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In recent years, coupled with traditional turbulence models, the second-order gas-kinetic scheme (GKS) 
has been used in the turbulent flow simulations. At the same time, high-order GKS has been developed, 
such as the two-stage fourth-order scheme (S2O4) GKS, and used for laminar flow calculations. In 
this paper, targeting on the high-Reynolds number engineering turbulent flows, an implicit high-
order GKS with Lower-Upper Symmetric Gauss-Seidel (LU-SGS) technique is developed under the S2O4 
framework. Based on Vreman-type LES model and k − ω SST model, a turbulent relaxation time is 
obtained and used for the determination of an enlarged particle collision time for the high-Reynolds 
number turbulent flow simulation. Numerical experiments include incompressible decaying homogeneous 
isotropic turbulence, incompressible high-Reynolds number flat plate turbulent flow, incompressible 
turbulence around NACA0012 airfoil, transonic turbulence around RAE2822 airfoil, and transonic high-
Reynolds number ARA M100 wing-body simulation. Comparisons among the numerical solutions from 
current implicit high-order GKS, the explicit high-order GKS, the implicit second-order GKS, and 
experimental measurements have been conducted. Through these examples, it is concluded that the high-
order GKS has high accuracy in space and time, especially for smooth flows, and obtains more accurate 
turbulent flow fields on coarse grids than the second-order GKS. In addition, significant acceleration on 
computational efficiency, as well as super robustness in simulating complex flows are confirmed from 
the current implicit high-order GKS. This study also indicates that turbulence modeling plays a dominant 
role in capturing physical solution, such as in the transonic three-dimensional complex RANS simulation, 
which is beyond the numerical discretization error, such as the differences between the second and 
fourth-order GKS.

© 2019 Elsevier Masson SAS. All rights reserved.
1. Introduction

Turbulence is an important research subject among physics, ap-
plied mathematics, and engineering applications [1]. Because of its 
multi-scale features in space and time, it is a challenge to properly 
balance the accuracy requirements and computational costs [2]
in the simulations, especially for high-Reynolds number turbulent 
flows. Currently, there are mainly four approaches for turbulence 
simulation, namely direct numerical simulation (DNS), large eddy 
simulation (LES), Reynolds averaged Navier-Stokes (RANS), and hy-
brid RANS/LES methods.
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Theoretically, DNS [3–5] is supposed to resolve turbulent struc-
tures above the Kolmogrov dissipation scale [6] by grid and time 
step resolution, but the prohibitive cost limits DNS’s engineer-
ing applications. In order to study turbulent flow on unresolved 
grids, such as for the high-Reynolds number turbulence problems, 
the RANS models [7–12], the LES models [13–16], and the hy-
brid RANS/LES methods [17–19] have been developed and applied. 
RANS captures turbulent structures above integral scale under the 
constraints of computational resources, which has been widely 
used in engineering turbulence simulations [20]. LES solves the fil-
tered Navier-Stokes equations with resolvable turbulent structures 
above the inertial scale. Even though LES is quite expansive com-
pared with RANS, for unsteady separation turbulent flows, LES has 
gradually become an indispensable tool to obtain high-resolution 
turbulent flow fields. To combine the advantages of RANS and LES, 
the hybrid RANS/LES methods have been proposed and become 
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hot topics in turbulence simulations, which keep good balance be-
tween resolution accuracy and computational cost.

In the past decades, the second-order gas-kinetic scheme (GKS) 
[21,22] based on the Bhatnagar-Gross-Krook (BGK) [23] model has 
achieved great success for laminar flow computations from incom-
pressible low-speed flow to hypersonic one. Different from the 
numerical methods based on the macroscopic governing equations, 
the gas-kinetic scheme presents a gas evolution process from ki-
netic scale to hydrodynamic scale, where both inviscid and viscous 
fluxes are recovered from the moments of a single time-dependent 
gas distribution function [21]. Additionally, both normal and tan-
gential gradients of flow variables are included in the flux function 
across a cell interface [24]. It has been extended to flows with 
multi-temperature [25,26], gravitational field [27], and magneto-
hydrodynamics [28]. For turbulent flows, GKS can be directly used 
as a DNS tool for low-Reynolds number flow [29,30]. The “mixing 
time” was proposed for kinetic equation based methods for high-
Reynolds number turbulence [31,32], which can be regarded as an 
extension of BGK model with a newly defined collision (relaxation) 
time τt . Following this “mixing time” concept, the second-order 
gas kinetic schemes coupled with S-A model [33], k −ω SST model 
[34–36], Vreman-type LES model, and the hybrid RANS/LES meth-
ods [37] have been developed and implemented in high-Reynolds 
number turbulent flow simulations. Most previous work are based 
on the explicit second-order GKS coupled with traditional turbu-
lence models. In view of the high-resolution requirement for tur-
bulence simulation, it is fully legitimate to construct high-order 
GKS (HGKS) coupled with traditional turbulence models.

In recent years, an accurate and robust two-stage fourth-order 
(S2O4) GKS [38–40] has been developed for laminar flows, which 
achieves fourth-order accuracy in space and time and shows high 
efficiency and robustness in the flow simulations with shocks. 
More importantly, this scheme is as robust as the second-order 
scheme and works perfectly from the subsonic to the hypersonic 
viscous heat conducting flows [26]. The S2O4 GKS shows great po-
tential in simulating turbulence accurately and robustly, especially 
for compressible turbulent flows. In this paper, focusing on the ex-
tension of the scheme to the three-dimensional turbulent flows, an 
implicit high-order GKS (IHGKS) is proposed in this paper. On the 
one hand, the S2O4 GKS framework is used to provide a solid foun-
dation for obtaining high-resolution flow fields in turbulent flow. 
On the other hand, Lower-Upper Symmetric Gauss-Seidel (LU-SGS) 
method [41,42] is implemented to overcome the time step bar-
rier in the explicit scheme, and makes the Courant-Friedrichs-Lewy 
(CFL) [43] number large in the three-dimensional high-Reynolds 
turbulent flows. In what follows, Section 2 presents the construc-
tion of this IHGKS under two-stage fourth-order framework. This 
is followed by the coupling of Vreman-type LES model [15] and 
the k − ω SST [10] model in current IHGKS in Section 3. The nu-
merical simulations from incompressible low-speed to transonic 
three-dimensional complex turbulent flows will be presented in 
section 4. And the final section is the conclusion and discussion.

2. Implicit three-dimensional two-stage high-order GKS solver

2.1. Three-dimensional finite volume framework based on BGK model

Based on particle transport and collision, the Boltzmann equa-
tion has been constructed for monotonic dilute gas. The simplifi-
cation of the Boltzmann equation given by the BGK model has the 
following form [23],

∂ f

∂t
+ u

∂ f

∂x
+ v

∂ f

∂ y
+ w

∂ f

∂z
= g − f

τ
, (1)

where f is the number density of molecules at position (x, y, z)
and particle velocity (u, v, w) at time t . The left side of the Eq. (1)
denotes the free transport term, and the right hand side represents 
the collision term. The relation between distribution function f
and macroscopic variables, such as mass, momentum, energy, and 
stress, can be obtained by taking moments in velocity of the gas 
distribution function. The collision operator in BGK model shows 
simple relaxation process from f to a local equilibrium state g , 
with a characteristic time scale τ , which is related to the viscosity 
and heat conduction coefficients. The local equilibrium state is a 
Maxwellian distribution,

g = ρ(
λ

π
)

K+3
2 e−λ[(u−U )2+(v−V )2+(w−W )2+ξ2], (2)

where ρ is the density, (U , V , W ) are the macroscopic fluid veloc-
ity in the x−, y− and z− directions. Here λ = m/2kB T , m is the 
molecular mass, kB is the Boltzmann constant, and T is the tem-
perature. For three-dimensional equilibrium diatomic gas, the total 
number of degrees of freedom in ξ is K = 2, which accounts for 
the two rotational modes ξ2 = ξ2

1 + ξ2
2 , and the specific heat ratio 

γs = (K + 5)/(K + 3) is determined.
The relation between mass ρ , momentum (ρU , ρV , ρW ), total 

energy ρE with the distribution function f is given by,
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∫
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where d� = dudvdwdξ1dξ2 and ψα is the component of the vector 
of collision invariants

ψ = (ψ1,ψ2,ψ3,ψ4,ψ5)
T

= (1, u, v, w,
1

2
(u2 + v2 + w2 + ξ2))T .

Since only mass, momentum and total energy are conserved dur-
ing particle collisions, the compatibility condition for the collision 
term turns into,∫

g − f

τ
ψd� = 0, (4)

at any point in space and time.
Based on the above BGK model as Eq. (1), the Euler equations 

can be obtained for a local equilibrium state with f = g . On the 
other hand, the Navier-Stokes equations, the stress and Fourier 
heat conduction terms can be derived with the Chapman-Enskog 
expansion [44] truncated to the 1st-order of τ ,

f = g + Knf1 = g − τ (
∂ g

∂t
+ u

∂ g

∂x
+ v

∂ g

∂ y
+ w

∂ g

∂z
). (5)

For the Burnett and super-Burnett solutions, the above expansion 
can be naturally extended [45], such as f = g + Knf1 + Kn2 f2 +
Kn3 f3 + · · · . For the above Navier-Stokes solutions, the GKS based 
on the kinetic BGK model has been well developed [21]. In order to 
simulate the flow with any realistic Prandtl number, a modification 
of the heat flux in the energy transport is used in this scheme, 
which is also implemented in the present study.

Taking moments of Eq. (1) and integrating over the control 
volume 
i jk = xi × y j × zk with xi = [xi − �x

2 , xi + �x
2 ], y j =

[y j − �y
2 , y j + �y

2 ], zk = [zk − �z
2 , zk + �z

2 ], the three-dimensional 
finite volume scheme can be written as

dQ ijk

dt
= L(Q ijk) = 1

|
i jk| [
∫

y ×z

(Fi−1/2, j,k − Fi+1/2, j,k)dydz
j k



960 G. Cao et al. / Aerospace Science and Technology 92 (2019) 958–971
+
∫

xi×zk

(Gi, j−1/2,k − Gi, j+1/2,k)dxdz

+
∫

xi×y j

(Hi, j,k−1/2 − Hi, j,k+1/2)dxdy], (6)

where Q ijk are the cell averaged conservative flow variables, i.e., 
mass, momentum and total energy. All of them are averaged over 
control volume 
i jk and the volume of the numerical cell is 
|
i jk| = �x�y�z. Here, numerical fluxes in x − direction is pre-
sented as an example∫
y j×zk

Fi+1/2, j,kdydz = Fxi+1/2, j,k,t�y�z. (7)

Based on the fifth-order WENO-JS spatial reconstruction on the 
primitive flow variables [46], the reconstructed point value and 
the spatial derivatives in one normal and two tangential direc-
tions can be obtained. In the smooth flow computation, the linear 
form of WENO-JS is adopted to reduce the dissipation. Gaussian 
points are widely used for high-order finite volume scheme, how-
ever, it is very expensive because additional reconstructions and 
flux calculations are required at each point of the interface [39]. To 
save computational resources for three-dimensional high-Reynolds 
number engineering turbulence problems, Gaussian points have 
not been used in the IHGKS. The numerical fluxes Fxi+1/2, j,k,t can 
be provided by the flow solvers, which can be evaluated by taking 
moments of the gas distribution function as

Fxi+1/2, j,k,t =
∫

ψαu f (xi+1/2, j,k, t,u, ξ)d�, α = 1,2,3,4,5. (8)

Here f (xi+1/2, j,k, t, u, ξ) is based on the integral solution of BGK 
equation Eq. (1) at the cell interface

f (xi+1/2, j,k, t,u, ξ) = 1

τ

t∫
0

g(x′, t′,u, ξ)e−(t−t′)/τ dt′

+ e−t/τ f0(−ut, ξ), (9)

where xi+1/2, j,k = 0 is the location of cell interface, u = (u, v, w)

is the particle velocity, xi+1/2, j,k = x′ + u(t − t′) is the trajectory 
of particles. f0 is the initial gas distribution, and g is the corre-
sponding intermediate equilibrium state as Eq. (2). g and f0 can 
be constructed as

g = g0(1 + ax + b y + cz + At),

and

f0 ={
gl[1 + (alx + bl y + clz) − τ (alu + bl v + cl w + Al)], x ≤ 0,

gr[1 + (ar x + br y + cr z) − τ (aru + br v + cr w + Ar)], x > 0,

where gl and gr are the initial gas distribution functions on both 
sides of a cell interface. g0 is the initial intermediate equilibrium 
state located at cell interface, which can be determined through 
the compatibility condition∫

ψα g0d� =
∫
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ψα gld� +
∫

u<0

ψα grd�, α = 1,2,3,4,5.

For the second-order flux, the time-dependent gas distribution 
function at cell interfaces is evaluated as
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xi+1/2, j,k, t,u, ξ)

= (1 − e−t/τ )g0 + ((t + τ )e−tτ − τ )(au + bv + cw)g0

+ (t − τ + τe−tτ )A g0

+ e−t/τ gl[1 − (τ + t)(alu + bl v + cl w) − τ Al](1 − H(u))

+ e−t/τ gr[1 − (τ + t)(aru + br v + cr w) − τ Ar]H(u), (10)

here the coefficients in Eq. (10) can be determined by the spa-
l derivatives of macroscopic flow variables and the compatibil-
 condition [22]. In smooth flow region, the discontinuities of 
w variables at a cell interface disappear, and the gas distribu-
n function at a cell interface f (xi+1/2, j,k, t, u, ξ) automatically 

duces to

xi+1/2, j,k, t,u, ξ) = g0[1 − τ (au + bv + cw + A) + t A]. (11)

e full flux Eq. (10) is necessary for shock-capturing, which must 
 used for transonic to supersonic flows. While, Eq. (11) is applied 
 smooth flows, and the computational costs can be reduced.

Here, the second-order accuracy in time can be achieved by one 
p integration from the second-order gas-kinetic solver Eq. (10). 
sed on a high-order expansion of the equilibrium state around 
cell interface, a one-stage third-order GKS has been developed 
ccessfully [24,47,48]. However, the one-stage gas-kinetic solver 
comes very complicated, especially for three-dimensional com-
tations.

. Two-stage high-order temporal discretization

In recent study, a two-stage fourth-order time-accurate dis-
etization has been developed for Lax-Wendroff flow solvers, par-
ularly applied for hyperbolic equations with the generalized Rie-
ann problem (GRP) solver [38] and the GKS [39]. Such method 
ovides a reliable framework to develop the three-dimensional 
GKS with a second-order flux function Eq. (10) or Eq. (11). The 
y point for this two-stage fourth-order method is to use time 
rivative of flux function. In order to obtain the time derivative of 
x function at tn and t∗ = tn + �t/2, the flux function should be 
proximated as a linear function of time within a time interval.
According to the numerical fluxes Eq. (8) at a cell interface, the 

llowing notation is introduced

+1/2, j,k(Q n, ζ ) =
tn+ζ∫
tn

Fi+1/2, j,k(Q n, t)dt =
tn+ζ∫
tn

Fxi+1/2, j,k,tdt.

(12)

 the time interval [tn, tn + �t/2], the flux is expanded as the 
llowing linear form

+1/2, j,k(Q n, t) = Fi+1/2, j,k(Q n, tn)

+ ∂tFi+1/2, j,k(Q n, tn)(t − tn). (13)

sed on Eq. (12) and linear expansion of flux as Eq. (13), the 
efficients Fi+1/2, j,k(Q n, tn) and ∂t Fi+1/2, j,k(Q n, tn) can be deter-
ined as,
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8
∂tFi+1/2, j,k(Q n, tn)�t2

= Fi+1/2, j,k(Q n,�t/2).

 solving the linear system, we have
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Fi+1/2, j,k(Q n, tn) = (4Fi+1/2, j,k(Q n,�t/2)

− Fi+1/2, j,k(Q n,�t))/�t,

∂tFi+1/2, j,k(Q n, tn) = 4(Fi+1/2, j,k(Q n,�t)

− 2Fi+1/2, j,k(Q n,�t/2))/�t2,

(14)

and Fi+1/2, j,k(Q ∗, t∗), ∂t Fi+1/2, j,k(Q ∗, t∗) for the intermediate state 
t∗ can be constructed similarly.

With these notations, the two-stage high-order algorithm for 
three-dimensional flow is given by the following steps.
(i) With the initial reconstruction, update Q ∗

i jk at t∗ = tn +�t/2 by

Q ∗
i jk − Q n

ijk

= − 1
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− 1
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− 1
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[Hi, j,k+1/2(Q n,�t/2) −Hi, j,k−1/2(Q n,�t/2)], (15)

and compute the fluxes and their derivatives by Eq. (14) for future 
using,

Fi+1/2, j,k(Q n, tn), Gi, j+1/2,k(Q n, tn), Hi, j,k+1/2(Q n, tn),

∂tFi+1/2, j,k(Q n, tn), ∂tGi, j+1/2,k(Q n, tn), ∂tHi, j,k+1/2(Q n, tn).

(ii) Reconstruct intermediate value W ∗
i jk and compute

∂tFi+1/2, j,k(Q ∗, t∗), ∂tGi, j+1/2,k(Q ∗, t∗), ∂tHi, j,k+1/2(Q ∗, t∗),
where the derivatives are determined by Eq. (14) in the time in-
terval [t∗, t∗ + �t].
(iii) Update Q n+1

i jk by
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i jk − Q n
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where F
n
i+1/2, j,k , G

n
i, j+1/2,k and H

n
i, j,k+1/2 are the numerical 

fluxes and expressed as

F
n
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6
[∂tHi, j,k+1/2(Q n, tn)

+ 2∂tHi, j,k+1/2(Q ∗, t∗)].
In summary, with the initial reconstruction, the intermediate 

state Q ∗
i jk is updated by

Q ∗
i jk = Q n

ijk + �t

2
L∗(Q n), (17)

where �t
2 L∗(Q n) represents the right-hand side of Eq. (15). Then, 

with the prepared fluxes and their derivatives, Q n+1
i jk can be up-

dated by

Q n+1
i jk = Q n

ijk + �tLn+1(Q n), (18)

where �tLn+1(Q n) is the right-hand side terms in Eq. (16). L is 
the spatial discretization operator as Eq. (6).
2.3. Implicit LU-SGS method

In previous work, LU-SGS method has been applied in GKS 
for hypersonic flows [49] and near-continuum flows [50] in two-
dimensional cases. For three-dimensional flow, in order to use 
large CFL number to increase the computational efficiency, in-
stead of updating conservative variables explicitly, implicit LU-SGS 
method is used to update conservative variables Q ∗

i jk and Q n+1
i jk . As 

an example, in the following we present the brief updating proce-
dure of intermediate variables Q ∗ .

Firstly, introduce the Jacobian matrices A = ∂ F
∂ Q i

, B = ∂ F
∂ Q j

, and 

C = ∂ F
∂ Q k

, with the Euler flux F for laminar flow [41] and the 
extended flux coupled with turbulence model [42]. Based on the 
LU-SGS technique, Eq. (17) can be written as

R∗(Q n) = �t

2
L∗(Q n),

(L + D)D−1(D + U )�Q = R∗(Q n),

(19)

where �Q = Q ∗ − Q n , with the matrices L = −(A+
i−1 + B+

j−1 +
C+

k−1), D = I
�t +A+

i −A−
i +B+

j −B−
j + C+

k − C−
k , and U =A−

i+1 +
B−

j+1 + C−
k+1. Unknown matrices are introduced by A± = 1

2 (A ±
rAI), rA = βσA , B± = 1

2 (B ± rBI), rB = βσB , and C± = 1
2 (C ±

rCI), rC = βσC . Where I is the unit matrix, (σA, σB, σC) are the 
spectral radii of the Jacobian matrices, with the coefficient β ≥ 1
to ensure dominant diagonal.

Then, use two-step sweeping way to get the solution �Q

(L + D)�Q ◦ = R∗(Q n),

(D + U )�Q = D�Q ◦.
(20)

Subsequently, the intermediate macroscopic flow variables Q ∗ are 
updated by

Q ∗ = Q n + �Q . (21)

Based on Eq. (18), the residual at tn+1 step is defined as 
Rn+1(Q n) = �tLn+1(Q n). Then, similar procedures as Eq. (19)–Eq. 
(21) can be used to update the tn+1 step macroscopic flow vari-
ables Q n+1. In this way, within the S2O4 GKS framework, LU-SGS 
method is implemented to overcome the time step barrier in the 
explicit scheme.

3. IHGKS coupled with turbulence model

We follow the concept of turbulent eddy viscosity [51], which 
models the effect of unresolved turbulent scales by enlarged tur-
bulent eddy viscosity in turbulence region. Similarly, the enlarged 
turbulent relaxation time τt is proposed to describe the turbulent 
flows under the kinetic framework. Based on this turbulent relax-
ation time τt [31], extended BGK model for turbulent flows can be 
written as,

∂ f

∂t
+ u

∂ f

∂x
+ v

∂ f

∂ y
+ w

∂ f

∂z
= g − f

τ + τt
. (22)

Using the Chapman-Enskog expansion [32], Eq. (22) can recover 
traditional RANS linear eddy viscosity model through the relation 
between turbulent eddy viscosity μt and turbulent relaxation time 
τt , with

τ + τt = μ + μt

p
, (23)

where p is the pressure. The key point is to get turbulent eddy 
viscosity μt , then turbulent relaxation time τt will be determined 
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by Eq. (23). In original study [32], this enlarged relaxation time 
τt is called “mixing time”, which is comparable with the classi-
cal concept of “mixing length”. In this paper, based on extended 
BGK model and “mixing time” concept, time-relaxation turbulence 
simulation will be studied.

In present work, Vreman-type model for LES and k − ω SST 
model for RANS simulation will be used to evaluate τt and use 
the relaxation time τ + τt in Eq. (22). All conserved macroscopic 
variables are calculated from GKS, and the turbulent viscosity is 
obtained from the LES/RANS eddy viscosity model. The evolution 
of turbulent variables depends on the conserved macroscopic vari-
ables. This coupling process is applied at each step for turbulence 
simulations.

3.1. LES: Vreman-type model

To keep the simple eddy viscosity closure form and overcome 
the drawbacks of the original Smagorinsky model [13], Vreman-
type model [15] is proposed by A.W. Vreman in a simple algebra 
form, which is comparable to dynamic Smagorinsky model [14]. 
For Vreman-type model, turbulent eddy viscosity μt is given by

μt = ρc

√
Bβ

aijai j
, (24)

where ρ is the density, and constant c is related to Smagorinsky 
constant c = 2.5C2

s , with Cs = 0.1. Left unknowns in Eq. (24) can 
be determined through the combination of velocity gradient in re-
solved flow fields, as⎧⎪⎨
⎪⎩

αi j = ∂U j
∂xi

,

βi j = �2αmiαmj,

Bβ = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23.

(25)

In Eq. (25), the ∂U j
∂xi

represents the first-order derivative of cell 
averaged velocity, and � is the width of the numerical cell. For 
averaging process, numerical cell itself acts as the filter and no ex-
plicit filter is adopted in current scheme.

3.2. RANS: k − ω SST model

k − ω SST model [10] combines the positive features of k − ω

model [8] and k − ε model [7] together. For this model, evolution 
equation of turbulence kinetic energy k and specific dissipation 
rate ω are modeled as

∂(ρk)

∂t
+ ∂

∂x j
[ρU jk − (μ + σkμt)

∂k

∂x j
] = P − β∗ρωk,

∂(ρω)

∂t
+ ∂

∂x j
[ρu jω − (μ + σωμt)

∂ω

∂x j
]

= γ

νt
P − βρω2 + 2(1 − F1)

ρσω2

ω

∂k

∂x j

∂ω

∂x j
,

(26)

where P is the production of turbulence kinetic energy. In current 
study, P is written in SST-V2003 form [11], as

P∗ = μt

2 − 2

3
ρkδi j

∂Ui

∂x j
,

P = min(P∗,10β∗ρωk),

where 
 = √
2
i j
i j is the vorticity magnitude. The turbulent 

eddy viscosity is computed from

μt = ρa1k

max{a1ω, S F2} , (27)
where νt = μt/ρ is the turbulent kinematic viscosity, S = √
2Sij Si j

is the shear strain rate magnitude. 
i j and Sij are denoted by


i j = 1

2
(
∂Ui

∂x j
− ∂U j

∂xi
), Sij = 1

2
(
∂Ui

∂x j
+ ∂U j

∂xi
).

Each of the constants is a blend of an inner constant and outer 
constant via

φ = F1φ1 + (1 − F1)φ2, (φ = σk,σω,β,γ )

where φ1 represents the inner constants of k − ω model and φ2

represents the outer constants of the k − ε model. For inner layer,

σk1 = 0.85, σω1 = 0.5, β1 = 0.075, γ1 = 5

9
,

and for outer layer,

σk2 = 1.0, σω2 = 0.856, β2 = 0.0828, γ2 = 0.44.

F1 and F2 are hybrid functions are given by

F1 = tanh{min[max(

√
k

β∗ωd
,

500μ

ρωd2
),

4ρσω2k

C Dkωd2
]}4,

F2 = tanh[max(
2
√

k

0.09ωd
,

500μ

ρωd2
)]2,

C Dkω = max(
2ρσω2

ω

∂k

∂x j

∂ω

∂x j
,10−10),

where d is the colsest distance from the field point to the nearest 
wall, and left constants are a1 = 0.31 and β∗ = 0.09.

In this paper, turbulent variables k and ω are updated sepa-
rately from the conservative variables in the GKS. Because turbu-
lent modeling error is dominant in RANS simulation, there is no 
special high-order reconstruction for Eq. (26). In current study, 
incorporated with the second-order GKS for conservative flow 
variables, the turbulent equations are solved with first-order up-
wind reconstruction and Roe scheme [52] for advection terms. 
When coupled with the high-order GKS, the turbulent models are 
solved by WENO-JS reconstruction and Roe scheme. Considering 
the source terms are quiet stiff for k − ω SST model, second-order 
central difference is used for source terms in Eq. (26).

4. Numerical tests

In this section, numerical tests from the fundamental homoge-
neous isotropic turbulence to the high-Reynolds number engineer-
ing turbulent flows will be presented to validate current extended 
BGK model and implicit high-order numerical scheme. The smooth 
flows are used to validate the high-accuracy solution in space and 
time obtained by the high-order GKS, and transonic practical tur-
bulent flows are designed to address the high-efficiency and ro-
bustness of current IHGKS. For following simulation, the collision 
time takes

τ + τt = μ + μt

p
+ C

|pl − pr |
|pl + pr |�t,

where μ is the viscous coefficient obtained from Sutherland’s Law, 
μt comes from the turbulence model, and p is the pressure at the 
interface. C is set to be 1.5 in the computation, pl and pr denote 
the pressures on the left and right sides at the cell interface. �t is 
the time step which is determined according to the CFL condition.
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Fig. 1. Spectral of TKE at dimensionless time t∗ = 0.87 with the experiment data, the 
IHGKS and the second-order IGKS. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

4.1. LES case: incompressible decaying homogeneous isotropic 
turbulence

Incompressible decaying homogeneous isotropic turbulence (ID-
HIT) is the most fundamental turbulent flow, a classical system for 
turbulence theory [53]. Additionally, IDHIT is widely used to val-
idate turbulence model and is regarded as a benchmark to verify 
the performance of high-order scheme. In current study, the ref-
erence experiment is conducted by Comte-Bellot et al. [54], with 
Taylor Reynolds number Reλ = 71.6 and turbulent Mach num-
ber Mat = 0.2. In numerical simulation, computation domain is a 
(2π)3 box with 643 and 1283 uniform grids, and periodic bound-
ary condition in 6 faces are applied. The initial turbulent fluctuat-
ing velocity fields is computed from experimental energy spectral, 
with constant pressure, density and temperature.

The turbulent fluctuating velocity u′ , the Taylor microscale λ, 
the Taylor Reynolds number Reλ , the turbulent Mach number Mat , 
and the spectral of turbulence kinetic energy (TKE) are defined as

u′ =< (u2
1 + u2

2 + u2
3)/3 >1/2,

λ2 = u′2

< (∂u1/∂x1)2 >
,

Reλ = u′λ
ν

,

Mat = < u2
1 + u2

2 + u2
3 >1/2

a
,

E(κ) = 1

2

κmax∫
κmin

�ii(κ)δ(|κ | − κ)dκ,

where < · · · > represents the space average in computation do-
main. u1, u2, and u3 are three components for turbulent fluctu-
ating velocity. Here, a represents the local sound speed, and ν
represents the kinematic viscosity as μ/ρ . Velocity spectral �ii is 
the Fourier transform of two-point correlation, with wave number 
κmin = 0 and κmax = N/2, where N is the number of grid points in 
each direction of box.

For this unsteady flow, dual-step method has not been im-
plemented in current implicit scheme, so CFL number is adopted 
similar as the explicit scheme C F L = 0.15. Current IHGKS and the 
second-order implicit GKS (IGKS) with Vreman-type LES model 
on 643 and 1283 grids are performed, using the smooth flux as 
Eq. (11). Fig. 1 shows the spectral of TKE at dimensionless time 
Table 1
Grid information of grid G1 and grid G2.

Solver Grid Nx × Ny Total grid Y +
plate

IHGKS/HGKS G1 273 × 193 5.26 × 104 0.2
CFL3D G2 543 × 385 2.10 × 105 0.08

Table 2
Maximum CFL number for the IHGKS and the explicit HGKS.

Solver Grid CFL number CPU time

IHGKS G1 2.50 0.56s/each step
HGKS G1 0.15 0.51s/each step

t∗ = 0.87, from the IHGKS and the second-order IGKS. All schemes 
behave well in low wavenumber region, and large-scale turbulent 
structure are resolved. With the same grid, from the moderate 
wavenumber region to the high wavenumber region, TKE spectral 
from the high-order scheme is much closer to the experimental 
result, which outweighs results from the second-order scheme. In 
particular, it is clear that result from the high-order scheme on 
643 grids even performs better than that from the second-order 
scheme on 1283 grids. TKE spectral indicates that current IHGKS 
obtains more accurate turbulent flow fields on coarse 643 grids, 
and the second-order GKS is more dissipative. Balancing well be-
tween the accuracy and computational costs, the IHGKS without 
Gaussian points is an appropriate trade-off for following engineer-
ing turbulence simulation.

4.2. RANS 2D case: incompressible turbulence with zero pressure 
gradient over a flat plate

Two-dimensional zero pressure gradient turbulence over flat 
plate is used to test the high efficiency of current IHGKS compared 
with the explicit HGKS. This is one of turbulence model verifica-
tion test cases provided by the NASA turbulence modeling resource 
(TMR) [55]. In current case, free stream condition is Mach num-
ber Ma = 0.2, and Reynolds number Re = 5.0 × 106 with reference 
length 1.0. The computational domain and boundary conditions 
are adopted as the NASA’s website. As presented in Table 1, CFL3D 
is implemented on fine grid G2 which provides the reference re-
sults, while the IHGKS and the explicit HGKS are performed on 
moderate grid G1. The total grid of G2 is almost 4 times more 
than that of G1, and a smaller Y +

plate is used in G2. Here, Y +
plate is 

the non-dimensional wall distance for the first level grid upon the 
plate wall.

Moderate grid G1 is split into 5 blocks for parallel computing 
on Intel Xeon E5-2962 v2 cores. As Table 2 shows, the maximum 
CFL number which can be used for the IHGKS is C F L = 2.5, how-
ever, the explicit HGKS only can reach the maximum CFL number 
C F L = 0.15. With the smooth flux as Eq. (11), the CPU time/each 
step of the IHGKS is 0.56s/each step, which is slightly longer than 
that of the explicit HGKS. In Fig. 2, total residual and residual of 
k − ω convergence curves of these two schemes are plotted. Fig. 2
(a) shows the total residual converging rate of the IHGKS is much 
faster than that of the explicit HGKS. While, turbulent variables 
k −ω are quiet stiff as Fig. 2 (b) presents. Taking the CPU time/each 
step and the total residual converging rate into consideration, the 
IHGKS can speed up more than 10 times than the explicit HGKS. 
The significant acceleration on computational efficiency obtained 
by implicit LU-SGS method is pretty important when implement-
ing engineering turbulence using high-order GKS. In the follow-
ing cases, considering the affordable computational costs, only the 
IHGKS and the second-order IGKS will be implemented for high-
Reynolds number turbulent flows.

To validate current implementation of k −ω SST model, it is le-
gitimate to compare the TKE k and specific dissipation rate ω with 
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Fig. 2. Total residual and residual of k − ω convergence curves for the IHGKS and the explicit HGKS.
reference solutions firstly. Fig. 3 shows that the non-dimensional 
TKE k and specific dissipation rate ω of the IHGKS on moderate 
grid G1 agree well with the CFL3D on fine grid G2. Friction coef-
ficient is provided for quantitative comparisons in Fig. 4. Overall, 
skin friction coefficients along the flat plate with the IHGKS and 
the second-order IGKS are comparable in Fig. 4 (a). As shown in 
Fig. 4 (b), compared with the reference solution on fine grid G2, 
current IHGKS predicts the transition region well, roughly from 
leading edge X = 0 to X = 0.02. For the second-order IGKS, this 
transition region has not been captured, which behaves similarly 
with previous second-order GKS simulation results [36]. Current 
case not only validates the high-efficiency of the IHGKS, but also 
indicates that the high-accuracy flow fields obtained by the IHGKS 
is required on moderate grid, such as transition prediction.

4.3. RANS 2D case: incompressible turbulence around NACA0012 airfoil

Engineering simulation of the incompressible NACA0012 air-
foil with angle of attack α = 15o is implemented, and the free 
stream condition is Mach number Ma = 0.15, Reynolds number 
Re = 3.0 × 106 with the reference chord length c = 1.0. For lift 
coefficient and drag coefficient study, the reference area is set as 
area = 1. This is another turbulence model verification test case 
provided by the NASA TMR [55], which involves wall curvature, 
and thus pressure gradients are no longer equal to zero as above 
incompressible flat plate turbulence. The computational domain 
and boundary conditions are used as the NASA’s website. As shown 
in Table 3, current study is based on the coarse grid G3 with 
IHGKS/IGKS, and the referee data are from the fine grid G4 with 
CFL3D. The total grid of G4 is almost 16 times more than that of 
G3, and an approximate 2 times smaller Y +

wall is used in fine grid 
G4. Here, Y +

wall is the non-dimensional wall distance for the first 
level grid upon the NACA0012 airfoil. Coarse grid G3 arrangement 
around NACA0012 is presented in Fig. 5.

CFL number is adopted as C F L = 8 and the total residual re-
duces down to the 6 orders of magnitude. In Fig. 6, Mach number 
contour and contour of normalized viscosity μt/μ are presented 
with the IHGKS on corase grid G3. As Fig. 6 shows, the incompress-
ible flow field is quite smooth, which is consistent with using the 
smooth flux as Eq. (11). Pressure coefficient distributions around 
airfoil and skin friction coefficient distributions on upper airfoil 
are presented in Fig. 7. Among several sets of experimental pres-
sure data provided by NASA’s website, data from Gregory et al. 
[56] is chosen for validation in current study. It is believed that 
the Gregory data are likely more two-dimensional and hence more 
appropriate for CFD validation of surface pressures. Fig. 7 (a) shows 
that pressure coefficients based on current IHGKS are much closer 
with the experimental data, which is better than the results from 
the second-order IGKS. As presented in Fig. 7 (b), the skin friction 
coefficients with the IHGKS agree quiet well with the reference 
data than those from the second-order IGKS. The drag coefficient 
C D is very sensitive to the pressure and skin friction distribution 
around the airfoil. As presented in Table 4, the lift coefficient, the 
drag coefficient and lift-drag ratio L/D from the IHGKS are very 
close to the reference data with CFL3D on fine grid G4. Especially, 
the discrepancy on C D is within 3 drag counts (0.0001), reaching 
the high-level requirement for engineering turbulence simulation. 
For the second-order IGKS on coarse gird G3, the lift coefficient is 
acceptable, while it over predicts the drag coefficient C D by 17.7%, 
almost 40 drag counts. This significant improvement on drag coef-
ficient with coarse grid, confirms the high-accuracy turbulent flow 
fields are obtained by current IHGKS.

4.4. RANS 2D case: transonic turbulence around RAE2822 airfoil

Transonic turbulence around RAE2822 airfoil with angle of at-
tack α = 2.79o is implemented, to validate the robustness of shock-
capturing in transonic high-Reynolds number turbulence by cur-
rent IHGKS. The free stream condition is Mach number Ma =
0.729, Reynolds number Re = 6.5 × 106 with the reference chord 
length c = 1.0. This is one turbulence model verification bench-
mark provided by the NPARC Alliance CFD Verification and Valida-
tion Web Site (NPARC) [57]. The computational domain and bound-
ary conditions are used as the NPARC website. As shown in Table 5, 
the IHGKS is implemented on the moderate grid G5 from the 
NPARC website with Y +

wall = 2.5. Since no reference solution pro-
vided by the second-order CFL3D on fine grid, for grid-independent 
analysis, fine grid G6 and grid G7 with Y +

wall = 0.625 are used for 
the second-order IGKS. The global and local grid arrangement of 
moderate grid G5 around RAE2822 are shown in Fig. 8.

CFL number is adopted as C F L = 2 and the total residual re-
duces down to the 4 orders of magnitude. In Fig. 9, Mach number 
contour and contour of normalized viscosity μt/μ are presented 
based on the IHGKS with moderate grid G5. For this kind of 
transonic flows, the full flux as Eq. (10) is necessary for shock-
capturing. Fig. 9 (a) shows the shock and its interaction with 
the turbulent boundary layer, which verify the robustness of the 
scheme on the capturing of shock. In Fig. 9 (b), the maximum 
eddy viscosity region is located near the trailing edge, which 
is different with the turbulence around NACA0012 airfoil with 
high angle of attack in Fig. 6 (b). To compare numerical solution 
from IHGKS/IGKS quantitatively, pressure coefficient distributions 
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Fig. 3. Non-dimensional contours of TKE k and specific dissipation rate ω, (a) (c) from the IHGKS on moderate grid G1, and (b) (d) from the CFL3D on fine grid G2.

Fig. 4. Skin friction coefficient C f along the flat plate (a) and within the local transitional region (b) from current IHGKS, the second-order IGKS, and the second-order CFL3D.
around airfoil and skin friction coefficient distributions on upper 
airfoil are presented in Fig. 10. As presented in Fig. 10, both the 
pressure coefficients and skin friction coefficients with the IHGKS 
and the second-order IGKS on moderate grid G5 match the exper-
imental data from Cook et al. [58] well. This indicates turbulence 
model error dominates in this transonic flows instead of numeri-
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Fig. 5. Global arrangement (a) and local arrangement (b) of coarse grid G3 around NACA0012 airfoil. c is the chord length.
Table 3
Grid information of grid G3 and grid G4.

Solver Grid Nx × Ny Total grid

IHGKS/IGKS G3 225 × 65 1.46 × 104

CFL3D G4 897 × 257 2.30 × 105

cal discretization error. To our expectation, on moderate grid G5, 
Fig. 10 (b) shows that skin friction coefficient with the IHGKS is 
slightly closer with the experiment data, compared with those us-
ing the second-order IGKS. Compared with the experimental data, 
Fig. 10 (a) shows the locations of the shock on fine grid G6 and 
G7 are slightly upstream than that on the moderate grid G5. For 
second-order GKS coupled with k − ω SST model on unstructured 
grid, the moderate grid with Y +

wall = 2.5 provides a more reliable 
location of shock than that on a fine grid which has been reported 
in previous study [36]. While, the skin friction coefficient distribu-
tions on fine grid G6 and grid G7 with the second-order IGKS show 
the tendency to get close to the distribution by IHGKS on moderate 
grid G5. In view of the robustness of shock-capturing and better 
friction coefficient provided by the IHGKS, the high-order scheme 
is still preferred to predict accurate shock-boundary interaction in 
turbulent flows.

4.5. RANS 3D case: transonic ARA M100 wing-body turbulence

Three-dimensional transonic turbulence around complex con-
figuration of ARA M100 wing-body is simulated. This case is 
adopted to keep studying the robustness of shock-capturing and 
validate the ability to simulate the three-dimensional real engi-
neering turbulence by current IHGKS. Typical cruising condition 
of ARA M100 is the one corresponding to an angle of attack 
α = 2.873◦ , Mach number Ma = 0.8027, and a local chord based 
Reynolds number of Relc = 1.31 × 107 (local chord lc = 0.245). In 
this paper, the computational domain, the boundary conditions, 
and the C-O type grid of 321 × 57 × 49 provided by CFL3D Ver-
sion 6 website [59] are used, with an off wall Y + distribution as 
follows: Y +

wing = 0.8, 0.1 ≤ Y +
f usel ≤ 30. Configuration of ARA M100 

wing-body and surface grid are shown in Fig. 11, whose black part 
is the wing and the green part represents fuselage.

The maximum CFL number of the IHGKS is C F L = 1.8, while 
the CFL number of the explicit HGKS is limited by C F L = 0.25. For 
this complex three-dimensional transonic turbulent flow, the to-
tal residual reduces down to 4 orders of magnitude, with the full 
flux as Eq. (10). Fig. 12 shows streamlines on the upper wing sur-
face and lower wing surface with pressure coefficient contours. As 
shown in Fig. 12 (a), the negative pressure coefficient regime is 
Fig. 6. Contours of Mach number (a) and normalized viscosity μt/μ (b) with the 
IHGKS on coarse grid G3 around NACA0012 airfoil.

followed by a reverse flow regime, involving adverse pressure gra-
dients. The reverse flow regime is enclosed by separated stream-
line and reattached line on the wing’s suction side, and no reverse 
flow regime appears in the lower wing surface as Fig. 12 (b). Mach 
number contours of one slice Z/b = 0.019 near the root chord 
plane and the slice Z/b = 0.935 near the wing’s tip are presented 
in Fig. 13. These wing slices show the shock and its interaction 
with the turbulent boundary layer, which confirms the robustness 
of current scheme on the capturing of shock. The shock-boundary 
interaction is similar as above transonic RAE2822 turbulence in 
Fig. 9 (a). Comparisons of pressure coefficient Cp profiles at two 
selected wing sections among the experimental data from the 
CFL3D website, current IHGKS, the second-order IGKS, and results 
from CFL3D based on S-A model [9], are plotted in Fig. 14 at two 
selected wing sections cross the reverse flow regime. As the pres-
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Fig. 7. Comparisons on pressure coefficient distributions Cp around airfoil (a) and skin friction coefficient C f distributions on upper airfoil (b) from the experiment data, 
current IHGKS, the second-order IGKS, and the second-order CFL3D.

Fig. 8. Global gird arrangement (a) and local grid arrangement (b) of moderate grid G5 around RAE2822 airfoil.
Table 4
CL and C D for NACA0012.

Solver IHGKS IGKS CFL3D

CL 1.4930 1.5170 1.5060
C D 0.02198 0.02618 0.02224
L/D 67.93 57.94 67.23

sure coefficient Cp from all schemes agree well with the experi-
ment data, it confirms that both k − ω SST model and S-A model 
have the ability to predict pressure-induced separation. For differ-
ent turbulence models, numerical results show that S-A model is 
a little better than k − ω SST model on lower wing surface, while 
k − ω SST model outweighs S-A model on the upper wing surface. 
In Fig. 14, compared with the obvious difference between different 
turbulence model, current IHGKS almost takes no advantage than 
the second-order IGKS. It is not surprising as the turbulence model 
error dominates in this transonic three-dimensional complex RANS 
simulation rather than the numerical discretization error. This in-
dicates that developing appropriate turbulence model is still the 
most important task for three-dimensional complex RANS simula-
tion. For transition flows [60,61], the turbulent model may play an 
even more important role.

5. Conclusion

In present work, targeting on accurate and efficient simulation 
of three-dimensional turbulent flows, an implicit high-order GKS 
Table 5
Grid information of grid G5, grid G6 and grid G7.

Solver Grid Nx × Ny Total grid Y +
wall

IHGKS/IGKS G5 369 × 65 2.40 × 104 2.5
IGKS G6 369 × 260 9.60 × 104 0.625
IGKS G7 738 × 260 1.92 × 105 0.625

with LU-SGS method is developed under the two-stage fourth-
order framework. Vreman-type LES model for large eddy simu-
lation and k − ω SST model for RANS simulation are coupled 
with current IHGKS. The cases of incompressible decaying homo-
geneous isotropic turbulence, incompressible high-Reynolds num-
ber flat plate turbulent flow, incompressible turbulence around 
NACA0012 airfoil, transonic turbulence around RAE2822 airfoil, and 
transonic high-Reynolds number ARA M100 wing-body turbulence, 
are tested. The IHGKS shows the higher accuracy in space and 
time than that of the second-order IGKS, especially for smooth 
flows, and obtains more accurate turbulent flow fields on coarse 
grids. Compared with the explicit HGKS, the IHGKS provides great 
improvement on the computational efficiency. In addition, the ro-
bustness of current IHGKS and the ability to capture shock are 
validated in the transonic two-dimensional and three-dimensional 
complex RANS simulation. Transonic cases indicate that turbulence 
model plays a leading role in the capturing of turbulent flow in the 
shock-boundary interaction. Compared with numerical discretiza-
tion errors, developing appropriate turbulence model is still the 
most important task for complex turbulence simulation.
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Fig. 9. Contours of Mach number (a) and normalized viscosity μt/μ (b) from the IHGKS on moderate grid G5 around RAE2822 airfoil. c is the chord length.

Fig. 10. Pressure coefficient distributions Cp around airfoil (a) and skin friction coefficient distributions C f on upper airfoil (b) from the experiment data, current IHGKS, and 
the second-order IGKS.

Fig. 11. Configuration of ARA M100 wing-body (a) and illustration of surface grid (b).
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Fig. 12. Streamlines on the upper wing surface (a) and lower wing surface (b) of ARA M100 wing-body with pressure coefficient contours.

Fig. 13. Contours of Mach number at slice Z/b = 0.019 (a) and slice Z/b = 0.935 (b). Z is the distance to the root chord plane and b is the wing span of ARA M100 
wing-body.

Fig. 14. Comparisons of pressure coefficient Cp profiles at selected span-wise locations of ARA M100 wing-body from the experiment data, current IHGKS, the second-order 
IGKS, and the second-order CFL3D. c is the local chord length.
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