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The direct numerical simulation (DNS) of compressible isotropic turbulence up to the 
supersonic regime with Mat = 1.2 has been investigated by the high-order gas-kinetic 
scheme (HGKS) (Cao et al. (2019) [8]). In this study, the DNS on a much higher initial 
turbulent Mach number up to Mat = 2.0 is performed by HGKS, which confirms the 
super robustness of HGKS. The coarse-graining analysis of subgrid-scale (SGS) turbulent 
kinetic energy Ksgs budget is fully analyzed for constructing one-equation SGS model 
in the compressible large eddy simulation (LES). The exact compressible SGS turbulent 
kinetic energy Ksgs transport equation is derived with density weighted filtering process. 
Based on the compressible Ksgs transport equation, the coarse-graining processes are 
implemented on three sets of unresolved grids with the Box filter. The coarse-graining 
analysis of compressible Ksgs budgets shows that all unresolved source terms are dominant 
in the current system. Especially, the magnitude of SGS pressure-dilation term is on the 
order of SGS solenoidal dissipation term within the initial acoustic time scale. Therefore, 
the SGS pressure-dilation term cannot be neglected as that in the previous work. The 
delicate coarse-graining analysis of SGS diffusion terms in compressible Ksgs equation also 
confirms that both the fluctuation velocity triple correlation term and the pressure-velocity 
correlation term are dominant terms. The current analysis provides an indication on the 
order of magnitude of all SGS terms in compressible Ksgs budget, which provides a solid 
basis for compressible LES modeling of high Mach number turbulent flow.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The supersonic turbulence plays a key role in a wide range of natural phenomena and engineering applications, such as 
interstellar turbulence, hypersonic spacecraft reentry, and nuclear fusion power reactors [1,2]. Compared with incompress-
ible turbulence, highly compressible turbulent flows are more complex due to the nonlinear coupling of velocity, density and 
pressure fields [3]. To elucidate the effects of compressibility in the compressible turbulence, the compressible isotropic tur-
bulence is regarded as one of cornerstones [4–6]. However, for the compressible isotropic turbulence in supersonic regime 
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(Mat ≥ 0.8), the strong random shocklets and high spatial-temporal gradients pose great difficulties for both theoretical 
analyses and numerical studies in comparison with the flow in other regimes [5,7,8]. Currently, the study of supersonic 
regime is much less known and reported, and very few numerical experiments are available [9,8,10]. For compressible 
turbulence modeling, the large eddy simulation (LES) for high Mach number turbulent flows is rarely reported.

One-equation subgrid-scale (SGS) models have been extensively used in incompressible LES [11–14]. Since the incorpo-
ration of history and non-local effects through transport equation related to the residual motions, the one-equation SGS 
models have shown better performance in the prediction of turbulent flow. Meanwhile, compared with the abundant re-
search on compressibility correction for the turbulent kinetic energy equation in the Reynolds averaged Navier-Stokes (RANS) 
simulation [15–21], there only exists limited number of research work on compressible one-equation SGS models for the 
compressible LES [22–25]. With the rapid increasing of computational power, it is well known that the LES gradually be-
comes the workhorse for high-fidelity turbulence simulation from the smooth turbulent flow to the supersonic one [26]. 
However, as far as we know, the compressible LES models are less reported, where the algebraic eddy viscosity model can 
be hardly incorporated with the compressible effect systematically [27,28]. In the modeling of the compressible effect, it 
is natural to extend the one-equation SGS model to high turbulent Mach number flow. For compressible one-equation SGS 
model, an important issue that has not been resolved in the earlier studies is how to distinguish the dominant terms and 
negligible ones. Very few coarse-graining analysis of compressible turbulence has been carried out in LES [29–31], where 
most of them are limited to the subsonic turbulent Mach number (Mat ≤ 0.8). The priori tests using direct numerical sim-
ulation (DNS) data for the calculation of a mixing layer up to Mach number 0.6 [29,30], and the DNS for the homogeneous 
isotropic turbulence up to Mat = 0.52, were filtered for the computation of the unclosed terms in the momentum, internal 
energy, and total energy equations [31]. It is emphasized that the unresolved dilational dissipation rate and the unresolved 
pressure-dilation term are important to the compressible LES. For the forced supersonic isotropic turbulence (Mat ≈ 1.0), 
the filtered result of turbulent kinetic energy transfer on unresolved grids has been well studied [32]. With the objective of 
constructing one-equation SGS model for a much higher turbulent Mach number flow, i.e., Mat ≥ 1.0, the detailed analysis 
of coarse-grained turbulent kinetic energy budget Ksgs is much required in the modeling.

In the past decades, the gas-kinetic scheme (GKS) based on the Bhatnagar-Gross-Krook (BGK) model [33,34] has been de-
veloped systematically for the computations from low speed flow to hypersonic one [35–37]. Based on the time-dependent 
flux solver, including generalized Riemann problem solver and gas-kinetic scheme [38,39], a reliable framework was pro-
vided for developing the GKS into fourth-order and even higher-order accuracy [40–42]. More importantly, these high-order 
schemes are as robust as the second-order one and work perfectly from the subsonic to the hypersonic viscous heat con-
ducting flows. In recent years, the GKS has been applied in high-Reynolds number turbulent flow [43,44]. Considering the 
space-time coupled evolution and robustness, the high-order gas-kinetic scheme (HGKS) has been used as a DNS tool for the 
compressible isotropic turbulence up to supersonic regime Mat = 1.2 [8]. This study confirms that the HGKS provides a valid 
tool for the simulation of supersonic isotropic turbulence, and the criterion for DNS solution is also determined. Following 
the first part [8], in order to construct one-equation SGS model for compressible LES, the coarse-graining analysis on super-
sonic isotropic turbulence is studied in this paper. The DNS on a much higher initial turbulent Mach number (Mat = 2.0) is 
conducted, and the exact compressible turbulent kinetic energy Ksgs transport equation has been derived through a density 
weighted filtering process. Based on the high-fidelity DNS data, the coarse-graining processes are implemented in physical 
space with a Box filter. The compressible Ksgs budget is fully analyzed and the dominant terms are categorized. Current 
coarse-graining analysis provides a solid basis for the compressible LES modeling in the high Mach number turbulent flow.

This paper is organized as follows. In Section 2, the DNS results of supersonic isotropic turbulence by HGKS are presented. 
Section 3 constructs the transport equation for the compressible SGS turbulent kinetic energy Ksgs through the coarse-
graining analysis on the solutions of different grids. Conclusion is drawn in the final section.

2. DNS of supersonic isotropic turbulence

The decaying compressible isotropic turbulence is regarded as one of fundamental benchmarks in the study the com-
pressible effect [3,5,45]. The domain of numerical simulation is a cube box defined as [−π, π ] × [−π, π ] × [−π, π ], with 
periodic boundary conditions in all three Cartesian directions for all the flow variables. Evolution of this artificial system 
is determined by initial thermodynamic quantities and two dimensionless parameters, i.e., the initial Taylor microscale 
Reynolds number Reλ = 〈ρ〉 Urmsλ/ 〈μ〉 and the initial turbulent Mach number Mat = √

3Urms/ 〈cs〉, where 〈·〉 is the ensem-
ble over the whole computational domain, ρ is the density, λ is the Taylor microscale, μ is the initial dynamic viscosity, 
cs is the sound speed, and Urms is the root mean square of initial turbulent velocity component Urms = 〈U · U/3〉1/2. A 
three-dimensional solenoidal random initial velocity field U can be generated by a specified spectrum [46], which is given 
by

E(κ) = A0κ
4 exp(−2κ2/κ2

0 ), (1)

where A0 is a constant to get a specified initial kinetic energy, κ is the wave number, κ0 is the wave number at which the 
spectrum peaks. In this paper, the fixed A0 = 0.00013 and κ0 = 8 in Eq. (1) are chosen for all cases.

Initial set-up plays an important role in compressible isotropic turbulence simulation [45], especially in the starting fast 
transient period during which the divergence of the velocity increases rapidly and the negative temperature or pressure 
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Table 1
Parameters for supersonic isotropic turbulence of test R1 and test R2, where κmax = √

2κ0 N/3 is maximum resolved wave number [48], N is the number 
of grid points in each Cartesian direction and �tini represents the time step for the initial step.

Test Grid size Mat Reλ κmaxη0 �tini/τto

R1 3843 2.0 72 2.71 2.00/1000
R2 5123 2.0 120 2.80 3.40/1000

often appears. In the computation, the initial pressure p0, density ρ0 and temperature T0 are set as constants. In this way, 
the initial Taylor microscale Reynolds number Reλ and the initial turbulent Mach number Mat can be determined by

Reλ = (2π)1/4

4

ρ0

μ0

√
2A0κ

3/2
0 ,

Mat =
√

3√
γ RT0

Urms,

where the initial density ρ0 = 1, μ0, T0 are determined by Reλ and Mat , and γ = 1.4 is the specific heat ratio. In the 
simulation, the dynamic viscosity coefficient is given by μ = μ0

(
T /T0

)0.76
. The equation of state is adopted as the idea gas 

p = ρRT , R is the gas constant, and the Prandtl number is Pr = 1. With current initial set-up, the initial ensemble turbulent 
kinetic energy K0, ensemble enstrophy 
0, large-eddy-turnover time τto , ensemble dissipation rate ε0, Kolmogorov length 
scale η0, and the Kolmogorov time scale τ0 are given as

K0 =3A0

64

√
2πκ5

0 , 
0 = 15A0

256

√
2πκ7

0 , τto =
√

32

A0
(2π)1/4κ

−7/2
0 ,

ε0 = 2
μ0

ρ0

0, η0 = (ν3

0/ε0)
1/4, τ0 = (ν0/ε0)

1/2.

(2)

For decaying compressible isotropic turbulence, the root-mean-square pressure fluctuations prms , and turbulent kinetic en-
ergy K are defined as

prms =
√〈

(p − 〈p〉)2〉,
K = 1

2
〈ρU · U 〉 .

(3)

The evolution of turbulent kinetic energy is of interest since it is a fundamental benchmark in the incompressible and 
compressible turbulence modeling [3,12,47]. In this study, the ensemble budget of turbulent kinetic energy is computed and 
analyzed, as the decay of the ensemble turbulent kinetic energy can be described approximately by [15]

d 〈K 〉
dt

= −ε + 〈pθ〉 ,

ε = εs + εd,

χ = εd/εs,

(4)

where εs = 〈μωiωi〉 is the ensemble solenoidal dissipation rate, εd =
〈
4μθ2/3

〉
is the ensemble dilational dissipation rate, 

χ is the ratio of ensemble solenoidal dissipation rate over the ensemble dilational dissipation rate, 〈pθ〉 is the ensemble 
pressure-dilation transfer, ωi = εi jk∂Uk/∂x j is the fluctuating vorticity, εi jk is the alternating tensor, and θ = ∇ · U is the 
fluctuating divergence of velocity.

In this section, the DNS study of decaying supersonic isotropic turbulence at a fixed initial turbulent Mach number 
Mat = 2.0 with Taylor microscale Reynolds number Reλ = 72 and 120 are implemented. Incorporating the two-stage 
fourth-order temporal discretization and fifth-order WENO-Z spatial reconstruction [49], the high-order gas-kinetic scheme 
is adopted in the computation, and more details of HGKS can be found in Refs. [8,39,40]. Firstly, the grid size and time 
step which are guided by previous criterion of HGKS [8] are adopted for the simulation of the decaying supersonic isotropic 
turbulence in Appendix A. Numerical tests with the initial turbulent Mach number Mat = 1.6 and initial Taylor microscale 
Reynolds number Reλ = 72 are performed with such a criterion. Appendix A shows that the minimum spatial resolution pa-
rameter κmaxη0 ≥ 2.71 and the maximum temporal resolution parameter �tini/τto ≤ 5.58/1000 are adequate to resolve the 
decaying supersonic isotropic turbulence. For the supersonic isotropic turbulence, guided by such criterion [8], the details 
of numerical tests R1 and R2 are given in Table 1. Due to the strong discontinuities in flow field, the case with Mat = 2.0
is very challenging, which brings difficulties for the numerical simulation. Numerical results are rarely reported by the clas-
sical methods under finite volume and finite difference framework. More studies on the high-order scheme still need be 
conducted in the future.
3
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Fig. 1. Time history of Mat , Reλ , K/K0, ε/ε0, εs , εd , χ , 〈pθ〉 and prms for R1 and R2.

The time history of statistical quantities in Eq. (3) and Eq. (4) are presented in Fig. 1. The ensemble turbulent Mach 
number Mat and Taylor microscale Reynolds number Reλ decay monotonically. During the early stage, Reλ decays very 
fast. Up to t/τto = 1.0, the Taylor microscale Reynolds number Reλ is approximate 20% of the initial values. Meanwhile, the 
ensemble dissipation rate ε reaches its maximum, which is around 3 times of ε0. Obviously, the peak ensemble dilational 
dissipation rate εd is approximately half of the peak ensemble solenoidal dissipation rate εs . More specifically, the ratio 
4
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Fig. 2. PDF of dilation θ , x-direction velocity component U and dilation θ along x = 0 and z = 0 at t/τto = 0.5 and t/τto = 1.0 for R1 and R2.

Fig. 3. Contour of normalized dilation θ/ 〈θ〉∗ at x = 0 at t/τto = 0.5 for R1. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

of ensemble solenoidal dissipation rate over the ensemble dilational dissipation rate χ = εd/εs is larger than 0.3 during 
0.3 ≤ t/τto ≤ 2. A large value of χ has significant influence on the current decaying supersonic isotropic turbulence from 
the contribution of the compressibility. In addition, the ensemble dilational dissipation rate depends on Reλ slightly, which 
confirms the previous analysis [8]. Root-mean-square pressure fluctuations prms reaches its maximum value around t/τto =
0.6, corresponding to the peak ensemble dilational dissipation rate. During the early stage of the decaying supersonic 
isotropic turbulence, the ensemble pressure-dilation term can be on the same order of ensemble total dissipation rate 
[45]. The transfer of turbulent kinetic energy into internal energy cannot be neglected as the case of forced supersonic 
isotropic turbulence [32]. After t/τto ≈ 1.0, 〈pθ〉 changes signs during the evolution and preserves small but positive value.

The probability density functions (PDF) of dilation θ , x-direction velocity component U and dilation θ along x = 0 and 
z = 0 at t/τto = 0.5 and t/τto = 1.0 for R1 and R2 are presented in Fig. 2. All PDFs of dilation θ in Fig. 2 are obtained 
by dividing the dilation range into 1000 equivalent intervals. All PDFs of dilation show strong negative tails, which are the 
most significant flow structure of compressible isotropic turbulence resulting from the shocklets [8–10]. The x-direction 
velocity component U and dilation θ along the x = 0 and z = 0 indicate that the strong shocklets and high expansion 
regions appear frequently and randomly. Contour of normalized dilation θ/ 〈θ〉∗ at t/τto = 0.5 of R1 is presented in Fig. 3. 
Contour of normalized dilation shows very different behavior between the compression and expansion motion, where 〈θ〉∗
is the root-mean-square dilation. Strong compression regions with θ/ 〈θ〉∗ ≤ −3 are usually recognized as shocklets [45]. 
These random distributed shocklets and high expansion region lead to strong spatial gradient in flow fields, which pose 
much greater challenge for high-order schemes when implementing DNS for isotropic turbulence in supersonic regime. DNS 
on a much higher initial turbulent Mach number up to Mat = 2.0 confirms the super robustness of the HGKS. Based on the 
5
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high-fidelity DNS data, the coarse-grained analysis for compressible SGS turbulent kinetic energy will be implemented for 
constructing the compressible one-equation SGS model.

3. Coarse-graining analysis of compressible Ksgs budget

In this section, the exact compressible SGS turbulent kinetic energy Ksgs transport equation will be derived with density 
weighted filtering process. The Box filter [50,51] is used for the coarse-graining processes of compressible Ksgs transport 
equation on three sets of unresolved grids. Finally, the dominant terms in compressible Ksgs transport equation are deter-
mined for constructing the compressible one-equation SGS model for high turbulent Mach number flow.

3.1. Compressible Ksgs transport equation

For LES models [27,47], after filtering process on unresolved grids, the flow variables can be decomposed into resolved 
(filtered) and SGS (residual) terms as follows

φ(x) = φ(x) + φ′(x). (5)

The filtered terms are defined as

φ(x) =
∫



G(x, x′, l)φ(x′)dx′,

where 
 is the filtered domain and l denotes the filter width associated with the wavelength of the smallest scale retained 
by the coarse-graining operation. The filter function G is defined as

G(x, x′, l) =
∏

i

Gi(xi, x′
i, li).

The following Box filter [47,50] in physical space is used in this paper

Gi(xi, x′
i, li) =

{
1/li, for |xi − x′

i| ≤ li/2,

0, otherwise,

where li is the filter width in the i-direction, and the positive definite kernel of Box filter allows positive SGS turbulent 
kinetic energy [51]. Various filter-widths li = n�i are used in the following analysis, where �i is the i-direction grid size. 
In current study, the filter width and the grid size are the same in x, y and z directions. With the filtering process, the one 
transport equation Ksgs of subgrid-scale kinetic energy for incompressible LES [11,12] has been derived.

In the compressible turbulence modeling, to avoid additional subgrid term in the filtered continuity equation, the 
density-weighted (Favre) filtering [52] is applied, which reads

φ̃ = ρφ

ρ
. (6)

In this way, the SGS stress τi j and SGS kinetic energy ρKsgs are defined as

τi j = ρ(˜Ui U j − Ũ i Ũ j),

ρKsgs = 1

2
τkk = 1

2
ρ(˜UkUk − ŨkŨk).

(7)

The compressible SGS kinetic energy equation is derived in Appendix B, and the governing equation is given by

(ρKsgs),t + (ρKsgsŨ j), j = P sgs − Dsgs + �sgs + Tsgs, (8)

where P sgs is the production term, Dsgs is the dissipation term, �sgs is the pressure dilation term, and the last term Tsgs is 
the sum of SGS diffusion terms. More specifically, the right-hand-side terms in Eq. (8) can be written as

P sgs = −τi j S̃ i j,

Dsgs = σi j U i, j − σ i j Ũ i, j,

�sgs = pUk,k − pŨk,k,

Tsgs = [−1
ρ( ˜Ui Ui U j − ˜Ui Ui Ũ j) + τi j Ũ i + (σi j U i − σ i j Ũ i) − ρR(T̃ U j − T̃ Ũ j)], j,

(9)
2
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Table 2
Expressions for the right-hand-side terms in compressible Ksgs equation.

Symbol Expression Symbol Expression

P −τi j S̃ i j T1 [− 1
2 ρ( ˜Ui Ui U j −˜Ui Ui Ũ j)], j

D1 μ(ω̃iωi − ω̃iω̃i) T2 (τi j Ũ i), j

D2 4μ(Ũ 2
k,k − Ũ 2

k,k)/3 T3 [(σi j U i − σ i j Ũ i)], j

� pUk,k − pŨk,k T4 [−ρR(T̃ U j − T̃ Ũ j)], j

Table 3
DNS and filtering LES grids for R1 and R2.

Grid size κmaxη0 Grid size κmaxη0

DNS 3843 2.71 DNS 5123 2.80
case A1 1923 1.36 case B1 2563 1.40
case A2 963 0.68 case B2 1283 0.70
case A3 643 0.45 case B3 643 0.35

where S̃ i j = 1/2(Ũ i, j + Ũ j,i). More details about the derivation of Eq. (8) can be found in Appendix B. The SGS production 
term −τi j S̃ i j represents the inter-scale transfer associated with the interaction of resolved and unresolved scales. There 
exists local SGS turbulent kinetic energy backscatter, which illustrates the SGS turbulent kinetic energy transfer from sub-
grid scales to resolved scales [32,50]. As presented in Appendix B, the total SGS dissipation rate Dsgs can be decomposed 
into two parts, the SGS solenoidal dissipation rate εsgs

s and SGS dilational dissipation rate εsgs
d , as

ε
sgs
s = μ(ω̃iωi − ω̃iω̃i),

ε
sgs
d = 4μ(Ũ 2

k,k − Ũ 2
k,k)/3,

(10)

where ωi = εi jkUk, j is the resolved vorticity and ω̃i = εi jkŨk, j is the filtered one with the permutation symbol εi jk . There 
is a slight difference between Eq. (10) and Eq.(3.8) in the reference [25]. Restricting the analysis to the linear Kovasznay 
splitting [53], the solenoidal dissipation is associated entirely with the vorticity mode, whereas the dilational dissipation is 
mainly due to the acoustic mode in the absence of significant entropy source [5]. The SGS pressure-dilation term �sgs is 
related to the redistribution of Ksgs in the flow fields of compressible turbulence. The pressure-dilation term reduces to 0
in the incompressible limit. Tsgs is the sum of all SGS diffusion terms, which are usually grouped and modeled together 
for both incompressible and compressible turbulence models [6,21]. In this paper, in order to determine the dominant SGS 
diffusion term, all SGS diffusion terms are analyzed in detail. According to Eq. (9), the right-hand-side terms of Eq. (8) are 
classified in Table 2. With the Favre filtering process on unresolved grids, the analysis of dominant source terms and SGS 
diffusion terms will be presented in the following section.

3.2. Coarse-graining analysis of compressible Ksgs transport equation

The DNS and filtering LES grids for R1 and R2 are presented in Table 3. The discretization method of spatial derivatives 
plays a key role in analyzing the budget of compressible Ksgs transport equation. In current paper, to be consistent with the 
HGKS calculation [8], the fifth-order WENO-Z reconstruction [49] is adopted in computing the spatial derivatives of flow 
variables, and details are given in Appendix C.

The coarse-grained compressible Ksgs budgets P , D1, D2 and � in Eq. (9) for A1, A2, A3 and B1, B2, B3 are presented 
in Fig. 4. The budgets are computed in the domain average, and the spatial derivatives are obtained by the WENO-Z recon-
struction as the Appendix C. The domain average is defined as ||x|| = ∑N

i=1 xi/N . As shown in Fig. 4, all unresolved source 
terms are dominant terms within 0 ≤ t/τto ≤ 3.0. Obviously, the SGS production term −τi j S̃ i j is the most important one, 
considering the largest positive magnitude among the four source terms. The SGS production term P is positive, which 
represents the forward scattering of ensemble SGS kinetic energy. The ensemble SGS dilational dissipation rate D2 is more 
than half of the ensemble SGS solenoidal dissipation rate D1. Compared with the incompressible turbulence system, the 
dilational dissipation rate cannot be neglected in supersonic turbulence. The coarse-graining analysis on the SGS dissipation 
rate for supersonic isotropic turbulence agrees with previous conclusion on compressible turbulence at a moderate turbulent 
Mach number (Mat = 0.52) [31]. In addition, with the coarser grids, the ratio of D2 and D1 becomes larger. When modeling 
the SGS dissipation rate, the one-equation SGS model for compressible LES should consider the grids effect [23–25]. The 
negative values of � represent the ensemble SGS pressure-dilation term as the sink for SGS kinetic energy. Different from 
Fig. 1, the SGS pressure-dilation term � doesn’t change signs during the evolution and always preserves negative value on 
unresolved grids. Especially, the magnitude of SGS pressure-dilation term � is on the order of unresolved SGS dissipation 
term within the acoustic time scale τa , where acoustic time is defined as τa = Matτto [4]. Thus, for decaying supersonic 
isotropic turbulence, it can be concluded that the SGS pressure-dilation term cannot be neglected as realized previously 
7
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Fig. 4. Coarse-grained compressible Ksgs budgets of P , D1, D2, and � for A1, A2, A3 (left column, from the upper row to the bottom row) and B1, B2, B3

(right column, from the upper row to the bottom row).

[23,32]. The literature for modeling SGS pressure-dilation term in subsonic regime can be found in Refs. [16,17,20], where 
many unknowns remain for supersonic isotropic turbulence. As shown in Fig. 1, the turbulent Mach number Mat ≈ 0.7 and 
Taylor microscale Reynolds number Reλ ≤ 20 with t/τto ≥ 3.0, and the resolved ensemble dissipation rate and pressure-
dilation rate decrease to a small magnitude. At the same time, on unresolved grids as shown in Fig. 4, the source terms 
decay to a very small magnitude, which indicate that even the coarsest grids A3 and B3 are fine enough to resolve the 
8
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Fig. 5. SGS production term P for A1, A2 and A3 at t/τto = 0.5 (left), and B1, B2 and B3 at t/τto = 1.0 (right) at z = 0.

flow fields. This behavior is reasonable since the current system is about very small Taylor microscale Reynolds number 
Reλ ≤ 20.

The contours of SGS production term P for A1, A2, A3 at t/τto = 0.5 and B1, B2, B3 at t/τto = 1.0 at z = 0 are presented 
in Fig. 5. The forward scattering and backscattering coexist [50,32] and randomly distribute on the unresolved grids. The 
magnitude and portion of positive −τi j S̃ i j are larger than the negative ones, confirming that the ensemble forward scattering 
9
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Fig. 6. SGS solenoidal dissipation term D1 (left), SGS dilational dissipation term D2 (right) for case A2 at t/τto = 0.5 at z = 0.

Fig. 7. SGS pressure-dilation transfer term � for case A2 at t/τto = 0.5 (left) and B1 at t/τto = 1.0 (right) at z = 0.

transfers the SGS turbulent kinetic energy from the resolved scales to the sub-grid scales. To model the backscattering 
process in supersonic isotropic turbulence, the dynamic approach is recommended [25,54]. Contours of SGS solenoidal 
dissipation term D1 and dilational dissipation term D2 for A2 at t/τto = 0.5 and B1 at t/τto = 1.0 at z = 0 are presented 
in Fig. 6. The dissipation rate is non-negative, and the high similarity between the D1 and D2 in spatial distribution is 
confirmed [25]. Previous modeling [15] on dilational dissipation rate D2 ∝ Ma2

t D1 may still work in this supersonic isotropic 
turbulence, which will be studied in the following paper. Fig. 7 shows the SGS pressure-dilation transfer term � for case 
A2 at t/τto = 0.5 and B1 at t/τto = 1.0 at z = 0. It is observed that the magnitude and portion of negative � are larger than 
the positive ones, which confirm the absorption of Ksgs from the ensemble SGS pressure-dilation term, as shown in Fig. 4.

In previous study, the SGS diffusion terms are grouped and modeled together by the gradient-type models for both 
incompressible and compressible turbulent flows [6,21]. To study the delicate behavior of the SGS diffusion terms in the 
SGS kinetic energy equation, the coarse-graining analysis of dominant SGS diffusion terms is implemented. The coarse-
grained budget of SGS diffusion terms T1, T2, T3 and T4 for A1, A2, A3 and B1, B2, B3 are presented in Fig. 8. The spatial 
derivatives are obtained by the WENO-Z reconstruction as that in the Appendix C. Because the ensemble of the sum of 
transport terms is equivalent to 0, the L2 norm is applied in analyzing the SGS diffusion terms, where L2 norm is defined 
by ||x||L2 = (

∑N
i=1 x2

i )
0.5/N . As shown in Fig. 8, within 0 ≤ t/τto ≤ 2.0, both the fluctuation velocity triple correlation term 

T1 and the pressure-velocity correlation term T4 become dominant terms. T1 and T4 are about 10 times larger than the 
negligible terms T2 and T3, i.e., ‖T1‖L2 ≈ 10‖T3‖L2 . The coarse-graining analysis on SGS diffusion terms for supersonic 
isotropic turbulence agrees with previous conclusion on subsonic isotropic turbulence [29], i.e. the priori tests of mixing 
layer up to Mach numbers 0.6. When t/τto ≥ 3.0, all SGS diffusion terms T1-T4 decay to a very mall magnitude as that in 
Fig. 4. This is because of the very small Taylor microscale Reynolds number Reλ ≤ 20, even the coarsest grids A3 and B3
are fine enough to resolve the flowfields.

The contours of SGS diffusion terms T1, T2, T3 and T4 for case A2 at t/τto = 0.5 are presented in Fig. 9, in which the 
fluctuation velocity triple correlation term T1 and the pressure-velocity correlation term T4 behave more importantly than 
10
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Fig. 8. Coarse-grained budgets of SGS diffusion terms T1, T2, T3 and T4 for cases A1, A2, A3 (left column, from the upper row to the bottom row) and B1, 
B2, B3 (right column, from the upper row to the bottom row).

the SGS diffusion terms T2 and T3. To be of interest, the fluctuation velocity triple correlation term T1 and the pressure-
velocity correlation term T4 are found to be highly correlated. To further study the correlation, Kullback-Leibler divergence 
(KLD) [55] is introduced to measure the relationship of statistical behavior, namely, the correlation between two PDFs of 
11
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Fig. 9. SGS diffusion terms T1, T2 (upper row), T3 and T4 (lower row) diffusion terms for case A2 at t/τto = 0.5 at z = 0.

SGS diffusion terms. In addition, the linear correlation coefficient is used to measure the spatial correlation of four SGS 
diffusion terms. The KLD and linear correlation coefficient are defined as

Dkl(T i||T 1) =
∑

j

T i( j) log
T i( j)

T 1( j)
,

Coe(T i||T 1) = cov(T i, T 1)

σT i σT 1

,

(11)

where T i is the PDF of SGS diffusion term Ti , cov(·, ·) represents the covariance of two random variables, and σ· is standard 
deviation of one random variables. All PDFs of Ti in this paper are obtained by dividing the range of the SGS diffusion 
term into 1000 equivalent intervals. History of KLD and linear correlation coefficient among the SGS diffusion terms T1, T2, 
T3 and T4 for case B1, B2, B3 are presented in Fig. 10. The coarser grid is, the smaller magnitude of KLD is, indicating 
the much closer relation between Ti and T1 on coarser grid. As different grids show different order of magnitude of KLD, 
it indicates that the grid effect should be considered in constructing the one-equation SGS model. The linear correlation 
coefficient confirms the high correlation between T1 and T4, which shows the strong coupling between the kinematics 
and thermodynamics in current supersonic isotropic turbulence. When using the dynamic approach [28] to determine the 
dynamic coefficients for modeling SGS diffusion term [25], both T1 and T4 should participate in the dynamic modeling, 
instead of only considering T1 as incompressible one-equation SGS model [13,14].

In summary, the classification of terms in the compressible Ksgs equation is presented in Table 4. Compared with incom-
pressible turbulent system [11], the current study points out the additional dominant terms D2, � and T4, which deserve 
further study for the modeling of high Mach number turbulence. The compressible Ksgs transport equation is analyzed, 
which paves the way for modeling the unknowns in compressible one-equation SGS model. Subsequent paper will focus on 
the compressible one-equation SGS model for high Mach number turbulent flow.
12
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Fig. 10. History of Kullback-Leibler divergence (left) and linear correlation coefficient (right) among the SGS diffusion terms T1, T2, T3 and T4 for cases 
B1-B3.

Table 4
Classification of terms in incompressible and compressible Ksgs equation.

Category Current compressible system Incompressible system

Dominant terms P , D1, D2, �, T1, T4 P , D1, T1

Negligible terms T2, T3 D2, �, T2, T3, T4

4. Conclusion

In this paper, the coarse-graining analysis of compressible SGS turbulent kinetic energy budget Ksgs is fully analyzed 
for constructing one-equation SGS model of compressible LES at high turbulent Mach number. DNS on a much higher 
initial turbulent Mach number up to Mat = 2.0 is performed by the HGKS, which provides a high-fidelity DNS data for 
coarse-graining analysis. The exact compressible SGS turbulent kinetic energy Ksgs transport equation is derived by the 
Favre filtering procedures, and the coarse-graining processes are implemented on the unresolved grids. The coarse-graining 
analysis of compressible Ksgs budgets shows that all unresolved source terms are dominant terms, i.e., SGS production term, 
solenoidal dissipation term, dilational dissipation term, and pressure-dilation term. Especially, for the decaying supersonic 
isotropic turbulence, the SGS pressure-dilation term plays a significant role in SGS turbulent kinetic energy transfer, which 
cannot be neglected. The coarse-graining analysis of SGS diffusion terms shows both the fluctuation velocity correlation 
term and the pressure-velocity correlation term are also the dominant terms. The pressure-velocity correlation term should 
participate in the dynamic modeling when determining the dynamic coefficients for modeling SGS diffusion term. The 
current coarse-graining analysis gives an indication of the order of magnitude of all unresolved terms in compressible Ksgs

budget, which provides a solid basis for compressible one-equation SGS model. The compressible one-equation SGS model 
under the non-equilibrium time-relaxation gas-kinetic framework for the turbulence study at high turbulent Mach number 
will be presented in the subsequent paper.
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Fig. 11. Grid convergence study: time history of ρrms/Ma2
t , K/K0, ε, εs , εd and 〈pθ〉 for decaying supersonic isotropic turbulent with Mat = 1.6 and 

Reλ = 72 on uniform grids with 3843 and 5123 cells. (ρrms =
√〈

(ρ − 〈ρ〉)2
〉

represents the root-mean-square density fluctuation.)

Appendix A. Grid convergence study for decaying supersonic isotropic turbulence

For supersonic isotropic turbulence, the grid convergence study with the initial turbulent Mach number Mat = 1.6 and 
initial Taylor microscale Reynolds number Reλ = 72 is implemented. Case G2 with 3843 cells has already met previous cri-
terion for DNS [8], namely, the minimum spatial resolution parameter κmaxη0 ≥ 2.71 and the maximum temporal resolution 
parameter �tini/τto ≤ 5.58/1000. Case G1 with 5123 cells and smaller time step than that in G2 is the current refined mesh 
test. As shown in Fig. 11, the key statistical quantities on uniform grids with 3843 cells match well with those on uniform 
grids with 5123 cells. It can be concluded that the grid resolution guided by such criterion for DNS in Ref. [8] is adequate 
for resolving the decaying supersonic isotropic turbulence.

Appendix B. Derivation of compressible Ksgs transport equation

For the filtering operator Eq. (5), the following two properties, namely linearity and commutation with differentiation 
[47] are required as

φ + ϕ = φ + ϕ,

∂φ

∂s
= ∂φ

∂s
,

(12)

where s = x, t . To avoid subgrid term appearing in the filtered continuity equation, the Favre filtering [52] as Eq. (6) is 
considered. For the Favre filtering, only the linearity has been inherited as

˜φ + ϕ = φ̃ + ϕ̃. (13)

It should be noticed that the commutation with differentiation doesn’t apply to the Favre filtering. The SGS kinetic energy 
equation can be derived by subtracting the product of the Favre-filtered velocity and the filtered momentum equation from 
the filtered product of the velocity and momentum equation [25]

Ui × [(ρUi),t + (ρUi U j), j + p,i − (σi j), j] − Ũ i × (ρUi),t + (ρUi U j), j + p,i − (σi j), j = 0, (14)

where ρ is the density, Ui is the velocity component, p = ρRT is the pressure, and T is the temperature, and R is the gas 
constant. Ignoring the bulk viscosity, the viscous stress σi j is given by

σi j = μ
(
Ui, j + U j,i − 2

3
Uk,kδi j

)
,

where μ is the molecular viscosity, and δi j is the Kronecker symbol. Based on properties of filtering in Eq. (12) and Eq. (13), 
Eq. (14) can be rearranged term by term to derive SGS kinetic energy equation.

The first term L1 is defined and grouped as

L1 =Ui × (ρUi),t − Ũ i × (ρUi),t = [ρ(˜Ui Ui − Ũ i Ũ i)],t − (ρUi Ui,t − ρŨ i Ũ i,t). (15)
14
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The continuity and momentum equation can be used to replace Ui,t as ρUi,t = (ρUi),t − Uiρ,t . Similarly, the filtered conti-
nuity equation and filtered momentum equation can be used to replace Ũ i,t . Plugging above replacements into Eq. (15), L1

can be rewritten as

L1 =[ρ(˜Ui Ui − Ũ i Ũ i)],t + Ui × [(ρUi U j), j + p,i − (σi j), j]
−Ũ i × (ρUi U j), j + p,i − (σi j), j − [U 2

i (ρU j), j − Ũ 2
i (ρŨ j), j].

With the definition of SGS kinetic energy ρ(˜UkUk − ŨkŨk) = 2ρKsgs in Eq. (7), plugging L1 into Eq. (14), leads to

2(ρKsgs),t + 2
{

Ui × [(ρUi U j), j + p,i − (σi j), j] − Ũ i × (ρUi U j), j + p,i − (σi j), j

}
= U 2

i (ρU j), j − Ũ 2
i (ρŨ j), j .

(16)

The second term L2 can be defined and rewritten as

L2 =Ui × (ρUi U j), j − Ũ i × (ρUi U j), j

=(ρUi Ui U j), j − ρUi U j Ui, j − Ũ i × [(ρŨ i Ũ j), j + (τi j), j],
(17)

where τi j = ρ(˜Ui U j − ũi ũ j) as defined in Eq. (7). Combining L2 and the right-hand-side term in Eq. (16), we have

L3 =2 × L2 − [U 2
i (ρU j), j − Ũ 2

i (ρŨ j), j]
=2(ρKsgsŨ j), j + [ρ( ˜Ui Ui U j − ˜Ui Ui Ũ j)], j − 2Ũ i(τi j), j .

The last term in L3 can be rewritten as

Ũ i(τi j), j = (τi j Ũ i), j − τi j Ũ i, j = (τi j Ũ i), j − τi j S̃ i j,

where the decomposition Ũ i, j = S̃ i j + 
̃i j is involved, S̃ i j = (Ũ i, j + Ũ j,i)/2 and 
̃i j = (Ũ i, j − Ũ j,i)/2. τi j
̃i j = 0 because it 
involves multiplication of a symmetric tensor τi j by an anti-symmetric tensor 
̃i j . Plugging L3 into Eq. (16), it leads to

2(ρKsgs),t + 2(ρKsgsŨ j), j + 2
{

Ui × [p,i − (σi j), j] − Ũ i × p,i − (σi j), j

}
= −2τi j S̃ i j − [ρ( ˜Ui Ui U j − ˜Ui Ui Ũ j)], j + 2(τi j Ũ i), j .

(18)

In Eq. (18), substituting p = ρRT̃ into pressure-gradient velocity correlation, leads to the following form

L4 =Ui × p,i − Ũ i × p,i = [ρR(T̃ Ui − T̃ Ũ i],i − (pUi,i − pŨ i,i).

The term L5 can be designed and decomposed as follows

L5 =Ui × (σi j), j − Ũ i × (σi j),i

=(σi j U i − σ i j Ũ i), j − (σi j U i, j − σ i j Ũ i, j).

Plugging L4 and L5 into Eq. (18), the SGS kinetic energy equation reads

(ρKsgs),t + (ρKsgsŨ j), j = −τi j S̃ i j − (σi j U i, j − σ i j Ũ i, j) + (pUk,k − pŨk,k)

+ [−1

2
ρ( ˜Ui Ui U j − ˜Ui Ui Ũ j) + τi j Ũ i + (σi j U i − σ i j Ũ i) − ρR(T̃ U j − T̃ Ũ j)], j .

(19)

In practice, two assumptions are introduced to decompose the total SGS dissipation rate into SGS solenoidal part and SGS 
dilational one. Firstly, assume that the kinematic viscosity ν is spatially uniform over the filter width, so that μφ = ρνφ̃ =
μφ̃. In addition, for compressible turbulence, the assumption σ i j = 2μ(̃Sij − δi j S̃kk/3) is adopted in previous literature 
[29,31]. Then, the total SGS dissipation rate εsgs in Eq. (19) can be rewritten as

εsgs = σi j U i, j − σ i j Ũ i, j

= 2μ(˜Sij Ui, j − S̃ i j Ũ i, j) − 2μ(Ũ 2
k,k − Ũ 2

k,k)/3.

Using the fact Sij Si j = ωiωi/2 + Ui, j U j,i , the total dissipation rate εsgs could be decomposed into SGS solenoidal dissipation 
rate εsgs

s and SGS dilational dissipation rate εsgs
d as follows

ε
sgs
s = μ(ω̃iωi − ω̃iω̃i),

ε
sgs = 2μ( ˜Ui, j U j,i − Ũ i, j Ũ j,i) − 2μ(Ũ 2 − Ũ 2 )/3,

(20)

d k,k k,k
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Fig. 12. Initial wave of Us(x) and Ud(x), and spatial derivative of Ud(x) with the analytical solution, fifth-order WENO-Z reconstruction, and second-order 
central difference method.

Table 5
Accuracy test of spatial derivative for Us(x) and Ud(x) with WENO-Z reconstruction.

Waves Us(x) Ud(x)

Mesh length L2 error Order L2 error Order

2π/64 2.619209e − 01 3.458353e − 01
2π/128 3.050078e − 02 3.10 4.959606e − 02 2.81
2π/256 3.088122e − 03 4.62 6.520176e − 03 4.14
2π/512 6.699721e − 05 3.98 4.571909e − 04 3.19

where ωi = εi jkUk, j is the vorticity and ω̃i = εi jkŨk, j , with the alternating tensor εi jk . With the reasonable assumption 
Ui, j U j,i ≈ U 2

k,k [21], the SGS dilational dissipation rate εsgs
d in Eq. (20) can be approximated as

ε
sgs
d = 4μ(Ũ 2

k,k − Ũ 2
k,k)/3. (21)

The difference between current derivation on dissipation rate in Eq. (20) and Eq. (21), and Eq.(3.4), Eq.(3.5) and Eq.(3.8) 
in the reference literature [25] should be pointed out. In the reference [25], Eq.(3.4) represents the total dissipation rate 
instead of the solenoidal dissipation rate.

Appendix C. Consistent spatial derivatives in numerical scheme

The one-dimensional multiple-frequency smooth wave Us(x) as well as the waves with sharp derivative Ud(x) are used 
to test the accuracy of spatial derivative. The sharp derivative is designed for simulating the shocklets as shown in Fig. 2. 
The Us(x) and Ud(x) are given by

Us(x) =
3∑

i=1

αicos(2βiπx), x ∈ [−π,π ],

Ud(x) =
3∑

i=1

αicos(2βiπx) + tanh(γ x), x ∈ [−π,π ],
(22)

where the coefficients α1 = 800, α2 = 80, α1 = 8 and β1 = 0.1, β1 = 0.5, β1 = 2.5, γ = 30 are adopted. Initial waves of Us(x)
and Ud(x) are presented in Fig. 12. Three methods are used to compute the spatial derivative, namely the analytical solution, 
fifth-order WENO-Z reconstruction [49] and second-order central difference method. Compared with the analytic solution, 
the fifth-order WENO-Z reconstruction outweighs the second-order central difference method. In current paper, the WENO-Z 
reconstruction is applied to compute the spatial derivative, which is consistent with the numerical scheme of DNS [8]. The 
accuracy tests of Us(x) and Ud(x) with WENO-Z reconstruction are shown in Table 5.
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