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A unified gas-kinetic scheme (UGKS) is constructed for both continuum and rarefied flow
computations. The underlying principle for the development of UGKS is the direct modeling
for the gas evolution process from the kinetic to the hydrodynamic scale, which is used
in the flux construction across a cell interface. More specifically, the physical process
from the kinetic particle free transport to the hydrodynamic pressure wave propagation
is recovered in the flux function. In the previous study, the UGKS has been developed
mainly for monatomic gas with particle translational motion only. The construction of time
evolution solution is based on the BGK, Shakhov, and ES–BGK models. The UGKS has been
validated through extensive numerical tests. In this paper, a UGKS for diatomic gas will be
constructed, where the gas-kinetic Rykov model with a Landau–Teller–Jeans-type rotational
energy relaxation is used in the numerical scheme. The new scheme will be tested in many
cases, such as homogeneous flow relaxation, shock structure calculations, hypersonic flow
passing a flat plate, and the flow around a blunt circular cylinder. The analytic, DSMC, and
experimental measurements will be used for validating the solutions of UGKS.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The flow regime is categorized according to the Knudsen number Kn, which is a defined as the ratio of the molecular
mean free path to a characteristic physical length scale. The value of the Knudsen number determines the validity of differ-
ent approaches in the description of gas flow, such as the hydrodynamic method or statistical one. The whole flow regime
is qualitatively divided into continuum (Kn < 0.01), transitional (0.01 < Kn < 10), and free molecular regimes (Kn > 10).

In many scientific and engineering applications, such as space exploration, vacuum technology, micro-electro-mechanical
systems development, both continuum and rarefied flow regimes can be encountered in a single case of flow study. In order
to correctly capture such a crossing scale solution, the development of a unified scheme becomes necessary. By modeling the
time evolution of a gas distribution function due to the free transport and binary elastic collision, the Boltzmann equation
has been constructed for monatomic dilute gas. The modeling scale of the Boltzmann equation is the particle mean free
path and mean collision time. Theoretically, kinetic schemes can be developed by direct discretization of the Boltzmann
equation for all flow regimes if the numerical cell size and time step used are consistent with the modeling scale of the
kinetic equation, such as mean free path and particle collision time. But, this approach is purely a brutal force method
which can be hardly used in real engineering applications for the flow close to the continuum regime. The development
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of a unified scheme for all flow regimes is somehow more difficult than the construction of kinetic equation with a single
modeling scale, such as the Boltzmann equation.

Currently, based on the kinetic equation there are two kinds of numerical methods for simulating non-equilibrium di-
lute gases, i.e., statistical and deterministic ones. The statistical method, represented by the Direct Simulation Monte Carlo
(DSMC) method [1–3], uses probabilistic simulation to solve the Boltzmann equation. The deterministic method, such as the
Discrete Velocity Methods (DVM) or Discrete Ordinate Method (DOM) [4–9], use regular numerical discretization of parti-
cle velocity space to solve the Boltzmann equation. Besides the above approaches, many other methods, such as the finite
difference [10], spectral [11,12], and multi-scale lattice Boltzmann methods [13], have been developed as well. In order
to simplify the numerical schemes for the Boltzmann equation, both statistical and deterministic methods use an operator
splitting approach, such as decoupling the transport and collision process into a collisionless free transport and particle col-
lision. In order to validate such an operator splitting method, such as avoiding introducing numerical error due to splitting,
the cell size and time step in these numerical schemes are limited by the particle mean free path and mean collision time.
Therefore, these methods are capable of simulating high Knudsen number flow efficiently. However, in the transition and
continuum flow regimes, due to intensive particle collisions, the constraint on the cell size and time step makes operator
splitting method be prohibitively expensive. Many studies have been concentrated on the development of asymptotic pre-
serving schemes with implicit or semi-implicit treatments [9,14,15]. Based on the DVM approach, many kinetic solvers have
been developed for diatomic gases as well [16–19]. For the lattice Boltzmann method (LBM), in order to get hydrodynamic
solution it seems that the constraint of time step being less than the particle collision time is not needed [13]. The reason
for LBM is that it solves the incompressible flow equations in the continuum limit, where the operator splitting error can
be luckily absorbed into the physical viscous term by changing the viscosity coefficient.

In recent study, a unified gas-kinetic scheme (UGKS) based on the kinetic BGK and Shakhov models has been developed
for monatomic gas for the whole flow regimes [20–24]. The unified scheme is a multi-scale method with coupled particle
transport and collision in its numerical flux modeling. An integral solution of the gas-kinetic model has been used to con-
struct the flow evolution around a cell interface. This time evolution solution covers the flow physics from the kinetic scale
particle free transport to the hydrodynamic scale wave propagation, and the weight between these two limiting solutions
depends on the ratio of time step to the local particle collision time. As a result, both kinetic and hydrodynamic solutions
can be automatically obtained in the unified approach. Due to the un-splitting treatment for the transport and collision in
UGKS, the time step used is not limited by the particle collision time. Therefore, the UGKS is more efficient than DVM and
DSMC methods in the low transition and continuum flow computations. Even though the UGKS has been developed for
the kinetic model equations, it provides a general framework to construct multi-scale method, such as the extension to the
radiative transfer [25]. Even for the full Boltzmann equation, the corresponding scheme can be developed as well.

More specifically, the main difference between the UGKS and many other kinetic equation solvers is the flux evaluation
across a cell interface. In UGKS [20], the time dependent flux function is obtained from a time evolution gas distribution
function. As an illustration of the basic idea, a simplified version of the distribution function for the flux evaluation can be
written as

f (t) = η(�t/τ ) fNS + (
1 − η(�t/τ )

)
f free-transport,

where the parameter η depends on the ratio of time step �t to the particle collision time τ , fNS is the distribution
function corresponding to the Navier–Stokes solution, and f free-transport presents the collisionless solution. Therefore, in both
free molecular (�t � τ ) and continuum (�t � τ ) limits, the UGKS presents the exact solutions. In the transition regime
(�t ∼ τ ), the UGKS has been validated extensively through numerical tests and the comparison with DSMC solutions.
However, for most other kinetic equation solvers, the free transport f free-transport is solely used to model the interface flux,
which corresponds to the flux vector splitting (FVS) scheme in the continuum limit. As a result, the dissipation in FVS
is always proportional to the time step �t instead of the physical collision time τ , and �t � τ in the continuum limit
deteriorates the accuracy of these schemes. So, we believe that it will be extremely hard for many kinetic solvers, which
target for the rarefied flows, to pass the test case in the continuum flow regime [26]. The UGKS methodology has been
adapted in the discrete unified gas-kinetic scheme (DUGKS) [27], which has extended the validity of the Lattice Boltzmann
Method (LBM) from continuum to the rarefied regimes. The UGKS updates both gas distribution function and macroscopic
flow variables. In the continuum flow regime, the Navier–Stokes equations are the well-defined governing equations and
it becomes unnecessary to update the distribution function anymore. Actually, the distribution function in the continuum
regime can be directly reconstructed from macroscopic flow variables and can be used for the flux evaluation in finite
volume NS flow solver [28]. Therefore, even with the same accuracy in the continuum flow regime, the gas-kinetic scheme
(GKS) for NS is much more efficient than UGKS.

The early UGKS has been constructed for monatomic gas. This paper concerns the extension of the UGKS to diatomic gas.
In the diatomic gas modeling, the rotational degree of freedom is included and modeled by controlling the energy exchange
between translational and rotational energy through the relaxation model. More specifically, the Rykov kinetic model is used
to construct the time evolution solution of a gas distribution function [29].

This paper is organized in the following. The unified scheme will be presented in Section 2. Section 3 is the analysis of
the scheme. Section 4 includes many numerical test cases to validate the proposed method. The last section is the discussion
and concluding remarks.
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2. Unified gas-kinetic scheme for diatomic molecules

2.1. Gas-kinetic models

For diatomic gas, besides the translational degrees of freedom, the internal degrees of freedom have to be included as
well in a gas distribution function, i.e., f (t,x,u, ε), where the internal energy ε is ε = M2/2 J with moment of inertia J
and angular momentum M. The relations between distribution function and macro-variables are defined as

ρ = mn =
∫

mf du dv dw dε,

Ui = 1

n

∫
ui f du dv dw dε,

Pij =
∫

mcic j f du dv dw dε,

Ptran = nkTtran = 1

3

∫
mc2 f du dv dw dε,

Prot = nkTrot =
∫

ε f du dv dw dε,

qtran,i =
∫

ci
mc2

2
f du dv dw dε,

qrot,i =
∫

ciε f du dv dw dε, (1)

where c = (u − U , v − V , w − W ) is the peculiar velocity, n is the particle number density, Ui is the i-direction flow veloc-
ity, Ttran is the translational temperature, Trot is the rotational temperature, qtran,i is the heat flux related to translational
degrees of freedom, and qrot,i is the heat flux due to the rotational energy transport.

In order to simplify the collisional model of the full Boltzmann equation, many kinetic models have been proposed and
used in the study of rarefied flows [30–35]. For modeling diatomic gases, the non-equilibrium rotational and transitional
energy should be considered. Many attempts have been done to construct kinetic models and develop the corresponding
gas-kinetic schemes [36–39].

In this paper, the Rykov model [29] for diatomic gas will be used in the construction of UGKS. The Rykov model is an
extension of the Shakhov model of monatomic gas. The Rykov model has the following form,

∂ f

∂t
+ u

∂ f

∂x
+ v

∂ f

∂ y
+ w

∂ f

∂z
= gtran − f

τ
+ grot − gtran

Zrτ
, (2)

where the collision operator on the right-hand of the equation is consisted of two terms corresponding to the elastic
and inelastic collisions respectively. The translational kinetic energy is conserved in the elastic collisions, while, in the
inelastic collisions, the energy exchange between the translational and rotational energy takes place. In Eq. (2), gtran is the
equilibrium state in the elastic collisions and grot is the equilibrium state for inelastic collisions with the consideration of
energy exchange and total energy conservation. The equilibrium states are expressed as

gtran = n

(
m

2πkTtran

) 3
2

e
− mc2

2kTtran

(
1

kTrot

)
e
− ε

kTrot

[
1 − 2mqtran · c

15kTtran ptran

(
5

2
− mc2

2kTtran

)
+ (σ − 1)

mqrot · c

kTtran

kTrot − ε

θ

]
,

grot = n

(
m

2πkT

) 3
2

e− mc2
2kT

(
1

kT

)
e− ε

kT

[
1 − ω0

2mqtran · c

15kT p

(
5

2
− mc2

2kT

)
+ ω1

mqrot · c

kT p

(
1 − ε

kT

)]
, (3)

where τ = μ(Ttran)/Ptran = μ(Ttran)/nkTtran is the mean collision time, 1/τ is the mean collision frequency, μ(Ttran) is the
viscosity of a diatomic gas, and T is the equilibrium temperature for translational and rotational degrees of freedom. The
mean collision time τ depends on translational temperature Ttran , because the translational temperature characterizes the
mean relative velocity of colliding particles. Here Zr is the rotation collision number which is related to the ratio of elastic
collision frequency to inelastic frequency. And θ and σ are defined by

θ =
∫

(kTrot − ε)2 f du dv dw dε,

σ = μ(Ttran)

mnD
, (4)

where D is the self-diffusion of the diatomic gas. Proper relaxation of heat flux are achieved by selecting of the quantities
ω0 and ω1,
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∂qtran

∂t
= −

(
2

3
+ 1 − ω0

3Zr

)
Ptran

μtran
qtran,

∂qrot

∂t
= −

[
σ + (1 − σ)(1 − ω1)

Zr

]
Ptran

μtran
qtran. (5)

2.2. Reduced gas-kinetic models

The UGKS is a scheme for the capturing of time evolution of a gas distribution function f (t,x,u, ε), where the particle
velocity space u is discretized and a continuous space is used for ε . In order to reduce the computational cost, reduced gas
distribution functions can be defined,

G(t,x,u) =
∫

f (t, x, u, ε)dε,

R(t,x,u) =
∫

ε f (t, x, u, ε)dε. (6)

As a result, the relations between macroscopic flow variables and distribution functions can be written in terms of the
moments of G and R ,

W =

⎛
⎜⎜⎜⎜⎜⎝

ρ
ρU
ρV
ρW
ρE

ρErot

⎞
⎟⎟⎟⎟⎟⎠

=
∫

⎛
⎜⎜⎜⎜⎜⎜⎝

mG
muG
mvG
mwG

m(u2+v2+w2)
2 G + R

R

⎞
⎟⎟⎟⎟⎟⎟⎠

du dv dw. (7)

Multiplying the Rykov equation by vector (1, ε)T and integrating the vector equation in terms of the rotational energy, the
following system can be obtained,

∂G

∂t
+ u

∂G

∂x
+ v

∂G

∂ y
+ w

∂G

∂z
= Gtran − G

τ
+ Grot − Gtran

Zrτ
,

∂ R

∂t
+ u

∂ R

∂x
+ v

∂ R

∂ y
+ w

∂ R

∂z
= Rtran − R

τ
+ Rrot − Rtran

Zrτ
, (8)

where the evolution of the distribution function f (t,x,u, ε) is replaced by the time evolution of two new distribution
functions G and R , which depend on (t,x,u) only. The above system (8) couples the time evolution of G and R through the
collision terms. The equilibrium states in Eq. (8) depend on the macroscopic flow variables W in Eq. (7), which depend on
G and R as well. These elastic and inelastic equilibrium states are denoted by Gtran , Grot , Rtran and Rrot , which are given by

Gtran =
[

1 − 2mqtran · c

15kTtran ptran

(
5

2
− mc2

2kTtran

)]
Gtran_Guassian,

Grot =
[

1 − ω0
2mqtran · c

15kT p

(
5

2
− mc2

2kT

)]
Grot_Guassian,

Rtran =
[

1 − 2mqtran · c

15kTtran ptran

(
5

2
− mc2

2kTtran

)
+ (1 − σ)

mqrot · c

kTtran ptran

]
Rtran_Guassian,

Rrot =
[

1 − ω0
2mqtran · c

15kT p

(
5

2
− mc2

2kT

)
+ ω1(1 − σ)

mqrot · c

kT p

]
Rrot_Guassian, (9)

where Gtran_Guassian , Grot_Guassian , Rtran_Guassian and Rrot_Guassian are Maxwellians defined by

Gtran_Guassian = n

(
m

2πkTtran

) 3
2

e
− mc2

2kTtran ,

Grot_Guassian = n

(
m

2πkT

) 3
2

e− mc2
2kT ,

Rtran_Guassian = kTtranGtran_Guassian,

Rrot_Guassian = kTrotGrot_Guassian. (10)

In Eq. (10), the distributions Gtran_Guassian , Grot_Guassian , Rtran_Guassian , and Rrot_Guassian are fully determined by the macroscopic
variables W in Eq. (7).
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Defining

Geq =
(

Zr − 1

Zr
Gtran + 1

Zr
Grot

)
,

and

Req =
(

Zr − 1

Zr
Rtran + 1

Zr
Rrot

)
,

the system of model equations can be simplified as

∂G

∂t
+ u

∂G

∂x
+ v

∂G

∂ y
+ w

∂G

∂z
= ( Zr−1

Zr Gtran + 1
Zr Grot) − G

τ
= Geq − G

τ
,

∂ R

∂t
+ u

∂ R

∂x
+ v

∂ R

∂ y
+ w

∂ R

∂z
= ( Zr−1

Zr Rtran + 1
Zr Rrot) − R

τ
= Req − R

τ
. (11)

The construction of UGKS for diatomic gases will be based on the above equations.

2.3. Unified gas-kinetic scheme

Unified gas-kinetic scheme is a finite volume method. The physical space in 3D is divided into control volumes Ωi, j,k .
The temporal discretization is denoted by tn for the n-th time step. The particle velocity space is discretized in order to
capture the non-equilibrium distribution. The discrete distribution functions in physical and velocity spaces are denoted by

Gn
i, j,k = Gn

i, j,k,α,β,γ = G(tn, xi, y j, zk, uα, vβ, wγ ),

Rn
i, j,k = Rn

i, j,k,α,β,γ = R(tn, xi, y j, zk, uα, vβ, wγ ). (12)

In order to simplify the notation, the index α, β , γ for the discrete particle velocity will be omitted for convenience. With
the discrete particle velocity points, the moments of gas distribution functions have to be done by numerical quadrature
over velocity space,

W n
i, j,k =

∑

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

mGn
i, j,kκ1(u, v, w)

muGn
i, j,kκu(u, v, w)

mvGn
i, j,kκv(u, v, w)

mwGn
i, j,kκw(u, v, w)

(
m(u2+v2+w2)

2 Gn
i, j,k + Rn

i, j,k)κe(u, v, w)

Rn
i, j,kκr(u, v, w)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)

where κ1, κu , κv , κw , κe and κr are the weights for numerical quadratures. The UGKS method is constructed in the follow-
ing.

(i) Integrating the model Eq. (8) over the control volume Ωi, j,k in a physical space and in a time interval (tn, tn+1).
(ii) Discretizing the time integration of collision terms using a trapezoid rule.

(iii) Using the following two equations for updating the gas distribution functions (Gi, j,k and Ri, j,k) and macroscopic flow
variables (W ) in the control volume Ωi, j,k ,

Gn+1
i, j,k = Gn

i, j,k + 1

Ωi, j,k

tn+1∫
tn

∮
∂Ωi, j,k

Gcf (u, t)u · dS dt + �t

Ωi, j,k

( Gn
eq,i, j,k − Gn

i, j,k

2τn
+ Gn+1

eq,i, j,k − Gn+1
i, j,k

2τn+1

)
, (14)

Rn+1
i, j,k = Rn

i, j,k + 1

Ωi, j,k

tn+1∫
tn

∮
∂Ω

Rcf (u, t)u · dS dt + �t

Ωi, j,k

( Rn
eq,i, j,k − Rn

i, j,k

2τn
+ Rn+1

eq,i, j,k − Rn+1
i, j,k

2τn+1

)
, (15)
i, j,k
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W n+1 =

⎛
⎜⎜⎜⎜⎜⎝

ρ
ρU
ρV
ρW
ρE

ρErot

⎞
⎟⎟⎟⎟⎟⎠

n+1

i, j,k

=

⎛
⎜⎜⎜⎜⎜⎝

ρ
ρU
ρV
ρW
ρE

ρErot

⎞
⎟⎟⎟⎟⎟⎠

n

i, j,k

+ 1

Ωi, j,k

∑ tn+1∫
tn

∮
∂Ωi, j,k

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

m
mu
mv
mw

m( u2+v2+w2

2 )

0

⎞
⎟⎟⎟⎟⎟⎟⎠

Gcf (u, t) +

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
0
1
1

⎞
⎟⎟⎟⎟⎟⎠

Rcf (u, t)

⎤
⎥⎥⎥⎥⎥⎥⎦

u · dS dt dΞ

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0

�t(
(ρErot)

n−(ρErot,eq)
n

2τn + (ρErot)
n+1−(ρErot,eq)

n+1

2τn+1 )

⎞
⎟⎟⎟⎟⎟⎟⎠

. (16)

In the above system, in order to update the gas distribution functions in Eqs. (14) and (15), the equilibrium states
(Gn+1

eq,i, j,k and Rn+1
eq,i, j,k) at (n + 1)-th time step depend on the macroscopic flow variables at (n + 1)-th step, which can be

provided through the solution of Eq. (16). Therefore, the solutions in Eqs. (14), (15), and (16) can be uniquely determined
once the time dependent gas distribution functions Gcf (u, t) and Rcf (u, t) at a cell interface (cf refers to cell interface) can
be obtained. The construction of the cell interface gas distribution function is the central point in the development of UGKS.

In UGKS method, the cell interface (cf) time evolution distribution functions Gcf (u, t) and Rcf (u, t) are modeled by the
local analytical solution of kinetic equations (11). The time evolution solutions are

Gcf (t,u) = G(t,u,xcf ) = 1

τ

t∫
tn

Geq
(
t′,u,xcf − ut + ut′)e

t′−t
τ dt′ + e

tn−t
τ G

(
tn,u,xcf − u(t − tn)

)
,

Rcf (t,u) = R(t,u,xcf ) = 1

τ

t∫
tn

Req
(
t′,u,xcf − ut + ut′)e

t′−t
τ dt′ + e

tn−t
τ R

(
tn,u,xcf − u(t − tn)

)
, (17)

where G(tn,u,xcf − u(t − tn)) and R(tn,u,xcf − u(t − tn)) are the initial condition of the distribution functions. The solu-
tions are actually a weighted averaging of initial free transport and the equilibrium state evolution. In other words, it is a
crossing scale solution from the kinetic to the hydrodynamic ones.

The initial gas distribution functions can be obtained through the Taylor expansion around the point (tn,u,xcf ), the
superscript l and r denote the left-hand side and right-hand side of a cell interface,

G(tn,u,xcf − ut) = (
1 − H[−u · S])Gl(tn,u,xcf ) + H[−u · S]Gr(tn,u,xcf )

+ (
1 − H[−u · S])∂G

∂x

∣∣∣∣
l

(tn,u,xcf )

· (−u(t − tn)
) + H[−u · S]∂G

∂x

∣∣∣∣
r

(tn,u,xcf )

· (−u(t − tn)
)
,

R(tn,u,xcf − ut) = (
1 − H[−u · S])Rl(tn,u,xcf ) + H[−u · S]Rr(tn,u,xcf )

+ (
1 − H[−u · S])∂ R

∂x

∣∣∣∣
l

(tn,u,xcf )

· (−u(t − tn)
) + H[−u · S]∂ R

∂x

∣∣∣∣
r

(tn,u,xcf )

· (−u(t − tn)
)
, (18)

where S is the unit normal direction of a cell interface, Gl,r(tn,u,xcf ), Rl,r(tn,u,xcf ) are the distributions at the cell interface
at time tn . With the definition of xl

cc as the location of cell center (cc) on the left-hand side of a cell interface, and xr
cc on

the right-hand side, the reconstructed values at the cell interface (cf) can be expressed as

Gl(tn,u,xcf ) = Gn(tn,u,xl
cc

) + ∂G

∂x

∣∣∣∣
l

(tn,u,xl
cc)

· (xcf − xl
cc

)
,

Gr(tn,u,xcf ) = Gn(tn,u,xr
cc

) + ∂G

∂x

∣∣∣∣
r

r
· (xcf − xr

cc

)
,

(tn,u,xcc)
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Rl(tn,u,xcf ) = Rn(tn,u,xl
cc

) + ∂ R

∂x

∣∣∣∣
l

(tn,u,xl
cc)

· (xcf − xl
cc

)
,

Rr(tn,u,xcf ) = Rn(tn,u,xr
cc

) + ∂ R

∂x

∣∣∣∣
r

(tn,u,xr
cc)

· (xcf − xr
cc

)
. (19)

The distributions at cell center, such as Gn(tn,u,xl
cc), Gn(tn,u,xr

cc), Rn(tn,u,xl
cc) and Rn(tn,u,xr

cc) are the cell averaged
values. In this paper, a second order reconstruction scheme is used to get slopes inside each control volume,

∂G

∂x

∣∣∣∣
l

(tn,u,xcf )

= ∂G

∂x

∣∣∣∣
l

(tn,u,xl
cc)

,
∂G

∂x

∣∣∣∣
r

(tn,u,xcf )

= ∂G

∂x

∣∣∣∣
r

(tn,u,xr
cc)

,

∂ R

∂x

∣∣∣∣
l

(tn,u,xcf )

= ∂ R

∂x

∣∣∣∣
l

(tn,u,xl
cc)

,
∂ R

∂x

∣∣∣∣
r

(tn,u,xcf )

= ∂ R

∂x

∣∣∣∣
r

(tn,u,xr
cc)

. (20)

The gradients of distribution functions in Eq. (20) are constructed by the differences of cell averaged values and with the
application of nonlinear limiter [40].

The equilibrium states in the integral solution are expanded in the following,

Geq
(
t′,u,xcf − u

(
t − t′))

= Zr − 1

Zr

{
Gtran(tn,u,xcf ) + [(

1 − H
[
x′ · S

])
al

G · x′ + (
H

[
x′ · S

])
ar

G · x′ + AGt′]Gtran_Guassian(tn,u,xcf )
}

+ 1

Zr

{
Grot(tn,u,xcf ) + [(

1 − H
[
x′ · S

])
bl

G · x′ + (
H

[
x′ · S

])
br

G · x′ + BGt′]Grot_Guassian(tn,u,xcf )
}
,

Req
(
t′,u,xcf − u

(
t − t′))

= Zr − 1

Zr

{
Rtran(tn,u,xcf ) + [(

1 − H
[
x′ · S

])
al

R · x′ + (
H

[
x′ · S

])
ar

R · x′ + ARt′]Rtran_Guassian(tn,u,xcf )
}

+ 1

Zr

{
Rrot(tn,u,xcf ) + [(

1 − H
[
x′ · S

])
bl

R · x′ + (
H

[
x′ · S

])
br

R · x′ + B Rt′]Rrot_Guassian(tn,u,xcf )
}
, (21)

where x′ = xcf − u(t − t′). Vectors al
G ,ar

G ,bl
G ,br

G ,al
R ,ar

R ,bl
R ,br

R are related to the spatial gradients of equilibrium states. As
an example, al

G is related to the spatial gradient of the equilibrium state of elastic collisions on the left-hand side of a cell
interface, and it is formulated as

al
G Gtran_Guassian(tn,u,xcf ) = ∂Gtran_Guassian

∂x

∣∣∣∣
l

(tn,u,xcf )

, (22)

with the components

al
G,x = al

G,x,1 + al
G,x,2u + al

G,x,3 v + al
G,x,4 w + al

G,x,5

(
u2 + v2 + w2),

al
G,y = al

G,y,1 + al
G,y,2u + al

G,y,3 v + al
G,y,4 w + al

G,y,5

(
u2 + v2 + w2),

al
G,z = al

G,z,1 + al
G,z,2u + al

G,z,3 v + al
G,z,4 w + al

G,z,5

(
u2 + v2 + w2).

Here AG , BG , AR and B R are defined as the time variations of the equilibrium states. For example, AG is related to the time
derivative of the equilibrium state of the elastic collisions,

AG Gtran_Guassian(tn,u,xcf ) = ∂Gtran_Guassian

∂t

∣∣∣∣
(tn,u,xcf )

, (23)

where

Al
G = Al

G,1 + Al
G,2u + Al

G,3 v + Al
G,4 w + Al

G,5

(
u2 + v2 + w2).

The equilibrium states and their derivatives are fully determined by macroscopic variables and their gradients. Conse-
quently, the slopes of al

G , ar
G , bl

G , br
G , AG , and BG can be fully calculated in the following way.

Suppose that αG represents the spatial or temporal derivative of an equilibrium state G , with the coefficients α = α1 +
α2u +α3 v +α4 w +α5(u2 + v2 + w2), and the corresponding macroscopic variables and their derivatives in the equilibrium
state G are given, such as ρ ′ , U ′ , V ′ , W ′ , λ′ for the spatial or temporal derivatives of the corresponding macroscopic
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variables ρ , U , V , W , λ, then the coefficients in α are given by

α1 = 2λρ ′ + ρ(−4λ2(U U ′ + V V ′ + W W ′) + (3 − 2(U 2 + V 2 + W 2)λ)λ′)
2ρλ

,

α2 = 2
(
λU ′ + Uλ′),

α3 = 2
(
λV ′ + V λ′),

α4 = 2
(
λW ′ + W λ′),

α5 = −λ′, (24)

where λ = m/2kTtran for al
G ,ar

G and AG ; and λ = m/2kT for bl
G ,br

G and BG . Similarly, with βR for the spatial or temporal
derivative of an equilibrium state R , and the coefficients β = β1 + β2u + β3 v + β4 w + β5(u2 + v2 + w2), these coefficients
are determined by

β1 = α1 − λ′

λ
,

β2 = α2,

β3 = α3,

β4 = α4,

β5 = α5, (25)

where λ = m/2kTtran for al
R ,ar

R and AR ; and λ = m/2kT for bl
R ,br

R , and B R . The spatial derivatives of macroscopic variables
inside each cell can be obtained through the reconstruction of macroscopic flow variables with the application of nonlinear
limiter. Therefore, all above spatial derivatives for ρ , U , V , W , λ are known. In order to get the time derivatives for ρ ,
U , V , W , λ, we need to do the following. Taking conservative moments on the kinetic equation, due to the vanishing of
collision term to the conservative moments, the moments of the temporal and spatial derivatives of a distribution function

are connected. This is also applicable to the equilibrium states. With the definitions ψ1 = (m,mu,mv,mw,
m(u2+v2+w2)

2 ,0)T

and ψ2 = (0,0,0,0,1,1)T , we have
∫ [

ψ1

(
∂Gtran

∂t
+ u · ∂Gtran

∂x

)
+ ψ2

(
∂ Rtran

∂t
+ u · ∂ Rtran

∂x

)]
dΞ = 0. (26)

Consequently, the temporal derivatives of macroscopic variables can be obtained as

∂W

∂t
= −

∫
⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

m
mu
mv
mw

m( u2+v2+w2

2 )

0

⎞
⎟⎟⎟⎟⎟⎟⎠

(
u · ∂Gtran

∂x

)
+

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
0
1
1

⎞
⎟⎟⎟⎟⎟⎠

(
u · ∂ Rtran

∂x

)
⎤
⎥⎥⎥⎥⎥⎥⎦

dΞ. (27)

Then, based on the above time derivative of macroscopic flow variables, the temporal derivatives of distribution functions
are fully determined using Eq. (23).

The numerical procedures of UGKS for diatomic gas are identical to the UGKS for monatomic gas, except the inclusion
of additional rotational degree of freedom. The corresponding numerical procedures for monatomic gas are given in [20]. At
end, we present a summary of the unified gas-kinetic scheme for diatomic gases:

1. The Rykov model equation is split into two equations for reduced distribution functions.
2. The time evolution of distribution functions at a cell interface are modeled by the integral solutions of the Rykov

equations.
3. The initial condition and the integration of equilibrium states are determined explicitly in the above integral solutions

for the flux evaluation. The macroscopic conservative flow variables inside each cell are updated first using the above
integral solutions for the flux evaluation.

4. A finite volume scheme is developed for the update of gas distribution functions with fluxes from the above integral
solutions, and with the source terms treatment inside each cell, where the updated macroscopic variables are used for
the determination of the equilibrium states of the source terms.

At end, we discuss the rotational collision number for the diatomic gas. The energy relaxation term of Rykov equation
is modeled using a Landau–Teller–Jeans relaxation. The particle collision time multiplied by rotational collision number Zr
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defines the relaxation rate for the rotational energy equilibrating with the translational energy. In the current paper, the
value Zr used is,

Zr = Zr
∗

1 + (π3/2/2)

√
T̃ /Ttran + (π + π2/4)(T̃ /Ttran)

, (28)

where the quantity T̃ is the characteristic temperature of intermolecular potential, and Z∗
r has a fixed value. Over a tem-

perature range from 30 K to 3000 K for N2, a value Z∗
r = 23.0 and T̃ = 91.5 K are used. More complicated models for the

energy relaxation can be found in [41–44].

3. Analysis of UGKS

The initial conditions in Eq. (11) are G(tn,u,x) and R(tn,u,x). In the collisionless limit, i.e., τ → ∞, the analytical
solutions at a cell interface become

Gcf (t,u) = G
(
tn,u,xcf − u(t − tn)

)
,

Rcf (t,u) = R
(
tn,u,xcf − u(t − tn)

)
. (29)

As a free molecular flow, the above solution is exact.
For the equilibrium flow, there are intensive particle collisions. As a result of �t � τ , the gas distribution functions at a

cell interface become

1

τ

tn+�t∫
tn

Geq
(
t′,u,xcf − u

(
t − t′))e

t′−t
τ dt′

and

1

τ

tn+�t∫
tn

Req
(
t′,u,xcf − u

(
t − t′))e

t′−t
τ dt′,

which precisely present the NS solutions of the Chapman–Enskog expansion. This is the hydrodynamic limits of the UGKS.
Therefore, the integral solution in UGKS makes an automatic adaptation between the kinetic and hydrodynamic scales flow
evolution. For the DVM, only the solution in Eq. (29) is used as the cell interface gas distribution function, which has no
particle collisions involved. Therefore, it is basically valid in the kinetic scale. DSMC has the same property. However, the
integral solution used in UGKS pushes its applicable regime beyond the kinetic scale modeling. With this property, the
UGKS has the advantage of using a much larger time step. A large time step is of great importance for simulating flow in
transition and continuum flow regimes, especially the cases with high Reynolds numbers.

For diatomic gases, in the continuum limit the Navier–Stokes equations with bulk viscosity will be recovered from the
kinetic model equations. The bulk viscosity formulation is the limiting case when the translational and rotational tempera-
ture are close to each other. In the cases with limited amount difference between translational and rotational temperature,
instead of the bulk viscosity expression for the stress the general constitutive relationship in the near continuum limit will
be associated with the temperature differences [36,37,39].

4. Numerical examples

4.1. Rotational relaxation in a homogeneous gas

For a diatomic homogeneous gas with different initial rotational Trot and translational temperature Ttran , the system will
evolve into an equilibrium one with average temperature T , which is a constant. Intermolecular collision will relax Trot to
an averaged temperature T with a rate related to the collision frequency. Due to the homogeneous space distribution, the
governing equations can be simplified as

∂ f

∂t
= gtran − f

τ
+ grot − gtran

Zrτ
. (30)

Multiplying the above equation with ε and integrating over the whole velocity and rotational energy space, the time evolu-
tion of rotational energy can be obtained,

∂Trot = T − Trot
. (31)
∂t Zrτ
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Fig. 1. Rotational relaxation in a homogeneous gas.

In the case with constant rotational collision number Zr and mean collision time τ , an analytical solution of Eq. (31) can
be obtained,

Trot(t) = T − (
T − Trot(0)

)
e− t

Zrτ . (32)

For real diatomic gas, the mean collision time depends on the transitional temperature even in the homogeneous case. For
the VHS model, the collision time can be approximated as τ = μ/p ∼ T ω

tran/(ρRTtran), which is a constant only for the
Maxwell molecule with ω = 1. For hard sphere (ω = 1/2) and nitrogen (ω = 0.72), τ depends on the temperature and there
is no exact analytical solution. In this test, only one cell in physical space is used with periodic boundary condition. The
domain in velocity space (u, v) ∈ [(−5,5) × (−5,5)] is discretized with 50 × 50 mesh points. Figs. 1(a) and 1(b) present
the UGKS solutions at Zr = 3 and 5 for Maxwell, hard sphere, and nitrogen molecules along with the analytic solution
(Maxwell gas only), where the mean collision time (m.c.t.) is calculated using the averaging temperature T in all three cases
to normalize the time. The UGKS solution for the Maxwell molecule matches completely with the theoretical prediction.
The collision frequencies for the HS and VHS models are higher than the Maxwell one, and they present faster relaxation to
the equilibrium state.

4.2. Shock structure

For the nitrogen gas, the viscosity in DSMC simulations is calculated with VHS model (ω = 0.72), and the collision
rotation number Zr is set as a constant. The collision time τ depends on the translational temperature only, it is determined
with the same formula as the argon gas [20]. The collision rotation number Zr used in the UGKS has a value Zr = 2.4. The
temperature and density comparisons between UGKS and DSMC at Ma = 1.53, 4.0, 5.0 and 7.0 are plotted in Fig. 2. As
Zr → ∞, the Rykov model reduces to the Shakhov model. For all relaxation type kinetic models, at high Mach number
the translational temperature in the shock structure always goes up earlier in comparison with the DSMC results [21]. The
main reason is that the relaxation model equally re-distributes the energy of high speed particles close to the upstream
to all molecules there through a single relaxation time. In reality, the high speed particles at the upstream can transport
a longer distance than low speed particles before encountering particle collisions. Therefore, it seems that the relaxation
models can thermalize more efficiently the energy among all particles and raise the temperature earlier. But, based on all
previous tests, the density distributions in the shock structures from the kinetic relaxation models can match with the
DSMC solutions very well. Based on the same coefficients, the comparison of density profiles at different Mach numbers
between UGKS and experimental data [45] are illustrated in Fig. 3.

4.3. Flow passing a flat plate

Space vehicles, space stations, and planetary exploration systems fly in a rarefied gas environment. Due to the hypersonic
velocity, their flight environment includes shock-shock interactions and shock-boundary interactions that cause high heat
transfer and pressure on the body of the spacecraft. Strong thermal non-equilibrium is associated with these flows. It is
important to study the physical flow around spacecraft in a hypersonic rarefied environment in order to understand flow
phenomenon and to design a real size vehicle. Here following the experiment [46], we are going to simulate the hypersonic
rarefied gas flow over a flat plate, and compare our simulation results with the experimental measurements. The early study
of this case has been done using the gas-kinetic scheme with multiple temperature model [39].
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Fig. 2. Comparison of UGKS and DSMC solutions at different Mach numbers.

Table 1
The condition in run34 case in Ref. [46] and non-dimensional system.

Condition in run34 case Non-dimensional coefficients

Nozzle exit Mach number 4.89 length Lref 1 mm
Nozzle exit temperature Te 116 K density ρref ρe

Nozzle exit static pressure Pe 2.12 Pa velocity V ref
√

2Rspecical Te

Stagnation temperature T0 670 K temperature Tref Te

Stagnation pressure P0 983 Pa energy eref ρe Te

Surface temperature T w 290 K

The run34 case in [46] will be studied, where the condition is shown in Table 1. The flat plate is made of copper and
is cooled by water to preserve a constant wall temperature 290 K. The mean free path λmf p and viscosity coefficient μ are
defined as

λmf p = 16

5

(
1

2π RT

)1/2
μ

ρ
, (33)

and

μ = μ0

(
T

T0

)ω

. (34)

The gas constant R and viscosity index ω of nitrogen gas are given by 297 J kg−1 K−1 and 0.75. Therefore, the density at
nozzle exit can be determined, i.e., ρref is 6.15 × 10−5 kg m−3.
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Fig. 3. Density profiles of experiment measurements and UGKS solutions at different Mach numbers.



108 S. Liu et al. / Journal of Computational Physics 259 (2014) 96–113
Fig. 4. Computational Mesh for the flat plate simulation.

At inlet boundary, the inflow gas has a Maxwellian distribution. The outlet boundary uses a non-reflection boundary
condition, where the flow distribution outside domain is extrapolated from the interior region. The interaction between the
gas flow and the solid boundary is the Maxwell boundary condition with full accommodation, which has been widely used
[47–49].

In this study, the shock wave and boundary layer at the sharp leading edge are merged. Highly non-equilibrium between
translational and rotational temperatures appears above the flat plate. In the experiment, the non-equilibrium rotational
temperatures were measured by an electron beam fluorescence technique [46]. The UGKS used in this case is the second
order scheme and the cell size of the UGKS is not limited by the mean free path, thus a relatively coarse mesh is used to
obtain the result. Here 3323 elements are used in physical space with 59 × 39 mesh points above the plate and 44 × 25
below the plate, which is shown in Fig. 4. The CFL number is set to be 0.5. The domain in velocity space (u, v) ∈ [(−10,10)×
(−8,8)] is discretized with 80 × 60 mesh points. Fig. 5 presents the density, translational, rotational, and total temperature
contours around the sharp edged flat plate. The temperature distributions along the vertical line above the flat plate at the
locations of x = 5 mm and x = 20 mm from the leading edge are presented in Fig. 6. The numerical results match well with
the experimental data. The distribution function contours in the vertical direction at x = 5 mm and x = 20 mm are shown
in Figs. 7 and 8 respectively.

4.4. Flow around a blunt circular cylinder

In this case, we consider the hypersonic flow passes through a blunt cylinder at Ma = 5.0 and Kn = 0.1. Just as shown
in Fig. 9, the cylinder radius has a value 0.01 m, and the computational domain is divided with 10,000 and 4900 × 2
quadrilateral cells for DSMC (half domain) and UGKS (whole domain), respectively.

For the DSMC method, the inflow nitrogen gas has a velocity U∞ = 1684.4835 m/s with temperature T∞ = 273 K,
molecule number density n = 1.2944 × 1021/m3, and the viscosity coefficient at upstream condition μ∞ = 1.65788 ×
10−5 Ns/m2. The cylinder has a cold surface with a constant temperature T w = 273 K, with diffusive reflection bound-
ary condition. The rotational collision number Zr is defined in Eq. (28), where T̃ = 91.5 K and (Zr)∞ = 18.1.

For the UGKS method, the domain (u, v) ∈ [−13.6,13.6] × [−13.6,13.6] in velocity space is discretized with 93 × 93
mesh points based on Newton–Cotes rule, and the collision time is calculated with τ = μ∞(T /T∞)0.78/P.

The comparison between UGKS and DSMC solutions are plotted in Figs. 10 and 11. In Fig. 10, the contour lines from
DSMC and UGKS for density, velocity, total average temperature, translational temperature, and rotational temperature plot-
ted together. Fig. 11 presents the flow variables along central symmetric line in front of the stagnation point, in which the
density and U-velocity are matched very well, while for the temperature profiles, the temperature in UGKS solution upraise
earlier than that in DSMC solution, and it is consistent with the solution of shock structure study [50].

5. Conclusions

In this paper, a unified gas-kinetic scheme has been developed for diatomic molecules in all flow regimes. The current
UGKS is based on the Rykov equation with a Landau–Teller–Jeans-type relaxation model for the transitional and rotational
energy exchange of a diatomic gas. The new scheme has been tested in a few cases, which include relaxation test of ho-
mogeneous flow, shock structure calculations, hypersonic rarefied flow passing through a flat plate, and the hypersonic flow
around a blunt cylinder. The numerical results are compared with the analytic solutions, experimental measurements, and
DSMC computations. Reasonable agreements between the UGKS results and other validated solutions have been obtained.
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Fig. 5. Macro-variable contours around the flat plate.

Fig. 6. Temperature plots along vertical lines at x = 5 mm and x = 20 mm.

Since local evolution solution of the Rykov model is used to construct a time-dependent gas distribution function around
a cell interface, both kinetic and hydrodynamic scale flow physics has been included in the evolution. As a result, the
distinguishable advantage of the UGKS is the applicability to simulate both continuum and rarefied flows. In the current
UGKS, the numerical time step is determined by the CFL condition, which is not limited by the local particle collision time.
At the same time, the mesh size is not limited by the mean free path. Through the extensive tests of the UGKS in the past
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Fig. 7. The distribution functions along vertical line at x = 5 mm.

Fig. 8. The distribution functions along vertical line at x = 20 mm.

Fig. 9. Computational Meshes for UGKS and DSMC, black: DSMC, red: UGKS. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 10. Flow contours for nitrogen flows around a blunt cylinder at Ma = 5.0 and Kn = 0.1. White dashed lines: DSMC, background: UGKS.

years, now it is clearly demonstrated that the UGKS is a useful tool for the study of non-equilibrium flow, especially for the
flow computations in the transition and near continuum regimes.
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Fig. 11. Flow distributions for nitrogen gas along central symmetric line in front of the stagnation point at Ma = 5.0 and Kn = 0.1. Solid lines: DSMC, dashed
lines: UGKS.
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