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In the previous studies, the high-order gas-kinetic schemes (HGKS) have achieved successes for 
unsteady flows on three-dimensional unstructured meshes. In this paper, to accelerate the rate of 
convergence for steady flows, the implicit non-compact and compact HGKSs are developed. For 
non-compact scheme, the simple weighted essentially non-oscillatory (WENO) reconstruction is 
used to achieve the spatial accuracy, where the stencils for reconstruction contain two levels of 
neighboring cells. Incorporate with the nonlinear generalized minimal residual (GMRES) method, 
the implicit non-compact HGKS is developed. In order to improve the resolution and parallelism 
of non-compact HGKS, the implicit compact HGKS is developed with Hermite WENO (HWENO) 
reconstruction, in which the reconstruction stencils only contain one level of neighboring cells. 
The cell averaged conservative variable is also updated with GMRES method. Simultaneously, a 
simple strategy is used to update the cell averaged gradient by the time evolution of spatial-

temporal coupled gas distribution function. To accelerate the computation, the implicit non-

compact and compact HGKSs are implemented with the graphics processing unit (GPU) using 
compute unified device architecture (CUDA). A variety of numerical examples, from the subsonic 
to supersonic flows, are presented to validate the accuracy, robustness and efficiency of both 
inviscid and viscous flows.

1. Introduction

The simulation of compressible flows with complex geometry is an important issue for computational fluid dynamics, and the 
unstructured meshes are widely used due to the flexibility. For the spatial reconstruction, various high-order numerical methods 
on unstructured meshes have been developed in the past decades, such as essential non-oscillatory (ENO) [1] and weighted essen-

tial non-oscillatory (WENO) [14,46], Hermite WENO (HWENO) methods [12,26,48,27], discontinuous Galerkin (DG) [10,8], flux 
reconstruction (FR) [15] and correction procedure using reconstruction (CPR) [37], etc. For the temporal discretization, early efforts 
mainly focused on explicit schemes on unstructured meshes, and the most widely used method is the Runge-Kutta schemes [13]. 
However, for steady flows, the rate of convergence slows down dramatically. In order to speed up the convergence, the implicit tem-

poral discretization is required. In general, the implicit method requires to solve a large system of equation, which arises from the 
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linearization of a fully implicit scheme at each time step. Several methods are used to solve the large sparse system on unstructured 
meshes, including approximate factorization methods and iterative solution methods. As an approximate factorization method, the 
lower-upper symmetric Gauss-Seidel (LUSGS) method on structured meshes was originally developed by Jameson and Yoon [43], and 
it has been successfully extended to unstructured meshes [31,7]. The most attractive feature of this method is that it does not require 
any extra memory compared with the explicit methods and is free from any matrix inversion. However, LUSGS method is not ideally 
effective because of slow convergence, and requires thousands of time steps to achieve the steady state. As an iterative method, the 
most successful and effective method is the Krylov subspace method, such as the nonlinear generalized minimal residual (GMRES) 
method [29,4]. The GMRES method always has a faster convergence speed, but the drawback is that they require a considerable 
amount of memory to store the Jacobian matrix, which may be prohibitive for large problems. To save the storage, the matrix-free 
GMRES method has been applied to unstructured meshes for steady and unsteady flows [21,22]. To improve the convergence, a wide 
variety of preconditioners [11,20,35,40,47] are also applied to the methods above.

In the past decades, the gas-kinetic scheme (GKS) based on the Bhatnagar-Gross-Krook (BGK) model [3,6] has been developed 
systematically for the computations from low speed flows to supersonic ones [39,38]. The gas-kinetic scheme presents a gas evolution 
process from the kinetic scale to hydrodynamic scale, and both inviscid and viscous fluxes can be calculated in one framework. 
With the two-stage temporal discretization, which was originally developed for the Lax-Wendroff type flow solvers [18], a reliable 
framework was provided to construct gas-kinetic scheme with fourth-order and even higher-order temporal accuracy [24,25]. With 
the simple WENO type reconstruction, the third-order gas-kinetic schemes on three-dimensional unstructured meshes [41,42] are 
developed, in which a simple strategy of selecting stencils for reconstruction is adopted and the topology independent linear weights 
are used. Based on the spatial and temporal coupled property of GKS solver and HWENO reconstruction, the explicit high-order 
compact gas-kinetic schemes are also developed [16,17,44,45]. In the compact scheme, the time-dependent gas distribution function 
at a cell interface is used to calculate the fluxes for the updating the cell-averaged flow variables, and to evaluate the cell-averaged 
gradients of flow variables. Numerical results demonstrate that the superior robustness in high speed flow computation and the 
favorable mesh adaptability for complex geometry of high-order compact schemes. For the gas-kinetic scheme, several implicit 
algorithms have also been developed to simulate from continuum and rarefied flows [51,41,42,33]. The implicit methods provide 
efficient techniques for speeding up the convergence of steady flows.

In this paper, the implicit non-compact and compact HGKSs are developed on the three-dimensional unstructured meshes. For 
non-compact GKS scheme, the third-order WENO reconstruction is used, where the stencils are selected from the neighboring cells 
and the neighboring cells of neighboring cells. Incorporate with the GMRES method, the implicit non-compact scheme is developed 
for steady problems. In order to balance the computational efficiency and memory storage, the GMRES method is based on numerical 
Jacobian matrix with Roe’s approximation. To improve the resolution and parallelism, the implicit compact HGKS is also developed 
with HWENO reconstruction, where the stencils only contain one level of neighboring cells. Since the cell averaged conservative 
variables and gradients need to be updated simultaneously, the GMRES method is associated with a suitable update strategy at each 
time step. For steady problems, the update of cell averaged gradient can be driven by time evolution of gas distribution function 
directly. To further accelerate the computation, the Jacobi iteration is chosen as preconditioner for both non-compact and compact 
schemes. Various three-dimensional numerical experiments, from the subsonic to supersonic flows, are presented to validate the 
accuracy and robustness of current implicit scheme. To accelerate the computation, the current schemes are implemented to run on 
graphics processing unit (GPU) using compute unified device architecture (CUDA). The GPU code is implemented with single Nvidia 
Quadro RTX 8000 GPU, and the CPU code is run with Intel Xeon Gold 6230R CPU with 16 OpenMP threads. Compared with the CPU 
code, 8x speedup is achieved for GPU code. In the future, more challenging compressible flow problems will be investigated with 
multiple GPUs.

This paper is organized as follows. In Section 2, BGK equation and finite volume scheme will be introduced. The third-order 
non-compact and compact gas-kinetic scheme will be presented in Section 3. Section 4 includes the implicit method and its parallel 
computation. Numerical examples are included in Section 5. The last section is the conclusion.

2. BGK equation and finite volume scheme

The Boltzmann equation expresses the behavior of a many-particle kinetic system in terms of the evolution equation for a single 
particle gas distribution function. The BGK equation [3,6] is the simplification of Boltzmann equation, and the three-dimensional 
BGK equation can be written as

𝑓𝑡 + 𝑢𝑓𝑥 + 𝑣𝑓𝑦 +𝑤𝑓𝑧 =
𝑔 − 𝑓
𝜏

, (1)

where 𝒖 = (𝑢, 𝑣, 𝑤) is the particle velocity, 𝜏 is the collision time, 𝑓 is the gas distribution function. 𝑔 is the equilibrium state given 
by Maxwellian distribution

𝑔 = 𝜌( 𝜆
𝜋
)(𝑁+3)∕2𝑒−𝜆[(𝑢−𝑈 )2+(𝑣−𝑉 )2+(𝑤−𝑊 )2+𝜉2],

where 𝜌 is the density, 𝑼 = (𝑈, 𝑉 , 𝑊 ) is the macroscopic fluid velocity, and 𝜆 is the inverse of gas temperature, i.e., 𝜆 =𝑚∕2𝑘𝑇 . In 
the BGK model, the collision operator involves a simple relaxation from 𝑓 to the local equilibrium state 𝑔. The variable 𝜉 accounts 
for the internal degree of freedom, 𝜉2 = 𝜉21 +⋯ + 𝜉2

𝑁
, 𝑁 = (5 −3𝛾)∕(𝛾 −1) is the internal degree of freedom, and 𝛾 is the specific heat 
2

ratio. The collision term satisfies the compatibility condition
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ˆ
𝑔 − 𝑓
𝜏

𝜓dΞ = 0,

where 𝜓 = (1, 𝑢, 𝑣, 𝑤, 1
2
(𝑢2 + 𝑣2 + 𝑤2 + 𝜉2))𝑇 and dΞ = d𝑢d𝑣d𝑤d𝜉1… d𝜉𝑁 . According to the Chapman-Enskog expansion for BGK 

equation, the macroscopic governing equations can be derived. In the continuum region, the BGK equation can be rearranged and 
the gas distribution function can be expanded as

𝑓 = 𝑔 − 𝜏𝐷𝒖𝑔 + 𝜏𝐷𝒖(𝜏𝐷𝒖)𝑔 − 𝜏𝐷𝒖[𝜏𝐷𝒖(𝜏𝐷𝒖)𝑔] + ...,

where 𝐷𝒖 =
𝜕

𝜕𝑡
+ 𝒖 ⋅∇. With the zeroth-order truncation 𝑓 = 𝑔, the Euler equations can be obtained. For the first-order truncation

𝑓 = 𝑔 − 𝜏(𝑢𝑔𝑥 + 𝑣𝑔𝑦 +𝑤𝑔𝑧 + 𝑔𝑡),

the Navier-Stokes equations can be obtained [39,38].

Taking moments of Eq. (1) and integrating with respect to space, the semi-discretized finite volume scheme can be expressed as

|Ω𝑖|d𝑄𝑖

d𝑡
=(𝑄𝑖), (2)

where 𝑄𝑖 = (𝜌, 𝜌𝑈, 𝜌𝑉 , 𝜌𝑊 , 𝜌𝐸) is the cell averaged conservative value of Ω𝑖, 𝜌 is the density, 𝑈, 𝑉 , 𝑊 is the flow velocity, 𝜌𝐸 is 
the total energy density and |Ω𝑖| is the volume of Ω𝑖. The operator  is defined as

(𝑄𝑖) = −
∑

𝑖𝑝∈𝑁(𝑖)
𝐹𝑖,𝑖𝑝

(𝑡)𝑆𝑖𝑝 = −
∑

𝑖𝑝∈𝑁(𝑖)

¨

Σ𝑖𝑝

𝑭 (𝑄, 𝑡)d𝜎, (3)

where Σ𝑖𝑝 is the common cell interface of Ω𝑖, 𝑆𝑖𝑝 is the area of Σ𝑖𝑝 and 𝑁(𝑖) is the set of index for neighboring cells of Ω𝑖 . To achieve 
the expected order of accuracy, the Gaussian quadrature is used for the flux integration

¨

Σ𝑖𝑝

𝑭 (𝑄, 𝑡)d𝜎 =
∑
𝐺

𝜔𝐺𝐹𝐺(𝑡)𝑆𝑖𝑝 ,

where 𝜔𝐺 is the quadrature weights. The numerical flux 𝐹𝐺(𝑡) at Gaussian quadrature point 𝒙𝐺 can be given by taking moments of 
gas distribution function

𝐹𝐺(𝑡) =
ˆ
𝝍𝒖 ⋅ 𝒏𝐺𝑓 (𝒙𝐺, 𝑡,𝒖, 𝜉)dΞ,

where 𝐹𝐺(𝑡) = (𝐹𝜌

𝐺
, 𝐹𝜌𝑈

𝐺
, 𝐹𝜌𝑉

𝐺
, 𝐹𝜌𝑊

𝐺
, 𝐹𝜌𝐸

𝐺
) and 𝒏𝐺 is the local normal direction of cell interface. With the coordinate transforma-

tion, the numerical flux in the global coordinate can be obtained. Based on the integral solution of BGK equation Eq. (1), the gas 
distribution function 𝑓 (𝒙𝐺, 𝑡, 𝒖, 𝜉) in the local coordinate can be given by

𝑓 (𝒙𝐺, 𝑡,𝒖, 𝜉) =
1
𝜏

𝑡ˆ

0

𝑔(𝒙′, 𝑡′,𝒖, 𝜉)𝑒−(𝑡−𝑡′)∕𝜏d𝑡′ + 𝑒−𝑡∕𝜏𝑓0(−𝒖𝑡, 𝜉),

where 𝒙′ = 𝒙𝐺−𝒖(𝑡 − 𝑡′) is the trajectory of particles, 𝑓0 is the initial gas distribution function, and 𝑔 is the corresponding equilibrium 
state. With the first order spatial derivatives, the second-order gas distribution function at cell interface can be expressed as

𝑓 (𝒙𝐺, 𝑡,𝒖, 𝜉) =(1 − 𝑒−𝑡∕𝜏 )𝑔0 + ((𝑡+ 𝜏)𝑒−𝑡∕𝜏 − 𝜏)(𝑎1𝑢+ 𝑎2𝑣+ 𝑎3𝑤)𝑔0

+(𝑡− 𝜏 + 𝜏𝑒−𝑡∕𝜏 )�̄�𝑔0

+𝑒−𝑡∕𝜏𝑔𝑟[1 − (𝜏 + 𝑡)(𝑎𝑟1𝑢+ 𝑎
𝑟
2𝑣+ 𝑎

𝑟
3𝑤) − 𝜏𝐴

𝑟)](1 −𝐻(𝑢))

+𝑒−𝑡∕𝜏𝑔𝑙[1 − (𝜏 + 𝑡)(𝑎𝑙1𝑢+ 𝑎
𝑙
2𝑣+ 𝑎

𝑙
3𝑤) − 𝜏𝐴

𝑙)]𝐻(𝑢), (4)

where the equilibrium state 𝑔0 and the corresponding conservative variables 𝑄0 can be determined by the compatibility condition
ˆ
𝜓𝑔0dΞ =𝑄0 =

ˆ

𝑢>0

𝜓𝑔𝑙dΞ+
ˆ

𝑢<0

𝜓𝑔𝑟dΞ.

With the reconstruction of macroscopic variables, the coefficients in Eq. (4) can be fully determined by the reconstructed derivatives 
and compatibility condition

⟨𝑎𝑘1⟩ = 𝜕𝑄𝑘

𝜕𝒏𝒙
, ⟨𝑎𝑘2⟩ = 𝜕𝑄𝑘

𝜕𝒏𝒚
, ⟨𝑎𝑘3⟩ = 𝜕𝑄𝑘

𝜕𝒏𝒛
, ⟨𝑎𝑘1𝑢+ 𝑎𝑘2𝑣+ 𝑎𝑘3𝑤+𝐴𝑘⟩ = 0,

𝜕𝑄0 𝜕𝑄0 𝜕𝑄0
3

⟨𝑎1⟩ =
𝜕𝒏𝒙

, ⟨𝑎2⟩ =
𝜕𝒏𝒚

, ⟨𝑎3⟩ =
𝜕𝒏𝒛

, ⟨𝑎1𝑢+ 𝑎2𝑣+ 𝑎3𝑤+𝐴⟩ = 0,
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where 𝑘 = 𝑙 and 𝑟, 𝒏𝒙, 𝒏𝒚 , 𝒏𝒛 are the unit directions of local coordinate at 𝒙𝐺 and ⟨...⟩ are the moments of the equilibrium 𝑔 and 
defined by

⟨...⟩ = ˆ
𝑔(...)𝜓dΞ.

More details of the gas-kinetic scheme can be found in [39,38].

3. Spatial reconstruction

To deal with the complex geometry, the three-dimensional unstructured meshes are considered, and the tetrahedral and hexa-

hedral meshes are used in this paper for simplicity. In the previous studies, the high-order gas-kinetic schemes have be developed 
with the third-order non-compact WENO reconstruction [41,42] and compact HWENO reconstruction [17,44]. Successes have been 
achieved for the unsteady flows from the subsonic to supersonic flow problems. For the unstructured meshes, the classical WENO re-

construction, in which the high-order accuracy is achieved by non-linear combination of lower order polynomials, becomes extremely 
complicated for three-dimensional problems [14,46]. In this paper, the idea of simple WENO reconstruction is adopted [49,50]. The 
high-order accuracy is achieved by non-linear combination of high-order and lower-order polynomials, and the constant linear 
weights are adopted.

3.1. Selection of stencils

For the cell Ω𝑖, the faces are labeled as 𝐹𝑝, where 𝑝 = 1, … , 4 for tetrahedral cell, and 𝑝 = 1, … , 6 for hexahedral cell. The 
neighboring cell of Ω𝑖, which shares the face 𝐹𝑝, is denoted as Ω𝑖𝑝

. Meanwhile, the neighboring cells of Ω𝑖𝑝
are denoted as Ω𝑖𝑝𝑚

. To 
achieve the third-order accuracy, a big stencil for non-compact reconstruction for cell Ω𝑖 is selected as follows

𝑆𝑊𝐸𝑁𝑂
𝑖

= {Ω𝑖,Ω𝑖𝑝
,Ω𝑖𝑝𝑚

},

which is consisted of the neighboring cells and neighboring cells of neighboring cells of Ω𝑖. Meanwhile, a big stencil for compact 
reconstruction for cell Ω𝑖 is selected as follows

𝑆𝐻𝑊𝐸𝑁𝑂
𝑖

= {Ω𝑖,Ω𝑖𝑝
},

which is only consist of the neighboring cells of Ω𝑖 .

To deal with the discontinuity, the sub-stencils 𝑆𝑊𝐸𝑁𝑂
𝑖𝑚

in non-compact WENO reconstruction for cell Ω𝑖 are selected, where 
𝑚 = 1, … , 𝑀 and 𝑀 is the number of sub-stencils. For the hexahedral cell, 𝑀 = 8 and the sub-candidate stencils are selected as

𝑆𝑊𝐸𝑁𝑂
𝑖1

= {Ω𝑖,Ω𝑖1
,Ω𝑖2

,Ω𝑖3
}, 𝑆𝑊 𝐸𝑁𝑂

𝑖5
= {Ω𝑖,Ω𝑖6

,Ω𝑖2
,Ω𝑖3

},

𝑆𝑊 𝐸𝑁𝑂
𝑖2

= {Ω𝑖,Ω𝑖1
,Ω𝑖3

,Ω𝑖4
}, 𝑆𝑊 𝐸𝑁𝑂

𝑖6
= {Ω𝑖,Ω𝑖6

,Ω𝑖3
,Ω𝑖4

},

𝑆𝑊 𝐸𝑁𝑂
𝑖3

= {Ω𝑖,Ω𝑖1
,Ω𝑖4

,Ω𝑖5
}, 𝑆𝑊 𝐸𝑁𝑂

𝑖7
= {Ω𝑖,Ω𝑖6

,Ω𝑖4
,Ω𝑖5

},

𝑆𝑊 𝐸𝑁𝑂
𝑖4

= {Ω𝑖,Ω𝑖1
,Ω𝑖5

,Ω𝑖2
}, 𝑆𝑊 𝐸𝑁𝑂

𝑖8
= {Ω𝑖,Ω𝑖6

,Ω𝑖5
,Ω𝑖2

}.

The linear polynomials can be determined based on above stencils, which contain the target cell Ω𝑖 and three neighboring cells. For 
the tetrahedral cells, in order to avoid the centroids of Ω𝑖 and three of neighboring cells becoming coplanar, additional cells are 
needed for the sub-candidate stencils. For the tetrahedral cell, four sub-candidate stencils are selected as

𝑆𝑊𝐸𝑁𝑂
𝑖1

= {Ω𝑖,Ω𝑖1
,Ω𝑖2

,Ω𝑖3
,Ω𝑖11

,Ω𝑖12
,Ω𝑖13

},

𝑆𝑊 𝐸𝑁𝑂
𝑖2

= {Ω𝑖,Ω𝑖1
,Ω𝑖2

,Ω𝑖4
,Ω𝑖21

,Ω𝑖22
,Ω𝑖23

},

𝑆𝑊 𝐸𝑁𝑂
𝑖3

= {Ω𝑖,Ω𝑖2
,Ω𝑖3

,Ω𝑖4
,Ω𝑖31

,Ω𝑖32
,Ω𝑖33

},

𝑆𝑊 𝐸𝑁𝑂
𝑖4

= {Ω𝑖,Ω𝑖3
,Ω𝑖1

,Ω𝑖4
,Ω𝑖41

,Ω𝑖42
,Ω𝑖43

},

where Ω𝑖𝑝𝑛
≠ Ω𝑖, 𝑝 = 1, … , 4 and 𝑛 = 1, 2, 3. The cells of sub-candidate stencils are consist of the three neighboring cells and three 

neighboring cells of one neighboring cell. With such an enlarged sub-stencils, the linear polynomials can be determined.

Meanwhile, the sub-stencils 𝑆𝐻𝑊𝐸𝑁𝑂
𝑖𝑚

in compact HWENO reconstruction for cell Ω𝑖 can be selected more simply. The sub-

candidate stencils are selected as

𝑆𝐻𝑊𝐸𝑁𝑂
𝑖𝑚

= {Ω𝑖,Ω𝑖𝑓
},

where Ω𝑖𝑓
is one of the neighboring cells of the target cell Ω𝑖, 𝑚 = 1, … , 𝑀 and 𝑀 equal to the number of the faces of cell Ω𝑖. 

The linear polynomials can be determined on such small stencils with additional degree of freedoms. Noticed that the sub-stencils 
4

𝑆𝑊𝐸𝑁𝑂
𝑖𝑚

for hexahedral cells also belong to compact sub-candidate stencils.
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3.2. Non-compact WENO reconstruction

For the target cell Ω𝑖, the big stencil 𝑆𝑊𝐸𝑁𝑂
𝑖

is rearranged as {Ω0, Ω1, ..., Ω𝐾} and the sub-stencil 𝑆𝑊𝐸𝑁𝑂
𝑖𝑚

is rearranged as 
{Ω0, Ω𝑚1

, …, Ω𝑚𝐾
}, where Ω0 is the target cell. A quadratic polynomial and several linear polynomials can be constructed based on 

the big stencil 𝑆𝑊𝐸𝑁𝑂
𝑖

and the sub-stencils 𝑆𝑊𝐸𝑁𝑂
𝑖𝑚

as follows

𝑃0(𝒙) =𝑄0 +
2∑

|𝒅|=1
𝑎𝒅𝑝𝒅(𝒙),

𝑃𝑚(𝒙) =𝑄0 +
∑
|𝒅|=1

𝑏𝑚
𝒅
𝑝𝒅(𝒙),

(5)

where 𝑚 = 1, … , 𝑀 , 𝑄0 is the cell averaged variables over Ω0 with newly rearranged index, the multi-index 𝒅 = (𝑑1, 𝑑2, 𝑑3) and |𝒅| = 𝑑1 + 𝑑2 + 𝑑3. The base function 𝑝𝒅(𝒙) is defined as

𝑝𝒅(𝒙) = 𝑥𝑑1𝑦𝑑2𝑧𝑑3 −
1||Ω0||

˚

Ω0

𝑥𝑑1𝑦𝑑2𝑧𝑑3d𝑉 .

To determine these polynomials, the following constrains need to be satisfied

1||Ω𝑘
||
˚

Ω𝑘

𝑃0(𝒙)d𝑉 =𝑄𝑘, Ω𝑘 ∈ 𝑆𝑊𝐸𝑁𝑂
𝑖

,

1|||Ω𝑚𝑘

|||
˚

Ω𝑚𝑘

𝑃𝑚(𝒙)d𝑉 =𝑄𝑚𝑘
, Ω𝑚𝑘

∈ 𝑆𝑊𝐸𝑁𝑂
𝑖𝑚

,

where 𝑘 = 0, … , 𝐾 , 𝑚𝑘 = 0, … , 𝑚𝐾 , 𝑄𝑘 and 𝑄𝑚𝑘
are the conservative variable with newly rearranged index. The over-determined 

linear systems can be generated and the least square method is used to obtain the coefficients 𝑎𝒅 and 𝑏𝑚
𝒅

.

3.3. Compact HWENO reconstruction

For the target cell Ω𝑖, the big stencil 𝑆𝐻𝑊𝐸𝑁𝑂
𝑖

is rearranged as {Ω0, Ω1, ..., Ω𝐾} and the sub-stencil 𝑆𝐻𝑊𝐸𝑁𝑂
𝑖𝑚

is rearranged as 
{Ω0, Ω𝑚1

}, where Ω0 is the target cell. The quadratic polynomial and linear polynomials in Eq. (5) can be also reconstructed based 
on the compact big stencil 𝑆𝐻𝑊𝐸𝑁𝑂

𝑖
and sub-stencils 𝑆𝐻𝑊𝐸𝑁𝑂

𝑖𝑚
respectively. To determine these polynomials with a smaller stencil, 

the additional constrains need to be added for all cells as follows

1||Ω𝑘
||
˚

Ω𝑘

𝑃0(𝒙)d𝑉 =𝑄𝑘, Ω𝑘 ∈ 𝑆𝐻𝑊𝐸𝑁𝑂
𝑖

,

1||Ω𝑘
||
˚

Ω𝑘

𝜕

𝜕𝝉
𝑃0(𝒙)d𝑉 = (𝑄𝝉 )𝑘, Ω𝑘 ∈ 𝑆𝐻𝑊𝐸𝑁𝑂

𝑖
,

(6)

and

1|||Ω𝑚𝑘

|||
˚

Ω𝑚𝑘

𝑃𝑚(𝒙)d𝑉 =𝑄𝑚𝑘
, Ω𝑚𝑘

∈ 𝑆𝐻𝑊𝐸𝑁𝑂
𝑖𝑚

,

1|||Ω𝑚𝑘

|||
˚

Ω𝑚𝑘

𝜕

𝜕𝝉
𝑃𝑚(𝒛)d𝑉 = (𝑄𝝉 )𝑚𝑘 , Ω𝑚𝑘

∈ 𝑆𝐻𝑊𝐸𝑁𝑂
𝑖𝑚

,

(7)

where 𝝉 is the unit directions of local coordinate, i.e., 𝒏𝑥, 𝒏𝑦, 𝒏𝑧, 𝑘 = 0, … , 𝐾 , 𝑚𝑘 = 0, 𝑚1, 𝑄𝑘, 𝑄𝑘 and 𝑄𝑚𝑘
are the cell averaged 

conservative variables and (𝑄𝒏𝑥 )𝑘, (𝑄𝒏𝑦 )𝑘, (𝑄𝒏𝑧 )𝑘 and (𝑄𝒏𝑥 )𝑚𝑘 , (𝑄𝒏𝑦 )𝑚𝑘 , (𝑄𝒏𝑧 )𝑚𝑘 are the cell averaged directional derivatives over 
Ω𝑘 ∈ 𝑆𝐻𝑊𝐸𝑁𝑂

𝑖
and Ω𝑚𝑘

∈ 𝑆𝐻𝑊𝐸𝑁𝑂
𝑖𝑚

respectively with newly rearranged index.

In order to solve the systems in Eq. (6) and Eq. (7), the cell averaged directional derivatives on the right-hand side need to be 
calculated. Different from the traditional Riemann solvers, the gas-kinetic scheme provides a time-dependent gas distribution function 
by Eq. (4). Meanwhile, the macroscopic conservative variables can be obtained by taking moments of the distribution function as 
well

𝑄(𝒙𝐺, 𝑡) =
ˆ
𝝍𝑓 (𝒙𝐺, 𝑡,𝒖, 𝜉)dΞ. (8)
5

According to the Gauss’s theorem, the cell averaged gradient of the flow variable 𝑄 can be calculated as follows
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|Ω𝑘|(∇𝑄)𝑘(𝑡) =
˚

Ω𝑘

∇𝑄(𝑡)d𝑉 =
¨

𝜕Ω𝑘

𝑄(𝑡)𝝉d𝑆

=
∑

𝑖𝑝∈𝑁(𝑘)

(∑
𝐺

𝜔𝐺

(ˆ
𝝍𝑓 (𝒙𝐺, 𝑡,𝒖, 𝜉)dΞ

)
𝝉𝑆𝑖𝑝

)
,

(9)

where Ω𝑘 is arbitrary cell in computational mesh, (∇𝑄)𝑘 is the cell averaged gradient of the flow variable 𝑄𝑘 over cell Ω𝑘, ∇𝑄
is the distribution of flow gradient, 𝝉 = (𝒏𝒙, 𝒏𝒚 , 𝒏𝒛) are the unit directions of local coordinate on the cell interface. With Gaussian 
quadrature rule, the cell-averaged gradient (∇𝑄)𝑘 at 𝑡 = 𝑡𝑛 can be obtained. It means that the computation of cell-averaged gradient 
(∇𝑄)𝑘 can be turned to calculate the point value of 𝑄 of cell interface in a local orthogonal coordinate. In practice, the derivative 
parts in Eq. (6) and Eq. (7) are scaled by ℎ = |Ω𝑘|1∕3 and |Ω𝑚𝑘

|1∕3 for a smaller condition number of the matrix in the linear system 
of 𝑎𝒅 and 𝑏𝒅 . If the coefficients 𝑎𝒅 and 𝑏𝒅 are solved by the least square method, the linear instability will be introduced for the 
compact reconstruction. In order to overcome this drawback, the constrained least-square method is used for solving the above linear 
systems, where the conservative variable equations are set as strictly satisfied and others are satisfied in the sense of least square 
[19].

3.4. Non-linear combination

With the reconstructed polynomial 𝑃𝑚(𝒙), 𝑚 = 0, ..., 𝑀 , the point-value 𝑄(𝒙𝐺) and the spatial derivatives 𝜕𝑥,𝑦,𝑧𝑄(𝒙𝐺) for recon-

structed variables at Gaussian quadrature point can be given by the non-linear combination

𝑄(𝒙𝐺) = 𝜔0(
1
𝛾0
𝑃0(𝒙𝐺)−

𝑀∑
𝑚=1

𝛾𝑚

𝛾0
𝑃𝑚(𝒙𝐺)) +

𝑀∑
𝑚=1

𝜔𝑚𝑃𝑚(𝒙𝐺),

𝜕𝑥,𝑦,𝑧𝑄(𝒙𝐺) = 𝜔0(
1
𝛾0
𝜕𝑥,𝑦,𝑧𝑃0(𝒙𝐺)−

𝑀∑
𝑚=1

𝛾𝑚

𝛾0
𝜕𝑥,𝑦,𝑧𝑃𝑚(𝒙𝐺)) +

𝑀∑
𝑚=1

𝜔𝑚𝜕𝑥,𝑦,𝑧𝑃𝑚(𝒙𝐺),

(10)

where 𝛾0, 𝛾1, … , 𝛾𝑀 are the linear weights. The non-linear weights 𝜔𝑚 and normalized non-linear weights 𝜔𝑚 are defined as

𝜔𝑚 =
𝜔𝑚∑𝑀

𝑚=0𝜔𝑚
, 𝜔𝑚 = 𝛾𝑚

[
1 +

( 𝜏𝑍

𝛽𝑚 + 𝜖

)]
, 𝜏𝑍 =

𝑀∑
𝑚=1

( |𝛽0 − 𝛽𝑚|
𝑀

)
,

where 𝜖 is a small positive number. The smooth indicator 𝛽𝑚 is defined as

𝛽𝑚 =
𝑟𝑚∑

|𝑙|=1
|Ω𝑖| 2|𝑙|3 −1

ˆ

Ω𝑖

( 𝜕𝑙𝑃𝑚

𝜕
𝑙1
𝑥 𝜕

𝑙2
𝑦 𝜕

𝑙3
𝑧

(𝑥, 𝑦, 𝑧)
)2

d𝑉 ,

where 𝑟0 = 2 and 𝑟𝑚 = 1 for 𝑚 = 1, … , 𝑀 . It can be proved that Eq. (10) ensures third-order accuracy and more details can be found 
in [41,17]. In the computation, the linear weights are set as 𝛾𝑖 = 0.025, 𝛾0 = 1 − 𝛾𝑖𝑀 for both non-compact and compact scheme 
without special statement.

4. Implicit method

4.1. Implicit method for non-compact scheme

The backward Euler method for the semi discretized scheme Eq. (2) at 𝑡𝑛+1 is given by

|Ω𝑖|
Δ𝑡

Δ𝑄𝑛
𝑖
=(𝑄𝑛+1

𝑖
), (11)

where Δ𝑄𝑛
𝑖
=𝑄𝑛+1

𝑖
−𝑄𝑛

𝑖
, Δ𝑡 is the time step and (𝑄𝑛+1

𝑖
) can be linearized as

(𝑄𝑛+1
𝑖

) ≈ (𝑄𝑛
𝑖
) + ( d

d𝑄
)Δ𝑄𝑛

𝑖
,

where d
d𝑄

is the Jacobian matrix. Eq. (11) can be rewritten as

( |Ω𝑖|
Δ𝑡

𝐼 − ( d
d𝑄

)
)
Δ𝑄𝑛

𝑖
=(𝑄𝑛

𝑖
), (12)

where 𝐼 is an identity matrix. In order to preserve the temporal evolution advantage brought by the GKS solver, the residual term at 
time step 𝑡 = 𝑡𝑛 for both non-compact and compact schemes is given by taking integration of Eq. (3) over the time interval

(𝑄𝑛) = −
∑ (∑

𝜔𝐺

( 1
Δ𝑡ˆ ˆ

𝜓𝒖𝑓 (𝒙𝐺, 𝑡,𝒖, 𝜉)𝒏𝐺dΞd𝑡
)
𝑆𝑖

)
.

6

𝑖
𝑖𝑝∈𝑁(𝑖) 𝐺

Δ𝑡
0

𝑝
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In the previous study, LUSGS method was implemented for the high-order GKS on the unstructured meshes [41,42]. For the 
steady state problem, LUSGS method converges more efficiently than the explicit methods. However, it still requires a great number 
of time steps to achieve a satisfactory final residual. In order to speed up the convergence, the Newton-GMRES method [29,4] will be 
implemented for the high-order GKS on the three-dimensional unstructured meshes. The linearized equation Eq. (12) can be simply 
written into the following form

𝑨Δ𝑄𝑛 =𝑹𝑛.

The purpose of the GMRES method is finding an approximate solution over a finite dimensional orthogonal space

Δ𝑄𝑛 ≈Δ𝑄(𝑚) = Δ𝑄(0) + 𝒖𝑚,

such that

‖𝒓(𝑚)‖2 = min
𝒖𝑚∈𝐾𝑚

‖𝑹𝑛 −𝑨(Δ𝑄(0) + 𝒖𝑚)‖2 = min
𝒖𝑚∈𝐾𝑚

‖𝒓(0) −𝑨𝒖𝑚‖2.
With the initial condition 𝑄𝑛 and arbitrary initial solution Δ𝑄(0), which is chosen as Δ𝑄(0) = 0, the initial residual is given by

𝒓(0) =𝑹𝑛 −𝑨Δ𝑄(0).

The Krylov subspace of 𝒓(0), which is used for searching the approximation solution, can be generated by

𝐾𝑚 ≡ span{𝒗1,𝒗2,… ,𝒗𝑚} = span{𝒓(0),𝑨𝒓(0),… ,𝑨𝑚−1𝒓(0)}.

To save the memory storage, the matrix-free GMRES method is widely employed [21,22]. In order to avoid calculating the Jabobian 
matrix in 𝑨 directly, the 𝐹 -derivative is used as follows

( 𝜕
𝜕𝑄

)Δ𝑄𝑛 ≈ (𝑄𝑛 + 𝜎Δ𝑄𝑛) −(𝑄𝑛)
𝜎

, (13)

where the subscript is omitted and 𝜎 is a small scalar to be chosen carefully. Although the above matrix-free approximation reduces 
the memory storage requirement, the reconstruction processes combined with GKS solver involved in Eq. (13) will cost too much 
time, which will reduce the computational efficiency greatly. Taking the balance of computational efficiency and memory storage 
into account, the GMRES method with an approximation matrix is employed in this paper. The system Eq. (11) can be written into 
the flux form

|Ω𝑖|
Δ𝑡

Δ𝑄𝑛
𝑖
+

∑
𝑖𝑝∈𝑁(𝑖)

(
𝐹𝑛+1
𝑖,𝑖𝑝

− 𝐹𝑛
𝑖,𝑖𝑝

)
𝑆𝑖𝑝

= −
∑

𝑖𝑝∈𝑁(𝑖)
𝐹𝑛
𝑖,𝑖𝑝
𝑆𝑖𝑝

=(𝑄𝑛
𝑖
). (14)

According to the total differential formulation,

𝐹𝑛+1
𝑖,𝑖𝑝

− 𝐹𝑛
𝑖,𝑖𝑝

= 𝐹 (𝑄𝑛
𝑖
+Δ𝑄𝑛

𝑖
,𝑄𝑛

𝑖𝑝
+Δ𝑄𝑛

𝑖𝑝
) − 𝐹 (𝑄𝑛

𝑖
,𝑄𝑛

𝑖𝑝
)

= ( 𝜕𝐹
𝜕𝑄𝑖

)𝑛Δ𝑄𝑛
𝑖
+ ( 𝜕𝐹

𝜕𝑄𝑖𝑝

)𝑛Δ𝑄𝑛
𝑖𝑝
.

Substituting the term above into Eq. (14), the backward Euler method can be rewritten as

( |Ω𝑖|
Δ𝑡

𝐼 +
∑

𝑖𝑝∈𝑁(𝑖)
( 𝜕𝐹
𝜕𝑄𝑖

)𝑛𝑆𝑖𝑝
)
Δ𝑄𝑛

𝑖
+

∑
𝑖𝑝∈𝑁(𝑖)

(
( 𝜕𝐹
𝜕𝑄𝑖𝑝

)𝑛𝑆𝑖𝑝
)
Δ𝑄𝑛

𝑖𝑝
=(𝑄𝑛

𝑖
). (15)

According to the following approximation

⎧⎪⎨⎪⎩

𝜕𝐹

𝜕𝑄𝑖

= 1
2
(𝐽 (𝑄𝑖) + |𝜆𝑖,𝑖𝑝 |𝐼),

𝜕𝐹

𝜕𝑄𝑖𝑝

= 1
2
(𝐽 (𝑄𝑖𝑝

) − |𝜆𝑖,𝑖𝑝 |𝐼), (16)

where

|𝜆𝑖,𝑖𝑝 | ≥ |𝒖𝑖,𝑖𝑝 ⋅ 𝒏𝑖,𝑖𝑝 |+ 𝑎𝑖,𝑖𝑝 ,
𝒖𝑖,𝑖𝑝 and 𝑎𝑖,𝑖𝑝 are the velocity and the speed of sound as at the interface 𝑆𝑖𝑝 , 𝒏𝑖,𝑖𝑝 is the unit normal direction on the cell interface 𝑆𝑖𝑝 , 
and 𝐽 (𝑄) represents the Jacobian of the inviscid flux. Substituting Eq. (16) into Eq. (15), the coefficient matrix 𝑨 of Eq. (15) can 
be determined. In order to avoid storing the whole matrix 𝑨 directly and be able to calculate the matrix multiplication in parallel, 
a suitable strategy for the storage of matrix 𝑨 and its parallel computation is designed, and the details will be shown in following 
7

section.
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4.2. Implicit method for compact scheme

In this section, the GMRES method is combined with third-order compact HWENO reconstruction for solving the steady state 
problems. In practice, the coefficient matrix 𝑨 of Eq. (15) can be fixed with the known cell averaged conservative variable 𝑄𝑛

𝑖
at 

each time step, which has nothing to do with the cell averaged derivatives. Meanwhile, the right side (𝑄𝑛
𝑖
) is calculated by the 

compact HWENO reconstruction with the known cell averaged conservative variable 𝑄𝑛
𝑖

and cell averaged directional derivatives 
(𝑄𝒏𝑥 )

𝑛
𝑖
, (𝑄𝒏𝑦 )

𝑛
𝑖
, (𝑄𝒏𝑧 )

𝑛
𝑖
. After solving the system Eq. (15) at each time step, the cell averaged conservative variable 𝑄𝑛+1

𝑖
and cell 

averaged derivatives (𝑄𝒏𝑥 )
𝑛+1
𝑖

, (𝑄𝒏𝑦 )
𝑛+1
𝑖

, (𝑄𝒏𝑧 )
𝑛+1
𝑖

should be updated simultaneously. So that (𝑄𝑛+1
𝑖

) can be obtained as the right 
side of Eq. (15) in the next time step.

For the implicit compact scheme, the GMRES method need to associate with a suitable strategy for updating cell averaged 
directional derivatives at each time step. Due to the small change of flow variables in the steady state problems, the update of cell 
averaged directional derivatives can be driven by time evolution directly. Similar technique has been used in other equations [28]. 
According to Eq. (8) and Eq. (9), the cell averaged directional derivatives at 𝑡 = 𝑡𝑛+1 can be updated directly by

(𝑄𝝉 )𝑛+1𝑖
= (𝑄𝝉 )𝑛𝑖 =

1|Ω𝑖|
∑

𝑖𝑝∈𝑁(𝑖)

(∑
𝐺

𝜔𝐺

(ˆ
𝜓𝑓 (𝒙𝐺, 𝑡𝑛,𝒖, 𝜉)𝝉dΞ

)
𝑆𝑖𝑝

)
,

where 𝝉 = 𝒏𝑥, 𝒏𝑦, 𝒏𝑧.
The numerical tests show that the above update strategy is suitable for steady flows, and the high-order spatial accuracy can be 

maintained in the computation. In the future, the optimization of above implicit update strategy will be studied for unsteady flows, 
for example, designing nonlinear weights in time direction for preserving temporal and spatial accuracy.

Algorithm 1 shows the whole process of preconditioned GMRES method combined with WENO and HWENO reconstruction, 
where the red lines are special steps of the non-compact scheme, the blue lines are special steps of the compact scheme and the black 
lines are common steps for both two schemes.

To ensure the convergence rate of the GMRES method, the condition number of the corresponding matrix 𝑨 has to be as small 
as possible and the initial solution of flow evolution is preferably within the convergence domain of Newton iteration. In the 
computation, the GMRES method combined with preconditioning technique is considered for non-compact and compact schemes. It 
means that instead of solving the system

𝑨𝒙 = 𝒃,

an equivalent preconditioned linear system [21] is considered

𝑷 −1𝑨𝒙 = 𝑷 −1𝒃, (17)

where 𝑷 is the preconditioning matrix which is an approximation of matrix 𝑨. Usually, the LUSGS method is adopted as precondi-

tioner of GMRES method, but the serial sweep part in LUSGS method is not easy to be implemented for parallel computation. In this 
paper, Jacobi iteration is adopted as a preconditioner, which is easy to be implemented in parallel. According to Eq. (14), the matrix 
𝑨 of Eq. (14) can be written as

𝑨 =𝑫 +𝑳+𝑼 ,

where 𝑫 represents the diagonal area, 𝑳 represents the lower triangular area and 𝑼 represents the upper triangular area of matrix 
𝑨. The Jacobi iteration is used as preconditioner to provide 𝑷 −1𝒃 as follows

𝒃0 =𝑫−1𝒃ini,

𝒃𝑘 =𝑫−1(𝒃ini − (𝑳+𝑼 )𝒃𝑘−1),

𝑷 −1𝒃 = 𝒃𝑘max ,

where 1 ≤ 𝑘 ≤ 𝑘max and 𝒃ini represents 𝒓0 and 𝑨𝒗𝑗 in Line 10 and Line 15 of Algorithm 1. With the process above, 𝑷 −1𝒓0 and 𝑷 −1𝑨𝒗𝑗
can be fully given.

4.3. Parallel computation for implicit method

In the previous work, the computation of HGKS is mainly based on the central processing unit (CPU) code. To improve the 
efficiency, the OpenMP directives and message passing interface (MPI) are used for parallel computation [5]. However, the CPU 
computation is usually limited in the number of threads which are handled in parallel. Graphics processing unit (GPU) is a form 
of hardware acceleration, which is originally developed for graphics manipulation and execute highly-parallel computing tasks. 
Recently, GPU has applied to HGKS scheme for large-scale scientific computation [36]. In this work, the implicit HGKS scheme with 
WENO and HWENO reconstruction on unstructured meshes is implemented with both CPU using OpenMP and GPU using compute 
unified device architecture (CUDA).

The matrix 𝑨 in Eq. (15) is a large asymmetric sparse block matrix of (5𝑁, 5𝑁) dimension, where 𝑁 is the total number of 
8

computational cells. The amount of memory storage would be unbearable if the whole matrix were to be stored. In this section, a 
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Algorithm 1: Program for preconditioned GMRES method.

1 Initial condition 𝑄𝑛 for non-compact scheme;

2 Initial condition 𝑄𝑛 , (𝑄𝒏𝑥
)𝑛 , (𝑄𝒏𝑦

)𝑛 , (𝑄𝒏𝑧
)𝑛 for compact scheme;

3 while residual ≤ tolerance do

4 Calculation of time step;

5 WENO reconstruction to calculate (𝑄𝑛);
6 HWENO reconstruction to calculate (𝑄𝑛) and 𝑓𝑛 ;
7 Calculation of 𝑨;

8 for 𝑖 = 1, 𝑟𝑒𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒𝑠 do

9 Calculation of 𝒓0 and residual;

10 Jacobi preconditioning: 𝒓0 = 𝑷 −1𝒓0 ;

11 Arnoldi process:

12 𝒗1 = 𝒓0∕||𝒓0||2 ;

13 for 𝑗 = 1, 𝑑𝑖𝑚𝐾𝑚 do

14 𝒚𝑗 =𝑨𝒗𝑗 ;
15 Jacobi preconditioning: 𝒘𝑗 = 𝑷 −1𝒚𝑗 ;

16 for 𝑖 = 1, 𝑗 do

17 ℎ𝑖𝑗 = (𝒘𝑗 , 𝒗𝑖);
18 𝒘𝑗 =𝒘𝑗 − ℎ𝑖𝑗𝒗𝑖 ;
19 end

20 ℎ𝑗+1,𝑗 = ||𝒘𝑗 ||2 ;

21 𝒗𝑗+1 =𝒘𝑗∕ℎ𝑗+1,𝑗 ;
22 end

23 Minimization process:

24 QR decomposition and solve an upper triangular matrix;

25 Get the solution vector 𝑦𝑚 ;

26 Δ𝑄𝑛 =Δ𝑄𝑛 +𝐾𝑚𝑦𝑚 ;

27 end

28 Update:

29 𝑄𝑛+1 =𝑄𝑛 +Δ𝑄𝑛 ;

30 Calculate (𝑄𝒏𝑥
)𝑛+1 , (𝑄𝒏𝑦

)𝑛+1 , (𝑄𝒏𝑧
)𝑛+1 by 𝑓𝑛 for compact scheme;

31 end

32 Output of flow field and residual convergence history.

Fig. 1. The non-zero block distribution of 𝑨. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

simple strategy of storing the matrix 𝑨 in Eq. (15) is introduced to balance the parallel efficiency and memory storage. It is noticed 
that the position of all non-zero blocks in each row (by block) in 𝑨 only corresponds to its own cell and all neighboring cells. 
The non-zero block distribution of 𝑨 is shown in Fig. 1, where the orange and blue blocks at the 𝑖-th row represent the non-zero 
blocks corresponding to cell Ω𝑖 and its neighboring cells respectively. These blocks are stored in the structure array for the 𝑖-th cell. 
With the storage of these non-zero blocks, the computation is easy to be implemented in parallel with single GPU. For example, 
in the computation of 𝒓 =𝑹 −𝑨Δ𝑄, the residual term 𝑹, i.e., (𝑄𝑛

𝑖
), can be calculated in parallel naturally, because WENO-type 

reconstruction and GKS flux solver have high parallelism. Meanwhile, denoting the 𝑖-th row of the matrix 𝑨 as 𝑨𝑖 = (𝒂𝑖𝑗 ), where 
𝑎𝑖𝑗 ≠ 0 with 𝑗 ∈ {𝑖} ∪ {𝑁(𝑖)}. The vector multiplication of 𝑨𝑖 and Δ𝑄 is equal to 

∑
𝑗∈{𝑖}∪{𝑁(𝑖)} 𝒂𝑖𝑗Δ𝑄𝑗 . Such multiplication can be 

completed through cell structure array, and each row of the matrix term 𝑨Δ𝑄 can be also calculated in parallel. In the future, the 
above strategy is easy to develop to multiple-GPU parallel because matrix partitioning is exactly the same as cell partitioning.

For the unstructured meshes, the data for cells, interfaces and nodes can be stored one-dimensionally. As shown in Fig. 2, the cells 
can be divided into 𝐷 blocks, where 𝑁 is the total number of cells. Meanwhile, the CUDA threads are organized into thread blocks, 
9

and thread blocks constitute a thread grid. The one-to-one correspondence can be set for computational cell and thread ID in parallel 
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Fig. 2. Connection between threads and unstructured cells.

computation. In practice, the whole Algorithm 1 can be implemented in parallel based on single GPU directly with the above storage 
strategy, except Line 23, 24 and 25, i.e., the minimization process in GMRES method. But the matrix multiplications involved in this 
minimization process part are all under 20 dimensions. It does not affect the computational efficiency in the large-scale computation 
even if these multiplications are completed serially on the host CPU.

5. Numerical tests

In this section, the numerical tests for both inviscid and viscous flows will be presented to validate the current scheme. For the 
inviscid flows, the collision time 𝜏 takes

𝜏 = 𝜖Δ𝑡+𝐶|𝑝𝑙 − 𝑝𝑟
𝑝𝑙 + 𝑝𝑟

|Δ𝑡,
where 𝜖 = 0.1 and 𝐶 = 1. For the viscous flows, we have

𝜏 = 𝜇

𝑝
+𝐶|𝑝𝑙 − 𝑝𝑟

𝑝𝑙 + 𝑝𝑟
|Δ𝑡,

where 𝑝𝑙 and 𝑝𝑟 denote the pressure on the left and right sides of the cell interface, 𝜇 is the dynamic viscous coefficient and 𝑝 is the 
pressure at the cell interface at cell interface determined by 𝑄0. In smooth flow regions, it will reduce to

𝜏 = 𝜇

𝑝

In the computation, the poly gas is used and the specific heat ratio takes 𝛾 = 1.4.

In order to eliminate the spurious oscillation and improve the stability, the non-compact WENO and compact HWENO reconstruc-

tions are performed for the characteristic variables. For a specific cell interface, denote 𝑄∗ and 𝑄∗
𝝉

are the averaged values from both 
sides of cell interface in the local coordinate. 𝑅∗ is the right eigenmatrix of Jacobian matrix 

(
𝜕F∕𝜕𝑄

)
at 𝑄 =𝑄∗, where F is the Euler 

flux. The cell averaged conservative variable and cell averaged directional derivatives can be projected into the characteristic field by 
𝑞∗ =𝑅−1

∗ 𝑄∗ and 𝑞∗
𝝉
=𝑅−1

∗ 𝑄∗
𝝉
. With the reconstructed values, the conservative variable and directional derivatives can be obtained by 

the inverse projection. In the following cases, the GMRES method with non-compact WENO reconstruction and the GMRES method 
with compact HWENO reconstruction are tested. As comparison, the numerical results of LUSGS method with non-compact WENO 
reconstruction are also provided. For simplicity, the LUSGS, GMRES method with non-compact WENO reconstruction and the GMRES 
method with compact HWENO reconstruction are denoted as LUSGS-WENO, GMRES-WENO and GMRES-HWENO respectively. In 
the computation, the dimension of Krylov subspace is 10, the restart times of GMRES method is 3 and the inner iteration times of 
Jacobi preconditioner is 2. The 𝐿1 norm of the density residual is taken as test residual. The CFL number is set as 10 if there is no 
special statement.

5.1. Lid-driven cavity flow

The lid-driven cavity problem is one of the most important benchmarks for numerical Navier-Stokes solvers. The fluid is bounded 
by a unit cubic [0, 1] × [0, 1] × [0, 1] and driven by a uniform translation of the top boundary with 𝑦 = 1. In this case, the flow is 
simulated with Mach number 𝑀𝑎 = 0.15 and all the boundaries are isothermal and nonslip. Numerical simulations are conducted 
with the Reynolds numbers of 𝑅𝑒 = 1000 and 100. This case is performed by the tetrahedral mesh which contains 6 ×203 cells, where 
the mesh near the wall is refined and the size of the first layer cells is ℎ𝑚𝑖𝑛 = 2.5 × 10−2. The mesh distribution is shown in Fig. 3. 
The stencils 𝑆𝐻𝑊𝐸𝑁𝑂

𝑖𝑚
are selected as tetrahedral compact sub-stencils, which are dominated by the gradient informations.

The steady state 𝑈 -velocity profiles along the vertical centerline and 𝑉 -velocity profiles along the horizontal centerline and 
the benchmark data for 𝑅𝑒 = 1000 [2] and 100 [32] are shown in Fig. 4. The numerical results agree well with the benchmark 
data, especially the compact scheme. The histories of residual convergence with different implicit methods are shown in Fig. 5 for 
𝑅𝑒 = 1000 and 100. It shows that the residual of GMRES method converges faster than the LUSGS method. Meanwhile, the residual 
of compact GMRES method is comparable with that of non-compact GMRES method.

5.2. Flows passing through a sphere

This case is used to test the capability in resolving from the low-speed to supersonic flows, and the initial condition is given as a 
10

free stream condition
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Fig. 3. Lid-driven cavity flow: the local computational mesh distribution with tetrahedral meshes.

Fig. 4. Lid-driven cavity flow: the steady state 𝑈 -velocity profiles along the vertical centerline (left), 𝑉 -velocity profiles along the horizontal centerline (right) for 
11

𝑅𝑒 = 1000 and 100.
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Fig. 5. Lid-driven cavity flow: the residual comparison with the LUSGS method, the non-compact GMRES method and compact GMRES method for 𝑅𝑒 = 100 and 
1000.

Fig. 6. Flows passing through a sphere: the local computational mesh distribution with hexahedral meshes for viscous flow (left) and inviscid flow (right).

Table 1

Subsonic inviscid flow passing through a sphere: quantitative comparisons of closed wake 
length 𝐿 and separation angle 𝜃 for 𝑅𝑒 = 118 and 𝑀𝑎∞ = 0.2535.

Scheme Computational Mesh 𝐿 𝜃

LUSGS GKS 190464 cells, Hex 0.91 124.5

noncompact GMRES GKS 190464 cells, Hex 0.91 124.5

compact GMRES GKS 190464 cells, Hex 0.95 128.1

4th-order DDG GMRES [9] 1608680 cells, Hybrid 0.96 123.7

Experiment [34] - 1.07 151

(𝜌,𝑈,𝑉 ,𝑊 ,𝑝)∞ = (1,𝑀𝑎∞,0,0,1∕𝛾),

where 𝑀𝑎∞ is the Mach number of the free stream. As shown in Fig. 6, this case is performed by two unstructured hexahedral 
meshes. The viscous flows are tested on the hexahedral mesh which contains 190464 cells, where the size of the first layer cells 
on the surface of sphere is ℎ𝑚𝑖𝑛 = 3 × 10−2. The inviscid flows are tested on the hexahedral mesh which contains 50688 cells and 
ℎ𝑚𝑖𝑛 = 2 × 10−2. The supersonic or subsonic inlet and outlet boundary conditions are given according to far field normal velocity, 
the slip adiabatic boundary condition is used for inviscid flows and the non-slip adiabatic boundary condition is imposed for viscous 
flows on the surface of sphere. The stencils 𝑆𝑊𝐸𝑁𝑂

𝑖𝑚
are selected as hexahedral compact sub-stencils, which are dominated by the 

conservative variables informations.

To validate the linear stability of the implicit methods, the subsonic case with 𝑅𝑒 = 118 and 𝑀𝑎∞ = 0.2535 is provided, and 
the linear weights are used in both WENO and HWENO reconstruction. In this case, the CFL number is taken as 20. The density, 
velocity and streamline distributions at vertical centerline planes are shown in Fig. 7. The quantitative results of separation angle 𝜃
12

and closed wake length 𝐿 are given in Table 1. The compact GMRES method with linear weights gives the better values of 𝐿 and 𝜃, 
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Fig. 7. Subsonic viscous flow passing through a sphere: the density and streamline distributions (left) and velocity distribution (right) at vertical centerline planes 
with the LUSGS method (top), the non-compact GMRES method (middle) and the compact GMRES method for 𝑅𝑒 = 118 and 𝑀𝑎∞ = 0.2535.

which are closer to the experiment data. It means that the capability of implicit compact scheme to capture the structure of viscous 
flow is more accurate. To verify the robustness of the implicit methods, the supersonic viscous flow with 𝑅𝑒 = 300 and 𝑀𝑎∞ = 1.5
is tested as well. The non-linear weights are used in both WENO and HWENO reconstruction. In this case, the CFL number is taken 
as 5. The density, velocity and streamline distributions at vertical centerline planes are shown in Fig. 8. The quantitative results of 
closed wake length 𝐿 and separation angle 𝜃 are given in Table 2. The current implicit compact scheme gives a bigger value of 𝜃. The 
13

performance of closed wake length 𝐿 would be better with a refined mesh. The residual convergence history with different implicit 
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Fig. 8. Supersonic viscous flow passing through a sphere: the density and streamline distributions (left) and velocity distribution (right) at vertical centerline planes 
with the LUSGS method (top), the non-compact GMRES method (middle) and the compact GMRES method (bottom) for 𝑅𝑒 = 300 and 𝑀𝑎∞ = 1.5.

methods is given in Fig. 9. It also shows that the GMERS method converges much faster than the LUSGS method, and the steady state 
residual of GMRES method is at least five orders of magnitude smaller than that of LUSGS method.

For the inviscid flows, the case with 𝑀𝑎∞ = 3.0 is performed to test the robustness of implicit scheme. In this case, the CFL 
number is taken as 3. The density, velocity and streamline distributions at vertical centerline planes are shown in Fig. 10. The shock 
structure at the leeward side of the sphere is well captured with current implicit schemes. The residual convergence histories with 
14

different implicit methods are also shown in Fig. 11. The GMRES method also shows advantage on the convergence rate and the 
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Table 2

Supersonic viscous flow passing through a sphere: quantitative compar-

isons of closed wake length 𝐿 and separation angle 𝜃 for 𝑅𝑒 = 300 and 
𝑀𝑎∞ = 1.5.

Scheme Computational Mesh 𝐿 𝜃

LUSGS GKS 190464 cells, Hex 1.17 135.1

non-compact GMRES GKS 190464 cells, Hex 1.17 135.4

compact GMRES GKS 190464 cells, Hex 1.16 135.9

WENO-CU6-FP RK3 [23] 909072 cells, Hex 0.96 137.2

Fig. 9. Subsonic viscous flow passing through a sphere: the residual convergence comparison with the LUSGS method, the non-compact GMRES method and compact 
GMRES method for 𝑅𝑒 = 118 and 𝑀𝑎∞ = 0.2535 (left) and 𝑅𝑒 = 300 and 𝑀𝑎∞ = 1.5 (right).

order of magnitude of residual. In this case, the minimum number of CFL number is not sufficiently large. In order to explore the 
relationship between the magnification of CFL number and the characteristic of high-order scheme, the above supersonic inviscid 
case with 𝑀𝑎∞ = 3.0 is retested by the implicit GMRES method with first order KFVS flux solver. The velocity distribution at vertical 
centerline planes and residual convergence histories with different CFL numbers are shown in Fig. 12. It shows that the magnification 
of the CFL number for lower-order schemes on good quality meshes will be more ideal. In the follow-up optimization work, a more 
reasonable combination between the implicit method and high-order scheme will be investigated.

5.3. Transonic flow around ONERA M6 wing

The transonic flow around the ONERA M6 wing is a standard benchmark for engineering simulations. Besides the three-

dimensional geometry, the flow structures are complex including the interaction of shock and turbulent boundary. Thus, it is a 
good candidate to test the performance of the extended BGK model and implicit high-order gas-kinetic scheme. The inviscid flow 
around the wing is tested, which corresponds to a rough prediction of the flow field under a very high Reynolds number. The 
incoming Mach number and angle of attack are given by

𝑀𝑎∞ = 0.8395, 𝐴𝑜𝐴 = 3.06◦.

This case is performed by the tetrahedral meshes, which includes 294216 cells. The mesh distribution is shown in Fig. 13. The 
stencils 𝑆𝐻𝑊𝐸𝑁𝑂

𝑖𝑚
are selected as tetrahedral compact sub-stencils, which are dominated by the gradient informations. The subsonic 

inflow and outflow boundaries are all set according to the local Riemann invariants, and the adiabatic and slip wall condition is 
imposed on the solid wall. The local pressure distributions with the LUSGS method, the non-compact GMRES method and compact 
GMRES method are shown in Fig. 14, and the 𝜆 shock is well resolved by all the current implicit schemes. The comparisons on the 
pressure distributions at the semi-span locations 𝑌 ∕𝐵 = 0.20, 0.44, 0.65, 0.80, 0.90 and 0.95 of the wing are given in Fig. 15. The 
numerical results quantitatively agree well with the experimental data [30]. The histories of residual convergence with different 
implicit methods are given in Fig. 16. It shows that the non-compact GMERS method converges faster than the LUSGS method. 
Although the residual convergence is affected by the dominant gradient information in tetrahedral compact sub-stencils, the compact 
GMRES still shows the advantage over the LUSGS method. In the future, the selection of stencils and the evolution of the cell averaged 
15

gradients in time will be further investigated.
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Fig. 10. Supersonic inviscid flow passing through a sphere: the density and streamline distributions (left) and velocity distribution (right) at vertical centerline planes 
with the LUSGS method (top), the non-compact GMRES method (middle) and the compact GMRES method (bottom) for 𝑀𝑎∞ = 3.0.

5.4. Efficiency comparison of CPU and GPU

The efficiency comparison of CPU and GPU codes is provided for both implicit non-compact and compact schemes. The CPU 
code is run with Intel Xeon Gold 6230R CPU using Intel Fortran compiler with 16 OpenMP threads, while Nvidia Quadro RTX 
8000 is used for GPU code with Nvidia CUDA and NVFORTRAN compiler. The clock rates of GPU and CPU are 1.77 GHz and 2.10 
GHz respectively, and the double precision is used in computation. The lid-driven cavity flow with 𝑅𝑒 = 1000 on three dimensional 
16

unstructured tetrahedral mesh are used to test the efficiency. The HGKS with GMRES method combined by WENO and HWENO 
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Fig. 11. Supersonic inviscid flow passing through a sphere: the residual convergence comparison with the LUSGS method, the non-compact GMRES method and 
compact GMRES method for 𝑀𝑎∞ = 3.0.

Fig. 12. Supersonic inviscid flow passing through a sphere: the velocity distribution at vertical centerline planes with 𝐶𝐹𝐿 = 5 (left) and the residual convergence 
comparison (right) tested by the GMRES method combined with first order KFVS reconstruction for 𝑀𝑎∞ = 3.0.
17

Fig. 13. Transonic flow around ONERA M6 wing: the local computational mesh distribution with tetrahedral meshes.
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Fig. 14. Transonic flow around ONERA M6 wing: the local pressure distribution with the LUSGS method (top), the non-compact GMRES method (middle) and the 
compact GMRES method (bottom).

reconstruction are implemented with both GPU and CPU. As shown in Table 3, 8x speedup is achieved for non-compact and compact 
GMRES GPU code compared with non-compact and compact GMRES CPU code respectively. Taking the number of thread of CPU into 
account, the speedup of GPU code approximately equals to 130. However, the compact scheme needs to store more local information 
than the non-compact scheme, the computational scale is constrained by the limited available memory of single GPU. In the future, 
the implicit compact HGKS on unstructured meshes will be further upgraded with multiple GPUs using MPI and CUDA, and more 
18

challenging problems for compressible flows will be investigated.
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Fig. 15. ONERA M6 wing: the pressure coefficient distributions at 𝑌 ∕𝐵 = 0.20, 0.44, 0.65, 0.80, 0.90 and 0.95 for the inviscid flow with tetrahedral and hybrid 
meshes.

Table 3

Efficiency comparison: the computational time per 100 steps and speedup for GPU and CPU code. Taking 
the number of thread of CPU into account, the speedup of GPU code approximately equals to 130.

Scheme Computational Mesh CPU+OpenMP GPU+CUDA Speedup

noncompact GMRES 48000 Tet 259 s 30 s 8.63

compact GMRES 48000 Tet 267 s 32 s 8.34
19
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Fig. 16. Transonic flow around ONERA M6 wing: the residual convergence comparison with the LUSGS method, the noncompact GMRES method and compact GMRES 
method.

6. Conclusion

In this paper, the implicit non-compact and compact HGKSs are developed on the three-dimensional unstructured meshes. For 
non-compact GKS scheme, the third-order WENO reconstruction is used, where the stencils are selected from the neighboring cells and 
the neighboring cells of neighboring cells. Incorporate with the GMRES method based on numerical Jacobian matrix, the implicit 
non-compact HGKS is developed for steady problems. To improve the resolution and parallelism, the implicit compact HGKS is 
also developed with HWENO reconstruction, where the stencils only contain one level of neighboring cells. The cell averaged 
conservative variable is updated with GMRES method. Simultaneously, a simple strategy is used to update the cell averaged gradient 
with the spatial-temporal coupled gas-kinetic flow solver. To further accelerate the computation, the Jacobi iteration is chosen as 
preconditioner for both non-compact and compact schemes. Various three-dimensional numerical experiments, from the subsonic to 
supersonic flows, are presented to validate the accuracy and robustness of current implicit scheme. To accelerate the computation, 
the current schemes are implemented to run on graphics processing unit (GPU) using compute unified device architecture (CUDA). In 
the future, the implicit HGKS on arbitrary unstructured meshes with multiple GPUs will be developed for the engineering turbulent 
flows with high-Reynolds numbers.
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