
Copyright information to be inserted by the Publishers
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Following van Leer�s MUSCL idea� a numerical scheme can be regarded as consisting of two
key steps� a reconstruction step followed by a gas evolution step� We present a gas�kinetic
method based on the collisional BGK model which provides an alternative to Riemann solvers
for the gas evolution step� An advanced BGK�scheme is derived under quite general assumptions
on the initial conditions� The new formulation uses interpolation of the characteristic variables
in the reconstruction step and a BGK�type �ow solver in the gas evolution step� The scheme
satis�es both an entropy condition and a positivity condition� which guarantees a positive density
and temperature at the cell interface during a complete time step� Numerical results for one�
dimensional and two�dimensional test cases are presented to show the accuracy and robustness of
the proposed approach�
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tropy and Positivity Conditions

� Introduction

Based largely on the mathematical foundation laid among others by Lax�� and
Godunov�� many high resolution shock capturing schemes have been developed in
the past twenty years� Most of them attempt to resolve wave interactions through
upwind biasing of the discretization� while other methods explicitly introduce a nu�
merical viscosity in just the amount needed to capture discontinuities ��� Although
great advances have been made in the area of spatial discretization� grid generation
and solution strategies� the status of unsteady compressible �ow solvers is far from
satisfactory both for structured and unstructured grids� Since the simulation of
unsteady �ows is emerging as an important area of practical interest� there is a
compelling need for schemes with low dissipation and dispersion errors� The design
principle should be guided by the �dynamics� of the �computational �uid� which
should mimic� as closely as possible� those of a real �uid ��� The simulation of highly
compressible �ow with strong shock waves and extreme expansion waves requires
a numerical scheme which is capable of handling both �ow features� BGK�type
schemes mimic the real dynamical process of the gas and could overcome many of
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the weaknesses of the traditional central di	erence and upwind methods� In par�
ticular� schemes of this class may provide a superior resolution of both shocks and
expansion regions as well as contact discontinuities�

According to the MUSCL idea ��� a high resolution scheme usually consists of two
parts� the reconstruction of the initial data and the dynamical evolution from the
constructed data� These two stages can be regarded respectively as geometrical and
dynamical correlations for the gas �ow around an arti
cially de
ned cell bound�
ary� Currently available techniques such as Total Variation Diminishing �TVD��
Essentially Nonoscillation �ENO� and Local Extremum Diminishing �LED� ������

schemes� which are well understood for scalar conservation laws� can be used in the
reconstruction stage for systems of equations� In the gas evolution stage� however�
the solution is not necessarily a decreasing function of time and local extrema can
be generated by nonlinear wave interactions�

The development of numerical schemes based on the gas�kinetic theory started
in the ���s with the beam scheme ��� This scheme has been widely used in the
astrophysical community and is based on the collisionless Boltzmann equation�
In the beam scheme the left and right moving particles generated in each side
from the equilibrium state are allowed to penetrate the opposite side through a
cell interface giving rise to the numerical �uxes� In the ����s the beam scheme
was re�invented� modi
ed or extended by many authors� such as Reitz��� Pullin�	�
Deshpande� and Perthame��� Pullin was the 
rst to use the complete error func�
tion to obtain the numerical �uxes� his scheme is named Equilibrium Flux Method
�EFM�� By applying the Courant�Isaacson�Reeves �CIR� upwind technique directly
to the collisionless Boltzmann equation� Mandal and Deshpande derived a similar
scheme� which is named Kinetic Flux Vector Splitting �KFVS���� Perthame simpli�

ed these schemes by using a square or half dome function as the equilibrium gas
distribution function� By combining the KFVS scheme with the multidimensional
upwinding techniques developed by several researchers at University of Michigan
and von Karman Institute� Eppard and Grossman formulated several versions of

rst order multidimensional gas�kinetic schemes 
�

All these schemes are based on the collisionless Boltzmann equation� which does
not account for the dynamical correlations between the left and right states� As
pointed out by Macrossan��� schemes of this kind have intrinsically large numerical
viscosity and heat conductivity� In an e	ort to reduce the arti
cial viscosity� Xu
and Prendergast in �� developed the Total Thermalized Transport �TTT� scheme
�	� which is based on the physical assumption that the left and right moving beams
collapse instantaneously at the cell interface to form an equilibrium state� The beam
scheme and TTT scheme are two extreme limits describing the real particle motion�
In order to model more accurately the real physical situation� a scheme called Partial
Thermalized Transport �PTT�� which is obtained by using a linear combination of
the beam and the TTT scheme� was also developed� This hybrid scheme was
found to behave nicely for shock tube simulations� At the same time� Macrossan
and Oliver independently developed the so called Equilibrium Interface Method
�EIM�� EIM is similar to the TTT scheme and is derived using the same physical
considerations ��� A new scheme based on the TTT and the beam scheme has also
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been developed by the authors and applied to steady state airfoil calculations ���

During the same period� new gas�kinetic schemes based on the collisional BGK
model have been developed ����
��� to model the gas evolution process more pre�
cisely� Schemes of this class are named BGK�type schemes in order to distinguish
them from other Boltzmann�type schemes based on the collisionless Boltzmann
equation� BGK�type schemes make local use of the full integral solution of the
BGK model� It is then possible to compute a time�dependent gas distribution
function at the cell interface and to obtain the numerical �uxes� This approach�
also� avoids the ambiguity of adding ad hoc models for particle collisions designed
only to reduce the numerical viscosity which is intrinsic in any of the Boltzmann�
type schemes� Moreover� the BGK�type schemes give Navier�Stokes solutions which
follow directly from the BGK model� and the gas relaxation from a nonequilibrium
state to an equilibrium state is associated with an increase of entropy�

In this paper� we continue our previous work on the analysis of BGK�type
schemes� By modifying some of the assumptions we develop a more general ap�
proximation of the equilibrium state around a cell boundary� This increases the
robustness and accuracy of the BGK�type schemes� In section �� a description of
the basic 
nite volume gas�kinetic scheme in terms of the reconstruction and evo�
lution ideas is presented� The section concludes with some useful and important
remarks regarding the positivity and multidimensionality properties of the scheme�
Finally� section � presents a comprehensive summary of numerical results used to
validate the current numerical approach�

� Finite Volume BGK�Type Schemes

The fundamental task in the construction of a 
nite�volume gas�kinetic scheme for
compressible �ow simulations is to evaluate the time�dependent gas distribution
function f at a cell interface� from which the numerical �uxes can be computed� In
a 
nite volume gas�kinetic scheme� the local solution of the gas�kinetic equation is
used to compute the �ux at the cell interface� Due to the intrinsic complexity of
the collision integral in the full Boltzmann equation� simpli
ed gas�kinetic models
are usually used� In our approach the integral solution of the BGK model is used
locally to compute the �uxes at the cell interface �see Fig������ Hence� it replaces an
approximate or exact Riemann solver� Since a single scalar distribution function
f in the gas�kinetic theory includes all information about the macroscopic �ow
variables as well as their transport coe�cients� the schemes in two�dimensions and
three�dimensions can be constructed in a uni
ed manner�

The BGK relaxation model � retains all the features of the Boltzmann equation
which is associated with the free molecular motion and describes approximately� in
a mean�statistical fashion� the molecular collisions� The collisional term in the BGK
model is the simplest of all possible formulations which re�ect the nature of the
particle collision phenomenon� Since in the continuum regime the behavior of the
�uid depends very little on the nature of individual particles� the most important
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FIGURE 	� Interface �uxes by a �nite volume gas�kinetic scheme

properties are� conservation� symmetry and dissipation� The BGK model satis
es
all these requirements ���

A numerical scheme based on the BGK model is equivalent to a scheme which
approximates the Navier�Stokes equations �
���� Earlier versions of the BGK�type
schemes were based on the assumptions of a discontinuous nonequilibrium distri�
bution f� and a continuous equilibrium state g across each cell interface at the
beginning of each time step� Although these earlier schemes were found to give
good results for a number of standard test cases� these assumptions can be still
modi
ed to improve the accuracy and reliability of the schemes for complex �ows�
In this paper we introduce a scheme which allows a slope discontinuity in the equi�
librium state g� and also uses characteristic variables for the reconstruction�

��	 Reconstruction Stage

Following van Leer�s MUSCL idea� the present class of numerical scheme is com�
posed of an initial reconstruction stage followed by a dynamical evolution stage� At
the beginning of each time step t � �� cell averaged mass� momentum and energy
densities are given� For a higher order scheme� interpolation techniques must be
used to capture the subcell structure� Simple polynomials usually generate spu�
rious oscillations if large gradients in the data are present� The most successful
interpolation techniques known so far are based either on the TVD� ENO or LED
principles������� These interpolation techniques can be applied to the conserva�
tive� characteristic or primitive �ow variables� For example� some recent upwind
schemes use characteristic variables in the reconstruction stage ����� Unfortunately�
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depending on the particular test case� the numerical results may be sensitive to
the particular set of variables used in the reconstruction step� In earlier BGK�type
schemes� the reconstruction has been applied directly to the conservative variables�
In this work� we try to take advantage of the smoothness property of the charac�
teristic variables by using this particular set in the reconstruction step�

Let xj � jh �j � �� �� �� ���� be a uniform mesh and h the mesh size� Let xj� �
�

�

�j � �
� �h be the interface between cells j and j � �� The cell averaged value is

denoted by Uj � and its interpolated value in cell j is �Uj�x�� with two pointwise
values �Uj�xj����� and �Uj�xj����� at the locations xj���� and xj����� To second
order accuracy� the interpolated value in the j�th cell can be written as

�Uj�x� � Uj � L�Uj�l� ���� Uj�l��x � xj� for xj���� � x � xj�����

where l is an integer and �l � � is the extent of the stencil in the reconstruction
process� and L is an interpolating function� For example� the second�order TVD
and LED schemes have l � �� while second�order ENO scheme has l � ��

For higher order �more than second order� reconstructions� the interpolating
function may be de
ned recursively� In any case� the value �Uj�xj� at cell center is
not necessarily equal to the cell averaged value Uj �

Reconstruction using Characteristic Variables

Let j be a 
xed cell with cell averaged mass �j � momentum Pj and energy �j �
The conservative variables are transformed to the primitive variables

Vj � ��j � uj� pj�
T �

where uj is the velocity and pj is the pressure� The sound speed is cj �
p
�pj��j �

For cell j� we need three�point stencils for the reconstruction� for which �� � l � ��
Set the characteristic variables in neighboring cell �j � l� as

Wl � �LVj�l �

�
����j���cj��uj�l � �����c�j��pj�l

�j�l � ���c�j �pj�l
��j���cj��uj�l � �����c�j��pj�l

�
A �

where �L is the matrix of left eigenvectors at the state Vj for the Euler equations�
For each components of the characteristic variables� we get s� � �w� � w���h and
s� � �w� � w����h as the slopes across the cell interface� and apply the MUSCL
limiter of

L�u� v� � S�u� v�min�
�

�
ju � vj� �juj� �jvj�

to s� and s� to get the limited slope L� Then� for each component of the charac�
teristic variable in cell j� we have

w��xj����� � w� � �

�
hL�s�� s�� and w��xj����� � w� �

�

�
hL�s�� s���
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Once the interpolated value is obtained for each characteristic component� the
distributions of the primitive variables in each cell at xj���� and xj���� can be
found from the relation

V � �RW�

where the matrix �R is

�R �

�
� � � �
�cj��j � cj��j
c�j � c�j

�
A �

Finally� the conservative variables�
��j�xj������ �Pj�xj������ ��j�xj�����

�
and

�
��j�xj������ �Pj�xj������ ��j�xj�����

�
are obtained by the reverse transformation�

��� The BGK
Type Flow Solver

The BGK model in one�dimension can be written as

ft � ufx �
g � f

�
� ���

where f is the real gas distribution function and g is the equilibrium state ap�
proached by f � Both f and g are functions of space x� time t� particle velocity
u and internal degrees of freedom 	� The particle collision time � depends on the
local macroscopic �ow variables� such as temperature and density� The equilibrium
state is usually assumed to be a Maxwellian� with the formulation

g � ��



�
�
K��

� e��u�U�
������

where � is the density and U is the macroscopic velocity� In the one�dimensional
case� when the particle motion in y and z direction is included as internal degrees
of freedom �
� the total number of degrees of freedom K is equal to ��� ������ �
�� � �� The relations between mass �� momentum P and energy densities � with
the distribution function f are�

� �
P
�

�
A �

Z
��fd��  � �� �� �� ���

where �� is the vector of moments

�� � ��� u�
�

�
�u� � 	���T �

and d� � dud	 is the volume element in the phase space� Since mass� momen�
tum and energy are conserved during particle collisions� f and g must satisfy the
conservation constraintZ

�g � f���d� � ��  � �� �� � ���
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at any point in space and time�
For a local equilibrium state with f � g� the Euler equations can be obtained by

taking the moments of �� to Eq����� This yields

Z �
� �

u
�
� �u� � 	��

�
A�gt � ugx�dud	 � ��

and the corresponding Euler equations are

�
� �

�U
�
���U� � K��

�� �

�
A
t

�

�
� �U

�U� � �
��

�
�
��U� � K���U

��
�

�
A
x

� ��

where the pressure term is p � ���
�
On the other hand� to the 
rst order of � � the Chapman�Enskog expansion�


gives f � g� � �gt � ugx�� Taking moments of �� again to the BGK equation with
the new f � we get

Z �
� �

u
�
�
�u� � 	��

�
A�gt � ugx�dud	 � �

Z �
� �

u
�
�
�u� � 	��

�
A�gtt � �ugxt � u�gxx�dud	�

After integrating out all the moments� the Navier�Stokes equations with a dynamic
viscous coe�cient � � �p can be expressed as

�
� �

�U
�
���U� � K��

�� �

�
A
t

�

�
� �U

�U� � �
��

�
���U� � K���U

�� �

�
A
x

� �

�
� �

�K
K��

�
��Ux

K��
	

�
��

� �
�

�x � �K
K��

�
��
UUx

�
A
x

�

The general solution of f at the cell interface xj���� and time t is

f�xj����� t� u� 	� �
�

�

Z t

�

g�x�� t�� u� 	�e�t�t����dt� � e�t��f��xj���� � ut�� ���

where x� � xj���� � u�t � t�� is the trajectory of a particle motion and f� is the
initial nonequilibrium distribution function f at the beginning of each time step
�t � �� �
� The two values g and f� must be speci
ed in Eq���� in order to obtain
the desired solution for f �

Generally� f� and g around the cell interface xj���� are assumed to be

f� �

�
gl
�
� � al�x� xj�����

�
� x � xj����

gr
�
� � ar�x� xj�����

�
� x � xj����

���

and

g � g�
�
� � ��� H�x� xj�������a

l�x� xj����� � H�x� xj������a
r�x� xj����� � �At

�
�

���
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where gl� gr and g� are local Maxwellian distribution functions� which are located�
respectively� to the left� to the right and in the middle of a cell interface� al� ar� �al� �ar

are slopes� H�x� is the Heaviside function de
ned as

H�x� �
n �� x � �

�� x � �

Notice that in the expansion of g� the possibility of discontinuous slopes has been
retained� This is di	erent from our previous approaches ����
������� The dependence
of al� ar� ���� �A on the particle velocities is obtained from the Taylor expansion of a
Maxwellian and have the form

al � al� � al�u � al�
�

�
�u� � 	�� � al����

ar � ar� � ar�u � ar�
�

�
�u� � 	�� � ar����

�ar � �ar� � �ar�u � �ar�
�

�
�u� � 	�� � �ar����

�al � �al� � �al�u � �al�
�

�
�u� � 	�� � �al����

�A � �A� � �A�u � �A�
�

�
�u� � 	�� � �A����

where all coe�cients of al�� a
l
�� ����

�A� are local constants� The idea of interpolating
f� separately in the regions x � xj���� and x � xj���� originates from the following
physical consideration� for a non�equilibrium gas �ow� since the cell size is usually
much larger than the thickness of a discontinuity� the physical quantities can change
dramatically in space� For example� across a shock front� the upstream and down�
stream gas distribution functions could be two di	erent Maxwellians� Therefore�
we need a splitting of f� to capture this physical situation�

In the reconstruction stage described in Section������ we have obtained ��j�x�� �Pj�x�
and ��j�x� in each cell xj���� � x � xj����� At the cell interface xj����� the left
and right side pointwise values are

�
��j�xj����� � ��j���xj�����

�
�

�
�Pj�xj����� � �Pj���xj�����

�
��

��j�xj����� � ��j���xj�����
�
�

By using the relation between the gas distribution function f� and the macroscopic
variables �Eq������ we get

Z
gl��dud	 �

�
� ��j�xj�����

�Pj�xj�����
��j�xj�����

�
A  

Z
glal��dud	 �

�
B�

��j xj��������jxj �

�x�
�Pj xj������ �Pjxj �

�x�
��j xj��������jxj�

�x�

�
CA
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and

Z
gr��dud	 �

�
� ��j���xj�����

�Pj���xj�����
��j���xj�����

�
A  

Z
grar��dud	 �

�
B�

��j��xj������j��xj�����

�x�
�Pj��xj���� �Pj��xj�����

�x�
��j��xj������j��xj�����

�x�

�
CA�
���

where !x� � xj���� � xj and !x� � xj�� � xj����� With the de
nition of the
Maxwellian distributions

gl � �l�

l

�
�

K��

�

e��
lu�Ul�������

gr � �r�

r

�
�

K��

�

e��
ru�Ur������

and from Eq����� all the parameters in gl and gr can be uniquely determined from

�
� �l

U l


l

�
A �

�
B�

��j�xj�����
�Pj�xj��������j�xj�����

K�����jxj�����

	���jxj������ �
�
�P�
j xj��������j xj������

�
CA

and �
� �r

U r


r

�
A �

�
B�

��j���xj�����
�Pj���xj��������j���xj�����

K�����j��xj���� �

	���j��xj������ �
�
�P�
j�� xj��������j��xj������

�
CA �

Once gr is obtained from the above equations� the slope of ar can be computed��
BB�

��j��xj������j��xj�����

�r�x�
�Pj��xj���� �Pj��xj�����

�r�x�

��j��xj������j��xj�����

�r�x�

�
CCA �

�
� !�r

!P r

!�r

�
A � M r

�	

�
� ar�
ar�
ar�

�
A � M r

�	a
r
	� ���

where the matrix M r
�	 � �

�r

R
gr���	d� is

M r
�	 �

�
B�

� U r �
� �U r� � K��

��r �

U r U r� � �
��r

�
��U r� � K���Ur

��r �
�
� �U r� � K��

��r � �
� �U r� � K���Ur

��r � �
	�U r	 � K���Ur�

�r � K��	K���
	�r� �

�
CA �

From Eq����� �ar�� a
r
�� a

r
��
T can be readily obtained by observing that M r

�	 is a
symmetric matrix� Thus� we obtain

ar� �
�
r�

K � �
�B � �U rA��

ar� � �
r�A� ar�U
r

�
r
��

ar� � !�r � ar�U
r � ar��

U r�

�
�
K � �

�
r
�� ��
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where
A � !P r � U r!�r�

B � �!�r � �U r� �
K � �

�
r
�!�r�

Since the matrixM l
�	 � �

�l

R
gl���	d� has the same structure of M r

�	� �al�� a
l
�� a

l
��
T

can be obtained using a similar procedure�
After determining f�� the corresponding values of ��� U� and 
� in g� with

g� � ���

�
�

�

K��

�

e���u�U��
�����

can be determined as follows� Taking the limit t� � in Eq���� and substituting its
solution into Eq����� the conservation constraint at �x � xj����� t � �� gives
Z
g���d� �

Z
u
�

Z
gl��d� �

Z
u��

Z
gr��d��  � �� �� �� ����

This equation validates the basic idea of the TTT scheme� Since 
� can be found
from ��� U� and �� through the relation


� � �K � ���������� � �

�
��U�

����

we only need to know ���� U�� ���T � which can be expressed as moments of gl and
gr� By introducing the notation

�l � ��� �
��

Z
u
�

�����gld��

�r � ��� ����

Z
u��

�����grd��

from Eq����� one obtains�
� ��

��U�

��

�
A �

�
� �l � u� �
� ��r � u� ���

�l � u� �
� ��r � u� ���

�����l � u� � 	� �
� ��r � u� � 	� ����

�
A � ����

A detailed derivation can be found in the Appendix B� Then� �al and �ar of g in
Eq���� can be obtained through the relation of

�
B�

��j��xj������
���x�

�Pj��xj����P�
���x�

��j��xj������
���x�

�
CA � �M�

�	

�
� �ar�

�ar�
�ar�

�
A � �M�

�	�ar	�

and �
B�

�����j xj�
���x�

P�� �Pj xj�
���x�

�����jxj �
���x�

�
CA � �M�

�	

�
� �al�

�al�
�al�

�
A � �M�

�	�al	 �
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The matrix �M�
�	 � �

��

R
g����	d� has the same structure of M r

�	� which is

�M�
�	 �

�
B�

� U�
�
��U�

� � K��
���

�

U� U�
� � �

���
�
� �U�

� � K���U�
���

�

�
�
�U�

� � K��
���

� �
�
�U�

� � K���U�
���

� �
	
�U	

� � K���U�
�

��
� K��	K���

	���
�

�
CA �

Therefore� ��ar�� �a
r
�� �a

r
��
T and ��al�� �a

l
�� �a

l
��
T can be found following the procedure used

to obtain Eq����
Up to this point� we have found two half�Maxwellian and one whole Maxwellian

distribution function at the cell interface xj���� and they represent the nonequilib�

rium state f� and equilibrium state g�� All the slopes in the expression of al� ar in
f� and �al� �ar in g are determined from the slopes of macroscopic variables� Notice
that the construction of two slopes for g proposed in this paper gives more freedom
to describe complicated �ow situations� Notice� also� that for Navier�Stokes solu�
tions� the slopes of �al and �ar represent the viscosity and heat conduction e	ects
���

After substituting Eq���� and Eq���� into Eq����� the 
nal gas distribution func�
tion at a cell interface is expressed as

f�xj����� t� u� 	� � ��� e�t�� �g�

�
�
� ��� � e�t�� � � te�t��

	 �
�alH�u� � �ar���H�u��

�
ug�

�� �t�� � � � e�t�� � �Ag�

�e�t��
�
��� utal�H�u�gl � ��� utar���� H�u��gr

�
� ����

The only unknown term in the above equation is �A� Since both f �Eq������ and g
�Eq����� contain �A� after applying the conservation constraint of Eq���� at xj����
and integrating it over the whole time step T � we get

Z T

�

Z
�g � f���dtd� � ��

which gives

�M�
�	

�A	 �
�

��

Z 

��g� � ��u

�
�alH�u� � �ar��� H�u��

�
g�

� ��
�
H�u�gl � �� �H�u��gr

�
� �	u

�
alH�u�gl � ar��� H�u��gr

��
��d�� ����

where

�� � T � � ��� e�T�� ��

�� � ���� e�T�� �����

�� �
�
�T � �� ��� e�T�� � � Te�T��

	
����

�� � ��� e�T�� �����
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�	 �
�
Te�T�� � � ��� e�T�� �

	
����

All moments of the Maxwellian on the right hand side of Eq����� can be found in
Appendix B and the above equation can be solved for � �A�� �A�� �A��T �

Finally� the time�dependent numerical �uxes in the x�direction across the cell
interface can be computed as

�
� F�
FP
F�

�
A
j����

�

Z
u

�
� �

u
�
��u� � 	��

�
Af�xj����� t� u� 	�d�� ����

where f�xj����� t� u� 	� is given in Eq������ By integrating the above equation to the
whole time step� we get the total mass� momentum and energy transport� These
�uxes satisfy the consistency condition of F�U�U � � F�U � for a homogeneous
uniform �ow� where F�U � are the corresponding Euler �uxes�

��� Numerical Analysis

One of the obvious improvement in this new version of the BGK�type schemes is
that we have relaxed the original assumption of a single continuous slope for the
equilibrium state g across a cell interface� and generalized the initial conditions for
the gas�evolution model� This signi
cantly increases the robustness of the BGK�
type schemes� The computational cost of the new scheme is slightly higher than that
of the previous schemes due to additional computations required by the two slopes
in Eq����� Nevertheless� in our experience� the CPU time required by the current
approach is comparable to that of a second order extension of Roe�s approximate
Riemann solver with entropy 
xes�

Remark����

The construction of g� in term of gl and gr is a natural consequence of the solution
of the BGK model� which physically validates the assumptions of the TTT scheme
�	� This stage is similar to the use of Roe�s average to construct a common state
at a cell boundary� However� in gas�kinetic theory� the equilibrium state is formed
between the left and right beams due to particle collisions� In a previous paper���
we have proved that g� has larger entropy than the original nonequilibrium state f��
The point that should be emphasized here is that the density and temperature in
Eq������ corresponding to the equilibrium distribution g�� could possibly be outside
the range determined by the left and right states� For example� the following
inequalities could be true under some conditions�

�� � max��l� �r�  
� � min�
l� 
r��

One example is that of two shocks collapsing to form a stronger shock around the
cell interface with larger density and higher temperature� Or� two rarefaction waves
at the left and right sides of a cell interface which create a lower density region at
the center�
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Thus� in the dynamical stage� the maximum or minimum of density and tem�
perature could be increased or decreased� and our construction of g� is capable of
capturing these phenomena�
Remark����

As derived in Eq����� the BGK model converges to the Navier�Stokes equations
in its second order approximation� Also� as we know ��� the viscous �uxes are
related to the linear slope of g at the cell interface� and the BGK�type schemes give
the Navier�Stokes equations with dynamical viscosity � � �p and Prandtl number
Pr � � in smooth regions� The smooth regions could include the boundary or
shock layers if the grid size is small enough to resolve these layers �
� For Euler
calculations� the 
nal gas distribution function can be much simpli
ed ���
Remark����

In contrast to the Riemann solver� the BGK�type schemes provide an advanced
gas evolution model� From Eq������ we know that g� has positive density and
temperature if gl and gr obtained in the reconstruction stage are physical states
with positive density and temperature� Then� g� � � is satis
ed� which means
that all particles have positive probability� If we ignore all slopes in the BGK�type
schemes� the distribution function f at the cell interface can be written as

f�xj����� t� � ��� e�t�� �g� � e�t��f��

Since g� � �� f� � � and e�t�� � �� f is strictly positive with f � �� Therefore� f
has positive density and temperature due to the following relations

Z
fd� � �  

Z
u�fd�� �

R
ufd���R
fd�

� ��

This is a positivity condition for the BGK�type schemes� Roe�s approximate Rie�
mann solver cannot guarantee that the solutions of the �ow variables at the cell
interface satisfy a positivity condition 	���� Thus� it appears that the BGK�type
schemes provide more realistic solutions�
Remark����

From gas�kinetic theory� the collision time should depend on macroscopic �ow
variables� such as density and temperature� For BGK�type numerical schemes� the
collision time � is composed of two parts

� � C�

p

�
��

� C�T
j�l�
l � �r�
rj
j�l�
l � �r�
rj �

where T is the time step� C� is chosen according to the Reynolds number and C�

is of order � for most cases� The two terms in the collision time are equivalent
to a physical and a numerical viscosity� In most cases� the mesh size is not small
enough to resolve the discontinuities� Therefore� we have to regard the thickness
of the discontinuity as being� at least� as large as a few cell sizes� and additional
viscosity is necessary to satisfy this requirement� For all Euler test cases� the results
are not very sensitive to the values of C� and C�� and C� is usually of the order
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of ���� if !x � �� The additional term in the collision time can be regarded as a
limiter imposed in the time domain in the dynamical stage� which is similar to the
conventional limiter imposed in the space domain during the reconstruction stage
when the order of space accuracy is more than 
rst order� Therefore� the concept
of limiter should be extended to both space and time if a numerical scheme couples
them and has uniformly high order accuracy� One advantage of the BGK�type
scheme is that an explicit expression for the total viscosity can be computed� This
avoids the ambiguity of implicit viscosities present in most upwind schemes�

Remark����

In an earlier paper ��� we have illustrated the entropy condition for BGK�type
schemes� Here one point should be emphasized� the BGK model itself satis
es
the entropy condition �dissipative property� �
� This is in contrast with the Euler
equations� where the entropy condition has to be added� Thus� if a scheme uses
the BGK model correctly there would not be any mechanism to create unphysical
phenomena such as expansion shocks�

Remark���� For two dimensional �ow� the linearized form of the Navier�Stokes

equations is

Wt � AWx � BWy � S�

It is well known that the di�culties in the development of multidimensional upwind
schemes for the Navier�Stokes equations is due to the fact that the matrices A and
B do not commute� �A�B� � AB � BA �� �� Physically� it means that an in
nite
number of waves are present in the �ow� Therefore� the necessity of wave modeling
follows�

However� for the BGK model

ft � ufx � vfy � �g � f����

the particle velocities are independent variables and this di�culty is eliminated�

Thus� in the BGK�type schemes we can consider all particles in all directions�
Theoretically� there is not any obvious obstacle to a multidimensional BGK�type
scheme provided that a truly �multidimensional� initial reconstruction is developed�

Remark���� If higher order terms are included in the expansion of f� and g� i�e�

g � g��� � �ax � �bx� � �Bxt� �At � �Ct���

the BGK model can be still solved numerically using the generalized conservation
constraints

�m�n

�xn�tm

Z
�f � g���d� � ��

The higher order BGK schemes will be developed for the aeroacoustic problems in
the near future�
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� Numerical Experiments

The new numerical scheme has been applied to several test cases ranging from a
simple advection�di	usion equation to hypersonic �ow computations� Unless oth�
erwise stated� in all of the numerical examples reported� � � ���� and the MUSCL
limiter is used�
Case��� Advection�Di�usion Equation

A previous study of the BGK�type �ux function for the advection equation has
shown an interesting algorithmic structure��� In particular� it turns out that the
numerical �uxes can be regarded as a nonlinear time�dependent combination of the
Lax�Wendro	 type schemes with the Kinetic Flux Vector Splitting� Details of the
numerical discretization of the BGK�type scheme for the linear advection�di	usion
equation are presented in Appendix A� In order to compare the results obtained
with our BGK�type scheme with others in the literature� ENO interpolation is
employed in the reconstruction stage� Fig�����Fig���� show the computed results
of a decaying sinusoidal wave after one period�t � ���� corresponding to Reynolds
numbers Re�� cL��� of ���� ����� respectively� The computations use �� cells�
and a CFL number of ���� A comparison with the results of Chiu and Zhong�

reveals that our results obtained with higher order �more than second order� are
almost indistinguishable from those reported in the literature� However� 
rst order
and second order results obtained with the BGK�type schemes are much better� A
grid re
nement study using a second order MUSCL limiter also veri
es excellent
convergence characteristics of the scheme� Fig�����Fig���� show that the numerical
results obtained with more than �� cells practically collapse onto the exact solution�
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Case��� Shock Tube Problems

Two standard shock tube problems are chosen� The Sod case is a Riemann
problem for the one dimensional Euler equations and is taken from reference���
The density distribution computed using ��� cells is shown in Fig���� and compared
with the exact solution which is plotted as a solid line� The Lax�Harten case is also
a Riemann problem for the Euler equations��� The density distribution computed
using ��� cells is shown in Fig����� The accuracy of the computed results are
comparable to that obtained with higher order ENO schemes by other authors �����
although a MUSCL limiter is used in the reconstruction step of the BGK�type
scheme�
Case��� Blast Wave Problem

The blast wave problem� 
rst proposed by Woodward and Colella ��� requires the
computation of a head�on collision between two blast waves and the resulting series
of shocks and contact discontinuities� The density distribution computed with the
MUSCL limiter and the BGK �ux function using ��� cells is shown by the symbols
in Fig����� The solid line is obtained with the same scheme and ��� cells� From the
results� we can see that the shock and contact discontinuity waves are well resolved�

It is well known that several existing schemes� such as the PPM method� need
to be augmented by a steepening technique in order to improve the accuracy of
the results for this test case� Thus� we have also investigated the use of steep�
ening techniques in the reconstruction stage of the BGK�type method� The den�
sity distribution computed using ��� cells and Huynh�s third�order interpolation ��

scheme with sharpening of the contact discontinuity coupled with our BGK�type
�ow solver is shown in Fig���� This result� which was obtained using a � � ���
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compares extremely well with the solid line which is again the 
ne grid solution of
Fig����� However� as in the case with other schemes� it is observed that steepening
techniques reduce the robustness of our numerical method�
Case�	� Shu�Osher Problem

The Shu�Osher test case requires the calculation of a moving shock at Mach num�
ber � interacting with sine waves� As observed by Shu and Osher��� MUSCL type
TVD schemes produce very smeared results for the density distributions� Fig�����
and Fig����� show the density distributions computed on a mesh with ��� cells
using the BGK solver coupled� respectively� with a MUSCL and a �th�order ENO �

interpolation of the pointwise values at the cell interface� The results con
rm that
an accurate calculation of this test case requires higher order reconstructions�
Case�
� Forward Facing Step with Mach �

The forward�facing step test is carried out on a uniform mesh with ������ cells�
The computed density and pressure distributions are presented in Fig������ Notice
that the BGK�type scheme does not require any special treatment at the corner�
and does not produce any expansion shocks at the corner�
Case��� Double Mach Re�ection

The double Mach re�ection problem is calculated on a computational domain
with ��� � ��� cells� The problem is set up by driving a strong shock down a
tube which contains a wedge� The computed density and pressure distributions
after the collision between the shock and the wedge are shown on Fig������ The
carbuncle phenomenon reported in reference �	 was never observed with our BGK�
type scheme�
Case�� An Impulsively Started Cylinder



BGK�BASED SCHEMES FOR COMPRESSIBLE FLOW ��

 0
.0

0
   

1.
00

   
2.

00
   

3.
00

   
4.

00
   

5.
00

 D
E

N
SI

T
Y

  40.00   72.00  104.00  136.00  168.00  200.00  232.00  264.00  296.00

FIGURE 		� Shu�Osher case with �th�order ENO Limiter and BGK Solver

Strong shocks� and expansions as well as subsonic �ow regions are presented in
both steady and unsteady hypersonic �ows induced by the impulsive start of a
cylinder� A monotonic numerical scheme is needed to capture� crisply and with�
out spurious oscillations� the abrupt change of �ow variables across a shock wave�
Moreover� a numerical scheme should be capable of maintaining positivity of the
�ow variables� to avoid the occurrence of unphysical negative values for quantities
such as pressure and"or temperature in regions of low density and low tempera�
tures created by extreme expansions� In the present paper initial Mach numbers of
M � ���� ��� were chosen as test cases of hypersonic �ows which present all the �ow
features discussed above� This problem imposes a particular di�culty not only for
unsteady but also for steady �ow computations because the very high expansion
in the rear part of cylinder produces a vacuum�like low pressure and low density
region�

If the kinetic energy is so large that the di	erence between the total energy and
the kinetic energy is in the range of round o	 error� one should limit the lower bound
of the di	erence with the order of round�o	 to avoid meaningless computations�
This problem is solely caused by the 
nite precision of the hardware and not by
the numerical scheme� The round�o	 error is usually of the order O������� �
O�������� The present computations were performed using a Silicon Graphics
INDIGO � workstation with an observed round�o	 error of order O�������� Thus a
lower bound of ����� was selected� Several numerical schemes described in reference
�	 have been applied to this problem�

All of the schemes have severe di�culties in maintaining positive pressure and"or
density� and generally need ad hoc 
xes� Most of the second order schemes simply
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FIGURE 	�� Grid Distribution around the Cylinder ���� 
� cells�

fail� Our BGK�type scheme� however� does not seem to have particular di�culties
in preserving positivity during the whole time integration� This 
nding is veri
ed
for both 
rst and second order schemes�

Two di	erent grids with �� ��� and ���� �� cells were used� The coarse grid
is shown in Fig������ The grid distribution is uniform in the angular direction ��
or ��� cells� while the cells in the radial direction grid��� or �� cells� are slightly
clustered to the surface� The ratio of inner radius to outer radius is ��� and all
the calculations were carried out using a CFL of ���� Fig����� and Fig����� show
the computed density� pressure and Mach number distributions along the symmetry
line and the upper surface of the cylinder at times of T � ���� ���� ��� corresponding
to a free stream Mach number of M � ���� ��� respectively� It can be seen that the
results at three di	erent times practically collapse to a single curve� This indicates
that the computed results at T � ��� have reached a steady state� Fig����� and
Fig����� show the density� pressure and Mach number distributions at T � ����
Notice that the bow shock wave is captured with two interior points� Also� on
the 
ner grid� the shock pro
le is sharper and the expansion in the rear part of
cylinder is more extreme� leading to a higher Mach number� Our results show a
much higher Mach number than the result in reference�� even on a coarser grid�
This again indicates that BGK�type schemes may yield a less di	usive solution with
a consequent higher accuracy�

Fig���� and Fig����� show the density� pressure and Mach contours for M � ����
���� Forty contour levels� equally spaced from the maximum and minimum values�
are used� Both the bow shock� and the V�shape shock induced from the expansion
are captured very well with a relatively coarse grid�
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�a� Density Contours

�b� Pressure Contours
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�c� Mach Number Contours

FIGURE 	�� Density� Pressure and Mach Contours for M � 
��

��a� Density Contours
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��b� Pressure Contours

��c� Mach Number Contours

FIGURE 
�� Density� Pressure and Mach Contours for M � ���
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� Conclusion

Both the initial reconstruction stage and the gas evolution stage can a	ect the
accuracy and robustness of a numerical scheme� While the reconstruction step is
mainly a numerical artifact� the dynamical evolution step should model the physics
of the �ow as accurately as possible� The BGK�type schemes provide an alternative
and advanced gas evolution model� which has many advantages over Godunov�type
schemes� The initial condition in the reconstruction step is more �exible and the

nal gas distribution function yields the Navier�Stokes equations� The physical
evolution for the BGK�type schemes is based on the simple fact that a nonequi�
librium state will approach an equilibrium state in both space and time due to
particle collisions� This process is accompanied by an increase of entropy� Also�
the BGK�type schemes eliminate some of the di�culties encountered by multidi�
mensional upwind schemes and satisfy the positivity condition� Following earlier
papers ����
���������� the present paper shows the progressive development of the
BGK�type schemes� The comprehensive numerical results presented in this paper
validate both the physical and numerical considerations used in the development�
and indicate the level of maturity reached by this class of schemes�
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Appendix A
Linear Advection�Di	usion Equation

The linear advection�di	usion equation in one�dimension is written as

Ut � cUx � �Uxx�

where � is the viscosity coe�cient� The above equation can be derived from the
BGK model

ft � ufx � �g � f����

assuming that

g � U �



�
����e��u�c�

�

�

together with the conservation constraintZ
�f � g�d� � ��

The Chapmann�Enskog expansion of the BGK model gives

f � g � � �gt � ugx�� ����
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The corresponding advection�di	usion equation

Ut � cUx �
�

�

Uxx � ���

�
�
Uxxxx

is obtained by substituting Eq����� into the relation
R

�ft � ufx�du � � obtained
from the conservation constraint� and by integrating in the particle velocity space�
The �th�order derivative in the above equation has the very nice property of sta�
bilizing the numerical scheme �� Thus� if we take � � ��
� the advection�di	usion
equation is recovered from the BGK model�

The numerical scheme for the linear advection�di	usion equation can be obtained
from the scheme presented in this paper by following several simpli
cations�
�� Make the number of the internal degrees of freedom K � � �
�� Only keep the 
rst moment of �� with � � ��
�� Both f and g have the same 
� which is chosen initially� for example 
 � �� The
collision time � is determined afterwards by � � �
�� where � is known�

Appendix B
Moments of the Maxwellian Distribution Function

In the gas�kinetic scheme� we need to evaluate moments of the Maxwellian distribu�
tion function with bounded and unbounded integration limits� Here� we list some
general formulas�

Firstly� we assume that the Maxwellian distribution for one dimensional �ow is

g � ��



�
�
K��

� e��u�U�
������

where 	 has K degrees of freedom� Then� by introducing the following notation for
the moments of g�

� � ��� ��

Z
�����gdud	�

the general moment formula becomes

� un	l ��� un �� 	l ��

where n is an integer� and l is an even integer�owing to the symmetrical property
of 	�� The moments of � 	l � are�

� 	� �� �
K

�

�

� 		 �� �
�K

�
�
�
K�K � ��

�
�
�

The values of � un � depend on the integration limits� If the limits are �	 to
�	� we have

� u� �� �

� u �� U
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��

� un�� �� U � un�� � �
n � �

�

� un �

When the integral is from � to �	 as � ��� �
� or from �	 to � as � ��� ���� the
error function and the complementary error function� appear in the formulation�
Thus� the moments for un in the half space are�

� u� �
� �
�

�
erfc��

p

U �

� u �
� � U � u� �
� �
�

�

e��U
�

p
�


���

� un�� �
�� U � un�� �
� �
n � �

�

� un �
� �

Similarly�

� u� ��� �
�

�
erfc�

p

U �

� u ��� � U � u� ��� ��

�

e��U
�

p
�


���

� un�� ���� U � un�� ��� �
n � �

�

� un ���
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