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Based on the temporal evolution of the Navier-Stokes gas distribution function and Weighted Essential
Non-Oscillatory (WENO) interpolation, a high-order finite difference gas-kinetic scheme (FDGKS) is con-
structed. Different from the previous high-order finite volume gas-kinetic method [Li, Xu, and Fu, J. Com-
put. Phys. vol. 229, pp. 6715 (2010)], which uses a discontinuous initial reconstruction at the cell interface,
the present scheme is a finite-difference one with a continuous flow distribution at the grid point.

The time-accurate solution of the gas distribution function permits the FDGKS to be a one-step high-
order scheme without multi-step Runge-Kutta temporal matching, which significantly reduces the com-
putational time. Many numerical tests in solving one and two-dimensional Euler and Navier-Stokes equa-
tions demonstrate that FDGKS is a highly stable, accurate, and efficient scheme, which captures disconti-
nuities without oscillations.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The gas-kinetic schemes (GKS) have been well developed for
compressible flow simulations, see [7,10,11,16-18] and references
therein. The classical GKS uses the kinetic equation to model the
dynamic processes around a cell interface [16]. Due to the discon-
tinuous initial condition, the kinetic gas evolution covers the gas
evolution process from the particle free transport in the kinetic
scale to the Navier-Stokes solution construction in the hydrody-
namic scale. The flow physics to be described in the evolution pro-
cess depends on the ratio of the time step At to the particle colli-
sion time 7. While in 2013, based on a continuous initial condition
around a cell interface, a new finite volume gas-kinetic scheme
has been developed [19], which significantly reduces the compu-
tational cost. In smooth flow region, this type of construction is
reasonable and the scheme provides an accurate Navier-Stokes so-
lution. For the flow with discontinuous structure, the numerical
dissipation needed to suppress the oscillation near a discontinuity
in this scheme is implicitly imposed by the initial reconstruction,
such as the use of the Weighted Essential Non-Oscillatory recon-
struction (WENO) for characteristic variables. After initial data re-
construction, an analytic solution of the kinetic Bhatnagar-Gross-
Krook (BGK) model [19] is used for the flux evaluation. In this
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work, we will further simplify the above finite volume procedure
and construct a finite difference GKS.

In this paper, based on the time-accurate gas distribution func-
tion of the Navier-Stokes solution, a high order finite difference
gas-kinetic scheme (FDGKS) is developed. Here a continuous flow
distribution assumed at every grid point is used to evaluate the
time-dependent flux function by solving the time-accurate gas dis-
tribution function, from which the numerical flux at the half grid
point is reconstructed to update the grid variables in a conserva-
tive form. Like the high order finite difference scheme (FD) of Liu
and Osher [8] and Jiang and Shu [6], in order to capture the dis-
continuity, the WENO procedure is employed in the reconstruction
of the numerical flux.

The current FDGKS is in some sense quite similar to the finite
difference WENO scheme with Lax-Wendroff type time discretiza-
tion by Qiu and Shu [12], where a local solution is used to make
the high-order time matching. Both of them are one-step schemes.
But the FDGKS employs the local solution of the BGK equation, not
the macroscopic one. It is very easy to obtain the local solution
of the Navier-Stokes equation by solving the BGK equation. While
for Lax-Wendroff type time discretization, a local solution for the
Navier-Stokes equation is far more complex. There is no results
in Qiu and Shu’s paper [12] on the solving of the Navier-Stokes
equation. But in this paper, the FDGKS would treat both Euler and
Navier-Stokes equations.
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The three novelties contributed in this paper includes

(1) The flux evaluation is based on a continuous initial distri-
bution. Except for the work by Xuan and Xu [19], almost all
of the other previous BGK methods solved the problem with
the local discontinuous initial flow distribution. The contin-
uous initial condition only needs one state flow variables.
While the discontinuous initial condition relies on two states
flow variables, which doubles the amount of CPU cost com-
pared to the continuous treatment.

(2) The time-accurate Navier-Stokes gas distribution function
(see Eq. (2)) has been used directly to calculate the evolution
of the macroscopic flux function. The previous BGK solver
depended on the integral-form solution as shown in [16]:

t
f(x. t,u, t’;:) = % / g(x—u(t — [,), t U é)e‘“‘f’)” dr’
0
+em T fo (x —u(t — to), to, U, £),

where fj is the real gas distribution function f at time t,, and
g is the equilibrium state distribution function in space and
time (x, t). The integral-form solution is far more complex
and hence more costly than the one used in this paper.

Many one and two dimensional benchmark test cases are used
to validate the accuracy and efficiency of the current FDGSK
scheme. Numerical experiments show that FDGKS is a highly sta-
ble and efficient method, which provides a high resolution and has
excellent performance in capturing a discontinuous solution. The
extensive numerical verification shows that the FDGKS has the fol-
lowing distinguishable features:

(1) Due to the adoption of a continuous initial condition and the
direct use of the time-accurate Navier-Stokes gas distribution
function, the FDGKS is a highly efficient method. The FDGKS
is essentially faster than the FD with the same WENO recon-
struction and the same order time-matching.

(2) The FDGKS leads to slightly better resolution in all of the
test cases than that of macroscopic equation based FD
method [6] when same WENO reconstruction is used.

(3) The structure of the FDGKS is very similar to that of the
FD. It is straightforward to modify any other FD code to the
FDGKS by changing the computation of the point-wise flux.

In this paper, Section 2 presents the construction of the FDGKS
in detail. The fifth-order WENO interpolation is introduced in
Section 3. Section 4 encompasses the solution of many one and
two dimensional benchmark flow problems by FDGKS, where the
results are compared carefully with the ones obtained by the fifth-
order finite-difference WENO method. The last section concludes
this work.

2. Finite difference gas-Kkinetic scheme

In FDGKS, the distribution function at every grid point is firstly
evaluated to obtain the pointwise time-averaged flux, then this
flux is used to reconstruct the numerical flux at the half grid point,
from which a conservative finite difference scheme can be con-
structed. In this section, we present the distribution function eval-
uation at the grid point using a gas-kinetic formulation leading to
the construction of FDGKS.

2.1. One-dimensional flux evaluation at a grid point

On a uniform mesh with grid size Ax, at a grid point i,
the macroscopic flow conservative variables are W; and their

derivatives can be approximated to 4th-order as
Wix = [ Wi —Wisy) + 1 Wiy — Wiin) |/ Ax,
Wi = [%(Wiﬂ +W,-,1)—%(W,',2+W,-+2)—%Wi]/sz. (1)

At the grid point, it is not necessary to use WENO interpolation
in calculating the above derivatives. To capture discontinuity only
the construction of the numerical flux needs to be limited. (Simi-
lar conclusion has been realized previously in [12].) Then the time
evolution of the distribution function from such an initial condition
may be calculated as follow.

Based on the kinetic Bhatnagar-Gross-Krook (BGK) model [1],
the corresponding Navier-Stokes (NS) distribution function f(x, ¢,
u, £) can be witten as

fx,t,u, &) =g, t,u, &) —tDg(x, t,u, &), (2)
where g is the equilibrium state, u is the particle velocity, & =
(&1,&, -, &) is the internal variable, T is the particle collision

time, x and t are the spatial and temporal coordinates, and the

operator D = 0 +udy (0y = %). It should be noted that, for a

diatomic gas with y = 1.4, the total number of internal degrees
of freedom K is 4 in onedimension and 3 in twodimensions, see
[16,17]. Here for Navier-Stokes equation the collision time is deter-
mined by the shear viscosity coefficient @ and pressure p in the
form of T = u/p [16,17].

At the mesh grid point X;, we assume the equilibrium state dis-
tribution function at this point to be g€, a Maxwell-Boltzmann dis-
tribution corresponding to the equilibrium macroscopic flow state
We = [p®, peUe, E¢]" can be written as

o = pe%e—xuu—uwasﬂ, 3)

where p¢ and U¢ are the density and velocity, and A is a func-
tion of temperature T¢, molecule mass m and Boltzmann constant

k, with the relation A = 57%. A 3rd-order Taylor expansion of the

equilibrium state g(x, t, u, £) near point %; may be expressed as
g=g {1+ ax+ at + 3[(a + aw)X* + (@7 + au)t?]
+ (axa + ax )xt} (4)
= &[1+ ax+ at + 5 (Aux® + Aut?) + Axxt],

where x =X — X;

2 2 .
Axx = 0 + Oxx, A = A7 + pe, Axe = AxAr + Gxe; (5)

Uy = Ok Yks e = ek Wis Oxx = Qe k Wieo Oxe = kWi Gee = Aee Wk

(6)
with ¥ =[1.u. sW+EHT E2 =82+ +E2 (K is the total
number of internal degrees of freedom), and the repeated index k
means summation of k from 1 to 3. ay y, G; k, Qyx k» Gyt (o Gy ATE
coefficients to be determined. Then the Navier-Stokes distribution
function f(x, t, u, &) becomes

fog 14 ax + aet + 5 (AX? + Aut?) + Axext 7)
—tu(ay + AxxX + Axet) + a¢ + AeX + Aet ][

We can calculate the coefficients of spatial derivatives in the
distribution functions {ay y. Gy }r=1.23 from the derivatives of
macroscopic conservative flow variables W, (o =1,2,3) at the
grid point i (see [9])

82Wa.

W, B -
() = Gt (o) = [ g dE, ®)

ay) = ——,
(@) = 5
where dE = dud£ is the volume element in the phase space and
dé = d&; d&, ... d&g, g° is the Maxwellian distribution correspond-
ing to Wy. As an illustration, the procedures to solve ay and axx =
Axx — a2 are:
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(1). Solve a, | by expanding the equation {(ayx) = 0xWy as

/ 4 VeV AE = W 9)

In this linear system the calculation of the coefficients matrix
[ Yiagf dE eventually reduces to computing the moments of
{((um), ((€2"))Y(n=0,1,---) (see [17]), which is defined as

n _l n = 2n _i 2n =
((u >>—pe/ugedu, (& >>—pe/s g dE. (10)

From the Maxwellian distribution of g€ (3), it is easy to deduce
that

k+1

(WO)) =1, ((Wh)=U° (W) =U(@)+ 2 ((u"));
and

K 3K K(K+1)
(€N =55 (EN=gm+—go

(2). Solve @y, i by expanding (Axx) = 02 Wy to

/axx,klﬁkllfageda = 05 We —/ax,jl//jax,jax,kll’jax_klﬁage dE. (11)

It is also finally reduced to computing the moments of ({(u")),

((&2m).

After the determination of a, ; and ay |, based on the compat-
ibility condition

(f-g =0, (12)
we have (see [9])
(uay + ar) =0, (UAx +Ax) =0, (UAy +Aw) =0. (13)

By definition of Ax, Ax:, and Ag in (5), Eq. (13) gives the solutions
to coefficients {a; j, Gy k. Grr k}r—1.2.3. fOllows the same procedures
in solving ay and ayy.

After these algorithms, the one-dimension NS distribution func-
tion flx, t, u, &) is fully solved, and then the fluxes F(t) for the
macroscopic variables at x; can be computed using

F(t):/ufwdE:FC(t)—F”(t), (14)
where FV(t) =t fuDgy dE is the viscous flux,
FU(t) = [ (1Pay) + (uar) + ((u?Ax) + (uAe))t], (15)

and F°(t) is the Euler flux which can be calculated directly from
the conservative variables W(t) corresponding to g(t), i.e.,

W = [ gV dS =W+ (at + ()t

Fe(t) = [pU, pU* + p, (E + p)U]",

in which p, U, E, p represent the density, velocity, total energy, and
pressure, which are determined by W(t), and W® is the conserva-
tive variable corresponding to g°.

For the time interval t e [t", t"t1], we define a time step At =

t"t1 — ", to make the calculation of the time averaged flux F =
1 .
ﬁ fnw F(t)dt accurate to 2nd-order polynomial tiwth respect to

t (shown in (16)), we choose two Gauss-Legendre points (tg1, tg2)
in [0, At] and calculate the corresponding F© and F', then use a
3rd-order Gauss quadrature to compute the time integral, we get

(16)

F = 3[F (tc1) — F'(tc1) + F*(tc2) — F'(tc2)]. (17)

After the flux evaluation at the grid point, the classical conser-
vative upwind finite difference method based on Lax-Friedrich flux
splitting is used to update the grid point values in the following
steps. To capture the discontinuity, 5th-order WENO reconstruction
is used to calculate the numerical flux. The details will be shown
in Section 3.

2.2. Two-dimensional gas-kinetic flux

For a rectangular mesh on grid point (x;, y;) (i=1,...,N; j=
1,..., M), the derivatives of the macroscopic conservative variables
in x and y directions (W;  x, W; j y» Wi j x0 Wi j, yy) are calculated
in the same ways as in the one-dimension case. While the cross
derivatives are calculated to 4th-order accuracy by

WD = G Wit jy —Wiiriy) + 15 Wiz iy — Wiz jy))/AX, (18)

Wl(]ziy = GWijx—Wij1x) + 5 Wijox—Wijax)/Ay, (19)

and Wi = 3 W5, + WiE,).
At the grid point, a 3rd-order Taylor expansion of the equilib-

rium state is
g =1+ ax+ay+at + 5 (Aax® + Ayy® + Aut?)

+AxyXy + AxeXt + Ayeyt], (20)
with Ay = a3 + Gy, Ay = Axly + Axy, Ayt = y0r + Gy, ay =
eV - (k=1,2,3,4) and ¢ = [1.u,v, J(u? +1? + £2)]. Based

on the NS distribution function f=g-— tDg, its expansion be-
comes

14 aex + ayy + aet + 5 (AX® + Apyy? + Aut?)
f =281 +Agxy + Auxt + Apyt — T[U(ax + AxeX + Axyy + Axect) ¢
+v(ay + AxyX + Ayyy + Ayet) + ar + AxeX + Apey + Aret ]
(21)
Again, the spatial derivatives in (21) are determined from
(ax) = W, (ay) = W, (Ax) = 0uW, (Ay) = dyW, (22)

(Ayy) = oy W.

We can further derive other derivatives from the compatibility con-
dition (12) as

(uay +vay +ar) = 0, (UAx +VAy +Ax) =0,
<UAxy + VAyy +Ayt> =0, (UAx[ + UAy[ +Att> =0. (23)

After the determination of the distribution function f(x, y, t, u, v,
&), the convective and viscous fluxes at grid point (x;, y;) become

F(t) = [pU. pU? + p. pUV. (E + p)U]",
FY(t) r/ungde

T[(ulay + uvay + ude) + (UAxe + uvAye + UAw)t],  (24)

where the physical variables (p, U, V, E, p) are determined from the
conservative variables W(t) corresponding to g,

W(t)=/g¢rdE=We+(at)t+%(A")t2, (25)

We is the interpolated value at the grid point, which is used to
determine g°. The vertical fluxes are given by

GE(t) = [pV, pUV, pV? + p, (E + p)V]",
G'(t) = 1 / vDgy dE

T[(uvay + v?ay 4 vac) + (UVAx + V?Aye + VA )], (26)

It is well known that the BGK equation assumes a unit Prandtl
number. The Prandtl number can be corrected through the modifi-
cation of the heat-flux [17], using

x = %/(u—U)[(U—U)2+ (v-V)? +£%]fdE
=UF +VF —F/,

Qy = %/(U—V)[(u—U)2+ (v-V)?+&£%|fdE
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= UGy + VG, —Gy. (27)

The Prandtl number may be modified using a correction of the en-
ergy flux, namely

EfX = F} + (1/Pr—1)qy, Gi*= G4+(1/Pr—1)qy (28)

To get the time averaged flux F = At F(t) dt and G=
-l tn+1

At J;m  G(t)dt, we choose two Gauss—Legendre points (tg1, tg)
in [0, At] and calculate the corresponding F and G. The Gaussian
quadrature can be used to compute the time integral to 3rd-order
accuracy, thus leading to

F = I[F(te1) +F(te2)]. G = 3[G(te1) + G(tea)]- (29)

With this approach, both temporal averaged convective and viscous
fluxes (Ffj, -11 GC Czj) are computed at every node point (i, j).
Subsequently the Lax-Friedrich flux splitting may be combined
with a 5th-order WENO reconstruction to compute the convective
numerical fluxes. As for the viscous numerical fluxes, they may be
simply represented by central 6th-order interpolation, namely

£ _F,K3J+F” 8(1+2]+F” )+37(1+1]+F”)
i+1/2,j — 60 ’
GU _ G:}j+3+Glj 2 S(G:j1+2+cu 1)+37(GIJ+1+G}/J)
i,j+1/2 — 60 .
(30)
The total numerical flux may thus be deduced from F 12, =
By = Biapp and Gijrap =Gf iy n =Gl

Finally, the grid point values may be updated from

WS“ W — & Forppj—Fapn)) — %(GUH/Z ~Gijap). (31)

Remark.

1. For a temporal second-order scheme, a first order Taylor expan-
sion of the kinetic distribution function is sufficient. All 2nd-
order derivatives in the temporal evolution of the kinetic distri-
bution function can be ignored.

2. The Lax-Friedrich flux-splitting with 5th-order WENO recon-
struction is used to calculate the convective numerical flux at
half grid points, shown in the next section. The scheme con-
structed here has a 3rd-order convergence accuracy in time and
5th-order convergence accuracy in space. These are validated
numerically in Section 4.

3. Fifth-order WENO interpolation for numerical fluxes at half
grid point

With the physical fluxes at every grid point, a 5th-order WENO
reconstruction may be used to compute the numerical flux at the
half grid point, and thus capture the discontinuous solution with-
out oscillation. Here Jiang and Shu’s weight [6] is used.

(1) With the conservative variables W; at grid point, at half a
grid point i+ 1/2, use the averaged value W ¢, = %(W,- +
Wi1) to calculate the left and right eigenvector matrix L; 1,
and R;, 1, and the eigenvalues Ay (@ = 1,2, 3).

(2) Project the conservative variables W;; (I=-2,---,3) and
time averaged kinetic flux F; 4 at grid points to characteristic
ones W,,; and £, by

Wit = Lis1oWis, By = Lisa B (32)
(3) For ath component, make the flux splitting
Fire = 3 Fia £ aWiiro), (33)

where ¢y = max;(|Ay i)

(4) Conduct WENO interpolation:
1 1 7 1
F = §F" — §E5 + 3B,

2 5 1 1
F@ = 3F* — §FH + 3L
F® = %I::+ - %inz + gFiIr (34)
and
IS, = E(ﬁ +EY, —2FY )2+ J3ET +FY, —4F* )2,
IS = B +FH —2E9)? + J(FH, — )2
155 = B E1, = 2R + GE +EL, — 4E7)”,
di =0.1, d, =06, d3=03. (35)

The JS weight is

3
ws =P/ Bp. Ps=ds/(S:+€) (s=1,2,3), (36)

p=1

where € = 1076,
Then, the ‘+' splitting flux at half grid point becomes
Bt =0 WpF®. (37)

Slmllar procedures are used to obtain the ‘-~ splitting flux
from F7. And then

1+1/2
F1+1/2 = R:+1/2F:+1/2 (38)

. — Ft+
Fl+1/2 - Fi+1/ F1+1/2’
In two-dimensional case, the interpolation of numerical flux
Gi1/2 can be obtained in the same way as in x-direction.

4. Numerical experiments

The performance of finite difference gas-kinetic scheme with
5th-order WENO interpolation (FDGKS-W5) will be tested in this
section. Many one and two dimensional benchmark problems are
calculated and the results and CPU time are compared with those
of 5th-order WENO macroscopic equation based finite difference
under the same flux splitting and WENO reconstruction (noted as
FD-W5). A 3rd-order TVD Runge-Kutta method [6] is used in FD-
W5 to make the time matching.

4.1. One dimensional cases

4.1.1. Stability test
The stability property is numerically tested for the Euler equa-
tions with initial condition

p=1+3sin(Zx), U=1, p=1, (39)

where p is density, U is velocity, and p is pressure. Periodic bound-
ary conditions are set at both ends in the computational domain
x € [-5, 5]. For this case, the maximum stable CFL number is 1.31,
which shows high stability of FDGSK-W5.

4.1.2. Accuracy test

To test the accuracy, the case (39) is used for the inviscid so-
lution. The computation is run for one period of time t = 10. The
Ly and L., errors of FGDKS-W5 are compared those of FD-W5 in
Table 1, where N is the number of grid. We can see that FDGKS-W5
has well achieved the designed 5th-order with a slightly smaller
error than that of FD-W5.

For the temporal accuracy, 320 grids have been used and the re-
sults of numerical experiments in Table 2 show that the designed
3rd-order has almost been achieved (Numbers in the parentheses
after the time step are the corresponding CFL numbers). With the
decrease of the time step, the error drops to the spatial error lim-
ited by spatial discretization on the finite grid size and hence the
order is getting lower.



L.-J. Xuan, K. Xu/Computers and Fluids 166 (2018) 243-252 247

Table 1

One dimensional Euler equation; convection of density sine wave; periodic boundary conditions. Com-

pare the error convergence of FD-W5 and FDGKS-WS5.

FD-W5 FDGKS-W5
N L, error Order L., error Order L, error Order L, error Order
20 2.179e-2 - 3.540e-2 - 1.514e-2 - 2.332e-2

40 1.310e-3 4.06
80 4.724e-5  4.79
160 1464e—6  5.01
320  3.158e-8 5.53

2.083e-3  4.09
8.855e—5  4.56
3.315e-6 473
6.676e—-8  5.63

1.572e-3 3.89
5.663e-5 4.79
1.741e-6 5.02
5.490e-8  4.99

7.860e—-4  4.27
2.356e—5  5.06
7.170e-7 5.38
2.208e-8  5.21

Table 2

The temporal error convergence of FDGKS-W5 on grid of N = 320.

At 1.192e-2(0.9) 1.060e—2(0.8)  9.274e—3(0.7)  7.949e-3(0.6)  6.624e—3(0.5)
Ly error 2.924e-7 2.094e—7 1.448e—7 9.633e-8 6.160e—8
Order - 2.84 2.76 2.64 245

L error  4.431e-7 3.124e-7 2.106e—7 1.373e-7 9.060e—-8
Order - 2.98 295 2.77 2.28

Density

Fig. 1. Density profile for Lax problem with N = 200 grid points and CFL = 0.6. Solid line: exact solution; square: FDGKS-W5; ‘+’: W5-]S.

4.1.3. Tests for discontinuous flows and efficiency of the schemes

Now we compare the results of FD-W5 and FDGKS-W5 for the
flow simulations with shock and contact discontinuities. In all of
the following test cases, to be consistent with Jiang-Shu’s paper
[6], the CFL number is set to be 0.6.

Example 4.1. Lax problem
This is a Riemann problem for the Euler solution with the initial
condition:

(p,U, p) = (0.445,0.698, 3.528) for x € [—5, 0],

(p,U,p) = (0.5,0,0.571) for x € (0, 5]. (40)
The computation is run up to time t = 1.3. N = 200 grid points are
used in the computational domain x € [-5,5]. Fig. 1 shows that
both schemes obtain acceptable results. The zoomed in solution
shows that FDGKS-W5 seems has smaller oscillation and higher
resolution for discontinuity than those of FD-WS5 for this case. Ve-
locity and pressure distributions from FDGKS-W5 are shown in
Fig. 2.

Example 4.2. Blast wave problem

This problem is from [15]. The computational domain has x ¢
[=5, 5] with initial condition

1000, xe[-5,-4),
p=1, U=0; p=1001, xe[-4,4), (41)
100, x€[4,5].

The output time is t = 0.38. The density profiles on meshes with
N =200 and N =400 grid points by FD-W5 are FDGKS-W5 are
presented in Fig. 3. The reference solution is obtained by FD-W5
on a mesh with N = 10000 grid points. The FDGKS-W5 has similar
resolution as FD-WS5 in this case.

Example 4.3. Shock acoustic-wave interaction
The shock acoustic-wave interaction problem is given in [13].
The computational domain is x € [-5, 5] with initial condition

] (3.857134, 2.629369, 10.33333), x < —4,
(p.U.p) = {(1 +025sin(5x),0, 1), x>-a 42
The output time is t = 1.8. The reference solution is obtained by
FD-W5 with N = 10, 000 grid points. Fig. 4 shows that FDGKS-W5
achieves similar resolution as FD-WS5.
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Fig. 2. Lax problem by FDGKS-W5 with N = 200 grid points and CFL = 0.6. Left: velocity, right: pressure. Solid line: exact solution; square: solution by FDGKS-WS5.
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Table 3
CPU times for different schemes and test cases.
Lax Problem  Shu-Osher  Blast wave
FD-W5 133.27s 272.12s 500.02s
FDGKS-W5 57.06s 116.86s 214.59s
Speedup Ratio  2.335 2.328 2.330
Table 4

The error convergence of FDGKS-W5 for the 2-D convection
of density wave problem.

Ny x Ny Ly error Order L., error Order
8 x 12 2.028e-2 - 3.139e-2 -

16 x 24 1.396e-3  3.86 2.229e-3  3.82
32 x 48 5429e-5 4.68 1.021e-4 445
64 x 96 1.605e-6  5.08 3.259e-6 497
128 x 192 3.479e-8  5.52 7399e-8  5.46

4.1.4. Compuational cost

The above Examples 4.1-4.3 are used to test the efficiency of
the schemes. In the test cases, a grid with N = 10000 points are
used and the time step is given by CFL = 0.5. The CPU time costs
are shown in Table 3, where the FDGKS-W5 is about 1.3 times
faster than FD-W5. The FDGKS-WS5 is a one-step scheme, where for
each time step it only needs one time of WENO reconstruction and
flux computation. But in FD-W5, because of the multi-step tempo-
ral update, we need 3 times of WENO reconstruction and flux cal-
culation for every time step. This is the reason why FDGKS-WS5 is
more efficient than FD-W5.

4.2. Two dimensional cases

In this subsection, we are going to present the results of
FDGKS-W5 in simulating two-dimensional cases and compare
them with those of FD-W5.

4.2.1. Accuracy test

Example 4.4. Propagation of density sine wave [12] for Euler equa-
tion

For Euler equation, the initial density p(x,y,0)=
1+ 0.2sin[r(x+y)], velocity U(x,y,0)=0.7, V(x,y,0)=0.3,
and pressure p(x,y,0)=1; with periodic boundary condi-
tions in both x- and y- directions. The exact solution is
p=1+02sin(mx+y—-(U+V)t)), U=07, V=03, p=1.
The computation domain is [0, 2] x [0, 2]. Uniform mesh is used
in both x and y directions. To avoid any special error cancellation
due to the symmetry axis being in the diagonals of cells, the
mesh sizes in the x- and y-directions are different. Table 4 shows
the errors of FDGKS-W5. Here we neglect the results of FD-WS5,
because they are almost the same as those of FDGKS-W5. We can
see that FDGKS-W5 achieves the designed order.

Example 4.5. Convection of isotropic vortex for Navier-Stokes
equation

Table 5

This is convection of isotropic vortex in a two-dimensional do-
main. The problem is set up in a computational domain (x, y) €O,
10] x [0, 10]. The periodic boundary condition is imposed in both
x- and y- directions. The initial conditions are given by

U y.0),V(xy 0) = (1,1) + 5> (—y, ),

(y - 1)ezel_r2
8ym?2

pxy.0)=1, (43)

where the temperature T and the entropy S are related to the
density p and the pressure p by T = p/p, S=p/p?, and (X,y) =
(x—5,y—5),1r% = %%+ 2, and the vortex strength € = 5. For invis-
cid flow, the exact solution is an isotropic vortex convected with
the speed (1, 1) in the diagonal direction. While for viscous flow,
the reference solution can only be obtained numerically. A 6th-
order finite difference method is used to compute the reference
solution on a mesh of 257 x 257. The vector L; and L., errors are
defined as

T(x,y,0)=1-—

)

Skx.y.0) =1,

1
Li= 5z 1o = piyl Lo =max|pi; — i, (44)
ij '

where p; ; is the density on the node (i, j) and p{j is the corre-
sponding reference solution; N is the number of point on x direc-
tion, which is the same as the that of y direction. The accuracy is
tested up to the output time t = 10, namely one period of propa-
gation. The Ly and L., errors of FDGKS-W5 and FD-W5 for viscous
flow with Reynolds number Re = 10, 100, and 1000 are shown in
Tables 5-7. We can see that FDGKS-W5 achieves very well the de-
signed order with slightly better accuracy than those of FD-WS5.

In terms of time efficiency, both inviscid (solves Euler equa-
tion) and viscous (solves Navier Stokes equation at Re = 1000)
isotropic vertex convection problem are run on a grid of 129 x 129
points up to one period of time, i.e., t = 10. The comparison of
the CPU time cost for different schemes on the same machine is
shown in Table 8. For solving Euler equation, the speedup ration
of FDGKS-W5 to FD-WS5 is 1.92, which is lower than 2.33 for one-
dimension case. It is because that the solving of two-dimension
flux by GKS formula involves in the evaluation of cross derivative
like ayy, which is not encompassed in FD flux calculation. When
Navier-Stokes equation is solved, the speedup ration of FDGKS-W5
to FD-W5 deceases to 1.39. The calculation of viscous flux by GKS
approach needs to compute the one order higher moments like
(u?ay), (u%a), ---, shown in (24) and (26), which increases signifi-
cantly the CPU time.

Example 4.6. Shock-vortex interaction

The shock-vortex interaction problem [2] is studied in a com-
putational domain (x, y)e[0, 2] x [0, 1]. A stationary shock front
is positioned at x = 0.5. The left upstream state is (p,U,V, p) =
(M2, J7.0,1), where y is the specific heat ratio and M =1.1 is
the Mach number. A small vortex is obtained through a pertur-
bation of the mean flow with the velocity (U, V), temperature

Two dimensional Navier-Stokes equation with Re = 10; convection of viscous isotropic vortex; periodic
boundary conditions. Compare the error convergence of FD-W5 and FDGKS-W5.

FDGKS-W5 FD-W5
Ny x Ny L, error Order L., error Order L, error Order L. error Order
8x8 4.603e-3 - 2.698e-2 - 4.732e-3 - 2.612e-2 -
16 x 16 1.227e-3 1.91 7.852e-3 178 1.276e-3 1.89 7.568e-3 179
32x32 7.816e—5 3.97 4.645e—-4  4.08 8.166e—5 3.97 4416e—-4 410
64 x 64 2.606e-6  4.92 1.963e-5  4.56 2.844e-6  4.86 1.538e-5 4.84
128 x 128  5.297e-8  5.64 3.243e-7 592 5.559e-8  5.70 3.214e-7 558
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Table 6
Two dimensional Navier-Stokes equation with Re = 100; convection of isotropic vortex; periodic boundary
conditions. Compare the error convergence of FD-W5 and FDGKS-WS5.

FDGKS-W5 FD-W5
Ny x Ny L, error Order L. error Order L, error Order L. error Order
8x8 1.910e-2 - 3.083e-1 - 1.923e-2 - 3.126e—-1 -
16 x 16 1.091e-2 0.81 2.118e-1 0.54 1.099e-2  0.81 2.158e—-1 0.53
32x32 1.222e-3 316 2.032e-2  3.38 1.236e-3 3.5 2.099e-2 336
64 x 64 6.324e-5 427 1.180e-3 411 6.353e-5 428 1222e-3 410
128 x 128  1.671e—6 5.24 2.667e-5  5.47 1.710e—6 522 3.412e-5 5.16

Table 7
Two dimensional Navier-Stokes equation with Re = 1000; convection of isotropic vortex; periodic boundary
conditions. Compare the error convergence of FD-W5 and FDGKS-W5.

FDGKS-W5 FD-W5
Ny x Ny L, error Order L., error Order L, error Order L., error Order
8x8 2355e-2 - 4.355e-1 - 2.360e-2 - 4.355e—1 -
16 x 16 1.476e—2 0.67 3.192e-1 0.45 1.479e-2 0.67 3.199e-1 0.45
32x32 2.128e-3 2.79 3.573e-2 3.6 2.128e-3 2.80 3.573e-2 316
64 x 64 1435e-4  3.89 2.600e-3  3.78 1432e-4  3.89 2.606e-3  3.78
128 x 128 4.634e-6  4.95 8.610e—5 4.92 4.656e—-6 494 8.851e-5 4388

Table 8
Inviscid and viscous vortex propagation. Mesh 129 x 129, CFL = 0.08, and t = 10. CPU time comparison
of FD-W5 and FDGKS-WS5.

Euler equation Navier-Stokes equation
FD-W5 FDGKS-W5  Speedup Ratio  FD-W5 FDGKS-W5  Speedup Ratio
CPU time  334.86s  174.50s 1.92 351.70s  252.64s 139
t=0.2 t=0.35
1r 1r
0.8 0.8
0.6 0.6
> | > |
0.4r 0.4r
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0.6
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Fig. 5. Vortex shock interaction by FDGKS-W5. Grid 202 x 101, CFL = 0.6. Pressure contour at different time, top-left: t = 0.2, top-righ: t = 0.35, and bottom: t = 0.8. 60
levels between 0.8 and 1.4.
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Fig. 6. Mach 10 double Mach reflection by FDGKS-W5. Number of grid 961 x 241,
CFL = 0.6. Density contour at t = 0.2, 30 levels between 1.731 and 20.92.

0.5

Fig. 7. Mach 10 double Mach reflection by FDGKS-W5. Zoomed in figure around
triple point. Number of grid 961 x 241, CFL = 0.6. Density contour at t = 0.2, 30 lev-
els between 1.731 and 20.92.

(T = p/p) and entropy(S = ln(ply)), where the perturbation is

U = knet=1)sin@, V = —kner=1") sing,
(y _ 1)K2€2;,L(1—772)
4y

—R
I

. S=o, (45)

where n=r/r.,r= \/(x —X)2 4+ (Y —Ye)?, (¢, ye) = (0.25,0.5) is
the center of the vortex, n and wu control the strength and de-

cay rate of the vortex, and r. is the critical radius. Here we choose
k =0.3,r.=0.05 and u = 0.204.

The gas is a diatomic molecule with y = 1.4. The number of
grid is 202 x 101 and CFL = 0.6. The reflected boundary condition
is used on the top and bottom boundaries, and inflow and outflow
boundary conditions are set on left and right boundaries, respec-
tively. The evolution of the flow is given in Fig. 5, where both vor-
tex and shock are well resolved.

Example 4.7. Double Mach reflection problem.

The computation domain is [0, 4] x [0, 1]. A solid wall lies at
the bottom of the computational domain starting from x = 1/6. Ini-
tially, a right-moving Mach 10 shock is positioned at x =1/6,y =0
and makes a 60° angle with the x-axis. For the bottom boundary,
the exact post-shock condition is imposed for the part from x =0
to x =1/6 and a reflective boundary condition is used for the rest.
At the top boundary of the computational domain, the flow values
are set to describe the exact motion of the Mach 10 shock front.
The initial pre-shock condition is

(p,p,u,v) = (8,116.5,8.25cos(30°), —8.25sin(30°)) (46)
and the post-shock condition is
(p,p.u,v)=(14,1,0,0). (47)

The computation runs up to time t = 0.2. A uniform mesh with
961 x 241 grid points is used and CFL = 0.6. Fig. 6 shows density
contours and the zoomed in figure around triple point is presented
in Fig. 7. The current results agree well with that in [12].

Example 4.8. Shock-boundary layer interaction in a shock tube
This is a viscous flow problem introduced by Daru and Tenaud
[3,5] to test the performance of different schemes. Daru and
Tenaud and many other researchers revisited this case later, see
Daru and Tenaud [4], Sjogreen and Yee [14] and coworkers. An
ideal gas is at rest in a two-dimension box 0 <x, y <1. A membrane
with a shock Mach number of 2.37 located at x = 1/2 separates
two different states of the gas. At time zero, the membrane is re-
moved and wave interaction occurs. This is a standard shock tube
problem, and would give a familiar one-dimensional wave struc-
ture by solving a Riemann problem for the inviscid Euler equa-
tions. Here, the compressible Navier-Stokes equations are solved
and non-slip boundary condition is implemented. The solution will
develop complex two-dimensional shock/shear/boundary-layer in-
teractions, which depend on the Reynolds number. The complex-

0.3

0.25

0.2

> 0.15
0.1

0.05

)

s

Fig. 8. Reflected shock-boundary layer interaction in a shock tube. Grid: 502 x 251. Contour of density, 21 contour levels between 20 and 120.
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Fig. 9. Reflected shock-boundary layer interaction in a shock tube. Grid: 2002 x 1001. Density contour, 21 contour levels between 20 and 120.

ity of the flow structure increases with the increasing of Reynolds
number.
The dimensionless initial conditions are [3],

oL=120, p,=120/y, pr=12, pr=1.2/y, (48)

where p;, p; are the density and pressure, respectively, to the left
of x =1/2, and pg, py to the right of x = 1/2. All velocities are zero
initially. Diatomic gas with y = 1.4 and the Prandtl number 0.73
are used. The Reynolds number in the current calculation is Re =
1000. The non-slip boundary condition and adiabatic condition for
temperature on wall boundaries are imposed. The computational
domain is set to be (x, y)€[0, 1] x [0, 0.5]. A symmetrical condition
is used on the top boundary x € [0, 1],y = 0.5.

Figs. 8 and 9 show the numerical results by FDGKS-W5 on
meshes with 502 x 251 and 2002 x 1001 grid points, respectively.
Compare to Daru and Tenaud’s resutls [3-5], we can see that
FDGKS-W5 can effectively capture the interaction of shock wave
and boundary layer.

5. Conclusion

In this paper, based on time evolution of a Navier-Stokes
gas distribution function and Weighted Essential Non-Oscillatory
(WENO) interpolation, a high-order finite difference gas-kinetic
scheme (FDGKS) is constructed. Due to the time accuracy in the
gas distribution function, current FDGKS is a one-step scheme with
3rd-order in time, which has been verified by benchmark test
cases. 5th-order WENO interpolation with Jiang and Shu’s weight
[6] has been used to capture the discontinuity. Our numerical ex-
periments show that, with the same WENO interpolation, FDGKS
presents slightly better resolution to the macroscopic equation
based finite-difference method with 3rd-order TVD Runge-Kutta
temporal integration (FD-RK3). As to the CPU time, compared to
FD-RK3, FDGKS saves %57 in solving one-dimension Euler equa-
tion. While for the computation of two-dimensional Navier-Stokes
equation, with the same central interpolation for the viscous flux,
FDGKS reaches a 1.39 times of speedup compared to FD-RK3. The
FDGKS is proved to be highly stable, accurate, and efficient in solv-
ing both Euler and Navier-Stokes equations. With the application
of standard WENO reconstruction, it captures discontinuous solu-
tions without oscillation. Another benefit of current FDGKS is that,
compared to classical finite-difference (FD) method, it only changes
the computation of pointwise flux, which makes the implementa-
tion of it to any FD code straightforward.
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