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This paper concerns the development of high-order multidimensional gas kinetic schemes for the Navier-Stokes solutions. In 
the current approach, the state-of-the-art WENO-type initial reconstruction and the gas-kinetic evolution model are used in the 
construction of the scheme. In order to distinguish the physical and numerical requirements to recover a physical solution in a 
discretized space, two particle collision times will be used in the current high-order gas-kinetic scheme (GKS). Different from 
the low order gas dynamic model of the Riemann solution in the Godunov type schemes, the current method is based on a 
high-order multidimensional gas evolution model, where the space and time variation of a gas distribution function along a cell 
interface from an initial piecewise discontinuous polynomial is fully used in the flux evaluation. The high-order flux function 
becomes a unification of the upwind and central difference schemes. The current study demonstrates that both the high-order 
initial reconstruction and high-order gas evolution model are important in the design of a high-order numerical scheme. Espe-
cially, for a compact method, the use of a high-order local evolution solution in both space and time may become even more 
important, because a short stencil and local low order dynamic evolution model, i.e., the Riemann solution, are contradictory, 
where valid mechanism for the update of additional degrees of freedom becomes limited. 
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1  Introduction 

Following the essentially non-oscillatory (ENO) scheme 
introduced by Harten et al. in 1987 [1, 2], the weighted es-
sentially non-oscillatory (WENO) scheme was further de-
veloped in the construction of high-order numerical scheme 
for hyperbolic conservation laws [3, 4]. The basic idea of 
the WENO technique is a convex linear combination of 
lower order reconstructions to obtain a higher-order ap-
proximation. The WENO reconstruction is very effective in 
both controlling the oscillation and restoring smooth distri-
bution. The WENO schemes may be used for the flux re-

construction as well. 
In the past years, a gas-kinetic scheme (GKS) has been 

developed for the Euler and Navier-Stokes (NS) solutions 
[5−7]. Theoretically, GKS does not target to solve the gas 
kinetic BGK equation [8], but uses it to construct a gas 
evolution process from a piecewise discontinuous initial 
data for the flux evaluation in a finite volume scheme. Only 
in the limiting case, such as in the smooth flow region, the 
NS solution with correct Prandtl number can be recovered 
from the kinetic gas evolution model. In the discontinuous 
case, the whole process from the particle free transport to 
the NS or Euler solution construction has been recovered in 
the gas-kinetic solution. In the smooth flow region, the NS 
solution for the viscous flow or the Euler solution for the 
inviscid flow can be obtained accurately by GKS. In the 

 



 Luo J, et al.   Sci China Tech Sci   October (2013) Vol.56 No.10 2371 

discontinuity region where the solution cannot be well re-
solved in a discretized space, it is hard to identify which 
governing equation is solved in the gas evolution modeling. 
Theoretically, for the unresolved flow region the solution is 
not unique. In such a region, we only need to impose that 
the numerical evolution path is consistent with a physical 
one, such as keeping a non-equilibrium distribution function 
for providing enough numerical dissipation. Actually, a 
correct numerical modeling is the key to avoid the so-called 
shock instability in high Mach number cases, such as the 
carbuncle phenomena [9].  

The combination of the WENO reconstruction and gas- 
kinetic flux formulation has been recently done for turbulent 
simulations [10]. The scheme presented in ref. [10] is based 
on a 2nd-order kinetic flux function [6]. In this paper, as an 
extension from the previous directional splitting 3rd-order 
gas-kinetic scheme [11], we are going to construct a multi-
dimensional high-order scheme by following the time evo-
lution from a WENO-type initial data. The integral solution 
of the gas-kinetic model will be constructed from a piece-
wise discontinuous high-order initial condition. In order to 
distinguish the physical and numerical requirements to re-
cover a physical solution in a discretized space, two particle 
collision times, which control the evolution process from a 
non-equilibrium to an equilibrium state, will be used in the 
current high-order GKS. A distinguishable particle collision 
time helps to keep a high-order solution in the smooth flow 
region, and to control numerical oscillations efficiently 
around a shock discontinuity. In the well resolved flow re-
gions, the current scheme presents an accurate NS or Euler 
solution. In the under-resolved discontinuity region, the gas 
evolution process from free particle transport to the NS so-
lution provides an adequate numerical dissipation. In the 
current scheme, all high-order spatial derivatives will par-
ticipate in the construction of a space and time dependent 
flux function. The new scheme presented in this paper is 
named WENO-gas-kinetic scheme (WENO-GKS).  

This paper is organized as follows. Section 2 is the con-
struction of high-order multidimensional scheme. Section 3 
is the WENO reconstruction, followed by the numerical 
experiments in Section 4. The last section draws the conclu-
sions. 

2  A high-order multidimensional flow solver 

The gas-kinetic BGK equation in 2D case is  

 t

g f
f f




   u   (1) 

where f is the gas distribution function and g is the equilib-
rium distribution function approached by f, f  is the gra-

dient of f with respect to x, x = (x, y), and u = (u, v) is the 
particle velocity. The particle collision time  is related to 
the viscosity and heat conduction coefficients, i.e., = /p 

where  is the dynamic viscosity coefficient and p is the 
pressure. The relation between the macroscopic quantities, 
mass , momentum (U, V), and energy E, and the dis-
tribution function f is  

 d d dW f u v      (2) 

where T(    )W U V E       , (U, V) is the macroscopic 

velocity of the fluid,  
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1 2d dξ d d K    , and K is the number of degrees of inter-

nal freedom, i.e., (4 2 ) / ( 1)K      for 2D flow and  
is the specific heat ratio. Since the mass, momentum, and 
energy are conserved during particle collisions, f and g sat-
isfy the conservation constraint,  
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at any point in space and time. The integral solution of eq. 
(1) is  
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where ( )t t   x x u  is the particle trajectory. The solu-

tion f in eq. (4) solely depends on the modeling of f0 and g. 
So, besides the above kinetic solution, a numerical model-
ing with valid physical foundation is the key for the success 
of the gas-kinetic scheme.  

In the modeling of initial f0, a proper choice is the NS gas 
distribution function, which can be obtained from eq. (1) 
through the Chapman-Enskog expansion. In the smooth flow 
region, the Chapman-Enskog expansion gives a solution  
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By truncating the solution to different orders of , we can 
get different macroscopic governing equations. The rela-
tions between the approximated solutions and the macro-
scopic equations are [12],  
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In this paper, we only consider the Euler and NS solu-
tions, which correspond to  

 Eu ( ) ( )f t g t        x u x u   (6) 

 NS ( ) ( ) [ ( )
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tf t g t g t

g t

   


          

     

x u x u x u
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where the non-equilibrium part is defined by  

1( ) [ ( ) ( )]tt g t g t                x u x u u x u  

2.1  Taylor expansion of a gas distribution function 

In the construction of GKS, an expansion of a gas distribu-
tion function in space and time is needed. Assume that the 
expansion point is (0,0)x . A 3rd-order Taylor expan-

sion of a gas distribution function becomes  
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Here, the expansion is in the (x, y, t) physical space, where 
the phase space variables (u, ) of particle velocity do not 
appear. Besides the above expansion in space and time, we 
may need the expansion along a cell interface as well. 
Without losing generality, assume that the x-direction is the 
normal direction and the y-direction is the tangential direc-
tion of a cell interface. For a 3rd-order scheme, along the 
cell interface the expansion of the distribution function be-
comes  
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The above expansion will be used to model f0 in the inte-
gral solution (4) at the cell interface. When fG = fEu or fG = 
fNS is substituted into the above equations, the expansion of 
the Euler or NS solution can be recovered.  

For convenience, some notations will be introduced first,  
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In the above formulations, g0 is the Maxwellian distribution 
function, which can be obtained from macroscopic flow 
variables (  ( )W U    T( )  ( ))V E   at x = (0, 0). The 

equilibrium state is denoted by  
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where  equals to m/2kT, m is the molecular mass, k is the 
Boltzmann constant, and T is the temperature.  

2.2  A kinetic solver for fully continuous case 

In the smooth flow region, with a continuous flow distribu-
tion across a cell interface any high-order scheme should be 
able to recover the traditional high-order central difference 
method. Here, we provide such a benchmark limiting solu-
tion, which helps the design of high-order scheme in general 
discontinuous case. In other words, the general formulation 
from a discontinuous initial data should be able to recover 
the smooth flow solution in case of the continuity.  

For a continuous flow distribution across a cell interface, 
eq. (9) provides a high-order space-time solution, which is 
beyond the traditional Lax-Wendroff scheme.  

Continuous gas-kinetic Euler flow solver:  
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Continuous gas-kinetic NS flow solver: 
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The above time and space dependent gas distribution 

(8) 
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function f can be used for the evaluation of numerical fluxes 
across a cell interface. This can be considered as a general-
ized high-order Lax-Wendroff scheme for Euler and NS 
solutions.  

2.3  Kinetic flow solver in discontinuous case 

In general case, the reconstruction will introduce a discon-
tinuity at the numerical cell interface. The distribution func-
tion expansion eq. (8) will be different on different sides of 
a cell interface. Therefore, the initial gas distribution func-
tion f0 in the integral solution eq. (4) can be expanded sepa-
rately,  

 0
0

0

( ) ( 0 )      0
( )

( ) ( 0 )     0

l l
L

r r
L

f f x
f

f f x

 


 

            
        

x u x u
x u

x u x u
 (13) 

where l
Lf  and r

Lf  still have the form of eq. (8), which 

can fully be determined from the reconstructed macroscopic 
variables, which is presented in the next subsection. For the 
modeling of the local equilibrium distribution function g  

in the integral solution eq. (4), we can also use the Taylor 
expansion and get  
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where g  is the equilibrium state on the cell interface. Be-

cause of eq. (3), at ( ) (0 0 0)t   x , g  can be obtained 

from  
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The other parameters in eq. (14) will be determined from 
the macroscopic flow distributions across a cell interface, 
which will be presented in the next subsection.  

After determining f0 and g, the time dependent distribu-
tion function along a cell interface is given by the integral 
solution eq. (4). Since the integral solution may go to the 
Burnett order as well, in order to recover the Euler or NS 
solution precisely the smooth limiting solution in Subsec-
tion 2.2 will be used to selectively remove some terms in 
the integration solution,  
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a high-order GKS-NS solver has the solution  

 

( )/

0

1 2 1 1 2 2 2 3

2 2 2 2
4 1 11 1 2 22

2 2 2
2 2 22 4 2 22

2 1 2 12 4 1 2 12

2

5 6

1
  ( ( ), ( ), , , )e d

1 1
  ( ) ( )

2 2
1

  ( ) ( )
2

  ( ) ( )

1
  ( )

2

t
t tg u t t y v t t t t

C g C ga u C ga y C ga v C gA

C g a d u C g a d y

C g a d vy C g a d v

C g a a d uy C g a a d uv

C g B C gA




       

    

   

   

   

  

 u

1 1

3 2 2 6 2 2

( )

  ( ) ( ) ,

Aa b u

C g Aa b y C g Aa b v



   

 

(17)

 

and  

 

0

0

0

e ( )

e ( )      0

e ( )      0

t

t l

t r

f ut y vt

f ut y vt u

f ut y vt u













 

 

 

    

         
       

u

u

u

 (18) 

where 

0

7 0 1 2

2 2
8 0 1 1 11

1 2 12 1 1

7 0 2 1 2 12

2
2 22

   e ( )

[1 ( )]

  [ ((( ) )

  ( ) ( ) )]

  [ (( )

  (( )

t l r

l r l r l r l r

l r l r l r l r

l r l r l r l r l r l r

l r l r l r l r l r

l r l

f ut y vt

C g a u a v A

C g a u a d u

a a d uv A a b u

C g a a a d u

a d

 







  

   

   

     

    



    

   

  

   

  

 

u

2 2

8 0 2 1 2 12

2 2
2 22 2 2

2 2 2 2
9 0 1 11 7 0 2 22

2
8 0 2 22

) )]

  [ (( )

  (( ) ) ( ) )]

1 1
  (( ) ) (( ) )

2 2
1

  (( ) )
2

r l r l r l r

l r l r l r l r l r

l r l r l r l r l r

l r l r l r l r l r l r

l r l r l r

v A a b y

C g a v a a d uv

a d v A a b v

C g a d u C g a d y

C g a d vy C



   

    

    

     

  

 

  

   

   

   2 2
9 0 2 22

8 0 1 2 12 9 0 1 2 12

(( ) )

  ( ) ( ) .

l r l r l r

l r l r l r l r l r l r l r l r

g a d v

C g a a d uy C g a a d uv

  

       



   

 

(19)

 

The coefficients are given by  
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In the above equations, two collision times, i.e., τ and τn, are 
introduced. The numerical collision time τn controls the 
contributions from f0 and g in the final integral solution in 
the discontinuous case. The physical one, i.e., τ = /p and , 
captures the resolved dissipative NS solution. When τ = 0, 
the above formulae give to the Euler solution.  

In a numerical scheme, a discretized space provides lim-
ited resolution. As explained in ref. [6], there are two kinds 
of numerical dissipation, one is the kinematic dissipation 
coming from the initial reconstruction, and the other is the 
dynamical one in the gas evolution model. In GKS, starting 
from a discontinuity, the flow behavior depends on the ratio 
between the time passed and particle collision time. The 
integral solution eq. (16) describes such a relaxation process 
from the molecular free transport to the equilibrium state 
formation. In eq. (20), the term that controls the relaxation 

process from f0 to g is n/ .te   Therefore, in order to intro-
duce dynamical dissipation, the numerical collision time τn  
is defined with the consideration of cell size and artificial 
discontinuous jump. The collision time τ in other places 
represents the deviation from an equilibrium state, which 
keeps a physical value. 

For the Euler solutions, the physical collision time τ 
should approach to zero in order to keep an equilibrium 
state everywhere. However, due to the limited cell resolu-
tion, such that the shock thickness should be on the order of 
cell size, the numerical collision time should take this into 
account,  

 n ( )l r l rx x p p p p                  (21) 

where  and  are two constant parameters,   is given in 

the equilibrium state g , and lp  and rp  are the pressure 

jump at the cell interface in the initially reconstructed data. 
For inviscid flow, as mesh size goes to zero, τn  will go to 
zero as well, and GKS converges to the Euler solutions.  

For the NS solutions, the physical collision time τ is re-
lated to the dynamical viscosity . Therefore, there are two 
collision times here. The physical collision time τ and the 
numerical one τn for the NS solution are defined by  
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where p  is the pressure in the equilibrium state .g   

2.4  Determination of expansion coefficients in the dis-
tribution function 

In order to fully determine the gas distribution function at a 
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,A  , must be given. Since all these coefficients are com-
ing from the expansion of a Maxwellian, they should have 
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2.5  Finite volume high-order multidimensional GKS 

For a finite volume scheme, the fluxes across a cell inter-
face need to be evaluated in order to update the cell-average 
conservative flow variables. In GKS, the fluxes are defined 
by  
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For a rectangular cell bounded by the straight lines, 

1 2
,

i
x x

 
  

1 2
,

i
x x

 
  

1 2j
y y

 
  and 

1 2
,

j
y y

 
  the up-

date of the cell-average conservative variables 
ij

W  from 

time step tn to tn+1 becomes  

 

 

1
1 2

1

2

1
1 2

1

2

1

1 2 1 2

1 2 1 2

   

1
( ) ( ) d d

1
  ( ) ( ) d d

n i

n i

n j

n j

n

ij

t x
n

ij j j
t x

t y

i i
t y

i j

i j

W

W F t x F t x x t
x y

F t y F t y y t
x y









   
 



   
 

    
 

    
 

 

 

 

(24)

 



 Luo J, et al.   Sci China Tech Sci   October (2013) Vol.56 No.10 2375 

where 
1 2 1 2 1 2 1 2

( , ), ( , ), ( , ), ( , )
j j i i

F t x F t x F t y F t y
       

 are the 

fluxes at the four cell interfaces respectively, 
1 2i i

x x
 

   

1 2i
x

 
  and 

1 2 1 2j j j
y y y

   
   . Note for each cell inter-

face, the flux depends on the location along the interface. 
After integrating the fluxes in time and space along the cell 
boundary, a high-order GKS is obtained. The order of the 
scheme depends on the accuracy of the Taylor expansion in 
eq. (8). After increasing the accuracy of the Taylor expan-
sion, an even higher-order accurate scheme can be con-
structed. 

3  The 5th-order WENO subcell reconstruction 

For GKS, all the reconstructions are based on the conserva-
tive variables. The formulation to get the pointwise values 
on the left and right hand sides of a cell interface is given in 
ref. [13]. Based on these pointwise values, a corresponding 
3rd-order subcell reconstruction inside each cell is present-
ed here.  

3.1  The 5th-order WENO reconstruction on uniform 
structured mesh 

Assume that Q is the variable that needs to be reconstructed. 
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3.2  Reconstruction of initial subcell flow distributions 

When the pointwise variables on both sides of a cell inter-
face are provided, we still need to construct subcell flow 
distributions inside each control volume as the initial condi-
tion for the evaluation of interface gas distribution function. 
A 3rd-order polynomial inside each cell can be written as  

1 2 2
1 2 1 2, , ,

1
( ) ( ) ( ) [ ]

2i i i i i i iV x V S x x S x x x x x          

where xi is the cell center, 1 2ix    and 1 2ix    are the left and 

right interfaces of the ith cell, Vi, 
1
iS  and 2

iS  are three 

unknowns. From the three conditions  
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So, the derivatives of V(x) at the cell interface can be easily 
obtained from the above distribution.  

3.3  Reconstruction of a continuous flow distribution 
across a cell interface 

The final flux of GKS depends on the integral solution eq. 
(16) of an equilibrium state across a cell interface. At the 
cell interface, the pointwise equilibrium state can be ob-
tained from eq. (15). In order to determine all high-order 
expansion terms of an equilibrium state across a cell inter-
face, we need to use high-order derivatives of conservative 
flow variables. Assume, 1 2iV    is one of the conservative 

flow variables, the local expansion is  

1 2 2
1 2 1 21 2 1 2 1 2

1
( ) ( ) ( )

2i ii i iV x V x x x xS S              
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3 4 4
1 2 1 21 2 1 2
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From the conditions  
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we can determine all ( 1 2 3 4)n nS      . For the 3rd-order 

GKS, we only need to keep 1
S  and 2

S  terms. For a uni-

form mesh, we have  
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where 1 2 1 2i ix x x       for any i. Because all the high- 

order derivatives will participate in the construction of the 
local gas evolution in GKS, the kinetic method will not be 
very sensitive to the interface pointwise values. 

4  Numerical examples 

For the Euler system, the solutions of WENO-GKS-Euler is 
compared with the solutions of the WENO-Godunov 
scheme, where the exact Riemann solver is used for the flux 
evaluation [14], and a Runge-Kutta multistage method is 
adopted for achieving a 3rd-order time accuracy. In all 
comparison, the reconstruction and the CFL number are the 
same for both WENO-GKS-Euler and WENO-Godunov 
scheme. We will also test WENO-GKS-NS for viscous so-
lution. The same 5th-order WENO subcell reconstruction 
for conservative variables is used in all the tests.  

4.1  Problems in 1D space 

All 1D test cases are about the Euler solutions. In WENO- 
GKS-Euler, 0 0001    and 0 0001    in eq. (21) are 

used in all 1D test cases except 0 01    for the “large 

density ratio problem”. In all calculations, the CFL number 
is 0.6 for both WENO-GKS-Euler and WENO-Godunov 
scheme.  

4.1.1  The 1D Riemann problem   

We consider two Riemann problems here. The initial condi-
tions are the followings.  

(a) Riemann problem proposed by Lax in ref. [15] is  

(0 445 0 698 3 528),  0 50,
( )

(0 5 0 0 571)           50 100.

x
U p

x


      
   

      
 

(b) Large density ratio problem proposed in ref. [16] is   

(10000 0 10000),  0 30
( )

(1 0 1),                30 100

x
U p

x


    
   

    
 

Figure 1 shows the solutions from the WENO-GKS- Eu-
ler and WENO-Godunov scheme. Both methods work very 
well for the shock tube problem. Figure 2 shows slight de-
viation between the WENO-GKS-Euler and WENO-God- 
unov results. Due to the controlling of numerical dissipation 
through the parameter  in eq. (21), the WENO-GKS pre-
sents a more accurate Euler solutions. For the Euler solu-
tions, theoretically, there is no physical dissipation. But,  

 

 

Figure 1  Lax Riemann problem: the density, velocity, and pressure dis-
tributions at t = 13 with 100 cells. Circle: the 3rd-order WENO-GKS-Euler 
scheme. Triangle: WENO-Godunov scheme. 
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Figure 2  Large density ratio problem: the density, velocity and pressure distributions at t = 12 with 400 and 100 cells. The density and pressure are plotted 
on a logaritmic scale. The last figure is the enlarged region around the shock front of the pressure distribution. 

numerical dissipation is necessary to control the oscillation 
in the shock region. With the use of the low order dynamic 
model of the exact Riemann solution, the WENO-Godunov 
seems to introduce more numerical dissipation than the 
WENO-GKS-Euler, where a high-order gas evolution mod-
el is used.  

4.1.2  Woodward-Colella blast wave problem  

The blast wave problem was originally proposed in ref. [17]. 
The computational domain is [0, 100] with reflected bound-
ary condition on both ends. The initial flow field is station-
ary with unit density and different pressures  

1000    0 10

0 01,    10 90,

100    90 100.

x

p x

x

   
   
   

 

The density and pressure distributions at t = 3.8 with dif-
ferent numbers of cells are shown in Figure 3. The density 
distribution shows that the WENO-GKS-Euler works a little 

bit better than the WENO-Godunov method.  

4.1.3  Shu-Osher shock acoustic-wave interaction  

This problem is the interaction of a moving shock with 
smooth density fluctuation [2]. The computational domain 
is [−5, 5] and the flow field is initialized as  

(3 857134 2 629369 10 33333)  4
( )

(1 0 2sin(5 ) 0 1)                    4.

x
U p

x x


        
   

      
 

The computed density profile at t = 1.8 is shown in Fig-
ure 4. Again, the WENO-GKS-Euler works a little bit better 
than the WENO-Godunov. A small overshoot happens 
around the local extremes in the results of WENO-GKS- 
Euler.  

Based on the 1D Euler solutions, we can conclude that 
WENO-GKS-Euler is as good as the WENO-Godunov 
scheme in all the cases. Due to the less numerical dissipa-
tion, the BGK-Euler solutions may be closer to analytical 
Euler solutions than those calculated by the exact Riemann 
solver in some tough cases.  
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Figure 3  Woodward-Colella blast wave problem: the density and pressure distributions at t = 3.8 with 400 and 100 cells. (a) and (c): the 3rd-order 
WENO-GKS-Euler. (b) and (d): WENO-Godunov scheme. 

 

Figure 4  Shu-Osher shock acoustic-wave interaction: the density distribution at t=1.8 with 400 cells. (b) is the enlarged region with high frequency oscilla-
tion in (a). 

4.2  Problems in 2D space 

The 2D cases are all about the NS solutions. It is not easy to 
physically extend the WENO-Godunov scheme to the NS 

system because of the lack of the “Riemann” solution for 
the NS equations. Therefore, we only use WENO-GKS-NS 
here. The collision time is defined in eq. (22). CFL number 
0.3 is used for the first two cases. Because of the existence 
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of the strong shock, 1000 0    is used for Mach 3 step 

problem, and 1 0    for the Shock vortex interaction 

case. For the cavity simulation, the flow is smooth, there is 
no reason to introduce the numerical dissipation, so 

0 0001    and CFL number 0.5 are used.  

4.2.1  Mach 3 step problem  

The Mach 3  step problem was first proposed by Wood-
ward and Colella in ref. [17]. The computational domain is 
[0 3] [0 1]   . A step with height 0.2 is located at 0 55x   . 

The upstream velocity is ( ) (3 0)U V   . The adiabatic slip 

Euler boundary condition is implemented at all boundaries. 
The results for different Reynolds numbers (Re) and differ-
ent numbers of cells are given in Figures 5 and 6.  

Figure 5 shows the NS solutions at different Reynolds 
numbers. The combination of the 5th-order WENO recon-
struction and the 3rd-order GKS-NS flux presents an accu-
rate solution. Because of the use of both numerical and the 
physical collision times, an oscillation free transition can be 
obtained around a shock with different mesh sizes (see Fig-
ure 6).  

4.2.2  Shock vortex interaction  

This is a problem which was presented in refs. [18, 4]. On 
the computational domain [0 2] [0 1]   , a stationary shock 

front is positioned at 0 5x   . The left upstream state is 
2( ) ( 0 1)U V p M        , where   is the specific heat  

 

 

Figure 5  Mach 3 step problem: the density distribution for different 
Reynolds numbers (Re) at t = 4.0 with 120×40 mesh points by the 3rd- 
order WENO-GKS-NS. In each figure, there are 50 contours from 0.5 to 5. 

 

Figure 6  Mach 3 step problem: the density distribution for different 
number of mesh points at t=4.0 with  Re=1.0×105 by the 3rd-order 
WENO-GKS-NS. In each figure, there are 50 contours from 0.5 to 5. 

ratio and M is the Mach number. A small vortex is a pertur-
bation on the mean flow with the velocity ( )U V , temper-

ature ( )T p    and entropy ln
p
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, where the 

perturbation is  
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where
c

/ ,r r  2 2

c c
( ) ( ) ,r x x y y    c c( )x y =(0.25, 

0.5) is the center of the vortex,   and   control the 

strength and decay rate of the vortex, and rc is the critical 
radius. Here, we choose 0 3,    c 0 05r    and 

0 204.     

In the tests, the gas is a diatomic molecule with 1 4.    

The number of cells is 200×101. The reflected boundary 
condition is used on the top and bottom boundaries. The 
evolution solution at Re=1.0×105 is given in Figure 7. The 
pressure distributions for different Reynolds numbers at t =  
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Figure 7  Shock vortex interaction: the pressure distributions at different times with Re=1.0×105 by the 3rd-order WENO-GKS-NS. In each figure, there are 
60 contours from 0.8 to 1.4. 

0.6 are shown in Figure 8. The detailed pressure and veloc-
ity distributions at different Reynolds numbers at t =0.8 
along the horizontal symmetric line y = 0.5 are shown in 
Figure 9.  

4.2.3  Low speed cavity flow  

The cavity flow at low Mach number is a standard test case 
for validating incompressible or low speed NS flow solvers. 
Since the benchmark solution is from incompressible NS 
equations, in order to avoid kinematic dissipation [19−21], 
most simulations in the past are based on either the methods 
for the incompressible equations or the artificial compressi-
bility methods, where a continuous initial reconstruction 
across a cell interface is assumed. However, here we are 
going to use the same shock capturing WENO-GKS for the 
cavity simulation. This is a challenge for any shock captur-
ing NS flow solver, because the cell interface discontinuity 
may generate a large amount numerical dissipation. The 
flow simulated has a Mach number 0.3 at the Reynolds 
number 1000 and 1 4   . The fluid is bounded by a unit 

square and is driven by a uniform translation of the top 

boundary. All the boundaries are isothermal and nonslip. 
Figure 10 shows the calculated stream traces with 64×64 
and 32×32 mesh points. The results of U-velocity and pres-
sure along the vertical symmetric line at x = 0.5, and 
V-velocity and pressure along the horizontal symmetric line 
at y = 0.5 are shown in Figure 11. The benchmark solution 
is from ref. [22]. And the reference solution for pressure is 
from ref. [23]. As shown in Figure 11, even with 64×64 
cells, the simulation results from WENO-GKS-NS match 
the exact solutions very well. This can be hardly achieved 
for a shock capturing scheme, especially for the schemes 
based on the directional splitting method.  

4.3  Accuracy and computation time 

We test the order of accuracy of the WENO-GKS in the 
following two cases.  

Case 1.  Advection of density perturbation.  
The initial condition is set to be ( ) 1 0 2sin(π )x x    , 

( ) 1U x   and ( ) 1.p x   The computational domain is   

[0, 2]. The periodic boundary condition is adopted and thus  
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Figure 8  Shock vortex interaction: the pressure distribution for different 
Reynolds numbers at t=0.6 by the 3rd-order WENO-GKS-NS. In each 
figure, there are 90 contours from 1.1 to 1.37. 

 
Figure 9  Shock vortex interaction: the pressure and velocity (U, V) along 
the horizontal symmetric line y=0.5 for different Reynolds numbers at 
t=0.8 by the 3rd-order WENO-GKS-NS. 

 

the analytic solution is ( ) 1 0 2sin( ( )),x t x t        U(x, 

t)=1 and p(x, t)=1. In the WENO-GKS-Euler, α=1.0×10−10 
and β=1.0×10−3 for the numerical collision time in eq. (21). 
The error of the density is computed at t=2. Firstly, we test 
the space accuracy. In this test, CFL=0.1. The error and 
convergence rate of the density are shown in Table 1. Even 
with a 3rd-order gas evolution model, the 5th-order WENO 

reconstruction seems to make the WENO- GKS scheme 
have good order of accuracy.  

For the time accuracy, we test it for the different CFL 
numbers with the uniformly 800 cells. The results are 
shown in Table 2. The 3rd-order time accuracy can be 
achieved by GKS due to the fully coupled space and time 
evolution.  
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Figure 10  Cavity flow: the streamlines at Re = 1000 calculated by the 3rd-order WENO-GKS-NS. (a) 65×65 cells; (b) 33×33 cells. 

 
Figure 11  Cavity flow: U and pressure distributions along the vertical symmetric line at x = 0.5 and V and pressure distributions along the horizontal 
symmetric line at y = 0.5 with Re=1.0×103 and Mach number 0.3 by the 3rd-order WENO-GKS-NS. The benchmark velocity solution is from ref. [22]. The 
reference pressure is from ref. [23]. (a) and (b) Along the vertical symmetric line at x = 0.5; (c) and (d) along the horizontal symmetric line at y = 0.5. 

Table 1  Space accuracy test for advection of density perturbation by WENO-GKS 

Grid L error Order L1 error Order L2 error Order 

400 1.3041×10−10 5.0072 7.4726×10−11 4.9106 8.3469×10−11 4.9250 

200 4.1978×10−9 5.1508 2.2494×10−9 4.9791 2.5362×10−9 4.9906 

100 1.4902×10−7 5.0447 7.0935×10−8 4.9986 8.0582×10−8 5.0389 

50 4.9200×10−6 4.8398 2.2673×10−6 5.0468 2.6500×10−6 5.0443 

20 4.1499×10−4 4.3064 2.3112×10−4 4.3670 2.6952×10−4 4.3152 

10 8.2093×10−3 – 4.7681×10−3 – 5.3641×10−3 – 



 Luo J, et al.   Sci China Tech Sci   October (2013) Vol.56 No.10 2383 

Table 2  Time accuracy test for advection of density perturbation by WENO-GKS 

CFL (average time step) L error Order L1 error Order L2 error Order 

CFL=0.2 (t = 2/9292) 1.746×10−11 2.895 1.196×10−11 2.811 1.313×10−11 2.827 

CFL=0.4 (t = 2/4646) 1.299×10−10 2.996 8.404×10−11 2.968 9.318×10−11 2.971 

CFL=0.6 (t = 2/3098) 4.375×10−10 2.997 2.797×10−10 2.987 3.106×10−10 2.987 

CFL=0.8 (t = 2/2323) 1.036×10−9 – 6.609×10−10 – 7.340×10−10 – 

 
 
Case 2.  Isentropic periodic vortex propagation.  
This is a test for the Euler solutions as well. It is a very 

good test case for the accuracy of high-order schemes (see 
ref. [13]). The initial condition is given by  
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where the temperature T and the entropy S are related to the 
density  and the pressure p by  

 
p p

T S
 

     

and ( ) ( 5 5),x y x y      22 2 ,r yx   and the vortex 

strength 5.   The computational domain is [0,10]× 
[0,10]. The periodic boundary condition is used at both di-
rections. The exact solution is the initial condition convec-
ted with the velocity (1,1). The error of the density is com-
puted at t=10, namely after one time period. The data in 
Table 3 show that the WENO-GKS has a 3rd-order accura-
cy in 2D case.  

The numerical results of the 3rd-order WENO-GKS have 
been compared with those of the WENO-Godunov scheme 
in Section 4.1 for Euler solutions. In Table 4, we compare 
the computation time of different schemes for some 1-D test 
cases. Since the WENO-Godunov scheme must use the 
Runge-Kutta time stepping to get time accuracy, it needs to 
repeat the reconstruction and calculation of fluxes three 
times within a time step in order to get a 3rd-order time ac-
curacy. Even though the calculation of flux by the WENO- 

GKS is much more complicated, the computation time is 
still affordable.  

Furthermore, in 2D cases the WENO-Godunov method 
needs reconstruction and calculates fluxes at each Gaussian 
integration point along a numerical cell interface in order to 
keep the high-order accuracy in tangential direction [24]. 
The work load of the 2D case is quadrupled using the 
3rd-order WENO-Godunov scheme in comparison with the 
1D case. However, the WENO-GKS directly uses the higher 
order derivatives. The flux along the interface in the tangen-
tial direction can be evaluated analytically. For the WENO- 
GKS, there is no need to reconstruct and calculate flux 
many times and at many points within a time step. Also, for 
the NS solutions, the WENO-Godunov needs to discretize 
additional viscous and heat conduction terms. However, for 
the WENO-GKS-Euler and WENO-GKS-NS, the same 
initial reconstruction can be used. So, we can expect that in 
2D and 3D cases the WENO-GKS will become more com-
petitive in terms of efficiency.  

5  Conclusions 

In this paper, the WENO reconstruction and the gas-kinetic 
gas evolution model have been combined in the develop-
ment of a high-order WENO-GKS scheme for the Euler and 
Navier-Stokes solutions. Many numerical tests have been 
used to validate the newly developed scheme. The perfor-
mance of the WENO-GKS and WENO-Godunov methods 
is compared. The accuracy of WENO-GKS and WENO- 
Godunov is comparable in 1D test cases. The performance  

Table 3  Accuracy test for isentropic periodic vortex propagation by WENO-GKS 

Grid L error Order L1 error Order L2 error Order 

160  1.4623×10−4 3.3187 1.4062×10−5 2.7553 2.3348×10−5 2.9730 

80  1.4593×10−3 4.1410 9.4961×10−5 4.0237 1.8336×10−4 4.2697 

40  2.5739×10−2 3.0280 1.5442×10−3 2.8164 3.5360×10−3 2.9508 

20  2.0999×10−1 – 1.0879×10−2 – 2.7343×10−2 – 

Table 4  Computation time 

CPU time (s) WENO-GKS(3rd order) WENO-Godunov 

Large density ratio (400 cells) 3.8532 1.7160 

Large density ratio (100 cells) 0.2184 0.1560 

Blast wave (400 cells) 8.8765 3.8220 

Shock acoustic-wave interaction (400 cells) 3.6348 1.7004 
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of WENO-GKS-NS for viscous solution is outstanding. 
Because of the introduction of both numerical and physical 
particle collision times, the NS solution obtained by the 
WENO-GKS-NS method is very accurate, stable and robust. 
The mesh size effect has been reduced to a minimum level 
in the capturing of both crisp shock front transition and 
smooth viscous solution. GKS provides a high-order gas 
evolution model with a coupled multidimensional space and 
time flow evolution. In the multidimensional case, a direct 
integration of the flux transport in the normal direction 
along a cell interface can be obtained explicitly. The con-
struction of high-order CFD method is on the early stage of 
development. With the search of short stencil and high order 
accuracy, the use of high-order dynamical evolution model 
may become necessary. Otherwise, we have to generate 
more governing equations in the weak form for the update 
of additional degree of freedom. 

This work was supported by Hong Kong Research Grant Council (Grant 
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