-
act with the trailing wake. No unphysical oscillation
can be observed on the sliding interface, which indi-
cates that the proposed method can deal with moving
shocks well.

In Table 3, we show the total computational time
and interface communication time for 100-step com-
putation. The sliding interface of each side has 600 × 2

Figure 12. The Mach number and pressure contours of Ma=3 cylinder case from the calculations with mesh rotating mesh (upper part)
and non-rotating mesh (lower part).

Figure 13. Mesh for three cylinders rotating in a compressible gas at supersonic speed.
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Figure 14. The density contour of three cylinders rotating in a compressible gas at supersonic rotating speed (the red dotted cycle
indicates sliding interface): (a) t = 0.35, (b) t = 0.5, (c) t = 0.75 and (d) t = 1.75.

Table 3. Computation time and interface com-
munication time.

Total time Communication time Percentage

912 44 4.82%

cell interfaces, about 1.33% of the total cell, and the
communication time accounts for 4.82% of total time.

7. Conclusion

In this paper, a third-order CGKS is developed in a
rotating coordinate frame with the combination of the
sliding mesh method for simulating flow problems
with rotating parts. Due to the kinetic nature of the gas
evolution model, the dynamic effect from centrifugal
and Coriolis forces in the rotating frame can be eas-
ily incorporated into the time-accurate flux function
and flow variable updates at a cell interface. As a result,

both cell-averaged flow variables and their gradients
can be updated and used in the high-order compact
reconstruction. The high-order and compactness of
the scheme have advantages for flow simulation with
rotating parts in capturing the unsteady flow passing
through the sliding interface. The current CGKS can
use a large CFL number, such as CFL number 0.5,
in the determination of time step in the flow simu-
lation with highly compressible shock waves. Many
test cases, covering viscous and inviscid, subsonic and
supersonic ones, are used to validate the scheme. The
numerical performance of the scheme in the density
wave propagation, vortex flow, shock passing through
sliding interfaces, and rotating cylinders at supersonic
speed, shows the accuracy and robustness of the high-
order method. The current scheme can be extended
straightforwardly to the three-dimensional case. In
the coming work, large-scale three-dimensional flow
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computations, such as propeller noise andwake–shock
interactions in the transonic compressor, will be pre-
sented. At the same time, the parallel technology will
be further developed to improve computational effi-
ciency in 3D applications. The high efficiency of the
scheme can be easily realised because of the compact-
ness of the stencils.
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Appendix 1. Chapman–Enskog Expansion of
BGK Equation in Rotating Framework

The BGK equation in Equation (1) can be written in this form

f = g − τ

(
∂f
∂t

+ wl
∂f
∂xl

− εlij
ivj
∂f
∂vl

)
.

The formal solution of f can be expanded as

f = f0 + εf1 + ε2f2 + ε3f3 + · · · .

By setting τ = ετ̂ into the BGK equation directly, we have

f = g − ετ̂

(
∂f
∂t

+ wl
∂f
∂xl

− εlij
ivj
∂f
∂vl

)
.

An expression of this equation in powers of ε is

f = g − ετ̂

(
∂
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+ wl

∂

∂xl
− εlij
ivj

∂

∂vl

)
g

+ ε2τ̂
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)
×
[
τ̂

(
∂

∂t
+ wk

∂

∂xk
− εkmn
mvn

∂

∂vk

)
g
]

+ o(ε3).

(A1)

With the implementation of the compatibility condition, after
dividing both sides of the equation by ετ̂ the moments of
Equation (A1) become∫
ψα

(
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Defining Lα = ∫
ψα(

∂
∂t + wl

∂
∂xl

− εlij
ivj ∂∂vl )gdvd� and con-
sidering

εlij
i

∫
vjψα

∂g
∂vl

dvd�

= εlij
i

∫
∂gvjψα
∂vl

− g
∂vjψα
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= εlij
i
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−g(δjlψα + vj

∂ψα

∂vl
)dvd�

= −εlij
i

∫
gvj
∂ψα

∂vl
dvd� = −εlij
i < vj

∂ψα

∂vl
>,

the Lα becomes

Lα =< ψα >,t + < ψαwl >,l +εlij
i < vj
∂ψα

∂vl
>= o(ε).

We can get
L1 = ρt + (ρWl),l,

for a = 2, 3, 4

La = (ρVa),t + (ρVaWl),l + p,a + ρεalj
lVj,

and

L5 =
(
1
2
ρV2

n + K + 3
2

p
)
,t

+
(
1
2
ρWkV2

n + K + 5
2

pWk

)
,k +Ukp,k.

Then, we have

ρVa,t + ρWlVa,l + p,a + ρεalj
lVj = o(ε),

K + 3
2

(
pt + Wkp,k

) + K + 5
2

pWk,k = o(ε).
(A3)

With τ̂ = τ̂ (t, xi), and Rα and Sα defined as
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∫
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we have S1 = S5 = 0 for α = 1 or α = 5, and Sα = −τ̂ εαij
iLj
= o(ε) for α = 2, 3, 4. So, the Rα becomes

Rα = (τ̂Lα),t + Sα + ∂
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∫
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Firstly, for α = 1

R1 = (τ̂Ll),l + o(ε) = o(ε).

The equation becomes

ρ,t + (ρWl),l = o(ε2).

For a = 2, 3, 4

Ra = {
τ̂
[
< vavl >,t + < vavlwk >,k

+ εkmn
m(< vnva > δlk+ < vnvl > δak)]},l + o(ε),

with the consideration of Equation (A3), we can get

Ra =
{
τ̂

[
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,l
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And the method can be used for α = 5
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In conclusion, by dropping o(ε2) terms in Equation (A2), the
Navier–Stokes equations can be derived as follows:

ρ,t + (ρWk),k = 0,

(ρVj),t + (ρVjWk + pδjk − σ ′
jk),k = −ρεjlm
lVm,

(ρE),t + (
ρHWk + pUk − κT,k − Vlσ

′
lk
)
,k = 0,

ρE = 1
2
ρV2

n + K + 3
2

p, ρH = ρE + p,T = m
k
p
ρ
,

where E is the total energy,H is the enthalpy, T is the tempera-
ture, k is the Boltzmann constant, m is the mass of a molecule,
and σ ′

jk is the stress tensor, which is defined by

σ ′
jk = μ

(
Vj,k + Vk,j − 2

3
Vl,lδjk

)
+ βVl,lδjk,

where μ = τp is the dynamic viscosity coefficient and

β = 2
3

K
K + 3

μ
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is the bulk viscosity coefficient. The thermal conductivity coef-
ficient κ is given by

κ = K + 5
2

k
m
τp.

In addition, the equations can be written in terms of γ instead
ofK by usingK = (5 − 3γ )/(γ − 1) for three-dimensional gas
flow. The thermal conductivity becomes

κ = γ

γ − 1
k
m
τp = Cpμ,

where Cp is the specific heat capacity at constant pressure and
the Prandtl number is 1.

Appendix 2. Moments of theMaxwellian
Distribution Function

In GKS, the moments of the Maxwellian distribution func-
tion with bounded and unbounded integration limits need
to be evaluated, and the unbounded integration can refer to
Xu (2001). However, when dealing the moving interface, the
integration boundary change from 0 to U, which means we
need to calculate

∫∞
U gvnd� and

∫ U
−∞ gvnd�, denoting as <

vn >v>U and< vn >v>U . Through the integration by part, the

moments are

< v0 >v>U = 1
2
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√
λW),

< v1 >v>U =< v0 >v>U + 1
2
√
πλ

e−λW
2
,

< vn+2 >v>U = V < vn+1 >v>U +n + 1
2λ

< vn >v>U

+ 1
2
√
πλ

Un+1e−λW
2
,

and

< v0 >v<U = 1
2
erfc(

√
λW),

< v1 >v<U =< v0 >v>U − 1
2
√
πλ

e−λW
2
,

< vn+2 >v>U = V < vn+1 >v>U +n + 1
2λ

< vn >v>U

− 1
2
√
πλ

Un+1e−λW
2
,

where W = V −U and V is the macroscopic velocity of fluid
element.
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