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ABSTRACT
In this paper, a compact gas-kinetic scheme (CGKS) for compressible flow is constructed on hybrid
unstructured mesh. Based on high-order gas evolution model at cell interfaces both cell-averaged
flow variables and their gradients can be updated in CGKS and used in a compact third-order multi-
resolution WENO reconstruction. In the precious CGKS, the flow variables at a cell interface are
assumed to be continuous in space in the update of cell-averaged slopes. In order to improve the
robustness of the scheme in discontinuous region in three-dimensional space, a compression fac-
tor for the cell-averaged gradients is proposed to take into account the possible discontinuity at
cell interfaces. The accuracy of the scheme doesn’t deteriorate with the implementation of the
compression factor. Numerical tests from incompressible to hypersonic flow are presented to val-
idate the high-order CGKS and demonstrate the effectiveness of the gradient compression factor for
three-dimensional flow simulation on unstructured mesh.
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1. Introduction

The simulation of compressible flow with complex
geometry is of vital importance in the engineering
applications of aerospace industry. The use of unstruc-
tured mesh is especially favoured because of its geo-
metric flexibility. The compact gas-kinetic scheme
(CGKS) on tetrahedral mesh has been developed
recently (Ji et al. 2021b). However, to resolve the vis-
cous boundary layers efficiently, numerical methods
based on the hexahedral or prismatic elements with
high aspect ratio are preferred and they present more
accurate and stable solutions than those methods on
the tetrahedral elements alone. Therefore, the devel-
opment of CGKS on hybrid mesh is necessary for
real-world engineering applications.

Computational methods for compressible flow can
be generally categorised into compact and non-
compact methods in terms of the stencils used. As
a non-compact scheme, the high-order finite vol-
ume methods (FVM) with the weighted essentially
non-oscillatory (WENO) reconstruction have been
developed and applied continuously in large-scale
aeronautical simulations on hybrid unstructuredmesh
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(Antoniadis, Tsoutsanis, and Drikakis 2017). The
robustness of the schemes can be improved by the
extended stencils used in reconstruction. However,
they have difficulties in code portability, parallel pro-
gramming, and boundary treatment.

On the other hand, methods with compact sten-
cils have simple geometry dependency and bring great
mesh adaptability and high scalability. The develop-
ment of high-order compact methods becomes a hot
topic nowadays. Two main representatives are the DG
(Shu 2016) and the FR/CPR methods (Huynh 2007;
Yu,Wang, andLiu 2014). By updating variables inmul-
tiple degrees of freedom (DOFs), these methods can
achieve arbitrary spatial order of accuracy with only
the targeted cell as the reconstruction stencil. Success-
ful examples have been demonstrated in large eddy
simulation (LES) (Z. J. Wang et al. 2017) and RANS
simulation (Yang et al. 2019) for subsonic flows. For
the flow simulation with discontinuities, these meth-
ods usually have less robustness against the traditional
high-order FVMs. In addition, these methods have
restricted explicit time steps and high memory con-
sumption (Luo et al. 2010). The PNPM (Dumbser
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2010) and reconstructed-DG (rDG) methods (Luo
et al. 2010) target to overcome these weakness with
the release of the compactness of the DG methods.
In comparison with the DG methods, the same-order
rDG methods can use larger time step and have less
memory requirement.

In recent years, a class of high-order CGKS has
been developed from the second-order gas-kinetic
scheme (GKS) (Xu 2014). The CGKS is based on a
time-accurate evolution model in the construction of
the gas distribution function at a cell interface (Pan
and Xu 2016). The time-dependent solution not only
provides the fluxes across a cell interface but also
gives the time-accurate flow variables. As a result,
besides updating the cell-averaged conservative flow
variables, the corresponding cell-averaged gradients
can be updated simultaneously through the diver-
gence theorem. The updating DOFs in CGKS are
coming from the dynamic evolution solution rather
than the weak formulation in the DG/rDG meth-
ods. Due to their differences, the CGKS can use a
larger time step and has better robustness than the
same-order DG methods. For example, a CFL num-
ber around 0.5 can be taken for the third-order CGKS
(Ji et al. 2021a) while it is restricted to be less than
0.33 for the third-order P1P2-rDG scheme. The P1P2-
rDG is claimed to be unstable on tetrahedral mesh
with smooth reconstruction. However, the third-order
CGKS is stable with a CFL number of 1 with the same
compact stencil (Ji et al. 2021b). Another feature of
GKS is to use the two-stage fourth-order temporal
discretization method (Jiequan Li and Du 2016) or
the so-calledmulti-stage multi-derivative timemarch-
ing formulation (Seal, Güçlü, and Christlieb 2014).
Although the gas-kinetic flux function is more expen-
sive than the time-independent Riemann solvers, the
GKS can achieve fourth-order temporal accuracy with
only two stages (Pan et al. 2016), instead of four stages
by the fourth-order Runge–Kutta (RK) time discretisa-
tion. Overall, the CGKS turns out to be more efficient
in comparison with Riemann-solver-based RK meth-
ods (Ji et al. 2021a) in serial computation. Moreover,
higher parallel efficiency is expected since less commu-
nication is required due to the less middle stages.

In this paper, the compact third-order GKS will
be extended to mixed-element mesh. The scheme is
linearly stable for smooth flow with unlimited con-
strained least-square reconstruction on a compact
stencil involving von Neumann neighbours only. For

discontinuous flow, the idea of the multi-resolution
WENO reconstruction is adopted. The reconstruction
is designed in a hierarchical way, i.e. the Nth-order of
accuracy can be achieved by N central stencils from
first-order to Nth-order (Zhu and Shu 2020). In pre-
vious work (Ji et al. 2021b), the smooth indicators
are determined from the cell-averaged conservative
flow variables and a two-step reconstruction is pro-
posed to improve the robustness of the scheme. In
the current work, the complexity of the spatial recon-
struction is further reduced. Each low-order stencil
is simply chosen as one cell in the compact stencil
and the smooth indicator is directly obtained from
the corresponding cell-averaged slopes. In this way,
there is no extra memory requirement for the sub-
stencils and the computational cost for constructing
the corresponding low-order polynomials is reduced.
In case of discontinuous flow variables at a cell inter-
face, the current gradient update scheme with con-
tinuous assumption of flow variables at cell inter-
face will be revised in the updated gradients. In
order to improve the mesh adaptability, the accu-
racy of updated solution, and the robustness of the
scheme for flow simulation with strong shocks, a cell-
averaged gradient compression factor (CF) will be
proposed to modify the updated slope in the dis-
continuous flow region. Based on the CGKS frame-
work, the CF is different from the existing priori or
posteriori limiters (Krivodonova et al. 2004; Clain,
Diot, and Loubère 2011; Xiangxiong Zhang 2017).
It has the following features: (i) accuracy preserv-
ing; (ii) negligible computational cost; (iii) com-
bined with the multi-resolution WENO reconstruc-
tion, the scheme can truly reduce to the first-order
GKS once discontinuous solutions appear regard-
less of the local mesh quality. The resulting CGKS
becomes efficient and robust, and easy to program.
Stringent tests including hypersonic flow passing
through a space vehicle validate the robustness of
the current compact scheme with complex geome-
try.

This paper is organised as follows. The basic frame-
work of the compact high-order GKS on unstructured
mesh is presented in Section 2. In Section 3, the details
for the spatial reconstruction on mesh with mixed ele-
ments are presented, including the construction of the
CF.Numerical examples fromnearly incompressible to
hypersonic flows are given in Section 4. A concluding
remark are given in the last section.
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2. Compact Finite Volume Gas-Kinetic Scheme

The 3-D gas-kinetic BGK equation (Bhatnagar, Gross,
and Krook 1954) is

ft + u · ∇f = g − f
τ

, (1)

where f = f (x, t, u, ξ) is the gas distribution function,
which is a function of space x, time t, particle veloc-
ity u, and internal variable ξ . g is the equilibrium state
approached by f and τ is the collision time.

The collision term satisfies the compatibility condi-
tion ∫

g − f
τ
ψψψ d� = 0,

where ψψψ = (1, u,
1
2
(u2 + ξ 2))T , d� = du1 du2 du3

dξ1 · · · dξK ,K is the number of internal degrees of free-
dom, i.e. K = (5 − 3γ )/(γ − 1) in 3-D case, and γ is
the specific heat ratio.

In the continuum flow regime with the smoothness
assumption, based on the Chapman–Enskog expan-
sion the gas distribution function can be expressed as
Xu (2014),

f = g − τDug + τDu(τDu)g

− τDu[τDu(τDu)g] + · · · ,
where Du = ∂/∂t + u · ∇ . Different hydrodynamic
equations can be derived by truncating on different
orders of τ . With the zeroth-order in truncated dis-
tribution function f = g, the Euler equations can be
recovered by multiplyingψψψ on Equation (1) and inte-
grating it over the phase space,

Wt + ∇ · F(W) = 0.

With the first-order truncation, i.e.

f = g − τ(u · ∇g + gt),

the N-S equations can be obtained,

Wt + ∇ · F(W,∇W) = 0,

with τ = μ/p and Pr = 1.
The conservative flow variables and their fluxes are

the moments of the gas distribution function

W(x, t) =
∫
ψψψ f (x, t, u, ξ) d�, (2)

and

F(x, t) =
∫

uψψψ f (x, t, u, ξ) d�. (3)

2.1. Compact Gas-Kinetic Scheme on
Mixed-Elements

For a 3-D polyhedral cell �i, the boundary can be
expressed as

∂�i =
Nf⋃
p=1

	ip,

where Nf is the number of cell interfaces for cell �i.
Nf = 4 for tetrahedron, Nf = 5 for prism and pyra-
mid, Nf = 6 for hexahedron.

The semi-discretised form of FVM for conservation
laws can be written as

dWi

dt
= L(Wi) = − 1

|�i|
Nf∑
p=1

∫
	ip

F(W(x, t)) · np ds,

(4)
with

F(W(x, t)) · np =
∫
ψψψ f (x, t, u, ξ)u · np d�,

where Wi is the cell-averaged flow variables over cell
�i, |�i| is the volume of �i, F is the interface fluxes,
and np = (n1, n2, n3)T is the unit vector represent-
ing the outer normal direction of 	ip. To evaluate the
surface integral of fluxes, the iso-parametric transfor-
mation is used, which can be written as

X(ξ , η) =
Nv∑
l=0

xlφl(ξ , η),

where xl is the location of themth vertex for each ele-
ment and φl is the base function (Qian Wang 2017).
In this work, the linear element is considered, and a
schematic for the transformation is shown in Figure 1.

After the transformation, the Gaussian quadrature
points can be determined and Fip(t) can be approxi-
mated by the numerical quadrature

Nf∑
p=1

∫
	ip

F(W(x, t)) · np ds

= ∣∣	ip∣∣ M∑
k=1

ωkF(xp,k, t) · np, k.

To meet the requirement of a third-order spatial accu-
racy, three Gaussian points are used for a triangular
face and four Gaussian points are used for a quadrilat-
eral face. The details can be found inPan andXu (2020)
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Figure 1. The controlling points and iso-parametric transformation of the cell interfaces. (a) Triangluar face and (b) Quadrilateral face.

and Ji et al. (2021b). In the computation, the fluxes
are obtained under the local coordinate. Details can be
found in Ji et al. (2021b).

2.2. Gas-Kinetic Solver

Based on the integral solution of BGK equation
(Xu 2014), a second-order time-accurate gas distribu-
tion function at a local Gaussian point x = (0, 0, 0) is
constructed as

f (0, t, u, ξ)

= (1 − e−t/τn)gc + [(t + τ) e−t/τn − τ ]acxiuig
c

+ (t − τ + τ e−t/τn)Acgc

+ e−t/τngl[1 − (τ + t)alxiui − τAl]H(u1)

+ e−t/τngr[1 − (τ + t)arxiui − τAr](1 − H(u1)).
(5)

The superscript l, r represents the initial gas distri-
bution function at the left and right sides of a cell
interface with possible discontinuities. The superscript
c refers to evolved equilibrium state g in space and time
around a cell interface. The above solution basically
states a physical evolution process from the particle
free transport in the kinetic scale to the hydrodynamic
flow evolution. The flow evolution at the cell interface
depends on the ratio of time step to the local particle
collision timet/τ .

The initial gk, k = l, r has a form of a Maxwellian
distribution

gk = ρk

(
λk

π

)
e−λ

k((ui−Uk
i )

2+ξ2),

which can be determined from the macroscopic vari-
ablesWl,Wr through spatial reconstruction∫

ψψψgl d� = Wl,
∫
ψψψgr d� = Wr. (6)

The spatial and temporal microscopic derivatives are
denoted as

axi ≡ (∂g/∂xi)/g = gxi/g, A ≡ (∂g/∂t)/g = gt/g,

which is determined by the spatial derivatives of
macroscopic flow variables and the compatibility con-
dition as follows

〈ax1〉 = ∂W
∂x1

= Wx1 , 〈ax2〉 = ∂W
∂x2

= Wx2 ,

〈ax3〉 = ∂W
∂x3

= Wx3 ,

〈A + ax1u1 + ax2u2 + ax3u3〉 = 0, (7)

where 〈· · · 〉 are the moments of a gas distribution
function defined by

〈(· · · )〉 =
∫
ψψψ(· · · )g d�.

Similarly, the equilibrium state gc and its derivatives
acxi ,A

c
xi are determined by the correspondingWc,Wc

xi .
The construction of the Wc,Wc

xi will be introduced
in the next section. The details for the calculation of
each microscopic term from macroscopic quantities
can refer to Ji (2019).

For smooth flow, the time-dependent solution in
Equation (5) can be simplified as Xu (2001)

f (0, t, u, ξ) = gc − τ(acxiui + Ac)gc + Acgct, (8)

under the assumptions of gl,r = gc, al,rxi = acxi . The
above gas-kinetic solver for smooth flow has less
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numerical dissipations than the complete GKS solver
in Equation (5).

In smooth flow region, the collision time is deter-
mined by

τ = μ/p,

where μ is the dynamic viscosity coefficient and p is
the pressure at the cell interface. In order to prop-
erly capture the un-resolved discontinuities, additional
numerical dissipation is needed. The physical collision
time τ in the exponential function part can be replaced
by a numerical collision time τn. For the inviscid flow,
the collision time τn is modified as

τn = εt + C
∣∣∣∣pl − pr
pl + pr

∣∣∣∣t,

where ε = 0.01 and C = 1. For the viscous flow, the
collision time is related to the viscosity coefficient,

τn = μ

p
+ C

∣∣∣∣pl − pr
pl + pr

∣∣∣∣t,

where pl and pr denote the pressure on the left and
right sides of the cell interface.

2.3. Direct Evolution of the Cell-Averaged
First-Order Spatial Derivatives

As shown in Equation (5), a time evolution solution
at a cell interface is provided by the gas-kinetic solver,
which is distinguished from the Riemann solvers with
a constant solution. Recall Equation (2), the conserva-
tive variables at the Gaussian point xp,k can be updated
by taking themomentsψψψ on the gas distribution func-
tion,

Wp,k(tn+1)

=
∫
ψψψ f n(xp,k, tn+1, u, ξ) d�, k = 1, . . . ,M. (9)

Then the cell-averaged first-order derivatives within
each element at tn+1 are given through the divergence
theorem,

Wn+1
x = 1

|�|
∫
�

∇ · (W(tn+1), 0, 0) dV

= 1
|�|

∫
∂�

(1, 0, 0) · nW(tn+1) dS

= 1
|�|

∫
∂�

W(tn+1)n1 dS

= 1
|�|

Nf∑
p=1

Mp∑
k=1

ωp,kWn+1
p,k (n1)p,kSp,

Wn+1
y = 1

|�|
∫
�

∇ · (0,W(tn+1), 0) dV

= 1
|�|

∫
∂�

(0, 1, 0) · nW(tn+1) dS

= 1
|�|

∫
∂�

W(tn+1)n2 dS

= 1
|�|

Nf∑
p=1

Mp∑
k=1

ωp,kWn+1
p,k (n2)p,kSp,

Wn+1
z = 1

|�|
∫
�

∇ · (0, 0,W(tn+1)) dV

= 1
|�|

∫
∂�

(0, 0, 1) · nW(tn+1) dS

= 1
|�|

∫
∂�

W(tn+1)n3 dS

= 1
|�|

Nf∑
p=1

Mp∑
k=1

ωp,kWn+1
p,k (n3)p,kSp, (10)

where np,k = ((n1)p,k, (n2)p,k, (n3)p,k) is the outer unit
normal direction at each Gaussian point xp,k.

2.4. Two-Stage Temporal Discretisation

The two-stage fourth-order (S2O4) temporal dis-
cretisation is adopted here as that in the previous
CGKS (Zhao et al. 2020; Ji et al. 2021a). Following
the definition of Equation (4), a fourth-order time-
accurate solution for cell-averaged conservative flow
variablesWi are updated by

W∗
i = Wn

i + 1
2
tL(Wn

i )+ 1
8
t2

∂

∂t
L(Wn

i ),

Wn+1
i = Wn

i +tL(Wn
i )

+ 1
6
t2

(
∂

∂t
L(Wn

i )+ 2
∂

∂t
L(W∗

i )

)
, (11)

where L(Wn
i ) and

∂
∂tL(Wn

i ) are given by

L(Wn
i )

= − 1
|�i|

Nf∑
p=1

M∑
k=1

ωp,kF(xp,k, tn) · np,kSp,



6 X. JI ET AL.

∂

∂t
L(Wn

i )

= − 1
|�i|

Nf∑
p=1

M∑
k=1

ωp,k∂tF(xp,k, tn) · np,kSp,

∂

∂t
L(W∗

i )

= − 1
|�i|

Nf∑
p=1

M∑
k=1

ωp,k∂tF(xp,k, t∗) · np,kSp.

The proof for the fourth-order accuracy in time
is shown in Jiequan Li and Du (2016). The time-
dependent gas distribution function at a cell interface
is updated in a similar way,

f ∗ = f n + 1
2
tf nt ,

f n+1 = f n +tf ∗t . (12)

Thus, f ∗ and f n+1 are fully determined by Equation (5)
or (8) and the macroscopic flow variables and their
fluxes at the cell interface can be obtained simulta-
neously by Equations (2) and (3). The details can be
found in Zhao et al. (2020). A fourth-order temporal
accuracy for the Euler equations can be achieved for
the conservative flow variables on arbitrary mesh by
Equations (11) and (12). The complete proofs are given
in Jiequan Li and Du (2016) and Zhao et al. (2020).

3. Compact Third-Order Reconstruction

In this section, the details for the construction of the
compact reconstruction for smooth and discontinu-
ous flows are presented. Especially, a special treat-
ment, namely the cell-averaged slope compression fac-
tor, is introduced to improve the robustness of CGKS
for supersonic and hypersonic flow simulation under
irregular mesh.

3.1. Smooth Reconstruction

For a piecewise smooth function Q(x) over cell �0, a
polynomial Pr(x) with degree r can be constructed to
approximate Q(x) as follows

Pr(x) = Q(x)+ O(hr+1),

whereh ∼ |�0| 13 is the equivalent cell size. In order
to achieve a third-order accuracy and satisfy conserva-
tive property, the following quadratic polynomial over

cell�0 is needed

P2(x) = Q0 +
2∑

|k|=1

akpk(x),

where Q0 is the cell-averaged value of Q(x) over cell
�0, k = (k1, k2, k3), |k| = k1 + k2 + k3. The pk(x) are
basis functions, which are given by

pk(x) = xk11 xk22 xk33 − 1
|�0|

∫∫∫
�0

xk11 xk22 xk33 dV . (13)

The volume integral in Equation (13) for a hexahedron
�0 can be evaluated by the iso-parametric transfor-
mation described in Ji et al. (2021a). Other types of
elements, i.e. tetrahedron, pyramid and prism, can be
treated as the special cases of a hexahedron with some
vertices merging together.

The quadratic polynomial P2(x) on �0 is con-
structed on the compact stencil S2 including �0 and
all its von Neumann neighbours, �m,m = 1, . . . ,Nf ,
where the averages ofQ(x) and averaged derivatives of
Q(x) over each cell are known.

The following values on S2 are used to obtain
P2(x),

• cell averages Q for cell 0, . . . ,Nf ,
• cell averages of the x-direction partial derivative

Qx1 for cell 1, . . . ,Nf ;
• cell averages of the y-direction partial derivative

Qx2 for cell 1, . . . ,Nf ;
• cell averages of the z-direction partial derivative

Qx3 for cell 1, . . . ,Nf .

The polynomial P2(x) is required to exactly satisfy∫∫∫
�m

P2(x) dV = Qm |�m| ,

where Qm is the cell-averaged value over �m, m =
1, . . . ,Nf , with the following condition satisfied in a
least-square sense∫∫∫

�m

∂

∂x1
P2(x) dV = (Qx1)m|�m|,

∫∫∫
�m

∂

∂x2
P2(x) dV = (Qx2)m|�m|,

∫∫∫
�m

∂

∂x3
P2(x) dV = (Qx3)m|�m|,
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where Qxi , i = 1, 2, 3 are the cell-averaged directional
derivatives over �m in a global coordinate, respec-
tively. The constrained least-square method is used
to solve the above linear system (Wanai Li 2014).
The left and right states Wl,r provided by the recon-
structed P2(x) yield a linearly stable third-order CGKS
on hybrid mesh, as validated in Section 4.

3.2. Multi-ResolutionWENO Procedure

In order to deal with discontinuity, the multi-
resolutionWENO reconstruction (Zhu and Shu 2020)
is applied. Define three polynomials

p2(x) = 1
γ2,2

P2(x)−
1∑
�=0

γ�,2

γ2,2
p�(x),

p1(x) = 1
γ1,1

P1(x)− γ0,1

γ1,1
P0(x),

p0(x) = P0(x).

(14)

For a third-order reconstruction, the second-order
polynomial P2(x) can be rewritten as

P2(x) = γ2,2p2 + γ1,2p1 + γ0,2p0, (15)

with arbitrary positive coefficients γm,n satisfying
γ0,2 + γ1,2 + γ2,2 = 1, γ0,1 + γ1,1 = 1. The coeffi
cients are chosen as γ2,2 : γ1,2 : γ0,2 = 100 : 1 : 6, and
γ1,1 : γ0,1 = 1 : 6 as suggested in Zhu and Shu (2020).

The first-order polynomial P1(x) is determined
solely from the targeted cell�0

• cell averages Q and cell averages of the xi-
direction partial derivatives Qxi , i=1,2,3 for�0.

Thus, the P1(x) becomes

P1(x) = Q0 + Qxixi, i = 1, 2, 3.

The zeroth-order polynomial P0(x) is simply deter-
mined by the cell-averaged conservative variables on
the targeted cell�0 itself, i.e. P0(x) = Q0.

The smoothness indicators βj, j = 1, 2 are defined
as

βj =
rj∑

|α|=1

|�| 23 |α|−1
∫∫∫

�

(
DαPj(x)

)2 dV , (16)

where α is a multi-index andD is the derivative opera-
tor, r1 = 1, r2 = 2. The smoothness indicators in Tay-
lor series at (x0, y0) have the order

β2 = O{|�0| 23 [1 + O(|�0| 23 )]} = O(|�0|) 23 = O(h2),

β1 = O{|�0| 23 [1 + O(|�0| 13 )]} = O(|�0|) 23 = O(h2).

Assuming a suitable β0

β0 = O{|�0| 23 [1 + O(|�0| 13 )]} = O(|�0|) 23 = O(h2),

a global smoothness indicator σ similar to that in Zhu
and Shu (2020) can be defined

σ 3rd =
(
1
2
(|β2 − β1| + |β2 − β0|)

) 4
3

= O(|�0| 43 ) = O(h4).

Then, the corresponding non-linear weights are given
by

ωm,n = γm,n

(
1 + σ

ε + βm

)
,

ω̄m,n = ωm,n∑
ωm,n

= γm,n + O(h2),
(17)

wherem = 0, 1, 2 when n = 2;m = 0, 1 when n = 1,
and ε takes 10−16 to avoid zero in the denominator.

Replacing γm,n by the normalised non-linearweights
ω̄m,n in Equation (15), the final reconstructed polyno-
mials are given by

R3rd(x) = ω̄2,2p2 + ω̄1,2p1 + ω̄0,2p0. (18)

As a result, the non-linear reconstruction meets the
requirement for a third-order accuracyR(x) = P(x)+
O(h3). If any of these values yields negative density or
pressure, the first-order reconstruction is used instead.
The desired non-equilibrium states at Gaussian points
can be obtained from the weighted polynomials

Ql,r
p,k = Rl,r(xp,k), (Ql,r

xi )p,k = ∂Rl,r

∂xi
(xp,k).

In order to improve the robustness of the compact
scheme, a two-step reconstruction has been designed
and the smooth indicator of the zeroth-order poly-
nomial P0(x) as a non-linear combination of the
first-order biased sub-stencil on tetrahedron mesh (Ji
et al. 2021b). In this paper, however, these sub-stencils
are simply chosen as each neighbouring cell
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• cell averages Qj and cell averages of the xi-
direction partial derivatives Qxi,j, i = 1, 2, 3 for
cell j = 1, . . . ,Nf .

The smooth indicators for each stencils are

β0,j = |�0| 23 (b21,j + b22,j + b23,j)

= |�0| 23 (Q2
x1,j + Q2

x2,j + Q2
x3,j).

In this way, the sub-stencils are only single-cell
involved. Thus, the smooth indicators are less affected
by the local bad geometry. In addition, the WENO
procedure becomes more simple and less memory-
consuming. For the current reconstruction, only the
coefficients for P2(x) are stored. Specially, a coeffi-
cient matrix with dimension 9 × M is needed, where
M = 16 for tetrahedron,M = 24 for hexahedron. The
detailed formulation for the smooth indicator β0 is
given as

σ 1st =
[

1
1
2Nf (Nf − 1)

(∑
|β0,j − β0,k|

)] 4
3

,

ω1st
j = 1 + σ 1st

ε + βj
,

ω̄1st
j = ωj∑

ωj
,

β0 = min
(∑

ω̄1st
j β0,j,β0,0

)
,

where j, k = 1, . . . ,Nf and j>k.
However, such a choice is not robust enough for

high-speed flow. To improve the robustness of the
spatial reconstruction for the CGKS, the CF will be
introduced later.

3.3. Reconstruction for the Boundary Cells

One ghost cell is created for each boundary face by
mirror symmetry of the corresponding inner cells. The
cell-averaged quantities can be assigned according to
the boundary condition. Then the reconstruction for
the inner cell can be determined. After obtaining the
inner state (assume as W̃r) at a boundary Gaussian
point, a ghost state (assume as W̃l) can be assigned
according to boundary condition under local coordi-
nates. There is a possible discontinuity between W̃l

and W̃r. The ghost state setting for isothermal wall
with Maxwellian reflection is given as follows.

• The slip wall assumption allows a disconti-
nuity in velocities at the cell interface, and
the corresponding gas distribution function
is f = f r0 |u1<0 + f l0|u1>0, where the inner non-
equilibrium state is

f r0 = e−t/τ gr[1 − τ(arxiui + Ar)− tarxiui].

A time-independent Maxwellian distribution
f l0(0, u, t) = ρ l(λ

l

π
) e−λl(u2+ξ2) is assumed in the

ghost statewith zeromacroscopic velocitiesUl
i =

0, a fixed temperature Tl = 1/(2Rλl), where R is
gas constant, and zero derivatives of the conser-
vative variables ∂Wl = 0.

• Then, ρ l is determined by no penetration con-
straint through the solid wall, which is obtained
by solving the zero mass flux

∫
u1f d� =∫

u1(f r0 |u1<0 + f l0|u1>0) d� = 0.
• The conservative variables Wn+1 and the fluxes

Fn+1 are given by the above f at the boundary.

The settings for the slipwall, non-slip adiabatic
wall, and non-slip isothermal wall are described in Ji
et al. (2021b).

3.4. Reconstruction of Equilibrium State

The reconstructions for the non-equilibrium states
have the same spatial order of accuracy and can be
used to get the equilibrium state gc, gcxi directly by a
suitable average of gl,r, gl,rxi . To be consistent with the
construction of gc, a kinetic-based weighting method
is adopted

∫
ψψψgc d� = Wc =

∫
u>0

ψψψgl d�+
∫
u<0

ψψψgr d�,∫
ψψψgcxi d� = Wc

xi =
∫
u>0

ψψψglxi d�+
∫
u<0

ψψψgrxi d�.

(19)
The data for this method has compact support. In
programming, this procedure is included inside the
subroutine of the gas distribution function, since it
is performed at the local coordinate. Thus, it is also
cache-friendly. This method has been validated in the
previous CGKS (Ji et al. 2021a, 2021b). In this way, all
components of the microscopic slopes in Equation (5)
can be determined.



INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS 9

3.5. Compression Factor for Cell-Averaged Gradient

A necessary condition for the divergence theorem is
the smoothness of the conservative variables inside the
targeted cell. Once a discontinuity exists within the
targeted cell, the cell-averaged gradients obtained by
Equation (10) are not reliable. Therefore, one idea to
improve the robustness of the CGKS is to make the
absolute value of the cell-averaged gradients be small
enough near discontinuities. Then, the WENO recon-
struction in Equation (18) will reduce to the first order
of accuracy at next step. In this paper, the CF αc at
targeted cell�0 is defined as

αc =
Nf∏
i=0

Mi∏
k=0

αi,k, αc ∈ (0, 1], (20)

where αi,k is the gradient compression factor for the
kth Gaussian point at the interface i around�0. Then,
the updated slope is then modified as

W̃n+1
xi = αcWn+1

xi ,

The gradient compression factor α at a Gaussian point
is defined as

α = 1
1 + [δQ/(δQ + ε)]KsF

. (21)

δQ is the absolute difference of the reconstructed left
and right values at a cell interface. In smooth region,
δQ is on the order O(xp+1). δQ̄ the absolute differ-
ence of the left and right cell-averaged values around
a cell interface. In smooth region, δQ̄ is on the order
O(x). F is given as

F = [C1Dp + C2(DMa,2 + DMa,3)]Kt , F ∈ [0,∞),

Dp =
∣∣∣∣∣p

l − pr

pl + pr

∣∣∣∣∣ ,
DMa,2 =

∣∣∣∣∣ Ma2l − Ma2r

Ma2l + Ma2r + ε

∣∣∣∣∣ ,
DMa,3 =

∣∣∣∣∣ Ma3l − Ma3r

Ma3l + Ma3r + ε

∣∣∣∣∣ ,
where Dp is the related pressure difference, Ma2 and
Ma3 are the Mach differences in two tangential direc-
tions.

The above parameters are selected based on the
following criteria.

(1) δQ/(δQ) → O(1)near discontinuities, such
as shocks and shears.

(2) F is a weighting factor for δQ/(δQ). It
can avoid excessive numerical dissipation
around local extrema for smooth flow
δQ → 0 and δQ/(δQ) → +∞.F approaches
0 for smooth flow and to a constant around
discontinuities.

(3) The pressure difference Dp and the Mach
differences in two tangential directionsMa2
and Ma3 in F are used to capture strong
shock and shear layer in three-dimensional
simulations.

(4) A large Ks and Kt corresponds to small
numerical dissipations. At the same time,
Ks should not be below 2 from the accu-
racy requirement. Numerical dissipations
increases in the increment of C1 and C2.

(5) Similar numerical performances can be
obtained by taking density, pressure, or
entropy for Q. The values C1 = 0.5 ∼ 2,
C2 = 0.1 ∼ 1, Kt = 2 ∼ 6 are suggested to
balance robustness and accuracy of the
scheme. In the current paper, Q is defined
by density, and Ks = 2, C1 = 1.5, C2 = 0.2,
Kt = 4 are used in the simulations.

Remark 3.1: When the flow around�0 is smooth,

[δQ/(δQ)+ ε)]Ks = O(x)pKs ,

F = [C1O(x)p+1 + C2O(x)p+1]Kt

= O(x)(p+1)Kt ,

where p is the order of the reconstructed polynomial.
Thus, recall Equations (21) and (20),

αi,k → 1 + O(x)pKs+(p+1)Kt ,

αc =
Nf∏
i=0

Mi∏
k=0

αi,k → 1 + O(x)pKs+(p+1)Kt ,

which gives αc ∼ 1 for smooth flow.
When the flow around �0 contains discontinuity,

there are

[δQ/(δQ)+ ε)]Ks → O(1),

Dp → 1, DMa,2 → 1, DMa,3 → 1,

F → (C1 + C2)
Kt .
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Figure 2. The brief algorithm of the CGKS.

As a result,

αi,k → 1
1 + |O(1)| ,

αc =
Nf∏
i=0

Mi∏
k=0

αi,k → 1
1 + |O(1)| .

So, αc can approach to 0 for discontinuous flow.

4. Numerical Examples

In this section, numerical tests will be presented to
validate the proposed scheme. The time step is deter-
mined by

t = CCFLMin
(

ri
‖Ui‖ + (as)i

,
(ri)2

3νi

)
, (22)

where CCFL is the CFL number, and ‖Ui‖, (as)i, and
νi = (μ/ρ)i are the magnitude of velocities, sound
speed, and kinematic viscosity coefficient for cell i. The
ri is taken as

ri = 3|�i|∑ |	ip| ,

for a tetrahedron or pyramid, and

ri = |�i|
max |	ip| ,

for a hexahedron or prism.TheCFLnumber is taken as
0.5 if no specified.An algorithmflowchart of theCGKS
is given in Figure 2. In the present work, the WENO

reconstruction based on the conservative variables and
the complete flux in Equation (5) are adopted in the
test cases without using the CF if no specified.

4.1. 3-D SinusoidalWave Propagation

The initial condition for the advection of density per-
turbation is given as

ρ(x, y, z) = 1 + 0.2 sin(π(x + y + z)),

U(x, y, z) = (1, 1, 1), p(x, y, z) = 1,

within a cubic domain [0, 2] × [0, 2] × [0, 2]. A series
of sequentially refined hexahedral meshes and hybrid
meshes are used in the test, as shown in Figure 3. With
the periodic boundary condition in all directions, the
analytic solution is

ρ(x, y, z, t) = 1 + 0.2 sin(π(x + y + z − t)),

U(x, y, z) = (1, 1, 1), p(x, y, z, t) = 1.

The flow is inviscid and the collision time τ is 0. The
L1, L2 and L∞ errors and the corresponding orders
with linear weights at t = 2 under both meshes are
given in Tables 1 and 2. The results with non-linear Z-
type weights for uniform meshes are given in Table 3.
Expected accuracy is achieved for the above cases.
Then, the results for the CGKS with the CF are listed
in Table 4. In comparison with the results without the
CF, the absolute errors are slightly increased as shown
in Table 5. The same conclusion can be drawn for the
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Figure 3. Mesh sample for the 3D sin-wave propagation. Left: hexahedral mesh. Right: Hybrid mesh.

Table 1. Accuracy test for the 3D sin-wave propagation by the linear third-order compact reconstruction.

Mesh number C L1 error C Order C L2 error C Order C L∞ error C Order

53 8.572800e−02 9.508770e−02 1.324228e−01
103 2.199962e−02 1.96 2.441038e−02 1.96 3.420145e−02 1.95
203 3.083322e−03 2.83 3.431975e−03 2.83 5.052936e−03 2.76
403 3.948944e−04 2.96 4.377654e−04 2.97 6.581416e−04 2.94

Note: Uniform hexahedral mesh.

Table 2. Accuracy test for the 3D sin-wavepropagationby the linear third-order compact reconstruction.

Mesh number L1 error Order L2 error Order L∞ error Order

1.6 × 53 9.697442e−02 1.080211e−01 1.512287e−01
1.6 × 103 2.821966e−02 1.78 3.151973e−02 1.77 4.422013e−02 1.77
1.6 × 203 4.036691e−03 2.81 4.496854e−03 2.81 6.650040e−03 2.73
1.6 × 403 5.168948e−04 2.97 5.729851e−04 2.97 8.596728e−04 2.95

Note: Hybrid mesh.

Table 3. Accuracy test for the3Dsin-wavepropagationby the third-order compactWENOreconstruction
with d0 : d1 : d2 = 100 : 1 : 6.

Mesh number L1 error Order L2 error Order L∞ error Order

53 9.307715e−02 1.026267e−01 1.431789e−01
103 1.782439e−02 2.38 2.040047e−02 2.33 3.581868e−02 2.00
203 2.988300e−03 2.58 3.592716e−03 2.51 9.255122e−03 1.96
403 4.108034e−04 2.86 5.008456e−04 2.84 1.114581e−03 3.05

Note: Uniform hexahedral mesh.

Table 4. Accuracy test for the3Dsin-wavepropagationby the third-order compactWENOreconstruction
with d0 : d1 : d2 = 100 : 1 : 6 and the CF.

Mesh number L1 error Order L2 error Order L∞ error Order

53 9.177411e−02 1.014747e−01 1.421968e−01
103 1.783722e−02 2.36 2.041512e−02 2.31 3.586210e−02 1.99
203 2.827416e−03 2.65 3.717858e−03 2.48 1.140440e−02 1.65
403 4.073909e−04 2.80 5.042275e−04 2.88 1.228363e−03 3.21

Note: Uniform hexahedral mesh.

Table 5. Accuracy test for the3Dsin-wavepropagationby the third-order compactWENOreconstruction
with d0 : d1 : d2 = 100 : 1 : 6 and the CF.

Mesh number L1 error Order L2 error Order L∞ error Order

1.6 × 53 9.835342e−02 1.105509e−01 1.534561e−01
1.6 × 103 4.301722e−02 1.19 4.875222e−02 1.18 7.870885e−02 0.96
1.6 × 203 4.335145e−03 3.31 5.664078e−03 3.11 1.174496e−02 2.74
1.6 × 403 5.491532e−04 2.98 6.424909e−04 3.14 1.412450e−03 3.06

Note: Hybrid mesh.
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Figure 4. Shu–Osher problem. Mesh number: 400 × 2 × 2.

Figure 5. Shu–Osher problem. Mesh number: 800 × 2 × 2.

cases under hybrid meshes, as shown in Table 5. The
third-order accuracy is kept for both cases.

4.2. Shu–Osher Problem

The initial condition for the Shu–Osher problem (Shu
and Osher 1989) is

(ρ,U, p)

=
{
(3.857134, 2.629369, 10.33333), 0 < x ≤ 1,
(1 + 0.2 sin(5x), 0, 1), 1 < x < 10.

The flow is one-dimensional along the x-axis, and two
uniformhexahedralmeshes with a fixed length L = 10

in x-direction are used in the computation. The mesh
sizes are x = 1/40 and 1/80, respectively. The fixed
wave profile is extended on the right while the non-
reflecting boundary condition is given on the left. The
computed density profiles and local enlargements for
the Shu–Osher problem at t = 1.8 with both meshes
are plotted in Figures 4 and 5. The CGKSwith/without
the CF can both resolve the linear wave nicely. To get a
better understanding of the behaviour of the CF in this
test, the distributions for the CF at t = 1.8 in each cell
are plotted in Figure 6. It can be observed that the CF
only takes effect near the normal shock. The results are
also compared with the 1-D second-order GKS based
on the van Leer limiter. A similar resolution can be
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Figure 6. The CF distributions and their local enlargements in Shu–Osher problem.

Figure 7. Shu–Osher problem from the current third-order CGKS and previous second-order GKS.

obtained by the current scheme with only half of the
total mesh points used by a second-order method, as
shown in Figure 7.

4.3. Laminar Boundary Layer

A laminar boundary layer over a flat plate with
incoming Mach number Ma = 0.15 is simulated.
The Reynolds number Re = U∞L/ν = 105, where
the characteristic length L = 100. The computational
domain is shown in Figure 8, where the flat plate is
placed at x>0 and y = 0. Total 120 × 35 × 2 hexahe-
dral cells are used in a cuboid domain [−30, 100] ×
[0, 80] × [0, 0.2] with a cell height h = 0.1 adjacent
to the boundary. The adiabatic non-slip boundary
condition is imposed on the plate and symmetric
slip boundary condition is set in the front of the

plate. The non-reflecting boundary condition based
on the Riemann invariants is adopted for the other
boundaries, where the free stream is set as ρ∞ = 1,
p∞ = 1/γ . Since the flow is nearly incompressible,
the smooth reconstruction and the simplified solver in
Equation (8) are adopted to further reduce the numer-
ical dissipation. The non-dimensional velocity U and
V are given in Figure 9 at three selected locations. The
wall distributions of the skin-fraction coefficients Cf
are also plotted, where the local Reynolds number Rex
and the Cf are defined as

Rex = x
L
Re, Cf = τwall

1
2ρ∞U2∞

,

where τwall is the skin shear stress. The numerical
results agree well with the Blasius solutions with a few
mesh points at x/L = 0.1.
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Figure 8. Laminar boundary layer. Left: mesh with 120 × 35 × 2 cells. Right: local enlargement coloured by V velocities.

Figure 9. Laminar boundary layer. The velocities profiles and skin-frication coefficient.

4.4. Subsonic Viscous Flow Around a Cylinder at
Re = 40

An incoming flow with Mach number Ma = 0.15
and Reynolds number Re = 40 based on the diam-
eter of the cylinder D = 1 around a circular cylin-
der is simulated. The flow is smooth and the same
setting as the boundary layer is adopted in the
computation. The computational domain is shown
in Figure 10, where total 241 × 114 × 2 hexahe-
dral cells are used in a cylindrical domain Dmesh =
96.0, Hmesh = 0.1 with a near-wall size h = 1/96. A
steady and symmetrical separation bubble is located
at the wake of the cylinder. Quantitative results
including the drag and lift coefficients CD, CL, the
wake length L, and the separation angle θ , etc
are listed in Table 6, which agree well with the
experimental and numerical references (Tritton 1959;
Coutanceau and Bouard 1977; Fan Zhang, Cheng, and
Liu 2019). Furthermore, the quantities on the cylinder
surface are extracted, including the surface pressure

coefficient Cp = p−p∞
1
2ρ∞U2∞

, and the non-dimensional

local tangential velocity gradient 2DU∞
∂Uτ
∂η

, as shown in
Figure 11. The Cp from the current CGKS matches
nicely with the experimental data (Grove, Shair, and
Petersen 1964) and the analytical solution (Bharti,
Chhabra, and Eswaran 2006). The tangential velocity
gradient obtained by the current scheme is compared
with those by the finite difference method (Braza,
Chassaing, and Ha Minh 1986) and the direct DG
method (Fan Zhang, Cheng, and Liu 2019).

4.5. Flow Passing Through a Sphere From Subsonic
to Hypersonic Cases

Viscous flow over a sphere with a wide range of Mach
numbers are tested below to validate the capability
of the CGKS in different flow regions. The Reynolds
numbers are based on the diameter of the sphere
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Figure 10. Circular cylinder: Re = 40. Left: mesh with 241 × 114 × 2 cells. Right: local mesh distribution around cylinder coloured by
pressure and streamline.

Table 6. Comparison of results for steady flow past a circular cylinder at Re = 40.

Case CD CL L Vortex Height Vortex Width θ

Experiment (Tritton 1959) 1.46–1.56 – – – – –
Experiment (Coutanceau and Bouard 1977) – – 2.12 0.297 0.751 53.5◦
DDG (Fan Zhang, Cheng, and Liu 2019) 1.529 – 2.31 – – –
Current 1.525 3.3e−14 2.22 0.296 0.714 53.3◦

D = 1. The far-field condition is set at outside bound-
ary of the domain with the free stream condition

(ρ,U,V ,W, p)∞ =
(
1,Ma, 0, 0,

1
γ

)
,

with γ = 1.4. For the subsonic cases, the smooth
reconstruction and the simplified solver in Equation
(8) are adopted to achieve a high resolution.

(a) Subsonic case: Re = 118,Ma = 0.2535.
A low-speed viscous flow passing through a sphere

is tested first. In such case, a drag coefficient CD = 1
was reported from the experiment in Taneda (1956).
The surface of the sphere is set as non-slip and adi-
abatic. A hexahedral mesh is used and the first mesh
off the wall has the size h ≈ 4.5 × 10−2D, as shown
in Figure 12. The Mach magnitude contour and the

Figure 11. Circular cylinder: Re = 40. Left: surface pressure coefficient distribution. Right: surface local tangential velocity gradient
distributions.
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Figure 12. Flow passing through a sphere.Ma = 0.2535. Re = 118. Mesh number: 50,688.

Table 7. Results from different compact schemes for the viscous flow over a sphere.

Scheme Mesh number CD θ L CL

Experiment (Taneda 1956) – 1.0 151 1.07 –
Third-order DDG (Cheng et al. 2017) 160,868 1.016 123.7 0.96 –
Fourth-order VFV (Qian Wang 2017) 458,915 1.014 – – 2.0e−5
Current 50,688 1.016 124.7 0.86 3.6e−3

streamline around the sphere are presented as well.
The quantitative results are given in Table 7, including
the drag coefficient CD, the separation angle θ , and the
closed wake length L, as defined in Ji et al. (2021a). The
drag coefficient is very close to those by othermethods
even with a much coarser mesh.
(b) Subsonic case: Re = 300,Ma = 0.3.

The flow is unsteady in this case and the hairpin
vortex structure will be formed in the wake region of
the sphere. A hexahedral mesh is used and the whole
computation domain has a dimension [−10, 40] ×
[−10, 10] × [−10, 10] with a near-wall size h ≈ 1

100D
along the radial direction and h ≈ 1

128D along the cir-
cumferential direction, as shown in Figure 13. The
current scheme can resolve the vortex shedding nicely,
as shown in Figure 14. The drag and lift coeffi-
cients change in a single frequency mode with time

increasing, as shown in Figure 15. The frequency and
averaged drag coefficient agree well with the reference
data, as listed in Table 8.
(c) Transonic case: Re = 300,Ma = 0.95.

Ahybrid unstructuredmeshwith total 515, 453 cells
is used in the computation, as shown in Figure 16.
The first grid off the wall is 1 × 10−2D while 128 cells
are distributed along the circumferential direction.
The non-reflective boundary is adopted on the out-
side boundary with a dimension [−8, 16] × [−8, 8] ×
[−8, 8]. The mesh is refined at the wake of the sphere
where a long separation bubble is formed, as shown
in Figure 17. The pressure distribution is also given
in Figure 17, where the weak shock can be observed.
Quantitative results are compared with the benchmark
solutions in Nagata et al. (2016), where the Cd and θ
agree well with each other, as shown in Table 9.

Figure 13. Flow passing through a sphere.Ma = 0.3. Re = 300. Mesh number: 479,232.
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Figure 14. Flow passing through a sphere. Ma = 0.3. Re = 300. Top: Iso-surface of the Mach number. Middle: Iso-surface of the Q
criterion Q = 5 × 10−4 coloured by Mach number. Bottom: 3-D streamline coloured by pressure.

Figure 15. The time history of the CD and CL.Ma = 0.3. Re = 300.
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Table 8. Results from different schemes for the supersonic viscous flow over a sphere.

Scheme Mesh Number CD CD |CL| CL St

Third-order k-exact (Wanai Li 2014) 2,065,612 0.674 0.003 0.055 0.013 0.133
Current 479,232 0.677 0.003 0.084 0.016 0.135

Figure 16. Flow passing through a sphere.Ma = 0.95. Re = 300. Mesh number: 515,453.

Table 9. Results from CGKS and WENO6 (Nagata et al. 2016) for
the transonic flow over a sphere.

Scheme Mesh Number Cd θ L

WENO6 (Nagata et al. 2016) 909,072 0.968 111.5 3.48
Current 515,453 0.950 112.7 3.30

Note:Ma = 0.95. Re = 300.

(d) Supersonic case: Re = 300,Ma = 2.0.
To evaluate the effect of the CF for the supersonic

flow, a viscous flow around a sphere with Ma = 2.0
is tested. The non-slip adiabatic boundary condition
is imposed on the surface of the sphere. The same
computational mesh for case (a) is used here. To
pass this case, an initial field calculated by the first-
order kinetic method (Xu 2014) has to be used for
the CGKS without CF. But, it is not necessary for

the CGKS with CF. The numerical results obtained
by the CGKS with/without the CF are shown in
Figure 18. Almost identical contours and streamlines
are obtained. Quantitative comparisons are listed in
Table 10. Very close results are obtained by the CGKS
with/without the CF. And they have good agreements
with those given byNagata et al. (2016). The test shows
that the current CF can improve the robustness of
the CGKS while keeping the same level of accuracy
in supersonic region. The time-dependent CF distri-
butions are given in Figures 19 and 20. At the very
early step (Step 2), the slopes are modified near the
tail of the sphere, where a rarefaction wave is formed
instantly. Then, the region with a small CF gradually
moves to the front of the sphere, where the bow shock
is formed. Finally, there is almost no region with a CF

Figure 17. Flow passing through a sphere.Ma = 0.95. Re = 300.
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Figure 18. Flow passing through a sphere.Ma = 2. Re = 300. Left: without the CF. Right: with the CF.

Table 10. Results from CGKS with and without CF and WENO6 for the flow over a sphere at
Ma = 2, Re = 300.

Scheme Mesh Number Cd θ L Shock stand-off

WENO6 (Nagata et al. 2016) 909,072 1.386 150.9 0.38 0.21
CGKS without CF 50,688 1.368 148.5 0.45 0.28–0.31
CGKS with CF 50,688 1.368 149.2 0.45 0.28–0.31

Figure 19. The CF distributions at step 2, 10, 20, 30 (from left to right).

Figure 20. The CF distributions at step 40, 50, 100, 1000 (from left to right).

value less than 0.98 when approaching to the steady
state solution.
(e) Hypersonic case: Re = 300,Ma = 5.0.

The Ma = 5 flow passing through a sphere is
considered here. The Reynolds number is still set

as Re = 300. The isothermal wall with Maxwellian
reflection described in Subsection 3.3 is adopted on
the surface of the sphere. The same computational
mesh for case (a) is used here. With the CF, the CGKS
can safely pass this stringent test. The Mach contours
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Figure 21. Flow passing through a sphereMa = 5. Re = 300. Left: the surface of the sphere is coloured by pressure and the streamline
is coloured by temperature. Middle: Mach number distribution. Right: the CF distribution.

Figure 22. Transonic flow over an inviscid ONERA M6 wing under Mesh I.Ma = 0.8935. AOA = 3.06◦. Mesh: 210,663 cells.

and streamlines in both 2-D and 3-D views are pre-
sented in Figure 21. Only a tiny recirculation region is
formed. In addition, the CF distribution in Figure 21
shows that the cell-averaged slopes are mostly modi-
fied near the wall and the bow shock. The minimum
CF is 3 × 10−29.

4.6. Transonic Inviscid ONERAM6Wing

The transonic flow passing through the ONERA M6
wing is tested, as a validation case for compressible
external flow. Experimental data are provided in
Schmitt (1979) at a high Reynolds number. Instead
of the simulation with a high Reynolds number in
the experiment (Schmitt 1979), here an inviscid case
reported in Liu et al. (2020) is simulated. The incom-
ing Mach number is Ma = 0.8395 and the angle of
attack is AOA = 3.06◦. The wing is hung on a slipwall,
and the Riemann boundaries are applied 10 times of
the root chord length away from the wing. A hybrid
unstructured mesh with a near-wall size h ≈ 2e−3 is
used in the computation, as shown in Figure 22. The
surface pressure distribution andMach slices at differ-
entwing sections under are presented in Figure 22. The

‘Lambda’ shock is well resolved. Quantitative com-
parisons on the pressure distributions for six different
locations on the wing are given in Figure 23, which
show theCGKS can give a rough prediction for the real
physical flow in this case.

4.7. Hypersonic Space Vehicle

A space vehicle model is considered to test the
robustness of the proposed scheme for the hyper-
sonic viscous flow. The initial condition is taken as
suggested in Chen, Zhu, and Xu (2020), which has
Ma = 10 and AOA = 20◦. The Reynolds number is
chosen as 14,289 based on the vehicle’s total length,
which yields a Knudsen number Kn = 10−3. Thus,
the flow is in a transition regime and the isother-
mal wall with Maxwellian reflection described in Sub-
section 3.3 is applied on the vehicle’s surface. The
surface mesh is given in Figure 24. The density and
pressure distributions are shown in Figure 25. The
Mach distributions and streamlines are also plotted in
Figure 26. The slip velocities can be observed on the
surface of the space vehicle.
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Figure 23. Pressure distributions at different semi-span locations Y/B on the ONERA M6 wing.Ma = 0.8935. AOA = 3.06◦. Top: Y/B =
0.20, 0.44, 0.65 from left to right. Bottom: Y/B = 0.80, 0.90, 0.95 from left to right.

Figure 24. Mesh distribution around a space vehicle. Mesh number: 246,558.

Figure 25. Density and pressure distributions around the space vehicle.
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Figure 26. Mach distributions and streamlines.

5. Discussion and Conclusion

In this paper, in order to increase the accuracy
and robustness of the third-order CGKS in three-
dimensional flow simulation with unstructured tetra-
hedral mesh, the scheme is further developed with
the modification of multi-resolution WENO recon-
struction and the introduction of compression factor
(CF) for the updated gradients inside each control vol-
ume. Based on the updates of both cell-averaged flow
variables and their gradients, in three-dimensional
space the direct extension of the WENO reconstruc-
tion used in the previous 2D CGKS can easily get
failed due to the complicated geometry and deterio-
rated 3-D unstructured mesh, and leads to the lack
of robustness in viscous flow simulations. In order
to increase the mesh adaptivity, the multi-resolution
WENO scheme is modified to get to the targeted cell
only for the reconstruction in extreme cases, which
converts the high-order CGKS to the first-order GKS
when necessary. On the other hand, due to the use of
the continuous assumption of flow variables at the cell
interface, the updated gradients of the flow variables
through the Divergence theorem around the con-
trol volume is problematic in case of the discontinu-
ities. Thus, the CF being proportional to the strength
of the discontinuities is introduced to compress the
gradients accordingly. Different from identifying the
‘trouble cells’ and moving them from the high-order
discretisation (Krivodonova et al. 2004; Clain, Diot,
and Loubère 2011; Xiangxiong Zhang 2017), the cur-
rent approach is to turn the ‘trouble cells’ into nor-
mal ones through CF and a uniform CGKS is applied
everywhere. A detailed illustration about the com-
bination of CF and multi-resolution WENO recon-
struction on the improvement of CGKS is given in
Appendix. As a result, the current CGKS can use a

large explicit time step, improve robustness and mesh
adaptability, and have high program portability. The
numerical tests, especially in the 3D hypersonic flow
computations under complex geometry, demonstrate
the validity of the scheme.
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Appendix

The motivation for modifying cell-averaged slopes on 3D
unstructured mesh is to increase the robustness of the scheme,
especially on tetrahedral mesh. In 3-D case with a bad mesh
topology, the conventional WENO procedure cannot give reli-
able reconstructions, even though it is usually considered as
a robust spatial reconstruction method. As an example, the
tetrahedral meshes near the boundary with a small radius of
curvature can easily have a high volume ratio and themaximum
included angle can become close to 180◦. A 2-D example with
geometric singularity is shown in Figure A1, where the first-
order polynomial p1 = Q0 + a1(x − x0)+ a2(y − y0) cannot
be properly determined with the centroid y0 = y1 = y2. As one
of the sub-stencil in the traditional WENO reconstruction, the
smoothness indicator from such a sub-stencil cannot be cor-
rectly measured by the definition in Equation (16). With two
sub-stencils for the targeted cell �0, such that one has bad
geometry as shown in Figure A1 in the smooth flow region
and the other has good mesh topology in the shock region,
the smooth indicators given by these two sub-stencils could be

Figure A1. A singular 2-D case: the first-order polynomial cannot
be constructed by the three cell-averaged values in the stencil.

the same and incorrectly evaluated. Then, the WENO recon-
struction will give an invalid slope, leading to a reduction in
robustness.

On the other hand, the first-order finite volume schemes
with approximate Riemann solvers are positive-preserving, e.g.
the first-order L-F scheme, and the first-order kinetic vector
flux-splitting scheme (Tang and Xu 1999). The first-order GKS
is also robust enough for the hypersonic flow simulation. In
order to recover such a situation, the reconstruction scheme
should be able to give one of the sub-stencils with the targeted
cell only. Such a new reconstruction strategy can be designed
for high-order CGKS to reduce to first-order GKS when nec-
essary. In order to achieve such a goal, the WENO-type recon-
struction has to have the following three properties,

(1) The first-order sub-stencil (i.e. the zeroth poly-
nomial p0 determined solely by the cell-averaged
conservative variable on the targeted cell) must be
included;

(2) The smooth indicator from the above sub-stencil is
independent of grid quality;

(3) The smooth indicator from the above sub-stencil
should be small enough if a discontinuity is located
inside the targeted cell.

The multi-resolution WENO (Zhu and Shu 2018) satisfies
Property 1, which has also been adopted in the previous CGKS
(Ji et al. 2021b). Since both cell-averaged conservative variables
and their slopes are updated in CGKS, a first-order polyno-
mial inside each cell can always be constructed, i.e. p1i = Wi +
Wx,ixi. Same as theDGmethods (Yang et al. 2019), such type of
polynomial has great mesh adaptability. All these polynomials
in the compact stencil can be used to evaluate the smooth indi-
cator of p0, which satisfies Property 2, as a 2-D example shown
in Figure A2. Property 3 requires the sub-cell resolution of a
scheme. In the cases with discontinuities, the updated gradients
in CGKS through divergence theorem in Equation (10) may
become invalid. This is the reason for the introduction of CF
α being proportional to the strength of the discontinuities, as
shown in Equation (21), to compress the gradients accordingly.
The CF is more of less an indicator of measuring the strength
of the sub-cell discontinuity. Both mesh illness and flow conti-
nuities have been taken into account through the aboveWENO
reconstruction andCF, as shown in FigureA3, for the 3DCGKS
simulation.
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Figure A2. A 2-D example for stencil selections for the compact multi-resolution WENO reconstruction.

Figure A3. CF function in case of bad mesh topology and discontinuity.
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