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a b s t r a c t 

Based on the temporal evolution of the Navier-Stokes gas distribution function and Weighted Essential 

Non-Oscillatory (WENO) interpolation, a high-order finite difference gas-kinetic scheme (FDGKS) is con- 

structed. Different from the previous high-order finite volume gas-kinetic method [Li, Xu, and Fu, J. Com- 

put. Phys. vol. 229, pp. 6715 (2010)], which uses a discontinuous initial reconstruction at the cell interface, 

the present scheme is a finite-difference one with a continuous flow distribution at the grid point. 

The time-accurate solution of the gas distribution function permits the FDGKS to be a one-step high- 

order scheme without multi-step Runge-Kutta temporal matching, which significantly reduces the com- 

putational time. Many numerical tests in solving one and two-dimensional Euler and Navier-Stokes equa- 

tions demonstrate that FDGKS is a highly stable, accurate, and efficient scheme, which captures disconti- 

nuities without oscillations. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

The gas-kinetic schemes (GKS) have been well developed for

ompressible flow simulations, see [7,10,11,16–18] and references

herein. The classical GKS uses the kinetic equation to model the

ynamic processes around a cell interface [16] . Due to the discon-

inuous initial condition, the kinetic gas evolution covers the gas

volution process from the particle free transport in the kinetic

cale to the Navier-Stokes solution construction in the hydrody-

amic scale. The flow physics to be described in the evolution pro-

ess depends on the ratio of the time step �t to the particle colli-

ion time τ . While in 2013, based on a continuous initial condition

round a cell interface, a new finite volume gas-kinetic scheme

as been developed [19] , which significantly reduces the compu-

ational cost. In smooth flow region, this type of construction is

easonable and the scheme provides an accurate Navier-Stokes so-

ution. For the flow with discontinuous structure, the numerical

issipation needed to suppress the oscillation near a discontinuity

n this scheme is implicitly imposed by the initial reconstruction,

uch as the use of the Weighted Essential Non-Oscillatory recon-

truction (WENO) for characteristic variables. After initial data re-

onstruction, an analytic solution of the kinetic Bhatnagar–Gross–

rook (BGK) model [19] is used for the flux evaluation. In this
∗ Corresponding author. 
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ork, we will further simplify the above finite volume procedure

nd construct a finite difference GKS. 

In this paper, based on the time-accurate gas distribution func-

ion of the Navier–Stokes solution, a high order finite difference

as-kinetic scheme (FDGKS) is developed. Here a continuous flow

istribution assumed at every grid point is used to evaluate the

ime-dependent flux function by solving the time-accurate gas dis-

ribution function, from which the numerical flux at the half grid

oint is reconstructed to update the grid variables in a conserva-

ive form. Like the high order finite difference scheme (FD) of Liu

nd Osher [8] and Jiang and Shu [6] , in order to capture the dis-

ontinuity, the WENO procedure is employed in the reconstruction

f the numerical flux. 

The current FDGKS is in some sense quite similar to the finite

ifference WENO scheme with Lax-Wendroff type time discretiza-

ion by Qiu and Shu [12] , where a local solution is used to make

he high-order time matching. Both of them are one-step schemes.

ut the FDGKS employs the local solution of the BGK equation, not

he macroscopic one. It is very easy to obtain the local solution

f the Navier–Stokes equation by solving the BGK equation. While

or Lax-Wendroff type time discretization, a local solution for the

avier–Stokes equation is far more complex. There is no results

n Qiu and Shu’s paper [12] on the solving of the Navier–Stokes

quation. But in this paper, the FDGKS would treat both Euler and

avier–Stokes equations. 

https://doi.org/10.1016/j.compfluid.2018.01.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2018.01.026&domain=pdf
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The three novelties contributed in this paper includes 

(1) The flux evaluation is based on a continuous initial distri-

bution. Except for the work by Xuan and Xu [19] , almost all

of the other previous BGK methods solved the problem with

the local discontinuous initial flow distribution. The contin-

uous initial condition only needs one state flow variables.

While the discontinuous initial condition relies on two states

flow variables, which doubles the amount of CPU cost com-

pared to the continuous treatment. 

(2) The time-accurate Navier–Stokes gas distribution function

(see Eq. (2) ) has been used directly to calculate the evolution

of the macroscopic flux function. The previous BGK solver

depended on the integral-form solution as shown in [16] : 

f (x, t, u, ξ ) = 

1 

τ

∫ t 

t 0 
g(x − u (t − t ′ ) , t ′ , u, ξ ) e −(t −t ′ ) /τ d t ′ 

+ e −(t−t 0 ) /τ f 0 (x − u (t − t 0 ) , t 0 , u, ξ ) , 

where f 0 is the real gas distribution function f at time t 0 , and

g is the equilibrium state distribution function in space and

time ( x, t ). The integral-form solution is far more complex

and hence more costly than the one used in this paper. 

Many one and two dimensional benchmark test cases are used

to validate the accuracy and efficiency of the current FDGSK

scheme. Numerical experiments show that FDGKS is a highly sta-

ble and efficient method, which provides a high resolution and has

excellent performance in capturing a discontinuous solution. The

extensive numerical verification shows that the FDGKS has the fol-

lowing distinguishable features: 

(1) Due to the adoption of a continuous initial condition and the

direct use of the time-accurate Navier-Stokes gas distribution

function, the FDGKS is a highly efficient method. The FDGKS

is essentially faster than the FD with the same WENO recon-

struction and the same order time-matching. 

(2) The FDGKS leads to slightly better resolution in all of the

test cases than that of macroscopic equation based FD

method [6] when same WENO reconstruction is used. 

(3) The structure of the FDGKS is very similar to that of the

FD. It is straightforward to modify any other FD code to the

FDGKS by changing the computation of the point-wise flux. 

In this paper, Section 2 presents the construction of the FDGKS

in detail. The fifth-order WENO interpolation is introduced in

Section 3 . Section 4 encompasses the solution of many one and

two dimensional benchmark flow problems by FDGKS, where the

results are compared carefully with the ones obtained by the fifth-

order finite-difference WENO method. The last section concludes

this work. 

2. Finite difference gas-kinetic scheme 

In FDGKS, the distribution function at every grid point is firstly

evaluated to obtain the pointwise time-averaged flux, then this

flux is used to reconstruct the numerical flux at the half grid point,

from which a conservative finite difference scheme can be con-

structed. In this section, we present the distribution function eval-

uation at the grid point using a gas-kinetic formulation leading to

the construction of FDGKS. 

2.1. One-dimensional flux evaluation at a grid point 

On a uniform mesh with grid size �x , at a grid point i ,

the macroscopic flow conservative variables are W and their
i 
erivatives can be approximated to 4 th -order as 

W i,x = 

[
2 
3 
(W i +1 − W i −1 ) + 

1 
12 

(W i −2 − W i +2 ) 
]
/ �x, 

 i,xx = 

[
4 
3 
(W i +1 + W i −1 ) − 1 

12 
(W i −2 + W i +2 ) − 5 

2 
W i 

]
/ �x 2 . (1)

t the grid point, it is not necessary to use WENO interpolation

n calculating the above derivatives. To capture discontinuity only

he construction of the numerical flux needs to be limited. (Simi-

ar conclusion has been realized previously in [12] .) Then the time

volution of the distribution function from such an initial condition

ay be calculated as follow. 

Based on the kinetic Bhatnagar–Gross–Krook (BGK) model [1] ,

he corresponding Navier–Stokes (NS) distribution function f ( x, t,

, ξ ) can be witten as 

f (x, t, u, ξ ) = g(x, t, u, ξ ) − τDg(x, t, u, ξ ) , (2)

here g is the equilibrium state, u is the particle velocity, ξ =
(ξ1 , ξ2 , · · · , ξK ) is the internal variable, τ is the particle collision

ime, x and t are the spatial and temporal coordinates, and the

perator D ≡ ∂ t + u∂ x ( ∂ α ≡ ∂ 

∂α
). It should be noted that, for a

iatomic gas with γ = 1 . 4 , the total number of internal degrees

f freedom K is 4 in onedimension and 3 in twodimensions, see

16,17] . Here for Navier–Stokes equation the collision time is deter-

ined by the shear viscosity coefficient μ and pressure p in the

orm of τ = μ/p [16,17] . 

At the mesh grid point ˜ x i , we assume the equilibrium state dis-

ribution function at this point to be g e , a Maxwell-Boltzmann dis-

ribution corresponding to the equilibrium macroscopic flow state

 

e = [ ρe , ρe U 

e , E e ] T can be written as 

 

e = ρe λ

2 π
e −λ[(u −U e ) 2 + ξ 2 ] , (3)

here ρe and U 

e are the density and velocity, and λ is a func-

ion of temperature T e , molecule mass m and Boltzmann constant

 , with the relation λ = 

m 

2 kT e 
. A 3 rd -order Taylor expansion of the

quilibrium state g ( x, t, u, ξ ) near point ˜ x i may be expressed as 

 = g e 
{

1 + a x x + a t t + 

1 
2 

[(a 2 x + a xx ) x 
2 + (a 2 t + a tt ) t 

2 ] 

+ ( a x a t + a xt ) xt } 
= g e 

[
1 + a x x + a t t + 

1 
2 
(A xx x 

2 + A tt t 
2 ) + A xt xt 

]
, 

(4)

here x = ˜ x − ˜ x i 

 xx = a 2 x + a xx , A tt = a 2 t + a tt , A xt = a x a t + a xt ; (5)

 x = a x,k ψ k , a t = a t,k ψ k , a xx = a xx,k ψ k , a xt = a xt,k ψ k , a tt = a t t ,k ψ k ,

(6)

ith ψ = [1 , u, 1 2 (u 2 + ξ 2 )] T , ξ 2 = ξ 2 
1 + . . . + ξ 2 

K ( K is the total

umber of internal degrees of freedom), and the repeated index k

eans summation of k from 1 to 3. a x, k , a t, k , a xx, k , a xt, k , a tt, k are

oefficients to be determined. Then the Navier-Stokes distribution

unction f ( x, t, u, ξ ) becomes 

f = g e 
{

1 + a x x + a t t + 

1 
2 
(A xx x 

2 + A tt t 
2 ) + A xt xt 

−τ [ u (a x + A xx x + A xt t) + a t + A xt x + A tt t] 

}
. (7)

We can calculate the coefficients of spatial derivatives in the

istribution functions { a x,k , a xx,k } k =1 , 2 , 3 from the derivatives of

acroscopic conservative flow variables W α ( α = 1 , 2 , 3 ) at the

rid point i (see [9] ) 

 a x 〉 = 

∂W α

∂x 
, 〈 A xx 〉 = 

∂ 2 W α

∂x 2 
; 〈•〉 ≡

∫ 
•g e ψ α d�, (8)

here d� = d u d ξ is the volume element in the phase space and

 ξ = d ξ1 d ξ2 . . . d ξK , g 
e is the Maxwellian distribution correspond-

ng to W α . As an illustration, the procedures to solve a x and a xx =
 xx − a 2 x are: 
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(1). Solve a x, k by expanding the equation 〈 a x 〉 = ∂ x W α as 
 

a x,k ψ k ψ αg e d� = ∂ x W α. (9) 

n this linear system the calculation of the coefficients matrix
 

ψ k ψ αg e d� eventually reduces to computing the moments of

〈 u n 〉〉 , 〈〈 ξ 2 n 〉〉 (n = 0 , 1 , · · · ) (see [17] ), which is defined as 

〈 u 

n 〉〉 = 

1 

ρe 

∫ 
u 

n g e d�, 〈〈 ξ 2 n 〉〉 = 

1 

ρe 

∫ 
ξ 2 n g e d�. (10)

rom the Maxwellian distribution of g e (3) , it is easy to deduce

hat 

〈 u 

0 〉〉 = 1 , 〈〈 u 

1 〉〉 = U 

e , 〈〈 u 

k +2 〉〉 = U 

e 〈〈 u 

k +1 〉〉 + 

k + 1 

2 λ
〈〈 u 

k 〉〉;
nd 

〈 ξ 2 〉〉 = 

K 

2 λ
, 〈〈 ξ 4 〉〉 = 

3 K 

4 λ2 
+ 

K(K + 1) 

4 λ2 
, · · ·

(2). Solve a xx, k by expanding 〈 A xx 〉 = ∂ 2 xx W α to 
 

a xx,k ψ k ψ αg e d� = ∂ 2 xx W α −
∫ 

a x, j ψ j a x, j a x,k ψ j a x,k ψ αg e d�. (11) 

t is also finally reduced to computing the moments of 〈〈 u n 〉〉 ,
〈 ξ 2 n 〉〉 . 

After the determination of a x, k and a xx, k , based on the compat-

bility condition 

 f − g〉 = 0 , (12)

e have (see [9] ) 

 ua x + a t 〉 = 0 , 〈 uA xx + A xt 〉 = 0 , 〈 uA xt + A tt 〉 = 0 . (13) 

y definition of A xx , A xt , and A tt in (5) , Eq. (13) gives the solutions

o coefficients { a t,k , a xt,k , a t t ,k } k =1 , 2 , 3 , follows the same procedures

n solving a x and a xx . 

After these algorithms, the one-dimension NS distribution func-

ion f ( x, t, u, ξ ) is fully solved, and then the fluxes F ( t ) for the

acroscopic variables at x i can be computed using 

 (t) = 

∫ 
u fψ d� = F c (t) − F v (t) , (14) 

here F v (t) = τ
∫ 

uDgψ d� is the viscous flux, 

 

v (t) = τ
[〈 u 

2 a x 〉 + 〈 ua t 〉 + (〈 u 

2 A xt 〉 + 〈 uA tt 〉 ) t 
]
, (15) 

nd F c ( t ) is the Euler flux which can be calculated directly from

he conservative variables W ( t ) corresponding to g ( t ), i.e., 

 (t) = 

∫ 
gψ d� = W 

e + 〈 a t 〉 t + 

1 
2 
〈 A tt 〉 t 2 , 

 

c (t) = [ ρU, ρU 

2 + p, (E + p) U] T , 

(16) 

n which ρ , U, E, p represent the density, velocity, total energy, and

ressure, which are determined by W ( t ), and W 

e is the conserva-

ive variable corresponding to g e . 

For the time interval t ∈ [ t n , t n +1 ] , we define a time step �t =
 

n +1 − t n , to make the calculation of the time averaged flux F̄ i =
1 
�t 

∫ t n +1 

t n F (t) d t accurate to 2 nd -order polynomial tiwth respect to 

 (shown in (16) ), we choose two Gauss–Legendre points ( t G 1 , t G 2 )

n [0, �t ] and calculate the corresponding F c and F v , then use a

 rd -order Gauss quadrature to compute the time integral, we get

 ̄i = 

1 
2 

[ F c (t G 1 ) − F v (t G 1 ) + F c (t G 2 ) − F v (t G 2 )] . (17)

After the flux evaluation at the grid point, the classical conser-

ative upwind finite difference method based on Lax–Friedrich flux

plitting is used to update the grid point values in the following

teps. To capture the discontinuity, 5 th -order WENO reconstruction

s used to calculate the numerical flux. The details will be shown

n Section 3 . 
.2. Two-dimensional gas-kinetic flux 

For a rectangular mesh on grid point ( x i , y j ) ( i = 1 , . . . , N; j =
 , . . . , M), the derivatives of the macroscopic conservative variables

n x and y directions ( W i, j, x , W i, j, y , W i, j, xx , W i, j, yy ) are calculated

n the same ways as in the one-dimension case. While the cross

erivatives are calculated to 4 th -order accuracy by 

 

(1) 
i, j,xy 

= ( 2 
3 
(W i +1 , j,y − W i −1 , j,y ) + 

1 
12 

(W i −2 , j,y − W i +2 , j,y )) / �x, (18)

 

(2) 
i, j,xy 

= ( 2 
3 
(W i, j+1 ,x − W i, j−1 ,x ) + 

1 
12 

(W i, j−2 ,x − W i, j+2 ,x )) / �y, (19)

nd W i, j,xy = 

1 
2 (W 

(1) 
i, j,xy 

+ W 

(2) 
i, j,xy 

) . 

At the grid point, a 3 rd -order Taylor expansion of the equilib-

ium state is 

 = g e 
[
1 + a x x + a y y + a t t + 

1 
2 
(A xx x 

2 + A yy y 
2 + A tt t 

2 ) 

+ A xy xy + A xt xt + A yt yt ] , (20) 

ith A yy = a 2 y + a yy , A xy = a x a y + a xy , A yt = a y a t + a yt , a x =
 x,k ψ k , . . . ( k = 1 , 2 , 3 , 4 ) and ψ = [1 , u, v , 1 2 (u 2 + v 2 + ξ 2 )] . Based

n the NS distribution function f = g − τDg, its expansion be-

omes 

f = g e 

{ 

1 + a x x + a y y + a t t + 

1 
2 
(A xx x 

2 + A yy y 
2 + A tt t 

2 ) 
+ A xy xy + A xt xt + A yt yt − τ [ u (a x + A xx x + A xy y + A xt t) 
+ v (a y + A xy x + A yy y + A yt t) + a t + A xt x + A yt y + A tt t ] 

} 

. 

(21) 

gain, the spatial derivatives in (21) are determined from 

〈 a x 〉 = ∂ x W, 〈 a y 〉 = ∂ y W, 〈 A xx 〉 = ∂ xx W, 〈 A xy 〉 = ∂ xy W, 

 A yy 〉 = ∂ yy W. 
(22) 

e can further derive other derivatives from the compatibility con-

ition (12) as 

〈 ua x + v a y + a t 〉 = 0 , 〈 uA xx + v A xy + A xt 〉 = 0 , 

 uA xy + v A yy + A yt 〉 = 0 , 〈 uA xt + v A yt + A tt 〉 = 0 . (23) 

After the determination of the distribution function f ( x, y, t, u, v,

), the convective and viscous fluxes at grid point ( x i , y j ) become 

F c (t) = [ ρU, ρU 

2 + p, ρU V , (E + p) U ] T , 

 

v (t) = τ

∫ 
uDgψ d�

= τ [ 〈 u 

2 a x + u v a y + ua t 〉 + 〈 u 

2 A xt + u v A yt + uA tt 〉 t] , (24) 

here the physical variables ( ρ , U, V, E, p ) are determined from the

onservative variables W ( t ) corresponding to g , 

 (t) = 

∫ 
gψ d� = W 

e + 〈 a t 〉 t + 

1 
2 
〈 A tt 〉 t 2 , (25)

 

e is the interpolated value at the grid point, which is used to

etermine g e . The vertical fluxes are given by 

G 

c (t) = [ ρV, ρUV, ρV 

2 + p, (E + p) V ] T , 

 

v (t) = τ

∫ 
v Dgψ d�

= τ [ 〈 u v a x + v 2 a y + v a t 〉 + 〈 u v A xt + v 2 A yt + v A tt 〉 t] . (26) 

It is well known that the BGK equation assumes a unit Prandtl

umber. The Prandtl number can be corrected through the modifi-

ation of the heat-flux [17] , using 

q x = 

1 

2 

∫ 
(u − U)[(u − U) 2 + (v − V ) 2 + ξ 2 ] f d�

= UF v 2 + V F v 3 − F v 4 , 

 y = 

1 

2 

∫ 
(v − V )[(u − U) 2 + (v − V ) 2 + ξ 2 ] f d�
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v 
2 + V G 

v 
3 − G 

v 
4 . (27)

The Prandtl number may be modified using a correction of the en-

ergy flux, namely 

F F ix 4 = F v 4 + (1 /P r − 1) q x , G 

F ix 
4 = G 

v 
4 + (1 /P r − 1) q y . (28)

To get the time averaged flux F̄ = 

1 
�t 

∫ t n +1 

t n F (t) d t and Ḡ =
1 
�t 

∫ t n +1 

t n G (t) d t , we choose two Gauss-Legendre points ( t G 1 , t G 2 )

in [0, �t ] and calculate the corresponding F and G . The Gaussian

quadrature can be used to compute the time integral to 3 rd -order

accuracy, thus leading to 

F̄ = 

1 
2 

[ F (t G 1 ) + F (t G 2 )] , Ḡ = 

1 
2 

[ G (t G 1 ) + G (t G 2 )] . (29)

With this approach, both temporal averaged convective and viscous

fluxes ( ̄F c 
i, j 

, F̄ v 
i, j 

, Ḡ 

c 
i, j 

, Ḡ 

v 
i, j 

) are computed at every node point ( i, j ). 

Subsequently the Lax–Friedrich flux splitting may be combined

with a 5 th -order WENO reconstruction to compute the convective

numerical fluxes. As for the viscous numerical fluxes, they may be

simply represented by central 6 th -order interpolation, namely 

ˆ F v i +1 / 2 , j = 

F̄ v 
i +3 , j 

+ F̄ v 
i −2 , j 

− 8( ̄F v 
i +2 , j 

+ F̄ v 
i −1 , j 

) + 37( ̄F v 
i +1 , j 

+ F̄ v 
i, j 

) 

60 

, 

ˆ G 

v 
i, j+1 / 2 = 

Ḡ 

v 
i, j+3 

+ Ḡ 

v 
i, j−2 

− 8( ̄G 

v 
i, j+2 

+ Ḡ 

v 
i, j−1 

) + 37( ̄G 

v 
i, j+1 

+ Ḡ 

v 
i, j 

) 

60 

. 

(30)

The total numerical flux may thus be deduced from 

ˆ F i +1 / 2 , j =
ˆ F c 
i +1 / 2 , j 

− ˆ F v 
i +1 / 2 , j 

, and 

ˆ G i, j+1 / 2 = 

ˆ G 

c 
i, j+1 / 2 

− ˆ G 

v 
i, j+1 / 2 

. 

Finally, the grid point values may be updated from 

 

n +1 
i j 

= W 

n 
i, j − �t 

�x 
( ̂  F i +1 / 2 , j − ˆ F i −1 / 2 , j ) − �t 

�y 
( ̂  G i, j+1 / 2 − ˆ G i, j−1 / 2 ) . (31)

Remark. 

1. For a temporal second-order scheme, a first order Taylor expan-

sion of the kinetic distribution function is sufficient. All 2 nd -

order derivatives in the temporal evolution of the kinetic distri-

bution function can be ignored. 

2. The Lax–Friedrich flux-splitting with 5 th -order WENO recon-

struction is used to calculate the convective numerical flux at

half grid points, shown in the next section. The scheme con-

structed here has a 3 rd -order convergence accuracy in time and

5 th -order convergence accuracy in space. These are validated

numerically in Section 4 . 

3. Fifth-order WENO interpolation for numerical fluxes at half 

grid point 

With the physical fluxes at every grid point, a 5 th -order WENO

reconstruction may be used to compute the numerical flux at the

half grid point, and thus capture the discontinuous solution with-

out oscillation. Here Jiang and Shu’s weight [6] is used. 

(1) With the conservative variables W i at grid point, at half a

grid point i + 1 / 2 , use the averaged value W i +1 / 2 = 

1 
2 (W i +

W i +1 ) to calculate the left and right eigenvector matrix L i +1 / 2 

and R i +1 / 2 and the eigenvalues λα(α = 1 , 2 , 3) . 

(2) Project the conservative variables W i + l (l = −2 , · · · , 3) and

time averaged kinetic flux F̄ i + l at grid points to characteristic

ones ˜ W i + l and 

˜ F i + l by 

˜ W i + l = L i +1 / 2 W i + l , ˜ F i + l = L i +1 / 2 ̄F i + l . (32)

(3) For αth component, make the flux splitting 

F ±
i + l,α = 

1 
2 
( ̃  F i + l,α ± c α ˜ W i + l,α ) , (33)

where c α = max l (| λα,i + l | ) . 
(4) Conduct WENO interpolation: 

F (1) = 

11 
6 

F + 
i 

− 7 
6 

F + 
i −1 

+ 

1 
3 

F + 
i −2 

, 

F (2) = 

5 
6 

F + 
i 

− 1 
6 

F + 
i −1 

+ 

1 
3 

F + 
i +1 

, 

F (3) = 

1 
3 

F + 
i 

− 1 
6 

F + 
i +2 

+ 

5 
6 

F + 
i +1 

, (34)

and 

IS 1 = 

13 
12 

(F + 
i 

+ F + 
i −2 

− 2 F + 
i −1 

) 2 + 

1 
4 
(3 F + 

i 
+ F + 

i −2 
− 4 F + 

i −1 
) 2 , 

IS 2 = 

13 
12 

(F + 
i +1 

+ F + 
i −1 

− 2 F + 
i 

) 2 + 

1 
4 
(F + 

i +1 
− F + 

i −1 
) 2 , 

IS 3 = 

13 
12 

(F + 
i 

+ F + 
i +2 

− 2 F + 
i +1 

) 2 + 

1 
4 
(3 F + 

i 
+ F + 

i +2 
− 4 F + 

i +1 
) 2 , 

d 1 = 0 . 1 , d 2 = 0 . 6 , d 3 = 0 . 3 . (35)

The JS weight is 

w s = βs / 

3 ∑ 

p=1 

βp , βs = d s / (IS 2 s + ε) (s = 1 , 2 , 3) , (36)

where ε = 10 −6 . 

Then, the ‘+’ splitting flux at half grid point becomes 

˜ F + 
i +1 / 2 

= 

∑ 3 
p=1 w p F 

(p) . (37)

Similar procedures are used to obtain the ‘ −’ splitting flux
˜ F −
i +1 / 2 

from F −
i + l . And then 

˜ F i +1 / 2 = 

˜ F + 
i +1 / 2 

+ 

˜ F −
i +1 / 2 

, ˆ F i +1 / 2 = R i +1 / 2 ̃
 F i +1 / 2 . (38)

In two-dimensional case, the interpolation of numerical flux
ˆ G i +1 / 2 can be obtained in the same way as in x -direction. 

. Numerical experiments 

The performance of finite difference gas-kinetic scheme with

 th -order WENO interpolation (FDGKS-W5) will be tested in this

ection. Many one and two dimensional benchmark problems are

alculated and the results and CPU time are compared with those

f 5 th -order WENO macroscopic equation based finite difference

nder the same flux splitting and WENO reconstruction (noted as

D-W5). A 3 rd -order TVD Runge–Kutta method [6] is used in FD-

5 to make the time matching. 

.1. One dimensional cases 

.1.1. Stability test 

The stability property is numerically tested for the Euler equa-

ions with initial condition 

= 1 + 

1 
4 

sin ( 2 π
5 

x ) , U = 1 , p = 1 , (39)

here ρ is density, U is velocity, and p is pressure. Periodic bound-

ry conditions are set at both ends in the computational domain

 ∈ [ −5 , 5] . For this case, the maximum stable CFL number is 1.31,

hich shows high stability of FDGSK-W5. 

.1.2. Accuracy test 

To test the accuracy, the case (39) is used for the inviscid so-

ution. The computation is run for one period of time t = 10 . The

 1 and L ∞ 

errors of FGDKS-W5 are compared those of FD-W5 in

able 1 , where N is the number of grid. We can see that FDGKS-W5

as well achieved the designed 5 th -order with a slightly smaller

rror than that of FD-W5. 

For the temporal accuracy, 320 grids have been used and the re-

ults of numerical experiments in Table 2 show that the designed

 rd -order has almost been achieved (Numbers in the parentheses

fter the time step are the corresponding CFL numbers). With the

ecrease of the time step, the error drops to the spatial error lim-

ted by spatial discretization on the finite grid size and hence the

rder is getting lower. 
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Table 1 

One dimensional Euler equation; convection of density sine wave; periodic boundary conditions. Com- 

pare the error convergence of FD-W5 and FDGKS-W5. 

FD-W5 FDGKS-W5 

N L 1 error Order L ∞ error Order L 1 error Order L ∞ error Order 

20 2.179e −2 – 3.540e −2 – 1.514e −2 – 2.332e −2 –

40 1.310e −3 4.06 2.083e −3 4.09 7.860e −4 4.27 1.572e −3 3.89 

80 4.724e −5 4.79 8.855e −5 4.56 2.356e −5 5.06 5.663e −5 4.79 

160 1.464e −6 5.01 3.315e −6 4.73 7.170e −7 5.38 1.741e −6 5.02 

320 3.158e −8 5.53 6.676e −8 5.63 2.208e −8 5.21 5.490e −8 4.99 

Table 2 

The temporal error convergence of FDGKS-W5 on grid of N = 320 . 

�t 1.192e −2(0.9) 1.060e −2(0.8) 9.274e −3(0.7) 7.949e −3(0.6) 6.624e −3(0.5) 

L 1 error 2.924e −7 2.094e −7 1.448e −7 9.633e −8 6.160e −8 

Order – 2.84 2.76 2.64 2.45 

L ∞ error 4.431e −7 3.124e −7 2.106e −7 1.373e −7 9.060e −8 

Order – 2.98 2.95 2.77 2.28 
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Fig. 1. Density profile for Lax problem with N = 200 grid points and CFL = 0 . 6 . Solid line: exact solution; square: FDGKS-W5; ‘+’: W5-JS. 
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achieves similar resolution as FD-W5. 
.1.3. Tests for discontinuous flows and efficiency of the schemes 

Now we compare the results of FD-W5 and FDGKS-W5 for the

ow simulations with shock and contact discontinuities. In all of

he following test cases, to be consistent with Jiang-Shu’s paper

6] , the CFL number is set to be 0.6. 

xample 4.1. Lax problem 

This is a Riemann problem for the Euler solution with the initial

ondition: 

(ρ, U, p) = (0 . 445 , 0 . 698 , 3 . 528) for x ∈ [ −5 , 0] , 

(ρ, U, p) = (0 . 5 , 0 , 0 . 571) for x ∈ (0 , 5] . (40) 

he computation is run up to time t = 1 . 3 . N = 200 grid points are

sed in the computational domain x ∈ [ −5 , 5] . Fig. 1 shows that

oth schemes obtain acceptable results. The zoomed in solution

hows that FDGKS-W5 seems has smaller oscillation and higher

esolution for discontinuity than those of FD-W5 for this case. Ve-

ocity and pressure distributions from FDGKS-W5 are shown in

ig. 2 . 

xample 4.2. Blast wave problem 
This problem is from [15] . The computational domain has x ∈
 −5 , 5] with initial condition 

= 1 ; U = 0 ; p = 

{ 

10 0 0 , x ∈ [ −5 , −4) , 
0 . 01 , x ∈ [ −4 , 4) , 
100 , x ∈ [4 , 5] . 

(41)

he output time is t = 0 . 38 . The density profiles on meshes with

 = 200 and N = 400 grid points by FD-W5 are FDGKS-W5 are

resented in Fig. 3 . The reference solution is obtained by FD-W5

n a mesh with N = 10 0 0 0 grid points. The FDGKS-W5 has similar

esolution as FD-W5 in this case. 

xample 4.3. Shock acoustic-wave interaction 

The shock acoustic-wave interaction problem is given in [13] .

he computational domain is x ∈ [ −5 , 5] with initial condition 

(p, U, ρ) = 

{
(3 . 857134 , 2 . 629369 , 10 . 33333) , x < −4 , 

(1 + 0 . 2 sin (5 x ) , 0 , 1) , x ≥ −4 . 
(42) 

he output time is t = 1 . 8 . The reference solution is obtained by

D-W5 with N = 10 , 0 0 0 grid points. Fig. 4 shows that FDGKS-W5
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Fig. 2. Lax problem by FDGKS-W5 with N = 200 grid points and CFL = 0 . 6 . Left: velocity, right: pressure. Solid line: exact solution; square: solution by FDGKS-W5. 
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Fig. 3. Density profiles in blast wave problem. Thick solid line: reference solution (FD-W5 with N = 10 0 0 0 grid points); � : FDGKS-W5; ‘+’: FD-W5. Left: N = 200 ; right: 

N = 400 . 
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FD-W5. Left: N = 200 ; right: N = 400 . 



L.-J. Xuan, K. Xu / Computers and Fluids 166 (2018) 243–252 249 

Table 3 

CPU times for different schemes and test cases. 

Lax Problem Shu-Osher Blast wave 

FD-W5 133.27s 272.12s 500.02s 

FDGKS-W5 57.06s 116.86s 214.59s 

Speedup Ratio 2.335 2.328 2.330 

Table 4 

The error convergence of FDGKS-W5 for the 2-D convection 

of density wave problem. 

N x × N y L 1 error Order L ∞ error Order 

8 × 12 2.028e −2 – 3.139e −2 –

16 × 24 1.396e −3 3.86 2.229e −3 3.82 

32 × 48 5.429e −5 4.68 1.021e −4 4.45 

64 × 96 1.605e −6 5.08 3.259e −6 4.97 

128 × 192 3.479e −8 5.52 7.399e −8 5.46 
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.1.4. Compuational cost 

The above Examples 4.1 –4.3 are used to test the efficiency of

he schemes. In the test cases, a grid with N = 10 0 0 0 points are

sed and the time step is given by CFL = 0 . 5 . The CPU time costs

re shown in Table 3 , where the FDGKS-W5 is about 1.3 times

aster than FD-W5. The FDGKS-W5 is a one-step scheme, where for

ach time step it only needs one time of WENO reconstruction and

ux computation. But in FD-W5, because of the multi-step tempo-

al update, we need 3 times of WENO reconstruction and flux cal-

ulation for every time step. This is the reason why FDGKS-W5 is

ore efficient than FD-W5. 

.2. Two dimensional cases 

In this subsection, we are going to present the results of

DGKS-W5 in simulating two-dimensional cases and compare

hem with those of FD-W5. 

.2.1. Accuracy test 

xample 4.4. Propagation of density sine wave [12] for Euler equa-

ion 

For Euler equation, the initial density ρ(x, y, 0) =
 + 0 . 2 sin [ π(x + y )] , velocity U(x, y, 0) = 0 . 7 , V (x, y, 0) = 0 . 3 ,

nd pressure p(x, y, 0) = 1 ; with periodic boundary condi-

ions in both x - and y - directions. The exact solution is

= 1 + 0 . 2 sin (π(x + y − (U + V ) t)) , U = 0 . 7 , V = 0 . 3 , p = 1 .

he computation domain is [0, 2] × [0, 2]. Uniform mesh is used

n both x and y directions. To avoid any special error cancellation

ue to the symmetry axis being in the diagonals of cells, the

esh sizes in the x - and y -directions are different. Table 4 shows

he errors of FDGKS-W5. Here we neglect the results of FD-W5,

ecause they are almost the same as those of FDGKS-W5. We can

ee that FDGKS-W5 achieves the designed order. 

xample 4.5. Convection of isotropic vortex for Navier–Stokes

quation 
Table 5 

Two dimensional Navier–Stokes equation with Re = 10 ;

boundary conditions. Compare the error convergence of F

FDGKS-W5 

N x × N y L 1 error Order L ∞ error Order 

8 × 8 4.603e −3 – 2.698e −2 –

16 × 16 1.227e −3 1.91 7.852e −3 1.78 

32 × 32 7.816e −5 3.97 4.645e −4 4.08 

64 × 64 2.606e −6 4.92 1.963e −5 4.56 

128 × 128 5.297e −8 5.64 3.243e −7 5.92 
This is convection of isotropic vortex in a two-dimensional do-

ain. The problem is set up in a computational domain ( x, y ) ∈ [0,

0] × [0, 10]. The periodic boundary condition is imposed in both

 - and y - directions. The initial conditions are given by 

(U(x, y, 0) , V (x, y, 0)) = (1 , 1) + 

ε
2 π e 0 . 5(1 −r 2 ) (−ȳ , ̄x ) , 

T (x, y, 0) = 1 − (γ − 1) ε2 

8 γπ2 
e 1 −r 2 , 

S(x, y, 0) = 1 , ρ(x, y, 0) = 1 , (43) 

here the temperature T and the entropy S are related to the

ensity ρ and the pressure p by T = p/ρ, S = p/ργ , and ( ̄x , ̄y ) =
(x − 5 , y − 5) , r 2 = x̄ 2 + ȳ 2 , and the vortex strength ε = 5 . For invis-

id flow, the exact solution is an isotropic vortex convected with

he speed (1, 1) in the diagonal direction. While for viscous flow,

he reference solution can only be obtained numerically. A 6 th -

rder finite difference method is used to compute the reference

olution on a mesh of 257 × 257. The vector L 1 and L ∞ 

errors are

efined as 

 1 = 

1 

N 

2 

∑ 

i, j 

| ρi, j − ρr 
i, j | , L ∞ 

= max 
i, j 

| ρi, j − ρr 
i, j | , (44)

here ρ i, j is the density on the node ( i, j ) and ρr 
i, j 

is the corre-

ponding reference solution; N is the number of point on x direc-

ion, which is the same as the that of y direction. The accuracy is

ested up to the output time t = 10 , namely one period of propa-

ation. The L 1 and L ∞ 

errors of FDGKS-W5 and FD-W5 for viscous

ow with Reynolds number Re = 10 , 100 , and 1000 are shown in

ables 5–7 . We can see that FDGKS-W5 achieves very well the de-

igned order with slightly better accuracy than those of FD-W5. 

In terms of time efficiency, both inviscid (solves Euler equa-

ion) and viscous (solves Navier Stokes equation at Re = 10 0 0 )

sotropic vertex convection problem are run on a grid of 129 × 129

oints up to one period of time, i.e., t = 10 . The comparison of

he CPU time cost for different schemes on the same machine is

hown in Table 8 . For solving Euler equation, the speedup ration

f FDGKS-W5 to FD-W5 is 1.92, which is lower than 2.33 for one-

imension case. It is because that the solving of two-dimension

ux by GKS formula involves in the evaluation of cross derivative

ike a xy , which is not encompassed in FD flux calculation. When

avier–Stokes equation is solved, the speedup ration of FDGKS-W5

o FD-W5 deceases to 1.39. The calculation of viscous flux by GKS

pproach needs to compute the one order higher moments like

 u 2 a x 〉 , 〈 u 2 a t 〉 , ���, shown in (24) and (26) , which increases signifi-

antly the CPU time. 

xample 4.6. Shock-vortex interaction 

The shock-vortex interaction problem [2] is studied in a com-

utational domain ( x, y ) ∈ [0, 2] × [0, 1]. A stationary shock front

s positioned at x = 0 . 5 . The left upstream state is (ρ, U, V, p) =
(M 

2 , 
√ 

γ , 0 , 1) , where γ is the specific heat ratio and M = 1 . 1 is

he Mach number. A small vortex is obtained through a pertur-

ation of the mean flow with the velocity ( U, V ), temperature
 convection of viscous isotropic vortex; periodic 

D-W5 and FDGKS-W5. 

FD-W5 

L 1 error Order L ∞ error Order 

4.732e −3 – 2.612e −2 –

1.276e −3 1.89 7.568e −3 1.79 

8.166e −5 3.97 4.416e −4 4.10 

2.844e −6 4.86 1.538e −5 4.84 

5.559e −8 5.70 3.214e −7 5.58 



250 L.-J. Xuan, K. Xu / Computers and Fluids 166 (2018) 243–252 

Table 6 

Two dimensional Navier–Stokes equation with Re = 100 ; convection of isotropic vortex; periodic boundary 

conditions. Compare the error convergence of FD-W5 and FDGKS-W5. 

FDGKS-W5 FD-W5 

N x × N y L 1 error Order L ∞ error Order L 1 error Order L ∞ error Order 

8 × 8 1.910e −2 – 3.083e −1 – 1.923e −2 – 3.126e −1 –

16 × 16 1.091e −2 0.81 2.118e −1 0.54 1.099e −2 0.81 2.158e −1 0.53 

32 × 32 1.222e −3 3.16 2.032e −2 3.38 1.236e −3 3.15 2.099e −2 3.36 

64 × 64 6.324e −5 4.27 1.180e −3 4.11 6.353e −5 4.28 1.222e −3 4.10 

128 × 128 1.671e −6 5.24 2.667e −5 5.47 1.710e −6 5.22 3.412e −5 5.16 

Table 7 

Two dimensional Navier–Stokes equation with Re = 10 0 0 ; convection of isotropic vortex; periodic boundary 

conditions. Compare the error convergence of FD-W5 and FDGKS-W5. 

FDGKS-W5 FD-W5 

N x × N y L 1 error Order L ∞ error Order L 1 error Order L ∞ error Order 

8 × 8 2.355e −2 – 4.355e −1 – 2.360e −2 – 4.355e −1 –

16 × 16 1.476e −2 0.67 3.192e −1 0.45 1.479e −2 0.67 3.199e −1 0.45 

32 × 32 2.128e −3 2.79 3.573e −2 3.16 2.128e −3 2.80 3.573e −2 3.16 

64 × 64 1.435e −4 3.89 2.600e −3 3.78 1.432e −4 3.89 2.606e −3 3.78 

128 × 128 4.634e −6 4.95 8.610e −5 4.92 4.656e −6 4.94 8.851e −5 4.88 

Table 8 

Inviscid and viscous vortex propagation. Mesh 129 × 129, CFL = 0 . 08 , and t = 10 . CPU time comparison 

of FD-W5 and FDGKS-W5. 

Euler equation Navier–Stokes equation 

FD-W5 FDGKS-W5 Speedup Ratio FD-W5 FDGKS-W5 Speedup Ratio 

CPU time 334.86s 174.50s 1.92 351.70s 252.64s 1.39 
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Fig. 5. Vortex shock interaction by FDGKS-W5. Grid 202 × 101, CFL = 0 . 6 . Pressure contour at different time, top-left: t = 0 . 2 , top-righ: t = 0 . 35 , and bottom: t = 0 . 8 . 60 

levels between 0.8 and 1.4. 
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Fig. 6. Mach 10 double Mach reflection by FDGKS-W5. Number of grid 961 × 241, 

CFL = 0 . 6 . Density contour at t = 0 . 2 , 30 levels between 1.731 and 20.92. 
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Fig. 7. Mach 10 double Mach reflection by FDGKS-W5. Zoomed in figure around 

triple point. Number of grid 961 × 241, CFL = 0 . 6 . Density contour at t = 0 . 2 , 30 lev- 

els between 1.731 and 20.92. 
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 T = p/ρ) and entropy( S = ln ( p 
ργ ) ), where the perturbation is 

˜ 
 = κηe μ(1 −η2 ) sin θ, ˜ V = −κηe μ(1 −η2 ) sin θ, 

˜ T = − (γ − 1) κ2 e 2 μ(1 −η2 ) 

4 μγ
, ˜ S = 0 , (45) 

here η = r/r c , r = 

√ 

(x − x c ) 2 + (y − y c ) 2 , (x c , y c ) = (0 . 25 , 0 . 5) is

he center of the vortex, η and μ control the strength and de-
y
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Fig. 8. Reflected shock-boundary layer interaction in a shock tube. Grid: 5
ay rate of the vortex, and r c is the critical radius. Here we choose

= 0 . 3 , r c = 0 . 05 and μ = 0 . 204 . 

The gas is a diatomic molecule with γ = 1 . 4 . The number of

rid is 202 × 101 and CFL = 0 . 6 . The reflected boundary condition

s used on the top and bottom boundaries, and inflow and outflow

oundary conditions are set on left and right boundaries, respec-

ively. The evolution of the flow is given in Fig. 5 , where both vor-

ex and shock are well resolved. 

xample 4.7. Double Mach reflection problem. 

The computation domain is [0, 4] × [0, 1]. A solid wall lies at

he bottom of the computational domain starting from x = 1 / 6 . Ini-

ially, a right-moving Mach 10 shock is positioned at x = 1 / 6 , y = 0

nd makes a 60 ° angle with the x -axis. For the bottom boundary,

he exact post-shock condition is imposed for the part from x = 0

o x = 1 / 6 and a reflective boundary condition is used for the rest.

t the top boundary of the computational domain, the flow values

re set to describe the exact motion of the Mach 10 shock front.

he initial pre-shock condition is 

(ρ, p, u, v ) = (8 , 116 . 5 , 8 . 25 cos (30 

◦) , −8 . 25 sin (30 

◦)) (46)

nd the post-shock condition is 

(ρ, p, u, v ) = (1 . 4 , 1 , 0 , 0) . (47)

he computation runs up to time t = 0 . 2 . A uniform mesh with

61 × 241 grid points is used and CFL = 0 . 6 . Fig. 6 shows density

ontours and the zoomed in figure around triple point is presented

n Fig. 7 . The current results agree well with that in [12] . 

xample 4.8. Shock-boundary layer interaction in a shock tube 

This is a viscous flow problem introduced by Daru and Tenaud

3,5] to test the performance of different schemes. Daru and

enaud and many other researchers revisited this case later, see

aru and Tenaud [4] , Sj ̈o green and Yee [14] and coworkers. An

deal gas is at rest in a two-dimension box 0 ≤ x, y ≤ 1. A membrane

ith a shock Mach number of 2.37 located at x = 1 / 2 separates

wo different states of the gas. At time zero, the membrane is re-

oved and wave interaction occurs. This is a standard shock tube

roblem, and would give a familiar one-dimensional wave struc-

ure by solving a Riemann problem for the inviscid Euler equa-

ions. Here, the compressible Navier–Stokes equations are solved

nd non-slip boundary condition is implemented. The solution will

evelop complex two-dimensional shock/shear/boundary-layer in- 

eractions, which depend on the Reynolds number. The complex-
x
0.7 0.8 0.9 1

02 × 251. Contour of density, 21 contour levels between 20 and 120. 
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Fig. 9. Reflected shock-boundary layer interaction in a shock tube. Grid: 2002 × 1001. Density contour, 21 contour levels between 20 and 120. 
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ity of the flow structure increases with the increasing of Reynolds

number. 

The dimensionless initial conditions are [3] , 

ρL = 120 , p L = 120 /γ , ρR = 1 . 2 , p R = 1 . 2 /γ , (48)

where ρL , p L are the density and pressure, respectively, to the left

of x = 1 / 2 , and ρR , p R to the right of x = 1 / 2 . All velocities are zero

initially. Diatomic gas with γ = 1 . 4 and the Prandtl number 0.73

are used. The Reynolds number in the current calculation is Re =
10 0 0 . The non-slip boundary condition and adiabatic condition for

temperature on wall boundaries are imposed. The computational

domain is set to be ( x, y ) ∈ [0, 1] × [0, 0.5]. A symmetrical condition

is used on the top boundary x ∈ [0 , 1] , y = 0 . 5 . 

Figs. 8 and 9 show the numerical results by FDGKS-W5 on

meshes with 502 × 251 and 2002 × 1001 grid points, respectively.

Compare to Daru and Tenaud’s resutls [3–5] , we can see that

FDGKS-W5 can effectively capture the interaction of shock wave

and boundary layer. 

5. Conclusion 

In this paper, based on time evolution of a Navier-Stokes

gas distribution function and Weighted Essential Non-Oscillatory

(WENO) interpolation, a high-order finite difference gas-kinetic

scheme (FDGKS) is constructed. Due to the time accuracy in the

gas distribution function, current FDGKS is a one-step scheme with

3 rd -order in time, which has been verified by benchmark test

cases. 5 th -order WENO interpolation with Jiang and Shu’s weight

[6] has been used to capture the discontinuity. Our numerical ex-

periments show that, with the same WENO interpolation, FDGKS

presents slightly better resolution to the macroscopic equation

based finite-difference method with 3 rd -order TVD Runge–Kutta

temporal integration (FD-RK3). As to the CPU time, compared to

FD-RK3, FDGKS saves %57 in solving one-dimension Euler equa-

tion. While for the computation of two-dimensional Navier-Stokes

equation, with the same central interpolation for the viscous flux,

FDGKS reaches a 1.39 times of speedup compared to FD-RK3. The

FDGKS is proved to be highly stable, accurate, and efficient in solv-

ing both Euler and Navier-Stokes equations. With the application

of standard WENO reconstruction, it captures discontinuous solu-

tions without oscillation. Another benefit of current FDGKS is that,

compared to classical finite-difference (FD) method, it only changes

the computation of pointwise flux, which makes the implementa-

tion of it to any FD code straightforward. 
cknowledgments 

This work was supported by Hong Kong Research Grant Council

621709, 621011), and HKUST grants SRFI11SC05 and RPC10SC11 . 

eferences 

[1] Bhatnagar PL , Gross EP , Krook M . A model for collision processes in gases I:
small amplitude processes in charged and neutral one-component systems.

Phys Rev 1954;94:511–25 . 
[2] Casper J . Finite-volume implementation of high-order essentially non-oscilla-

tory schemes in two dimensions. AIAA J 1992;30:2829–35 . 

[3] Daru V , Tenaud C . Evaluation of TVD high resolution schemes for unsteady
viscous shocked flows.. Comput Fluids 2001;30:89–113 . 

[4] Daru V , Tenaud C . High order one-step monotonicity-preserving schemes for
unsteady compressible flow calculations. J Comput Phys 2004;193:563–94 . 

[5] Daru V , Tenaud C . Numerical simulation of the viscous shock tube problem
by using a high resolution monotonicity-preserving scheme. Comput Fluids

2009;38:664–76 . 

[6] Jiang GS , Shu CW . Efficient implementation of weighted ENO schemes. J Com-
put Phys 1996;126:202–28 . 

[7] Li JQ , Li QB , Xu K . Comparison of the generalized Riemann solver and the
gas-kinetic scheme for inviscid compressible flow simulations. J Comput Phys

2011;230:5080–99 . 
[8] Liu XD , Osher S . Weighted essentially non-oscillatory schemes. J Comput Phys

1994;115:200–12 . 

[9] Li QB , Xu K , Fu S . A high-order gas-kinetic Navier-Stokes solver. J Comput Phys
2010;229:6715–31 . 

[10] Luo J . A high-order Navier-Stokes flow solver and gravitational system model-
ing based on gas-kinetic equation. Phd thesis. Hong Kong University of Science

and Technology; 2012 . 
[11] Ohwada T , Fukata S . Simple derivation of high-resolution schemes for com-

pressible flows by kinetic approach. J Comput Phys 2006;211:424 . 

12] Qiu J , Shu C-W . Finite difference WENO schemes with Lax-Wendroff type time
discretizations. SIAM J Scient Comput 2003;24:2185–98 . 

[13] Shu CW , Osher S . Efficient implementation of essentially nonoscillatory shock-
-capturing schemes II. J Comput Phys 1989;83:32–78 . 

[14] Sjögreen B , Yee HC . Grid convergence of high order methods for multiscale
complex unsteady viscous compressible flows. J Comput Phys 2003;185:1–26 . 

[15] Woodward P , Colella P . Numerical simulations of two-dimensional fluid flow

with strong shocks. J Comput Phys 1984;54:115–73 . 
[16] Xu K . Gas-kinetic schemes for unsteady compressible flow simulations. Report

1998-03. Von Karman Institute; 1998 . 
[17] Xu K . A gas-kinetic BGK scheme for the navier-stokes equations, and its

connection with artificial dissipation and godunov method. J Comput Phys
2001;171:289–335 . 

[18] Xu K , Mao ML , Tang L . A multidimensional gas-kinetic BGK scheme for hyper-

sonic viscous flow. J Comput Phys 2005;203:405–21 . 
[19] Xuan LJ , Xu K . A new gas-kinetic scheme based on analytical solutions of the

BGK equation. J Comput Phys 2013;234:524–39 . 

https://doi.org/10.13039/501100005950
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0003
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0003
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0003
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0005
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0005
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0005
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30034-3/sbref0019

	An efficient high-order finite difference gas-kinetic scheme for the Euler and Navier-Stokes equations
	1 Introduction
	2 Finite difference gas-kinetic scheme
	2.1 One-dimensional flux evaluation at a grid point
	2.2 Two-dimensional gas-kinetic flux

	3 Fifth-order WENO interpolation for numerical fluxes at half grid point
	4 Numerical experiments
	4.1 One dimensional cases
	4.1.1 Stability test
	4.1.2 Accuracy test
	4.1.3 Tests for discontinuous flows and efficiency of the schemes
	4.1.4 Compuational cost

	4.2 Two dimensional cases
	4.2.1 Accuracy test


	5 Conclusion
	 Acknowledgments
	 References


