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a b s t r a c t 

In this paper, we intend to address the high-order gas-kinetic scheme (HGKS) in the direct numerical 

simulation (DNS) of compressible isotropic turbulence up to the supersonic regime. To validate the per- 

formance of HGKS, the compressible isotropic turbulence with initial turbulent Mach number Ma t0 = 0 . 5 

and Taylor microscale Reynold number Re λ0 = 72 is simulated as a benchmark. With the consideration of 

robustness and accuracy, the WENO-Z scheme is adopted for spatial reconstruction in the current higher- 

order scheme. Statistical quantities are compared with the high-order compact finite difference scheme to 

determine the spatial and temporal criterion for DNS. According to the grid and time convergence study, 

it can be concluded that the minimum spatial resolution parameter κmax η0 ≥ 2 . 71 and the maximum 

temporal resolution parameter �t ini / τ 0 ≤ 27.08/10 0 0 are adequate for HGKS to resolve the compressible 

isotropic turbulence, where κmax is the maximum resolved wave number, �t ini is the initial time step, 

η0 and τ 0 are the initial Kolmogorov length scale and time scale, respectively. Guided by such criterion, 

the compressible isotropic turbulence from subsonic regime Ma t0 = 0 . 8 to supersonic one Ma t0 = 1 . 2 , and 

the Taylor microscale Reynolds number Re λ0 ranging from 10 to 72 are simulated. With the high initial 

turbulent Mach number, the strong random shocklets and high expansion regions are identified, as well 

as the wide range of probability density function over local turbulent Mach number. All those impose 

great challenge for high-order schemes. In order to construct compressible large eddy simulation mod- 

els at high turbulent Mach number, the ensemble budget of turbulent kinetic energy is fully analyzed. 

The solenoidal dissipation rate decreases with the increasing of Ma t 0 and Re λ0 . Meanwhile, the dilational 

dissipation rate increases with the increasing of Ma t 0 , which cannot be neglected for constructing super- 

sonic turbulence model. The current work shows that HGKS provides a valid tool for the numerical and 

physical studies of isotropic compressible turbulence in supersonic regime, which is much less reported 

in the current turbulent flow study. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Compressible turbulence has received great interest for pervad-

ng many important engineering applications and natural phenom-

na, such as hypersonic spacecraft reentry, nuclear fusion power

eactors and interstellar turbulence [1] . Isotropic compressible tur-

ulence is regarded as one of cornerstones to elucidate the ef-

ects of compressibility for compressible turbulence [2] . Based on

he numerical experiments and theoretical analyses, isotropic com-
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ressible turbulence is divided into four main dynamical regimes

3] , i.e. the low-Mach number quasi-isentropic regime, the low-

ach number thermal regime, the nonlinear subsonic regime, and

he supersonic regime. For isotropic incompressible turbulence in

eriodic box, the pesudo-spectral method (PSM) [4,5] and Lattice-

oltzman method (LBM) [6,7] have been well established and ap-

lied for incompressible turbulence. However, both of them are

ot suitable for compressible turbulence. High-order compact fi-

ite difference method (FDM) [8] has been widely utilized in the

imulation of isotropic compressible turbulence with moderate tur-

ulent Mach number, ranging from the low-Mach number quasi-

sentropic regime to the nonlinear subsonic regime ( Ma t ≤ 0.8) [9–

1] . However, when simulating the turbulent in supersonic regime

 Ma t ≥ 0.8), it fails to capture strong shocklets and suffers from
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numerical instability. To study isotropic compressible turbulence

with high turbulent Mach number, the piecewise parabolic method

(PPM) [12,13] has been applied previously, but the small-scale tur-

bulent structures cannot be resolved due to excessive numerical

dissipation. In this decade, aiming at capturing shocklets robustly

and resolving smooth region accurately, hybrid scheme combin-

ing the compact finite difference scheme and WENO-type scheme

has been developed [14,15] . To the authors’ knowledge, due to the

instability when capturing strong shocklets, the biggest turbulent

Mach number of such hybrid scheme [15] has been limited in

the critical threshold of supersonic regime, i.e. Ma t ≈ 1.0. With a

positivity-prerserving reconstruction-failure-detection criterion and

a new cooling function, the turbulent Mach number larger than

2.0 could be achieved by the new developed hybrid scheme [16] .

For isotropic compressible turbulence in supersonic regime, the

stronger random shocklets and higher spatial-temporal gradients

pose greater difficulties for numerical analyses than other regimes.

Currently, the supersonic regime is much less known and reported,

and only a very few systematic numerical experiments are avail-

able [17–21] . 

In the past decades, the gas-kinetic scheme (GKS) based on the

Bhatnagar-Gross-Krook (BGK) model [22,23] has been developed

systematically for the computations from low speed flow to su-

personic one [24–26] . Different from the numerical methods based

on the macroscopic governing equations, the gas-kinetic scheme

presents a gas evolution process from kinetic scale to hydrody-

namic scale, where both inviscid and viscous fluxes are recov-

ered from the moments of a single time-dependent gas distribu-

tion function [25,26] . In discontinuous shock region, the kinetic

scale physics takes effect to construct a crisp and stable shock

transition. In smooth flow region, the hydrodynamic scale physics

corresponding to the multi-dimensional central difference dis-

cretization will contribute mainly in the kinetic flux function, and

accurate Navier-Stokes solution can be obtained once the flow

structure is well resolved. Both normal and tangential gradients

of flow variables are included in the flux function across a cell

interface [27,28] . With the two-stage temporal discretization for

the Lax-Wendroff type flow solvers [29–31] , a reliable framework

was provided for developing the GKS into fourth-order and even

higher-order accuracy with the implementation of the traditional

second-order or third-order flux functions [32,33] . More impor-

tantly, this scheme is as robust as the second-order scheme and

works perfectly from the subsonic to the hypersonic viscous heat

conducting flows [34] . In comparison with Riemann solver based

CFD methods, the robustness is solely due to the dynamical evo-

lution model of the time dependent flux function. For the higher-

order schemes, it seems that a reliable physical evolution model

becomes more important due to the absence of large numerical

dissipation in the second-order schemes, and the delicate flow

structures captured in higher-order schemes depend on the quality

of the solvers greatly [33] . In recent years, GKS has been applied in

turbulence simulation successfully. For high-Reynolds number tur-

bulent flows, the second-order and third-order GKS coupled with

traditional eddy-viscosity turbulence models [35–38] have been

developed and implemented in turbulent flow simulations, where

a newly turbulent collision time τ t was defined to model the tur-

bulent behavior on unresolved grids. As for low-Reynolds num-

ber turbulent flows, the GKS based on modified WENO reconstruc-

tion [39,40] have been implemented in direct numerical simulation

(DNS) of decaying isotropic compressible turbulence. Numerical re-

sults confirm the great advantage of GKS in high-speed flow sim-

ulation. Recently, with the two-stage temporal discretization and

WENO reconstruction [41–43] , the high-order GK S (HGK S) is con-

structed for simulating three-dimensional flows [44] . Numerical re-

sults show the capability to simulate the complicated flows, such

as the isotropic compressible turbulence. 
In this paper, we concentrate on the DNS of compressible

sotropic turbulence with high turbulent Mach number, and the

wo-stage fourth-order gas-kinetic scheme [30] is adopted to simu-

ate the compressible isotropic turbulence up to supersonic regime.

n the previous studies, the high resolution can be obtained only

n space. However, high-order accuracy in time is also necessarily

equired for DNS to fully resolve the smallest eddies in turbulent

ows, i.e. the eddies in Kolmogorov length scale and time scale. As

 first attempt, the validation of fourth-order GKS for compress-

ble isotropic turbulence is undertaken to obtain the criterion to

uide the subsequent studies. The current study indicates that the

inimum spatial resolution parameter κmax η0 ≥ 2 . 71 and the max-

mum temporal resolution parameter �t ini / τ 0 ≤ 27.08/10 0 0 are ad-

quate for the HGKS to resolve the isotropic compressible turbu-

ence. With the increasing of initial turbulent Mach number, the

ange of the probability density function (PDF) over local turbulent

ach number becomes wide at the same fixed normalized time. In

ddition, stronger random shocklets and higher expansion regions

re observed with the higher initial turbulent Mach number, which

xert great difficulties for high-order schemes. Statistical quantities

re presented for these cases, which are used as the benchmark

or supersonic isotropic turbulence. The solenoidal dissipation rate

s lower with the higher Ma t 0 and Re λ0 . At the same time, it is

bserved that the dilational dissipation rate increases with the in-

reasing of Ma t 0 , and seems slightly dependent on Re λ0 . This anal-

sis lays foundation for constructing compressible large eddy sim-

lation (LES) in supersonic regime. This study confirms that HGKS

rovides a valid tool for the studies of complex compressible tur-

ulent flows. 

This paper is organized as follows. In Section 2 , a brief review

n the fourth-order GKS will be presented. Section 3 presents the

etailed flow conditions and statistical turbulence quantities for

sotropic compressible turbulence. Numerical validation and dis-

ussions will be presented in Section 4 . Conclusions are shown in

he final section. 

. Two-stage fourth-order gas-kinetic scheme 

The three-dimensional BGK equation [22,23] can be written as

f t + u f x + v f y + w f z = 

g − f 

τ
, (1)

here ( u, v, w ) is the particle velocity, f is the gas distribution

unction, g is the three-dimensional Maxwellian distribution, and

is the collision time. The collision term satisfies the compatibil-

ty condition 

 

g − f 

τ
ψ d � = 0 , (2)

here ψ = (ψ 1 , . . . , ψ 5 ) 
T = (1 , u, v , w, 1 2 (u 2 + v 2 + w 

2 + ξ 2 )) T ,

he internal variables ξ 2 equals to ξ 2 = ξ 2 
1 

+ . . . + ξ 2 
K 
,

 � = d u d v d d w d ξ 1 . . . d ξK , K is the degrees of freedom, and

he specific heat ratio γ = (K + 5) / (K + 3) for three-dimensional

ows. Based on the Chapman–Enskog expansion, the Euler and

avier–Stokes equations can be derived [25,26] . 

Taking conservative moments of Eq. (1) and integrating over

he control volume V i jk = x i × y j × z k with x i = [ x i − �x/ 2 , x i +
x/ 2] , y j = [ y j − �y/ 2 , y j + �y/ 2] , z k = [ z k − �z/ 2 , z k + �z/ 2] , the

emi-discretized finite volume scheme can be written as 

d Q i jk 

d t 
= L (Q i jk ) = 

1 

�x �y �z 

[ ∫ 
y j ×z k 

(F i −1 / 2 , j,k − F i +1 / 2 , j,k ) d y d z 

+ 

∫ 
x i ×z k 

(G i, j−1 / 2 ,k − G i, j+1 / 2 ,k ) d x d z 

+ 

∫ 
x i ×y j 

(H i, j,k −1 / 2 − H i, j,k +1 / 2 ) d x d y 

] 
, (3)
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here Q = (ρ, ρU, ρV, ρW, ρE) T are the conservative flow vari-

bles, Q ijk is the cell averaged value over the control volume

 ijk . For the direct numerical simulation of the compressible

sotropic turbulence, the semi-discretized finite volume scheme

q. (3) needs to be fully discretized with high-order accuracy. Re-

ently, a two-stage fourth-order time-accurate discretization has

een developed for Lax-Wendroff type flow solvers [29,30] , which

rovides a reliable framework to develop high-order scheme for

hree-dimensional flows with complicated flow structure. Consider

he following time-dependent equation 

d Q 

d t 
= L (Q ) , 

ith initial condition 

(t = t n ) = Q 

n , 

here L is an operator for spatial derivative of flux given by

q. (3) , and the subscript of Q ijk is omitted for simplicity. The state

 

n +1 is updated with the following formula 

 

∗ = Q 

n + 

1 

2 

�tL (Q 

n ) + 

1 

8 

�t 2 
∂ 

∂t 
L (Q 

n ) , Q 

n +1 = Q 

n + �tL (Q 

n ) 

+ 

1 

6 

�t 2 
( ∂ 

∂t 
L (Q 

n ) + 2 

∂ 

∂t 
L (Q 

∗) 
)
. (4) 

t can be proved that for hyperbolic equations the above time step-

ing method Eq. (4) provides a fourth-order time accurate solution

or Q ( t ) at t = t n + �t [29,30] . 

To achieve the high-order spatial accuracy, the Gaussian

uadrature for the numerical flux is used at the cell interface. For

xample, the numerical flux in x -direction is given as 

 

y j ×z k 

F i +1 / 2 , j,k d y d z = �y �z 

2 ∑ 

m,n =1 

ω mn F ( x i +1 / 2 , j m ,k n , t) , (5) 

here ω mn is the quadrature weight, x i +1 / 2 ,m,n = (x i +1 / 2 , y j m , z k n ) ,

(y j m , z k n ) is the Gauss quadrature point of the cell interface y j ×
 k , and the numerical flux F ( x i +1 / 2 , j m ,k n , t) is provided by taking

oments of the gas distribution function 

 ( x i +1 / 2 , j m ,k n , t) = 

∫ 
ψu f ( x i +1 / 2 , j m ,k n , t, u , ξ ) d u d v d w d ξ . (6) 

or the three-dimensional flows, the gas distribution function at

he Gauss quadrature point is given by the second-order gas-

inetic solver as follows 

f ( x i +1 / 2 , j m ,k n , t, u , ξ ) = (1 − e −t/τ ) g 0 + ((t + τ ) e −t/τ − τ ) 

× ( a 1 u + a 2 v + a 3 w ) g 0 + (t − τ + τ e −t/τ ) ̄A g 0 

+ e −t/τ g r [1 − (τ + t)(a 1 r u + a 2 r v + a 3 r w ) − τA r )] H(u ) 

+ e −t/τ g l [1 − (τ + t)(a 1 l u + a 2 l v + a 3 l w ) − τA l )](1 − H(u )) . 

n order to implement the two-stage method, Eq. (6) is approxi-

ated by a linear function 

 ( x i +1 / 2 , j m ,k n , t) ≈ F i +1 / 2 , j,k (Q 

n , t n ) ︸ ︷︷ ︸ 
L 

+ ∂ t F i +1 / 2 , j,k (Q 

n , t n ) ︸ ︷︷ ︸ 
L t 

t. 

ore details for the implementation of gas-kinetic scheme can be

ound in the literature [30,32] . 

To achieve the high-order spatial accuracy, the fifth-order

ENO reconstruction [41–43] is adopted at the Gaussian quadra-

ure points. The one-dimensional WENO scheme is given as fol-

ows 

 

r 
i = 

2 ∑ 

k =0 

ω k Q 

kr 
i , Q 

l 
i = 

2 ∑ 

k =0 ̃

 ω k Q 

kl 
i , 
here Q 

kr 
i 

and Q 

kl 
i 

are obtained by the third-order interpolation,

nd ω k is the nonlinear weight. The nonlinear weights of WENO-

S [42] and WENO-Z [43] scheme are given as follows 

 

JS 

k 
= 

αJS 

k ∑ 2 
m =0 α

JS 
m 

, αJS 

k 
= 

d k 
βk + ε 

, ω 

Z 
k = 

αZ 
k ∑ 2 

m =0 α
Z 
m 

, 

αZ 
k = d k 

[ 
1 + 

(
τ

βk + ε 

)] 
, 

here d k is the linear weight 

 0 = 

3 

10 

, d 1 = 

3 

5 

, d 2 = 

1 

10 

, 

k is the smooth indicator for each candidate stencil 

0 = 

13 

12 

(Q i − 2 Q i +1 + Q i +2 ) 
2 + 

1 

4 

(3 Q i − 4 Q i +1 + Q i +2 ) 
2 , 

1 = 

13 

12 

(Q i −1 − 2 Q i + Q i +1 ) 
2 + 

1 

4 

(Q i −1 − Q i +1 ) 
2 , 

2 = 

13 

12 

(Q i −2 − 2 Q i −1 + Q i ) 
2 + 

1 

4 

(Q i −2 − 4 Q i −1 + Q i ) 
2 , 

= 10 −6 and τ = | β0 − β2 | is used for WENO-Z scheme. 

In the high-order gas-kinetic scheme, the conservative variables

 0 can be determined according to the compatibility condition

q. (2) 
 

ψg 0 d � = Q 0 = 

∫ 
u> 0 

ψg l d � + 

∫ 
u< 0 

ψg r d �. 

here g l and g r are the equilibrium states corresponding to the

onservative variables Q 

r 
i 

and Q 

l 
i +1 

at the cell interface. With the

econstructed variables, the normal spatial derivatives for the con-

ervative variables at left side, right side and across the cell inter-

ace can be given as follows 

∂ x Q l = (Q 

r 
i − Q 

l 
i ) / �x, ∂ x Q r = (Q 

r 
i +1 − Q 

l 
i +1 ) / �x, 

 x Q 0 = 

[
− 1 

12 

(Q i +2 − Q i −1 ) + 

5 

4 

(Q i +1 − Q i ) 
]
/ �x. 

ith the reconstructed conservative variables and normal deriva-

ives in normal direction, the point value Q l , Q r and Q 0 and

rst-order derivatives at the Gauss quadrature points x i +1 / 2 ,m,n =
(x i +1 / 2 , y j m , z k n ) can be constructed. The detailed procedure is

iven as follows 

1. According to one dimensional reconstruction, the cell averaged

reconstructed values and cell averaged spatial derivatives 

(Q l ) j−� 1 ,k −� 2 
, (Q r ) j−� 1 ,k −� 2 

, (Q 0 ) j−� 1 ,k −� 2 
, 

(∂ x Q l ) j−� 1 ,k −� 2 
, (∂ x Q r ) j−� 1 ,k −� 2 

, (∂ x Q 0 ) j−� 1 ,k −� 2 
, 

can be constructed, where � 1 , � 2 = −2 , . . . , 2 . 

2. With the one-dimensional WENO reconstruction in the hori-

zontal direction, the averaged value and the averaged spatial

derivatives 

(Q l ) j m ,k −� 2 
, (Q r ) j m ,k −� 2 

, (Q 0 ) j m ,k −� 2 
, 

(∂ x Q l ) j m ,k −� 2 
, (∂ x Q r ) j m ,k −� 2 

, (∂ x Q 0 ) j m ,k −� 2 
, 

(∂ y Q l ) j m ,k −� 2 
, (∂ y Q r ) j m ,k −� 2 

, (∂ y Q 0 ) j m ,k −� 2 

over the interval [ z k −� 2 
− �z/ 2 , z k −� 2 

+ �z/ 2] with y = y j m can

be given. 

3. With one-dimensional WENO reconstruction in the vertical di-

rection, the point value and spatial derivatives 

(Q l ) j m ,k n , (Q r ) j m ,k n , (Q 0 ) j m ,k n , 

(∂ x Q l ) j m ,k n , (∂ x Q r ) j m ,k n , (∂ x Q 0 ) j m ,k n , 

(∂ y Q l ) j m ,k n , (∂ y Q r ) j m ,k n , (∂ y Q 0 ) j m ,k n , 

(∂ z Q l ) j m ,k n , (∂ z Q r ) j m ,k n , (∂ z Q 0 ) j m ,k n , 
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can be fully determined at the Gaussian quadrature points

x i +1 / 2 ,m,n = (x i +1 / 2 , y j m , z k n ) . 

Remark: For the tangential reconstruction of Q 0 , the fourth-

order polynomials are constructed at the horizontal and verti-

cal direction. The variables and spatial derivatives can be con-

structed at the Guassian quadrature points. 

For the tangential reconstruction of Q l,r , the variables at the

ends of cell interface can be obtained from the fifth-order

WENO method at the horizontal and vertical direction. With

reconstructed variables and the cell averaged variables, the

quadratic polynomials can be constructed. The variables and

spatial derivatives can be constructed at the Guassian quadra-

ture points as well. 

In the part of code validation, the smooth flow fields without

strong shocklets at Ma t0 = 0 . 1 , 0 . 3 and 0.5 are calculated first.

The simplified smooth second-order gas-kinetic flux [44] and

WENO scheme with linear weights (WENO-L) are used in the

validation. To improve the robustness without losing too much

accuracy, for the isotropic turbulence from subsonic to super-

sonic regime, i.e. Ma t 0 ≥ 0.5, the variable Q 0 takes the identical

tangential reconstruction of Q l,r in WENO-JS [42] and WENO-Z

[43] scheme. 

More details of three-dimensional high-order gas-kinetic

scheme can be found in the reference [44] . 

3. Decaying isotropic compressible turbulence 

The isotropic compressible turbulence is regarded as one of

fundamental benchmarks to study the compressible effect. Both

forced isotropic compressible turbulence with solenoidal and di-

lational external force [11,45,46] and decaying isotropic compress-

ible turbulence [5,9,10] are studied in the literature. In this paper,

we concentrate on the decaying isotropic compressible turbulence

without external force. The flow domain of numerical simulation

is a cube box defined as [ −π, π ] × [ −π, π ] × [ −π, π ] , with peri-

odic boundary conditions in all three Cartesian directions for all

the flow variables. Evolution of this artificial system is determined

by initial thermodynamic quantities and two dimensionless param-

eters, i.e. the initial Taylor microscale Reynolds number 

Re λ = 

〈 ρ〉 u rms λt 

〈 μ〉 , 

and turbulent Mach number 

Ma t = 

√ 

3 u rms 

〈 c s 〉 , 

where 〈 · 〉 is the ensemble over the whole computational domain,

ρ is the density, λt is the Taylor microscale, μ is the initial dy-

namic viscosity, c s is the sound speed and u rms is the root mean

square of initial turbulent velocity component 

u rms = 

〈 
u · u 

3 

〉 1 / 2 
. 

A three-dimensional solenoidal random initial velocity field u can

be generated by a specified spectrum, which is given by [47] 

E(κ) = A 0 κ
4 exp (−2 κ2 /κ2 

0 ) , (7)

where A 0 is a constant to get a specified initial kinetic energy, κ
is the wave number, κ0 is the wave number at which the spec-

trum peaks. In this paper, fixed A 0 and κ0 in Eq. (7) are chosen for

all cases, which are initialized by A 0 = 0 . 0 0 013 and κ0 = 8 . Initial

strategies play an important role in isotropic compressible turbu-

lence simulation [9] , especially for the starting fast transient period

during which the divergence of the velocity increases rapidly and

the negative temperature or pressure often appear. In the compu-

tation, the initial pressure p , density ρ and temperature T are
0 0 0 
et as constant. In this way, the initial Taylor microscale Reynolds

umber Re λ0 and turbulent Mach number Ma t 0 can be determined

y 

e λ0 = 

(2 π) 1 / 4 

4 

ρ0 

μ0 

√ 

2 A 0 κ
3 / 2 
0 

, 

Ma t0 = 

√ 

3 √ 

γ RT 0 
u rms , 

here the initial density ρ0 = 1 , μ0 , T 0 can be determined by Re λ0 

nd Ma t 0 and γ = 1 . 4 is the specific heat ratio. In the simulation,

he dynamic velocity is given by 

= μ0 ( 
T 

T 0 
) 0 . 76 . (8)

ith current initial strategy, the initial ensemble turbulent kinetic

nergy K 0 , ensemble enstrophy �0 , ensemble dissipation rate ε0 ,

arge-eddy-turnover time τ to , Kolmogorov length scale η0 , and the

olmogorov time scale τ 0 are given as 

 0 = 

3 A 0 

64 

√ 

2 πκ5 
0 , �0 = 

15 A 0 

256 

√ 

2 πκ7 
0 , τto = 

√ 

32 

A 0 

(2 π) 1 / 4 κ−7 / 2 
0 

, 

ε 0 = 2 

μ0 

ρ0 

�0 , η0 = (ν3 
0 /ε 0 ) 

1 / 4 , τ0 = (ν0 /ε 0 ) 
1 / 2 . (9)

or decaying compressible isotropic turbulence, the local turbulent

ach number M loc , root-mean-square density fluctuations ρrms ,

nd turbulent kinetic energy K are defined as 

M loc = 

√ 

u · u 

c loc 

, 

rms = 

√ 

〈 ρ − 〈 ρ〉 〉 , 
K = 

1 

2 

〈 ρu · u 〉 , (10)

here c loc is the local sound speed. Starting from the initial flows,

he large eddies transfer their turbulent kinetic energy successively

o smaller eddies. In this process, the evolution of turbulent ki-

etic energy is of interest since it is a fundamental benchmark for

ncompressible and compressible turbulence modeling [48–50] . In

his study, the ensemble budget of turbulent kinetic energy is com-

uted and analyzed, as the decay of the ensemble turbulent kinetic

nergy can be described approximately by Sarkar et al. [51] 

d 〈 K 〉 
d t 

= ε + 〈 pθ〉 , 
ε = ε s + ε d , (11)

here ε s = 〈 μω i ω i 〉 is the ensemble solenoidal dissipation rate,

 d = 〈 4 3 μθ2 〉 is the ensemble dilational dissipation rate, 〈 p θ〉 is the

nsemble pressure-dilation transfer, ω i = εi jk 
∂u k 
∂x j 

is the fluctuating

orticity, ε ijk is the alternating tensor and θ = ∇ · u is the fluctuat-

ng divergence of velocity. 

. Numerical simulation and discussions 

In this section, numerical simulation and discussions for

sotropic compressible turbulence will be presented. In all simu-

ations, the collision time τ takes 

= 

μ

p 
+ C 

| p L − p R | 
| p L + p R | �t, 

here μ is the viscous coefficient obtained from Eq. (8) , p L and

 R denote the pressures on the left and right hand sides at the cell

nterface. The collision time reduces to τ = μ/p in the smooth flow

egion. The constant C takes 1.5 in the computation, and �t is the

ime step determined according to the CFL condition. 
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Fig. 1. Time history of ρrms /Ma 2 t0 and K / K 0 for the near incompressible isotropic turbulence with Re λ0 = 72 and Ma t0 = 0 . 1 . 

Fig. 2. Time history of ρrms /Ma 2 t0 and K / K 0 for the isotropic compressible turbulence in nonlinear subsonic regime with Re λ0 = 72 and Ma t0 = 0 . 3 . 

4

 

i  

i  

a  

b  

p  

w  

1  

m  

l  

a  

n  

c  

[  

v

 

e  

b  

e  

s  

t  

l  

e  

l  

m  

J

c  

s  

n  

a  

W  

a  

M  

Z  

t  

p  

b  

l

 

c  

d  

l  

s  

[  

i  

a  

r  

c  
.1. Code validation 

To validate performance of HGKS, the near incompress-

ble isotropic turbulence with Ma t0 = 0 . 1 and the compressible

sotropic turbulence in nonlinear subsonic regime with Ma t0 = 0 . 3

re tested firstly. In these two cases with low turbulent Mach num-

er, the flow fields are smooth without strong shocklets. To im-

rove the resolution of simulation, the WENO scheme with linear

eights denoted as WENO-L is adopted. The uniform grids with

28 3 and 256 3 cells are used. The time history of normalized root-

ean-square density fluctuation ρrms /Ma 2 
t0 

and normalized turbu-

ent kinetic energy K / K 0 with respect to t / τ to are given in Figs. 1

nd 2 . For these isotropic turbulent flows with low turbulent Mach

umber, the WENO-L can well resolve the flow structures. Numeri-

al results of current scheme agree well with the reference data in

9] . Because of the lower dissipation of WENO-L scheme, the con-

ergent solutions can be provided by a uniform 128 3 grid points. 

However, with the increase of turbulent Mach number, the

ddy-shocklets appear in the flow fields and the WENO-L scheme

lows up at Ma t 0 > 0.5. Hence, the WENO scheme with nonlin-

ar weights have to be used to capture the discontinuities when

imulating high turbulent Mach number flows. Before we study

he compressible isotropic turbulence in supersonic regime, it is

egitimate to study the behavior of high-order GKS with differ-

nt WENO schemes. The decaying isotropic compressible turbu-
ence with Re λ0 = 72 and Ma t0 = 0 . 5 is used to test the perfor-

ance of three widely used WENO schemes, i.e. WENO-L, WENO-

S and WENO-Z schemes. The uniform grids with 128 3 and 256 3 

ells are used as well. The time history of normalized root-mean-

quare density fluctuation ρrms /Ma 2 
t0 

and normalized turbulent ki-

etic energy K / K 0 with respect to t / τ to for three WENO schemes

re given in Fig. 3 . The convergent solutions can be provided by the

ENO-L scheme with 128 3 uniform grids, while WENO-JS scheme

nd WENO-Z scheme are more dissipative than WENO-L scheme.

ore specifically, the WENO-JS is more dissipative than WENO-

 scheme. According to the following numerical tests ( Ma t 0 ≥ 0.5),

he WENO-Z is almost as robust as WENO-JS for the isotropic com-

ressible turbulence. Considering the robustness and dissipative

ehavior, the WENO-Z scheme will be used in the following simu-

ations. 

The time convergence is studied as well and the same isotropic

ompressible turbulence at Re λ0 = 72 and Ma t0 = 0 . 5 is used. In or-

er to resolve and capture the desired physics in the high turbu-

ent Mach number regime, several strategies for the choice of time

tep are provided in previous studies. Time step is set as τ to /10 0 0

15] in hybrid scheme, which is very expansive when implement-

ng DNS on isotropic compressible turbulence even with moder-

te Taylor microscale Reynolds number. In the DNS using high-

esolution modified-WENO GKS [40] , the maximum CFL number

an get up to 0.8. Thus, study of the criterion for time step of cur-
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Fig. 3. Time history of ρrms /Ma 2 t0 and K / K 0 for the isotropic compressible turbulence with Re λ0 = 72 and Ma t0 = 0 . 5 for WENO-L, WENO-JS and WENO-Z schemes. 

Fig. 4. Time convergence study: Time history of K / K 0 and ε for the isotropic compressible turbulence with Re λ0 = 72 and Ma t0 = 0 . 5 with CFL number 0.2, 0.4 and 0.6. 

Table 1 

Different CFL number for time convergence study. 

CFL number d t ini / τ 0 d t end / τ 0 d t ini / τ to d t end / τ to 

0.2 9.02/1000 14.00/1000 1.86/1000 2.89/1000 

0.4 18.05/1000 28.03/1000 3.72/1000 5.78/1000 

0.6 27.08/1000 42.06/1000 5.58/1000 8.66/1000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Grid size and characteristic length scales 

for grid convergence study. 

Grid size �/ λ0 �/ η0 κmax η0 

256 3 8.162 1.639 1.806 

384 3 5.441 1.093 2.710 

512 3 4.081 0.819 3.613 
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n  
rent fourth-order GKS is required. Time convergence study with

different CFL number are presented in Table 1 , where d t ini and

d t end represent the time step for the initial step and ending step,

respectively. In this simulation, the ending step is defined at the

moment of t/τto = 5 . The time history of normalized K / K 0 and the

ensemble total dissipation rate ε with CFL number CF L = 0 . 2 , 0 . 4

and 0.6 on uniform grids with 256 3 cells are shown in Fig 4 . In

current paper, the velocity gradients for Eq. (11) are computed by

first-order upwind scheme. As the consistent results are obtained

using different CFL number with WENO-L and WENO-Z schemes,

time convergent solution can be obtained with CFL number CF L =
0 . 6 , which is in agreement with modified-WENO GKS [40] . For this

case, the initial Kolmogorov time scale τ 0 and the initial large-

eddy turnover time τ to can be determined by Eq. (9) . According to

Table. 1 , the time step can be set as large as t ini /τto = 5 . 58 / 10 0 0 .

Meanwhile, the time step can well resolve the smallest timescale

as t /τ = 27 . 08 / 10 0 0 . 
ini 0 
Grid convergence study is also required [15,52] to conclude the

riterion for space resolution when using the fourth-order GKS as

 DNS tool. Three different uniform grids with 256 3 , 384 3 and 512 3 

ells and characteristic length scales are demonstrated in Table 2 ,

here λ0 is the initial mean free path approximated by μ0 =
 / 3 ρ0 c 0 λ0 [26] , � is the uniform grid size in each direction, η0 is

he initial Kolmogorov length scale as in Eq. (9) , κmax = 

√ 

2 κ0 N/ 3

s the maximum resolved number wave number [53] , κ0 = 8 as

q. (7) and N is the number of grid points in each Cartesian di-

ection. According to Table 2 , the Kolmogorov length scale is al-

ost 5 times larger than the mean free path, and each grid al-

ays contains several mean free path even for the finest grids

ith 512 3 cells. This provides the intuitive evidence for controver-

ial issue that smallest eddies in turbulence may still within the

ramework of continuum mechanics assumption. The behavior of

ormalized ρrms /Ma 2 , K / K 0 and turbulent kinetic energy budget

t0 
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Fig. 5. Grid convergence study: Time history of ρrms /Ma 2 t0 , K / K 0 , ε , ε d , ε s and 〈 p θ〉 for isotropic compressible turbulent with Re λ0 = 72 and Ma t0 = 0 . 5 on uniform grids with 

256 3 , 384 3 and 512 3 cells. 
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efined in Eq. (11) are presented in Fig 5 . The key statistical quan-

ities on uniform grids with 384 3 cells coincide with those on uni-

orm grids with 512 3 cells. It can be concluded that the minimum

patial resolution parameter κmax η0 ≥ 2 . 71 is adequate for resolv-

ng the isotropic compressible turbulence of HGKS. This criterion

s similar to that in the hybrid scheme [15] , which has been ap-

lied in isotropic compressible turbulence successfully. According

o the simulations above, the criterion of spatial and temporal res-

lution for fourth-order GKS based on WENO-Z reconstruction is

btained, namely, the spatial resolution parameter κmax η0 ≥ 2 . 71

nd the temporal resolution parameter �t ini / τ 0 ≤ 27.08/10 0 0. 

Iso-surface of the second invariant of velocity gradient tensor

 = 25 and PDF of dilation θ for uniform grids with 384 3 cells at

/τto = 0 . 5 are shown in Fig 6 . Iso-surface is colored by local turbu-

ent Mach number in a 128 3 sub-domain covering (105 η0 ) 
3 (1/27

f the whole domain), where the sub-domain is located at the cen-

er of the full domain. The local turbulent Mach number concen-

rates on the near region of Ma t = 0 . 4 , which is much smaller than

he latter simulation with high turbulent Mach numbers. All PDFs

f dilation in this paper are obtained by dividing the dilation range

nto 10 0 0 equivalent intervals, the velocity gradients for local dila-

ion value θ are computed by the second-order central difference.

t the initial stage, the symmetric dilation range is [ −1 . 08 , 1 . 08] ,

hile the skewed dilation range with minimum and maximum val-
es −105 . 8 and 23.9 at t/τto = 0 . 5 appears. This quite wide range

f dilation is an intrinsic property for isotropic compressible turbu-

ence which means the strong compression and expansion regions

xist in the flow field. 

.2. Turbulent mach number effect 

In this section, DNS of isotropic compressible turbulence from

igh subsonic regime to supersonic regime with moderate Taylor

icroscale Reynolds number are tested. The effect of compress-

bility on dynamics and structures of isotropic compressible tur-

ulence in moderate subsonic regime ( Ma t ≤ 0.8) has been studied

reviously [10,51] . The statistical properties and dynamics of forced

upersonic regime Ma t ≈ 1.0 have been studied systematically [17–

9,55] . The numerical tests R 1 − R 5 given in Table. 3 go beyond

revious study up to the maximum supersonic turbulent Mach

umber Ma t0 = 1 . 2 with a fixed initial Taylor microscale Reynolds

umber Re λ0 = 72 . In the computation, a uniform grids with 384 3 

ells are used and κmax η0 = 2 . 71 . As shown in Fig. 7 , the PDF of

nitial local turbulent Mach number deviates from symmetric dis-

ribution and the maximum local turbulent Mach number for R 1 ,

 3 and R 5 can be three times higher than ensemble initial tur-

ulent Mach number Ma t 0 . For this decaying isotropic compress-

ble turbulence, the ensemble turbulent Mach number becomes
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Fig. 6. Iso-surface of the second invariant of velocity gradient tensor Q = 25 and PDF of dilation θ with Re λ0 = 72 and Ma t0 = 0 . 5 on uniform grids with 384 3 cells at 

t/τto = 0 . 5 . 

Fig. 7. PDF of local turbulent Mach number and root-mean-square dilation at t/τto = 0 and t/τto = 1 . 0 for R 1 , R 3 and R 5 . 
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smaller monotonically. After a long decay at t/τto = 1 . 0 , PDFs of

the local turbulent Mach number still show large portion of flow

fields in supersonic state. It means that strong shocklets randomly

distribute in flow fields. These random strong discontinuities re-

ally pose a great challenge for high-order schemes, which have to

well resolve the small scales in smooth regions as well as capture

the shock sharply. The PDFs of dilation are presented in Fig 7 as

well. At the beginning, all PDFs are symmetric and in a narrow

range from −1 . 08 to 1.08. With the evolving of flows, the sys-

tems experience a sharp increase of dilation. The PDFs range ap-

proximately from −60 to 20 at t/τto = 1 . 0 , which means that the

strong compression and expansion regions appear in flow fields.

All PDFs show strong negative tales, which are the most significant

flow structures of isotropic compressible turbulence resulting from

the shocklets. In particular, the proportion of negative tail of su-
Table 3 

Isotropic compressible turbulence with different high t

Test R 0 R 1 R 2 

Ma t 0 0.5 0.8 0.9 

d t ini / τ 0 27.08/1000 22.37/1000 23.73/1000

〈 θ〉 ∗ 2.12 3.39 3.87 

〈 θ〉 ∗ is the root-mean-square dilation at t/τto = 1 . 0 
ersonic isotropic turbulence is larger than that of high subsonic

egime, which indicates that shocklets appear in the former case

ore frequently than that in the latter one. The root-mean-square

ilation 〈 θ〉 ∗ at t/τto = 1 . 0 of these cases are given in Table 3 , and

t can be concluded that the higher initial turbulent Mach number

ossess a much higher root-mean-square dilation, i.e. the stronger

ompressibility effect of isotropic compressible turbulence in su-

ersonic regime. Focusing on physical mechanism of isotropic com-

ressible turbulence, DNS on much higher turbulent Mach number

p to Ma t0 = 2 . 0 and higher Taylor microscale Reynolds number

e λ0 = 120 have been obtained by current scheme, which will be

resented in the coming paper. 

To study the behavior of supersonic isotropic compressible tur-

ulence further, the iso-surfaces of second invariant of velocity

radient tensor Q = 25 and contours of normalized dilation θ / 〈 θ〉 ∗
urbulent Mach number. 

R 3 R 4 R 5 

1.0 1.1 1.2 

 18.25/1000 18.68/1000 19.02/1000 

4.28 4.65 4.90 
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Fig. 8. Iso-surface of the second invariant of velocity gradient tensor Q = 25 and contour of normalized dilation θ / 〈 θ〉 ∗ on z = 0 slice with Re λ0 = 72 and Ma t0 = 0 . 8 at 

t/τto = 1 . 0 . 

Fig. 9. Iso-surface of the second invariant of velocity gradient tensor Q = 25 and contour of normalized dilation θ / 〈 θ〉 ∗ on z = 0 slice with Re λ0 = 72 and Ma t0 = 1 . 2 at 

t/τto = 1 . 0 . 
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n z = 0 slices with Ma t0 = 0 . 8 and Ma t0 = 1 . 2 are presented in

igs. 8 and 9 , respectively. Iso-surfaces are also colored by the local

urbulent Mach number in a 128 3 sub-domain covering (105 η0 ) 
3 ,

here the sub-domain is located at the center of the whole do-

ain. A quite wide range of vortex structure is presented in flow

elds for both cases, and the supersonic isotropic compressible

urbulence shows a much higher local turbulent Mach number

egion than the subsonic one after the same decay. Contours of

ormalized dilation θ / 〈 θ〉 ∗ shows very different behavior between

he compression motion and expansion motion. Strong compres-

ion regions θ/ 〈 θ〉 ∗ ≤ −3 are usually recognized as shocklets [9] .

n current study, shocklets behave in the shape of narrow and long

ribbon”, while high expansion regions θ / 〈 θ〉 ∗ ≥ 2 are in the type

f localized “block”. In addition, strong compression regions are

lose to several regions of high expansion. This behavior is con-

istent with the physical intuitive that expansion regions can be

dentified just downstream of shock waves [20] . These random dis-

ributed shocklets and high expansion region lead to strong spa-

ial gradient in flow fields. Compared with R 1 in subsonic regime,

he supersonic case R contains much more crisp shocklets, which
5 
ose much greater challenge for high-order schemes when im-

lementing DNS for isotropic turbulence in supersonic regime. In

omparison with previous studies, much higher turbulent Mach

umber can be simulated by the current scheme, which provide

onfidence on HGKS for the study of challenging compressible tur-

ulence problems, such as shock-boundary interaction. 

Time history of key statistical quantities are presented in

ig. 10 , which provides benchmark solution for simulating isotropic

ompressible turbulence up to supersonic regime. The normalized

oot-mean-square density ρrms /Ma 2 
t0 

decreases monotonically with

he increase of initial turbulent Mach number. As the initial tur-

ulent Mach number increases, the peak of dissipation increases

s well. For incompressible turbulence, the normalized turbulent

inetic energy and ensemble total dissipation rate ε are assumed

n universal power decaying rate as K/K 0 ≈ (t/t 0 ) 
−n and ε/ε 0 ≈

(t/t 0 ) 
−(n +1 /n ) , where n is usually treat as a constant, i.e. n = 10 / 7

ased on the Loitsianskii invariant [3] , n = 6 / 5 predicted assum-

ng a constant Staffman invariant, and n = 3 / 2 in [56] . However, as

n subusonic regime [9] , it can be clearly observed that the nor-

alized turbulent kinetic energy and ensemble total dissipation
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Fig. 10. Time history of ρrms /Ma 2 t0 , K / K 0 , ε, εd , εs and 〈 p θ〉 for cases R 0 − R 5 . 
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rate in isotropic compressible turbulence do not show any univer-

sal power decaying rate. Obviously, ensemble solenoidal dissipa-

tion rate εs decreases with the increase of Ma t 0 , while the dila-

tional dissipation rate εd rises with the increase of Ma t 0 . Remark-

ably, the peak of ensemble dilational dissipation rate ε in super-
d 
onic isotropic turbulence Ma t0 = 1 . 2 is almost 8 times larger than

hat of subsonic isotropic turbulence Ma t0 = 0 . 5 . For solenoidal

orced compressible isotropic turbulence, it has been shown that

he dilatational dissipation rate of kinetic energy normalized by

he solenoidal dissipation rate is proportional to Ma 4 t Re −2 
λ

log Re λ
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Fig. 11. PDF of local turbulent Mach number and dilation at t/τto = 1 . 0 for cases R 6 − R 9 . 

Fig. 12. Iso-surface of the second invariant of velocity gradient tensor Q = 25 and contour of normalized dilation θ / 〈 θ〉 ∗ for R 7 on x = 0 slice at t/τto = 1 . 0 . 
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Table 4 

Supersonic isotropic turbulence with different Re λ0 . 

Test R 6 R 7 R 8 R 9 

Re λ0 60 40 20 10 

Grid size 384 3 384 3 256 3 256 3 

κmax η0 2.97 3.64 3.43 4.85 

d t ini / τ 0 19.03/1000 19.03/1000 23.75/1000 23.75/1000 

e  

b  

r  

l  

i  

a  

i  

p  

d  

b  

a  

a  

p  

d  
t small turbulent Mach numbers Ma t ≤ 0.2 and is proportional to

a 5 t at moderate turbulent Mach numbers 0.4 ≤ Ma t ≤ 1.0 [54] . The

ilational dissipation mechanism has not been rarely absorbed in

raditional eddy-viscosity LES models [55] , and current DNS results

rovide the first step results for constructing turbulence model in

upersonic regime. The time of lowest peak of ensemble pressure-

ilation transfer 〈 p θ〉 becomes larger with the higher initial tur-

ulent Mach number. In addition, 〈 p θ〉 change signs during the

volution and preserve small but positive thereafter, which agree

ith earlier study for subsonic isotropic turbulence [51] . It is re-

orted that the ratio between the ensemble pressure-dilation term

nd the right hand side of Eq. (11) becomes small for solenoidal

orced quasi-stationary supersonic isotropic turbulence [21] . How-

ver, during the early stage of the decaying supersonic isotropic

urbulence, the ensemble pressure-dilation term can be in the

ame order of ensemble total dissipation rate. 

.3. Taylor microscale Reynolds number effect 

In this section, the effect from the Taylor microscale Reynolds

umber for isotropic compressible turbulence is studied. Power-

aw decay for incompressible turbulence with low Taylor mi-

roscale Reynolds number, i.e. Re λ0 ≤ 50 has been investigated in
arlier work [57,58] . The current study focuses on the isotropic tur-

ulence with low Taylor microscale Reynolds number in supersonic

egime, and the cases R 6 − R 9 with a fixed initial supersonic turbu-

ent Mach number Ma t0 = 1 . 2 are listed in Table. 4 . The grid size

s set to meet the requirement κmax η0 ≥ 2 . 71 and all simulations

re guided by previous criterion of fourth-order GKS. As shown

n Fig. 11 , PDFs of local turbulent Mach number still show large

ortion of supersonic state at t/τto = 1 . 0 , while the range of PDF

ecreases with the decreasing of Taylor microscale Reynolds num-

er. Meanwhile, PDFs of dilation presented in Fig. 11 are skewed

nd the negative tails resulted from the shocklets becomes shorter

t the smaller Taylor microscale Reynolds number. Isotropic com-

ressible turbulence at lower Taylor microscale Reynolds number

emonstrates a smaller range of dilation, which is consistent with
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Fig. 13. Time history of ρrms /Ma 2 t0 , K / K 0 , ε, εd , εs and 〈 p θ〉 for cases R 6 − R 9 . 
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physical insight that the lower Taylor microscale Reynolds num-

ber means the stronger viscous effect, and the stronger dissipa-

tion smooths the flow fields and leads to weaker compression re-

gions and expansion regions. Iso-surface of the second invariant

of velocity gradient tensor Q = 25 and contour of normalized di-
ation θ / 〈 θ〉 ∗ for R 7 at x = 0 slice are presented in Fig. 12 , where

 θ〉 ∗ is root-mean-square dilation at t/τto = 1 . 0 . Iso-surface is col-

red by local turbulent Mach number in a 128 3 sub-domain cov-

ring (78 η0 ) 
3 , where the sub-domain is located at the center of

he full domain. A smaller range of vortex structure in flow fields
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s observed in Fig. 12 compared with Fig. 9 . Contour of normal-

zed dilation θ / 〈 θ〉 ∗ shows the wider ‘ribbon’ for strong shock-

ets and bigger ‘block’ for high expansion region compared with

hese from moderate Taylor microscale Reynolds number. This re-

ult confirms the fact that the stronger dissipation for the lower

aylor microscale Reynolds number supersonic compressible tur-

ulence smooths the flow fields and makes the transition of com-

ression regions gently. 

The key statistical quantities are presented in Fig. 13 which pro-

ide benchmark solutions for studying supersonic isotropic turbu-

ence at low Taylor microscale Reynolds number. The normalized

oot-mean-square density ρrms /Ma 2 
t0 

decreases with the decrease

f initial Taylor microscale Reynold number. The lower Taylor mi-

roscale Reynolds number corresponds to higher ensemble total

issipation rate ε during the evolution of this system, which is the

irect result from the stronger viscous effect at lower Re λ0 . It is

lear that ensemble solenoidal dissipation rate εs decreases with

he decrease of Re λ0 , while the ensemble dilational dissipation rate

d seems slightly dependent on Re λ0 . The behavior of ensemble

ilational dissipation rate needs further study in detail, which is

retty meaningful for constructing compressible LES model for su-

ersonic and hypersonic compressible turbulence. In addition, the

olenoidal and dilational dissipation rate play the dominant role

n hypersonic transition to turbulence reported in previous exper-

ments [59–61] . Current high-order robust scheme will be used to

alidate and provide more detailed analysis for such hypersonic

ows. The moment of lowest peak of ensemble pressure-dilation

ransfer 〈 p θ〉 is independent of Re λ0 and only depends on Ma t 0 
ompared with Fig. 10 , while the lowest peak decreases with the

ecrease of Re λ0 . Similar with Fig. 10 , 〈 p θ〉 changes signs during

he evolution and preserves small but positive value. The similar

ehavior is observed that the ensemble pressure-dilation term can

ot be neglected compared with ensemble total dissipation rate in

he early stage of evolution, as it has the same order of ensemble

otal dissipation rate. 

. Conclusions 

This paper intends to address the accuracy and robustness of

GKS in DNS for isotropic compressible turbulence simulations up

o supersonic regime. Key statistical quantities are compared with

igh-order compact finite difference scheme to determine the DNS

riterion. As a balance between the robustness and accuracy, the

ENO-Z reconstruction is properly chosen in the current scheme.

he numerical tests show that the minimum spatial resolution

arameter κmax η0 ≥ 2 . 71 and the maximum temporal resolution

arameter �t ini / τ 0 ≤ 27.08/10 0 0 for the fourth-order GKS is ade-

uate for resolving the isotropic compressible turbulence. Guided

y such a criterion, isotropic compressible turbulence are simu-

ated for turbulent Mach number Ma t 0 from the nonlinear subsonic

egime 0.8 to the supersonic one 1.2, and low Taylor microscale

eynolds number from 10 to 72. A wide range for PDF of local tur-

ulent Mach number, strong random shocklets, and high expan-

ion regions appear with high initial turbulent Mach number. The

sotropic turbulence with high turbulent Mach number up to su-

ersonic regime has been studied. The accuracy and robustness of

he fourth-order GKS have been fully confirmed. Statistical quan-

ities are provided for these cases, which provide benchmark so-

utions for supersonic isotropic compressible turbulence. The en-

emble budget of the turbulent kinetic energy is analyzed, which

lays an important data base in modeling supersonic and hyper-

onic compressible turbulence. The solenoidal dissipation rate de-

reases with the increase of both Ma t 0 and Re λ0 . Meanwhile, the

ilational dissipation rate increases with the increase of Ma t 0 due

o strong compressibility effect, and it seems slightly dependent

n Re λ0 . The HGKS provides a valid tool for studying compress-
ble turbulence. The physics of isotropic compressible turbulence

s well as the construction of compressible LES model in super-

onic regime will be studied. At the current stage, the DNS on a

uch higher turbulent Mach number up to Ma t0 = 2 . 0 and higher

aylor microscale Reynolds number Re λ0 = 120 have been obtained

y HGKS. All these results and the analysis of physical mechanism

f isotropic compressible turbulence will be presented in the sub-

equent paper. 
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