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This paper presents the development of a third-order compact gas-kinetic scheme (GKS) for 
compressible Euler and Navier-Stokes solutions, constructed particularly for an unstructured 
tetrahedral mesh. The scheme utilizes a time-dependent gas distribution function at a cell 
interface to not only calculate the fluxes needed for updating the cell-averaged flow variables 
but also to evaluate the flow variables at the cell interface. This leads to the evolution of cell-

averaged gradients of flow variables. The success of this scheme heavily relies on the initial 
data reconstruction techniques, with an emphasis on their application to the tetrahedral mesh. 
Employing a conventional second-order unlimited least-square reconstruction directly on the cell-

averaged flow variables of von Neumann neighbouring cells can introduce linear instability into 
the scheme. However, by using the updated cell-averaged gradients, the GKS with a third-order 
compact smooth reconstruction remains linearly stable under a large CFL number when applied 
to a tetrahedral mesh. To enhance the robustness of the high-order compact GKS for capturing 
a discontinuous solution, we propose a novel two-step multi-resolution weighted essentially 
non-oscillatory (WENO) reconstruction. This innovative approach overcomes the stability issues 
associated with a second-order compact reconstruction by incorporating a pre-reconstruction step. 
Additionally, it simplifies the third-order non-linear reconstruction process by adding a single 
large stencil to those used in the second-order one. A high-order wall boundary condition is 
achieved by fusing the constrained least-square technique with the WENO procedure, where a 
quadratic element is used in the reconstruction for cells with a curved boundary. Numerical 
tests involving both the second-order and third-order compact GKS are presented, encompassing 
both inviscid and viscous flows at both low and high speeds. The results demonstrate that the 
proposed third-order compact scheme possesses robustness in high-speed flow computation and 
exhibits excellent adaptability to meshes with complex geometrical configurations.
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1. Introduction

The simulation of compressible flow with complex geometry is important in the engineering applications. The use of unstructured 
mesh is especially favored from its geometric flexibility. On such a mesh even for a second-order finite volume method (FVM) 
it is not easy to achieve the same performance as that in the structured mesh. Commonly, slope reconstruction schemes, such as 
cell-based Green-Gauss method [16] combined with different types of limiters, are robust and widely used in the commercial or 
open-source software [38]. However, these methods can easily deteriorate the spatial accuracy for skewed mesh and become over-

dissipative for flow simulation with discontinuities. The least-square reconstruction with cell-averaged variables and von Neumann 
neighbors only preserves a strictly second-order accuracy, but suffers from the linear instability on tetrahedral mesh [5]. Therefore, 
the reconstruction stencil has to be further extended. In order to ensure linear stability, a two-step second-order weighted essentially 
non-oscillatory (WENO) method has been proposed [31] with the attempt of keeping a compact reconstruction even with an extended 
stencil. The high-order WENO-FVMs have been continuously developed and applied to large-scale aeronautical simulations [1]. But, 
the compactness can be hardly kept in the high-order FVMs. Even though the extended stencils in reconstruction can improve the 
robustness of the schemes, difficulties still exist in the parallel programming and boundary treatment. The recently proposed multi-

resolution reconstruction with only five equivalent sub-stencils greatly releases the above problems [39] even with the inclusion of 
neighbor-to-neighbor cells.

The compact methods with the updates of multiple degrees of freedom (DOFs) for each cell have been developed extensively in 
the past decades. Two main representatives are the DG [25] and the FR/CPR methods [6,35], which hybridize the finite volume 
framework with the finite element method or the finite difference method. These methods can achieve arbitrary spatial order of 
accuracy with only the targeted cell as the reconstruction stencil, and yield great mesh adaptability and high scalability. Successful 
examples have been demonstrated in large eddy simulation (LES) [29] and RANS simulation [34] for subsonic flows. For the flow 
simulation with discontinuities, these methods have less robustness against the traditional high-order FVMs. In addition, these 
methods have restricted explicit time steps and high memory-consumption [15]. The 𝑃𝑁𝑃𝑀 [4] and reconstructed-DG (rDG) methods 
[15] try to overcome the above weakness with the release of the compactness of the DG methods. Large time step and less memory 
requirement can be achieved in the rDG methods in comparison with the same order DG ones.

In recent years, a class of high-order compact GKS (CGKS) has been developed. The GKS is based on a time accurate evolution 
model in the construction of the gas distribution function at a cell interface [33]. The time-dependent solution provides not only the 
fluxes across a cell interface, but also the corresponding flow variables. As a result, both the cell-averaged flow variables and their 
gradients can be updated simultaneously through the divergence theorem. For the DG/rDG methods, the similar DOFs are obtained 
differently with explicit governing equations. Due to their differences in the updating schemes, the compact GKS can use a larger 
time step and has better robustness than the corresponding DG methods. For example, a CFL number around 0.5 can be taken for the 
third-order compact GKS [9] while it is restricted to be less than 0.33 for the third-order P1P2-rDG scheme. The P1P2-rDG is claimed 
to be unstable on tetrahedral mesh with smooth reconstruction. However, as shown in this paper the third-order compact GKS is 
stable with a CFL number of 1 with the same compact stencil. Due to the use of time accurate evolution model, another advantage 
of GKS is to use the two-stage fourth-order temporal discretization method [12] or other multi-stage multi-derivative time marching 
scheme [23]. Although the gas-kinetic flux function has a high computational cost than the time-independent Riemann solvers, the 
HGKS can achieve fourth-order temporal accuracy with only two stages [19], instead of four-stages in the fourth-order Runge-Kutta 
(RK) time discretization. Overall, the compact GKS turns out to be more efficient in comparison with Riemann-solver-based RK 
methods [10,9].

In this paper, a compact third-order GKS on tetrahedral mesh will be presented. The scheme is linearly stable for smooth flow 
with unlimited constrained-least-square reconstruction on a compact stencil with von Neumann neighboring cells only. A direct 
application of the HWENO-type reconstruction on the hexahedral mesh [10] and on the current tetrahedron mesh is not successful, 
and shows poor robustness and mesh adaptability. The main reasons may be the following. Firstly, the coefficient matrices for the 
first-order polynomials obtained from the cell-averaged conservative variables on the biased sub-stencils depend too sensitively on 
the quality of the tetrahedron and can easily become singular. Secondly, the central first-order sub-stencil cannot provide a proper 
measurement of the smoothness of the local flow field. In the FVM, the unlimited second-order least-square reconstruction on such a 
central stencil leads to linear instability [5], same to the second-order GKS with the same reconstruction. Extended stencils have to 
be used to ensure the stability under finite volume framework. Recently, a two-step WENO reconstruction with a compact stencil in 
each step has been proposed [31]. The key idea is to firstly reconstruct the first-order spatial derivatives by using the unlimited least-

square reconstruction and store them in each cell. Then, at the second step, new first-order spatial derivatives on the targeting cell are 
obtained by a weighted combination of all the pre-computed spatial derivatives. At the same time, a multi-resolution reconstruction 
has been proposed in a hierarchical way, i.e., the Nth-order of accuracy can be achieved by N central stencils from first-order 
to Nth-order [39]. Inspired from the above two approaches, a two-step multi-resolution reconstruction is designed in the current 
scheme. A linearly stable second-order WENO reconstruction is obtained first in a compact manner. Then, a third-order compact 
reconstruction is obtained with one additional large stencil only beside the above second-order one. The reconstruction becomes 
simple and efficient. For example, the robustness and mesh adaptability of the scheme have been enhanced due to the extended 
sub-stencils, and the memory overhead is even sightly reduced without storing the polynomial coefficients of the biased sub-stencils 
in each cell. Benefiting from the compact reconstruction in each step, the WENO procedure can be easily extended to the boundary 
reconstruction. In order to keep high-order accuracy at boundaries, a third-order one-sided reconstruction without ghost cells are 
2

designed for the adiabatic and isothermal walls at each Gaussian point. To keep the high-order spatial reconstruction, a quadratic 
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element is used to recover the curved boundary. Stringent tests including supersonic flow passing through an air-vehicle validate the 
robustness of the current compact scheme with complex geometry.

This paper is organized as follows. The basic framework of the compact high-order GKS on tetrahedron mesh is presented in 
Section 2. In Section 3, the basic formulation for the two-stage temporal discretization is given. In Section 4, the details for the 
two-step multi-resolution WENO reconstruction on tetrahedral mesh are presented. Numerical examples from nearly incompressible 
to highly compressible flows are shown in Section 5. A concluding remark is drawn in the last section.

2. Compact finite volume gas-kinetic scheme

The 3-D gas-kinetic BGK equation [2] is

𝑓𝑡 + u ⋅∇𝑓 = 𝑔 − 𝑓
𝜏

, (1)

where 𝑓 = 𝑓 (x, 𝑡, u, 𝜉) is the gas distribution function, which is a function of space x, time 𝑡, particle velocity u, and internal variable 
𝜉. 𝑔 is the equilibrium state approached by 𝑓 and 𝜏 is the collision time.

The collision term satisfies the compatibility conditionˆ
𝑔 − 𝑓
𝜏

𝜓𝜓𝜓dΞ = 0, (2)

where 𝜓𝜓𝜓 = (1, u, 1
2
(u2 + 𝜉2))𝑇 , dΞ = d𝑢1d𝑢2d𝑢3d𝜉1...d𝜉𝐾 , 𝐾 is the number of internal degrees of freedom, i.e. 𝐾 = (5 −3𝛾)∕(𝛾 −1) in 3-D 

case, and 𝛾 is the specific heat ratio.

In the continuum flow regime with the smoothness assumption, based on the Chapman-Enskog expansion of the BGK equation 
the gas distribution function can be expressed as [33],

𝑓 = 𝑔 − 𝜏𝐷u𝑔 + 𝜏𝐷u(𝜏𝐷u)𝑔 − 𝜏𝐷u[𝜏𝐷u(𝜏𝐷u)𝑔] + ...,

where 𝐷u = 𝜕∕𝜕𝑡+u ⋅∇. Different hydrodynamic equations can be derived by truncating the expansion on different orders of 𝜏 . With 
the zeroth-order in truncated distribution function 𝑓 = 𝑔, the Euler equations can be recovered by multiplying 𝜓𝜓𝜓 on Eq. (1) and 
integrating it over the phase space,

W𝑡 +∇ ⋅ F(W) = 0.

With the first-order truncation, i.e.,

𝑓 = 𝑔 − 𝜏(u ⋅∇𝑔 + 𝑔𝑡), (3)

the N-S equations can be obtained,

W𝑡 +∇ ⋅ F(W,∇W) = 0,

with 𝜏 = 𝜇∕𝑝 and 𝑃𝑟 = 1.

The conservative variables and their fluxes are the moments of the gas distribution function

W(x, 𝑡) =
ˆ
𝜓𝜓𝜓𝑓 (x, 𝑡,u, 𝜉)dΞ (4)

and

F(x, 𝑡) =
ˆ

u𝜓𝜓𝜓𝑓 (x, 𝑡,u, 𝜉)dΞ. (5)

Remark 1. The cell-averaged conservative variables can be updated through the interface fluxes under the finite volume framework. 
Besides the fluxes in Eq. (5), the gas distribution function also provides the flow variables at the cell interface, such as that in Eq. (4). 
It is the key point for the construction of compact GKS with the availability of time accurate W(x, 𝑡) at a cell interface. The scheme 
depends solely on the high-order gas evolution model for providing local time accurate evolution solution, which cannot be achieved 
by time independent Riemann solution.

2.1. Compact gas-kinetic scheme on tetrahedral mesh

For a tetrahedral cell Ω𝑖 in 3-D case, the boundary can be expressed as

𝜕Ω𝑖 =
𝑁𝑓⋃
𝑝=1

Γ𝑖𝑝,

where 𝑁𝑓 = 4 is the number of cell interfaces for cell Ω𝑖.
3

The update of the cell averaged conservative flow variables in a finite control volume i from 𝑡𝑛 to 𝑡𝑛+1 can be expressed as
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Fig. 1. The controlling points and isoparametric transformation of the quadratic elements.

W𝑛+1
𝑖

||Ω𝑖|| = W𝑛
𝑖
||Ω𝑖||− 𝑁𝑓∑

𝑝=1

ˆ

Γ𝑖𝑝

𝑡𝑛+1ˆ

𝑡𝑛

F(x, 𝑡) ⋅ n𝑝d𝑡d𝑠, (6)

with

F(x, 𝑡) ⋅ n𝑝 =
ˆ
𝜓𝜓𝜓𝑓 (x, 𝑡,u, 𝜉)u ⋅ n𝑝dΞ, (7)

where W𝑖 is the cell averaged values over cell Ω𝑖, ||Ω𝑖|| is the volume of Ω𝑖, F is the interface fluxes, and n𝑝 = (𝑛1, 𝑛2, 𝑛3)𝑇 is the unit 
vector in the outer normal direction of Γ𝑖𝑝 . The semi-discretized form of finite volume scheme can be written as

dW𝑖

d𝑡
= (W𝑖) = − 1||Ω𝑖||

𝑁𝑓∑
𝑝=1

ˆ

Γ𝑖𝑝

F(W) ⋅ n𝑝d𝑠. (8)

For the interface fluxes F𝑖𝑝(𝑡), the numerical quadrature can be adopted and Eq. (6) can be rewritten as

W𝑛+1
𝑖

||Ω𝑖|| = W𝑛
𝑖
||Ω𝑖||− 𝑁𝑓∑

𝑝=1

|||Γ𝑖𝑝||| 𝑀∑
𝑘=1

𝜔𝑘

𝑡𝑛+1ˆ

𝑡𝑛

F(x𝑝,𝑘, 𝑡) ⋅ n𝑝d𝑡. (9)

Nowadays the curved mesh generation has been supported by popular commercial software. To be consistent with the spatial 
accuracy, the quadratic element is applied here to describe the geometry. The controlling points for the quadratic triangle are shown 
in Fig. 1(a). The iso-parametric transformation is used to evaluate the surface integral, which is expressed as

X(𝜉, 𝜂) =
5∑
𝑙=0

x𝑙𝜙𝑙(𝜉, 𝜂),

where x𝑙 is the location of the controlling points and 𝜙𝑙 is the base function as follows [28]

𝜙0 = (𝜉 + 𝜂 − 1)(2𝜉 + 2𝜂 − 1), 𝜙1 = 𝜉(2𝜉 − 1), 𝜙2 = 𝜂(2𝜂 − 1),
𝜙3 = −4𝜉(𝜉 + 𝜂 − 1), 𝜙4 = 4𝜉𝜂, 𝜙5 = −4𝜂(𝜉 + 𝜂 − 1). (10)

The flux across Γ𝑖𝑝 in Eq. (6) can be transferred to a standard isosceles right triangle Γ̃𝑖𝑝

F𝑖𝑝(𝑡) =
ˆ

Γ𝑖𝑝

F(x, 𝑡) ⋅ n𝑝d𝑠 =
ˆ

Γ̃𝑖𝑝

F(W(X(𝜉, 𝜂))) ⋅ n𝑝
|||| 𝜕(𝑥, 𝑦, 𝑧)𝜕(𝜉, 𝜂)

||||d𝜉d𝜂.
To meet the requirement of a third-order spatial accuracy, the above equation can be approximated through Gaussian quadrature as

F𝑖𝑝(𝑡) =
1
2
Δ𝜉Δ𝜂

3∑
𝑚=1

𝜔̃𝑚F𝑚(𝑡) ⋅ (n𝑝)𝑚
|||| 𝜕(𝑥, 𝑦, 𝑧)𝜕(𝜉, 𝜂)

||||𝑚 ,
where Δ𝜉 =Δ𝜂 = 1 and the local normal direction (n𝑝)𝑚 =

(
𝑿𝜉 ×𝑿𝜂

)
∕ ‖‖‖𝑿𝜉 ×𝑿𝜂

‖‖‖. The standard Gaussian points are

(𝜉, 𝜂)1 = ( 1
6
Δ𝜉, 1

6
Δ𝜂), (𝜉, 𝜂)2 = ( 2

3
Δ𝜉, 1

6
Δ𝜂), (𝜉, 𝜂)3 = ( 1

6
Δ𝜉, 2

3
Δ𝜂),

with 𝜔̃𝑚 = 1
3 , 𝑚 = 1, 2, 3. Compared with Eq. (9), we have

1 | 𝜕(𝑥, 𝑦, 𝑧) |

4

𝜔𝑚 =
2
𝜔̃𝑚

||| 𝜕(𝜉, 𝜂) |||𝑚 , x𝑝,𝑘 = x((𝜉, 𝜂))𝑚, n𝑝,𝑘 = (n𝑝)𝑚, 𝑚 = 1,2,3.
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The quadratic element reduces to the linear element when every edge is a straight line.

According to the coordinate transformation, the local coordinate for the cell interface Γ𝑖𝑝 is expressed as (𝑥1, ̃𝑥2, ̃𝑥3)𝑇 = (0, ̃𝑥2, 𝑥3)𝑇 , 
where (𝑥2, 𝑥3)𝑇 ∈ Γ𝑖𝑝, and the velocities in the local coordinate are given by

⎧⎪⎪⎨⎪⎪⎩
𝑢̃1 = 𝑢1𝑛1 + 𝑢2𝑛2 + 𝑢3𝑛3,

𝑢̃2 = −𝑢1𝑛2 + 𝑢2(𝑛1 +
𝑛23

1+𝑛1
) − 𝑢3

𝑛2𝑛3
1+𝑛1

,

𝑢̃3 = −𝑢1𝑛3 − 𝑢2
𝑛2𝑛3
1+𝑛1

+ 𝑢3(1 −
𝑛23

1+𝑛1
),

𝑛1 ≠ −1. (11)

The macroscopic conservative flow variables in the local coordinate are expressed as

W̃(x̃, 𝑡) = TW(x, 𝑡),

where T is the rotation matrix

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 𝑛1 𝑛2 𝑛3 0

0 −𝑛2 𝑛1 +
𝑛23

1+𝑛1
− 𝑛2𝑛3

1+𝑛1
0

0 −𝑛3 − 𝑛2𝑛3
1+𝑛1

1 −
𝑛23

1+𝑛1
0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑛1 ≠ −1. (12)

Note that when 𝑛1 = −1, Eq. (11) changes to (𝑢̃1, ̃𝑢2, ̃𝑢3)𝑇 = (−𝑢1, −𝑢2, 𝑢3)𝑇 and the matrix (12) is replaced by a diagonal matrix 
Λ = diag(1, −1, −1, 1, 1).

For the gas distribution function in the local coordinate, 𝑓 (x̃, 𝑡, ̃u, 𝜉) = 𝑓 (x, 𝑡, u, 𝜉) and |du| = |dũ|, then the numerical fluxes can be 
transformed as

F(x, 𝑡) =
ˆ
𝜓𝜓𝜓𝑓 (x, 𝑡,u, 𝜉)u ⋅ n𝑝dud𝜉 =

ˆ
𝜓𝜓𝜓𝑓 (x̃, 𝑡, ũ, 𝜉)𝑢̃1dũd𝜉. (13)

In the computation, the fluxes are obtained firstly by taking moments of the gas distribution function in the local coordinates

F̃(x̃, 𝑡) =
ˆ
𝜓𝜓𝜓𝑓 (x̃, 𝑡, ũ, 𝜉)𝑢̃1dũd𝜉, (14)

where 𝜓𝜓𝜓 = (1, ̃u, 1
2
(ũ2 + 𝜉2))𝑇 . According to Eq. (11), Eq. (13) and Eq. (14), the fluxes in the global coordinate can be expressed as a 

combination of the fluxes in the local coordinate

F(W(x, 𝑡)) ⋅ n = T−1F̃(W̃(x̃, 𝑡)). (15)

2.2. Gas-kinetic solver

In order to construct the numerical fluxes at x = (0, 0, 0)𝑇 , the integral solution of BGK equation Eq. (1) is used

𝑓 (x, 𝑡,u, 𝜉) = 1
𝜏

𝑡ˆ

0

𝑔(x′, 𝑡′,u, 𝜉)𝑒−(𝑡−𝑡′)∕𝜏d𝑡′ + 𝑒−𝑡∕𝜏𝑓0(x− u𝑡,u, 𝜉), (16)

where x = x′ + u(𝑡 − 𝑡′) is the particle trajectory. 𝑓0 is the initial gas distribution function, 𝑔 is the corresponding equilibrium state in 
space and time. The integral solution basically states a physical process from the particle free transport of 𝑓0 in the kinetic scale to 
the hydrodynamic flow evolution in the integration of 𝑔 term. The flow evolution at the cell interface depends on the ratio of time 
step to the local particle collision time Δ𝑡∕𝜏 .

To construct a time evolving gas distribution function at a cell interface, the following notations are introduced first

𝑎𝑥𝑖 ≡ (𝜕𝑔∕𝜕𝑥𝑖)∕𝑔 = 𝑔𝑥𝑖∕𝑔,𝐴 ≡ (𝜕𝑔∕𝜕𝑡)∕𝑔 = 𝑔𝑡∕𝑔,

where 𝑔 is the equilibrium state. The variables (𝑎𝑥𝑖 , 𝐴), denoted by 𝑠, depend on particle velocity in the form of [32]

𝑠 = 𝑠𝑗𝜓𝑗 = 𝑠1 + 𝑠2𝑢1 + 𝑠3𝑢2 + 𝑠4𝑢3 + 𝑠5
1
2
(𝑢21 + 𝑢

2
2 + 𝑢

2
3 + 𝜉

2).

The initial gas distribution function in the solution (16) can be modeled as

𝑓0 = 𝑓 𝑙0(x,u)ℍ(𝑥1) + 𝑓
𝑟
0 (x,u)(1 −ℍ(𝑥1)),

where ℍ(𝑥1) is the Heaviside function. Here 𝑓 𝑙0 and 𝑓𝑟0 are the initial gas distribution functions on both sides of a cell interface, which 
have one to one correspondence with the initially reconstructed macroscopic variables. The first-order Taylor expansion for the gas 
5

distribution function in space around x = 0 can be expressed as
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𝑓𝑘0 (x) = 𝑓
𝑘
𝐺
(0) +

𝜕𝑓𝑘
𝐺

𝜕𝑥𝑖
(0)𝑥𝑖 = 𝑓𝑘𝐺(0) +

𝜕𝑓𝑘
𝐺

𝜕𝑥1
(0)𝑥1 +

𝜕𝑓𝑘
𝐺

𝜕𝑥2
(0)𝑥2 +

𝜕𝑓𝑘
𝐺

𝜕𝑥3
(0)𝑥3, (17)

for 𝑘 = 𝑙, 𝑟. According to Eq. (3), 𝑓𝑘
𝐺

has the form

𝑓𝑘
𝐺
(0) = 𝑔𝑘(0) − 𝜏(𝑢𝑖𝑔𝑘𝑥𝑖 (0) + 𝑔

𝑘
𝑡 (0)), (18)

where 𝑔𝑘 is the equilibrium state with the form of a Maxwell distribution. 𝑔𝑘 can be fully determined from the reconstructed 
macroscopic variables W𝑙 , W𝑟 at the left and right sides of a cell interface

ˆ
𝜓𝜓𝜓𝑔𝑙dΞ = W𝑙 ,

ˆ
𝜓𝜓𝜓𝑔𝑟dΞ = W𝑟. (19)

Substituting Eq. (17) and Eq. (18) into Eq. (16), the kinetic part of the integral solution can be written as

𝑒−𝑡∕𝜏𝑓𝑘0 (−u𝑡,u, 𝜉) = 𝑒−𝑡∕𝜏𝑔𝑘[1 − 𝜏(𝑎𝑘𝑥𝑖 𝑢𝑖 +𝐴
𝑘) − 𝑡𝑎𝑘𝑥𝑖 𝑢𝑖], (20)

where the coefficients 𝑎𝑘𝑥1 , ..., 𝐴
𝑘, 𝑘 = 𝑙, 𝑟 are defined according to the expansion of 𝑔𝑘. After determining the kinetic part 𝑓0, the 

equilibrium state 𝑔 in the integral solution Eq. (16) can be expanded in space and time as follows

𝑔(x, 𝑡) = 𝑔𝑐(0,0) + 𝜕𝑔𝑐

𝜕𝑥𝑖
(0,0)𝑥𝑖 +

𝜕𝑔𝑐

𝜕𝑡
(0,0)𝑡, (21)

where 𝑔𝑐 is the Maxwellian equilibrium state located at an interface. Similarly, W𝑐 are the macroscopic flow variables for the 
determination of the equilibrium state 𝑔𝑐

ˆ
𝜓𝜓𝜓𝑔𝑐dΞ = W𝑐 . (22)

Substituting Eq. (21) into Eq. (16), the hydrodynamic part in the integral solution can be written as

1
𝜏

𝑡ˆ

0

𝑔(x′, 𝑡′,u, 𝜉)𝑒−(𝑡−𝑡′)∕𝜏d𝑡′ = 𝐶1𝑔
𝑐 +𝐶2𝑎

𝑐
𝑥𝑖
𝑢𝑖𝑔

𝑐 +𝐶3𝐴
𝑐𝑔𝑐 , (23)

where the coefficients 𝑎𝑐𝑥𝑖 , 𝐴
𝑐 are defined from the expansion of the equilibrium state 𝑔𝑐 . The coefficients 𝐶𝑚, 𝑚 = 1, 2, 3 in Eq. (23)

are given by

𝐶1 = 1−𝑒−𝑡∕𝜏 ,𝐶2 = (𝑡+ 𝜏)𝑒−𝑡∕𝜏 − 𝜏,𝐶3 = 𝑡− 𝜏 + 𝜏𝑒−𝑡∕𝜏 .

The coefficients in Eq. (20) and Eq. (23) can be determined by the spatial derivatives of macroscopic flow variables and the compat-

ibility condition as follows

⟨𝑎𝑥1 ⟩ = 𝜕W

𝜕𝑥1
= W𝑥1

, ⟨𝑎𝑥2 ⟩ = 𝜕W

𝜕𝑥2
= W𝑥2

, ⟨𝑎𝑥3 ⟩ = 𝜕W

𝜕𝑥3
= W𝑥3

,

⟨𝐴+ 𝑎𝑥1𝑢1 + 𝑎𝑥2𝑢2 + 𝑎𝑥3𝑢3⟩ = 0, (24)

where ⟨...⟩ are the moments of a gas distribution function defined by

⟨(...)⟩ = ˆ
𝜓𝜓𝜓(...)𝑔dΞ. (25)

The details for the evaluation of each term from macroscopic variables can be found in [7].

In smooth flow region, the collision time is determined by 𝜏 = 𝜇∕𝑝, where 𝜇 is the dynamic viscosity coefficient and 𝑝 is the 
pressure at the cell interface. In order to properly capture the un-resolved shock structure, additional numerical dissipation is needed. 
The physical collision time 𝜏 in the exponential function part can be replaced by a numerical collision time 𝜏𝑛. For the inviscid flow, 
the collision time 𝜏𝑛 is modified as

𝜏𝑛 = 𝜀Δ𝑡+𝐶| 𝑝𝑙 − 𝑝𝑟𝑝𝑙 + 𝑝𝑟
|Δ𝑡,

where 𝜀 = 0.01 and 𝐶 = 1. For the viscous flow, the collision time is related to the viscosity coefficient,

𝜏𝑛 =
𝜇

𝑝
+𝐶| 𝑝𝑙 − 𝑝𝑟

𝑝𝑙 + 𝑝𝑟
|Δ𝑡,

where 𝑝𝑙 and 𝑝𝑟 denote the pressure on the left and right sides of the cell interface. The inclusion of the pressure jump term is 
to increase the non-equilibrium transport mechanism in the flux function to mimic the physical process in the shock layer. Then 
substituting Eq. (20) and Eq. (23) into Eq. (16) with 𝜏 and 𝜏𝑛, the final second-order time dependent gas distribution function 
becomes
6

𝑓 (0, 𝑡,u, 𝜉) =(1 − 𝑒−𝑡∕𝜏𝑛 )𝑔𝑐 + [(𝑡+ 𝜏)𝑒−𝑡∕𝜏𝑛 − 𝜏]𝑎𝑐𝑥𝑖 𝑢𝑖𝑔
𝑐 + (𝑡− 𝜏 + 𝜏𝑒−𝑡∕𝜏𝑛 )𝐴𝑐𝑔𝑐
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+𝑒−𝑡∕𝜏𝑛 𝑔𝑙[1 − (𝜏 + 𝑡)𝑎𝑙𝑥𝑖 𝑢𝑖 − 𝜏𝐴
𝑙]𝐻(𝑢1)

+𝑒−𝑡∕𝜏𝑛 𝑔𝑟[1 − (𝜏 + 𝑡)𝑎𝑟𝑥𝑖 𝑢𝑖 − 𝜏𝐴
𝑟](1 −𝐻(𝑢1)). (26)

For smooth flow, the time dependent solution in Eq. (26) can be simplified as [32],

𝑓 (0, 𝑡,u, 𝜉) = 𝑔𝑐 − 𝜏(𝑎𝑐𝑥𝑖 𝑢𝑖 +𝐴
𝑐 )𝑔𝑐 +𝐴𝑐𝑔𝑐𝑡, (27)

under the assumptions of 𝑔𝑙,𝑟 = 𝑔𝑐 , 𝑎𝑙,𝑟𝑥𝑖 = 𝑎
𝑐
𝑥𝑖

. The above gas-kinetic solver for smooth flow has less numerical dissipation than that 
from the full GKS solver in Eq. (26).

2.3. Direct evolution of the cell averaged first-order spatial derivatives

As shown in Eq. (26), a time evolution solution at a cell interface is provided by the gas-kinetic solver, which is distinguishable 
from the Riemann solver with a constant solution at a cell interface. Recall Eq. (4), the conservative variables at the Gaussian point 
x𝑝,𝑘 can be updated by taking moments 𝜓𝜓𝜓 on the gas distribution function,

W𝑝,𝑘(𝑡𝑛+1) =
ˆ
𝜓𝜓𝜓𝑓𝑛(x𝑝,𝑘, 𝑡𝑛+1,u, 𝜉)dΞ, 𝑘 = 1, ...,𝑀. (28)

Then the cell-averaged first-order derivatives within each element at 𝑡𝑛+1 is given through the Gauss’s theorem,

𝑊
𝑛+1
𝑥 = 1

Δ𝑉

ˆ

𝑉

∇ ⋅ (𝑊 (𝑡𝑛+1),0,0)d𝑉 = 1
Δ𝑉

ˆ

𝜕𝑉

(1,0,0) ⋅ n𝑊 (𝑡𝑛+1)d𝑆

= 1
Δ𝑉

ˆ

𝜕𝑉

𝑊 (𝑡𝑛+1)𝑛1d𝑆 = 1
Δ𝑉

𝑁𝑓∑
𝑝=1

𝑀∑
𝑘=1

𝜔𝑝,𝑘𝑊
𝑛+1
𝑝,𝑘

(𝑛1)𝑝,𝑘Δ𝑆𝑝,

𝑊
𝑛+1
𝑦 = 1

Δ𝑉

ˆ

𝑉

∇ ⋅ (0,𝑊 (𝑡𝑛+1),0)d𝑉 = 1
Δ𝑉

ˆ

𝜕𝑉

(0,1,0) ⋅ n𝑊 (𝑡𝑛+1)d𝑆

= 1
Δ𝑉

ˆ

𝜕𝑉

𝑊 (𝑡𝑛+1)𝑛2d𝑆 = 1
Δ𝑉

𝑁𝑓∑
𝑝=1

𝑀∑
𝑘=1

𝜔𝑝,𝑘𝑊
𝑛+1
𝑝,𝑘

(𝑛2)𝑝,𝑘Δ𝑆𝑝,

𝑊
𝑛+1
𝑧 = 1

Δ𝑉

ˆ

𝑉

∇ ⋅ (0,0,𝑊 (𝑡𝑛+1))d𝑉 = 1
Δ𝑉

ˆ

𝜕𝑉

(0,0,1) ⋅ n𝑊 (𝑡𝑛+1)d𝑆

= 1
Δ𝑉

ˆ

𝜕𝑉

𝑊 (𝑡𝑛+1)𝑛3d𝑆 = 1
Δ𝑉

𝑁𝑓∑
𝑝=1

𝑀∑
𝑘=1

𝜔𝑝,𝑘𝑊
𝑛+1
𝑝,𝑘

(𝑛3)𝑝,𝑘Δ𝑆𝑝,

(29)

where n𝑝,𝑘 = ((𝑛1)𝑝,𝑘, (𝑛2)𝑝,𝑘, (𝑛3)𝑝,𝑘) is the outer unit normal direction at each Gaussian point x𝑝,𝑘.

3. Two-stage temporal discretization

The two-stage fourth-order (S2O4) temporal discretization is adopted here as that in the previous compact GKSs [9,36,10]. 
Following the definition of Eq. (8), a fourth-order time-accurate solution for the cell-averaged conservative flow variables W𝑖 are 
updated by

W∗
𝑖 = W𝑛

𝑖 +
1
2
Δ𝑡(W𝑛

𝑖 ) +
1
8
Δ𝑡2 𝜕

𝜕𝑡
(W𝑛

𝑖 ),

W𝑛+1
𝑖

= W𝑛
𝑖 +Δ𝑡(W𝑛

𝑖 ) +
1
6
Δ𝑡2

( 𝜕
𝜕𝑡
(W𝑛

𝑖 ) + 2 𝜕
𝜕𝑡
(W∗

𝑖 )
)
,

(30)

where (W𝑛
𝑖 ) and 𝜕

𝜕𝑡
(W𝑛

𝑖 ) are given by

(W𝑛
𝑖 ) = − 1||Ω𝑖||

𝑁𝑓∑
𝑝=1

𝑀∑
𝑘=1

𝜔𝑝,𝑘F(x𝑝,𝑘, 𝑡𝑛) ⋅ n𝑝,𝑘,

𝜕

𝜕𝑡
(W𝑛

𝑖 ) = − 1||Ω𝑖||
𝑁𝑓∑
𝑝=1

𝑀∑
𝑘=1

𝜔𝑝,𝑘𝜕𝑡F(x𝑝,𝑘, 𝑡𝑛) ⋅ n𝑝,𝑘,

𝜕

𝜕𝑡
(W∗

𝑖 ) = − 1||Ω𝑖||
𝑁𝑓∑
𝑝=1

𝑀∑
𝑘=1

𝜔𝑝,𝑘𝜕𝑡F(x𝑝,𝑘, 𝑡∗) ⋅ n𝑝,𝑘.

(31)
7

The proof for the fourth-order accuracy in time is shown in [12].
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In order to obtain the numerical fluxes F𝑝,𝑘 and their time derivatives 𝜕𝑡F𝑝,𝑘 at 𝑡𝑛 and 𝑡∗ = 𝑡𝑛 +Δ𝑡∕2, the time accurate solution in 
Eq. (26) can be approximated as a linear function of time. Let’s first introduce the following notation,

𝔽𝑝,𝑘(W𝑛, 𝛿) =

𝑡𝑛+𝛿ˆ

𝑡𝑛

F𝑝,𝑘(W𝑛, 𝑡)d𝑡.

For convenience, assume 𝑡𝑛 = 0, the flux in the time interval [𝑡𝑛, 𝑡𝑛 +Δ𝑡] is expanded in the linear form

F𝑝,𝑘(W𝑛, 𝑡) = F𝑛
𝑝,𝑘

+ 𝑡𝜕𝑡F𝑛𝑝,𝑘.

The coefficients F𝑛
𝑝,𝑘

and 𝜕𝑡F𝑛𝑝,𝑘 can be fully determined by

F𝑝,𝑘(W𝑛, 𝑡𝑛)Δ𝑡+
1
2
𝜕𝑡F𝑝,𝑘(W𝑛, 𝑡𝑛)Δ𝑡2 = 𝔽𝑝,𝑘(W𝑛,Δ𝑡),

1
2

F𝑝,𝑘(W𝑛, 𝑡𝑛)Δ𝑡+
1
8
𝜕𝑡F𝑝,𝑘(W𝑛, 𝑡𝑛)Δ𝑡2 = 𝔽𝑝,𝑘(W𝑛,Δ𝑡∕2).

By solving the linear system, we have

F𝑝,𝑘(W𝑛, 𝑡𝑛) = (4𝔽𝑝,𝑘(W𝑛,Δ𝑡∕2) − 𝔽𝑝,𝑘(W𝑛,Δ𝑡))∕Δ𝑡,

𝜕𝑡F𝑝,𝑘(W𝑛, 𝑡𝑛) = 4(𝔽𝑝,𝑘(W𝑛,Δ𝑡) − 2𝔽𝑝,𝑘(W𝑛,Δ𝑡∕2))∕Δ𝑡2.
(32)

Finally, with Eq. (31) and (32), W𝑛+1
𝑖

at 𝑡𝑛+1 can be updated by Eq. (30).

The time dependent gas distribution function at a cell interface is updated in a similar way,

𝑓 ∗ = 𝑓𝑛 + 1
2
Δ𝑡𝑓𝑛𝑡 ,

𝑓 𝑛+1 = 𝑓𝑛 +Δ𝑡𝑓 ∗
𝑡 .

(33)

In order to construct the first-order time derivative of the gas distribution function, the distribution function in Eq. (26) is 
approximated by the linear function

𝑓 (𝑡) = 𝑓 (x𝑝,𝑘, 𝑡,u, 𝜉) = 𝑓𝑛 + 𝑓𝑛𝑡 (𝑡− 𝑡
𝑛).

According to the gas-distribution function at 𝑡 = 0 and Δ𝑡

𝑓𝑛 = 𝑓 (0),

𝑓 𝑛 + 𝑓𝑛𝑡 Δ𝑡 = 𝑓 (Δ𝑡),

the coefficients 𝑓𝑛, 𝑓𝑛𝑡 can be determined by

𝑓𝑛 = 𝑓 (0),

𝑓 𝑛𝑡 = (𝑓 (Δ𝑡) − 𝑓 (0))∕Δ𝑡.

Thus, 𝑓 ∗ and 𝑓𝑛+1 are fully determined and the macroscopic flow variables at the cell interface can be obtained by Eq. (4). Theoret-

ically, a fourth-order temporal accuracy can be achieved for the conservative flow variables on arbitrary mesh. The proof is given in 
[36].

4. Compact HWENO reconstruction

In this section, a compact HWENO-type reconstruction is designed to get the piecewise discontinuous flow variables and their 
first-order derivatives at each Gaussian point on both sides of a cell interface. The reconstruction procedure for an inner cell is given 
first, then the special treatment for the boundary cell is presented in subsequent section 4.4.

4.1. Smooth reconstruction

As a starting point of WENO reconstruction, a linear reconstruction will be presented first. For a piecewise smooth function 𝑄(x)
over cell Ω0, a polynomial 𝑃 𝑟(x) with degree 𝑟 can be constructed to approximate 𝑄(x) as follows

𝑃 𝑟(x) =𝑄(x) +𝑂(Δℎ𝑟+1),

where Δℎ ∼ |Ω0| 13 is the equivalent cell size. In order to achieve a third-order accuracy and satisfy conservative property, the 
following quadratic polynomial over cell Ω0 is obtained

2
2∑

𝑘

8

𝑃 (x) =𝑄0 + |𝑘|=1𝑎𝑘𝑝 (x), (34)
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where 𝑄0 is the cell averaged value of 𝑄(x) over cell Ω0, 𝑘 = (𝑘1, 𝑘2, 𝑘3), |𝑘| = 𝑘1 + 𝑘2 + 𝑘3. The 𝑝𝑘(x) are basis functions, which are 
given by

𝑝𝑘(x) = 𝑥𝑘11 𝑥
𝑘2
2 𝑥

𝑘3
3 − 1||Ω0||

˚

Ω0

𝑥
𝑘1
1 𝑥

𝑘2
2 𝑥

𝑘3
3 d𝑉 . (35)

The controlling points for a quadratic tetrahedron are shown in Fig. 1(b). The iso-parametric transformation is used to evaluate 
the volume integral, which can be written as

X(𝜉, 𝜂, 𝜁 ) =
9∑
𝑖=0

x𝑖𝜙𝑖(𝜉, 𝜂, 𝜁 ),

where x𝑖 is the location of the ith controlling point and 𝜙𝑖 is the base function as follows [28],

𝜙1 = (−1 + 𝜁 + 𝜂 + 𝜉)(−1 + 2𝜁 + 2𝜂 + 2𝜉),
𝜙2 = 𝜉(−1 + 2𝜉), 𝜙3 = 𝜂(−1 + 2𝜂), 𝜙4 = 𝜁 (−1 + 2𝜁 ),
𝜙5 = −4𝜉(−1 + 𝜁 + 𝜂 + 𝜉), 𝜙6 = 4𝜂𝜉,
𝜙7 = −4𝜂(−1 + 𝜁 + 𝜂 + 𝜉), 𝜙8 = −4𝜁 (−1 + 𝜁 + 𝜂 + 𝜉),
𝜙9 = 4𝜁𝜉, 𝜙10 = 4𝜁𝜂.

(36)

Then, the integration of monomial in Eq. (35) becomes

´
Ω 𝑥

𝑘1𝑦𝑘2𝑧𝑘3 d𝑥d𝑦d𝑧 =
´
Ω̃ 𝑥

𝑘1𝑦𝑘2𝑧𝑘3 (𝜉, 𝜂, 𝜁 ) ||| 𝜕(𝑥,𝑦,𝑧)𝜕(𝜉,𝜂,𝜁)
|||d𝜉d𝜂d𝜁. (37)

It can be evaluated numerically as

˝
Ω 𝑥

𝑘1𝑦𝑘2𝑧𝑘3 d𝑥d𝑦d𝑧 =
∑𝑀
𝑚=1𝜔𝑚𝑥

𝑘1𝑦𝑘2𝑧𝑘3 (𝜉, 𝜂, 𝜁 )𝑚
||| 𝜕(𝑥,𝑦,𝑧)𝜕(𝜉,𝜂,𝜁)

|||𝑚Δ𝜉Δ𝜂Δ𝜁, (38)

where 𝜔𝑚 is the quadrature weight at the Gaussian point (𝜉, 𝜂, 𝜁 )𝑚 and Δ𝜉 = Δ𝜂 = Δ𝜁 = 1. A five-point Gaussian quadrature with 
fourth-order spatial accuracy is used with

(𝜉, 𝜂, 𝜁 )1 = ( 1
4
,
1
4
,
1
4
), (𝜉, 𝜂, 𝜁 )2 = ( 1

2
,
1
6
,
1
6
), (𝜉, 𝜂, 𝜁 )3 = ( 1

6
,
1
6
,
1
6
),

(𝜉, 𝜂, 𝜁 )4 = ( 1
6
,
1
6
,
1
2
), (𝜉, 𝜂, 𝜁 )5 = ( 1

6
,
1
2
,
1
6
),

with 𝜔1 = − 2
15 , 𝜔𝑚 = 3

40 , 𝑚 = 2, 3, 4, 5.

4.1.1. Stencil for polynomial 𝑃 2(x)
In order to achieve a third-order spatial accuracy, the quadratic polynomial 𝑃 2(x) on Ω0 is constructed on the compact stencil 𝑆2

including Ω0 and its all von Neumann neighbors, Ω𝑚, 𝑚 = 1, ..., 4, where the averages of 𝑄(x) and averaged derivatives of 𝑄(x) over 
each cell are known.

The following values on 𝑆2 are used to obtain 𝑃 2(x),

• cell averages 𝑄 for cell 0, 1, 2, 3, 4;

• cell averages of the 𝑥-direction partial derivative 𝑄𝑥1 for cell 1, 2, 3, 4;

• cell averages of the 𝑦-direction partial derivative 𝑄𝑥2 for cell 1, 2, 3, 4;

• cell averages of the 𝑧-direction partial derivative 𝑄𝑥3 for cell 1, 2, 3, 4.

The polynomial 𝑃 2(x) is required to exactly satisfy

˚

Ω𝑚

𝑃 2(x)d𝑉 =𝑄𝑚 ||Ω𝑚|| , (39)

where 𝑄𝑚 is the cell averaged value over Ω𝑚, 𝑚 = 1, ..., 4, with the following condition satisfied in a least-square sense

˚

Ω𝑚

𝜕

𝜕𝑥1
𝑃 2(x)d𝑉 = (𝑄𝑥1 )𝑚|Ω𝑚|,

˚

Ω𝑚

𝜕

𝜕𝑥2
𝑃 2(x)d𝑉 = (𝑄𝑥2 )𝑚|Ω𝑚|,

˚
𝜕
𝑃 2(x)d𝑉 = (𝑄𝑥 )𝑚|Ω𝑚|,

(40)
9

Ω𝑚
𝜕𝑥3

3
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where 𝑄𝑥𝑖 , 𝑖 = 1, 2, 3 are the cell averaged directional derivatives over Ω𝑚 in a global coordinate, respectively. On a regular mesh, the 
system has 16 independent equations. The constrained least-square method is used to solve the above linear system [13]. The above 
reconstruction improves the linear stability of the scheme and increases the CFL number. The numerical experiments show that it 
also reduces the numerical errors compared with the unconstrained least-square technique. The left and right states 𝑊 𝑙,𝑟 provided 
by the reconstructed 𝑃 2(x) yields a linearly stable third-order compact GKS, as validated through numerical tests in Section 5.

4.1.2. Stencils for polynomials 𝑃 1(x) and 𝑃 0(x)
In order to deal with discontinuity, lower-order polynomials from the sub-stencils should be determined. Following the multi-

resolution reconstruction in [39], the first-order polynomial 𝑃 1(x) is determined from the same central stencil as the 𝑃 2(x) but only 
with the cell-averaged conservative variables

• 𝑄 for cell 0, 1, 2, 3, 4.

The polynomial 𝑃 1(x) is required to satisfy
˚

Ω𝑚

𝑃 1(x)d𝑉 =𝑄𝑚 ||Ω𝑚|| , 𝑚 = 1,2,3,4, (41)

in a least-square sense.

Note that the left and right states 𝑊 𝑙,𝑟 solely determined by the reconstructed 𝑃 1(x) yield an unstable second-order GKS. The 
theoretical proof for such an instability on the second-order Riemann solver-based-FVM can be found in [5]. The zeroth-order 
polynomial 𝑃 0(x) is simply determined by the cell-averaged conservative variables on the targeted cell Ω0 itself, i.e. 𝑃 0(x) =𝑄0. The 
coefficient matrices for the above 𝑃 𝑗 (x), 𝑗 = 0, 1 are always invertible.

4.2. Multi-resolution WENO procedure

Define three polynomials

𝑝2(x) =
1
𝛾2,2

𝑃 2(x) −
1∑

𝓁=0

𝛾𝓁,2

𝛾2,2
𝑝𝓁(x),

𝑝1(x) =
1
𝛾1,1

𝑃 1(x) −
𝛾0,1

𝛾1,1
𝑃 0(x),

𝑝0(x) = 𝑃 0(x).

(42)

For a third-order reconstruction, the second-order polynomial 𝑃 2(x) can be rewritten as

𝑃 2(x) = 𝛾2,2𝑝2 + 𝛾1,2𝑝1 + 𝛾0,2𝑝0 (43)

with arbitrary positive coefficients 𝛾𝑚,𝑛 satisfying 𝛾0,2 + 𝛾1,2 + 𝛾2,2 = 1, 𝛾0,1 + 𝛾1,1 = 1.

For a second-order reconstruction, the first-order polynomial 𝑃 1(x) can be rewritten as

𝑃 1(x) = 𝛾1,1𝑝1 + 𝛾0,1𝑝0 (44)

with arbitrary positive coefficients 𝛾𝑚,𝑛 satisfying 𝛾0,1 + 𝛾1,1 = 1. The coefficients are chosen as 𝛾2,2 ∶ 𝛾1,2 ∶ 𝛾0,2 = 100 ∶ 10 ∶ 1, and 
𝛾1,1 ∶ 𝛾0,1 = 10 ∶ 1 as suggested in [39].

The smoothness indicators 𝛽𝑗 , 𝑗 = 1, 2 are defined as

𝛽𝑗 =
𝑟𝑗∑

|𝛼|=1 |Ω|
2
3 |𝛼|−1˚

Ω

(
𝐷𝛼𝑃𝑗 (x)

)2
d𝑉 , (45)

where 𝛼 is a multi-index and 𝐷 is the derivative operator, 𝑟1 = 1, 𝑟2 = 2. The smoothness indicators in Taylor series at (𝑥0, 𝑦0) have 
the order

𝛽2 =𝑂{|Ω0| 23 [1 +𝑂(|Ω0| 23 )]} =𝑂(|Ω0|) 23 =𝑂(ℎ2),

𝛽1 =𝑂{|Ω0| 23 [1 +𝑂(|Ω0| 13 )]} =𝑂(|Ω0|) 23 =𝑂(ℎ2).

Assuming a suitable 𝛽0,

𝛽0 =𝑂{|Ω0| 23 [1 +𝑂(|Ω0| 13 )]} =𝑂(|Ω0|) 23 =𝑂(ℎ2),

a global smoothness indicator 𝜎 similar to that in [39] can be defined

4

10

𝜎3𝑟𝑑 = (1
2
(|𝛽2 − 𝛽1|+ |𝛽2 − 𝛽0|)) 3 =𝑂(|Ω0|2) =𝑂(ℎ4),
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and

𝜎2𝑛𝑑 = |𝛽1 − 𝛽0| 43 =𝑂(|Ω0|2) =𝑂(ℎ4).
Then, the corresponding non-linear weights are given by

𝜔𝑚,𝑛 = 𝛾𝑚,𝑛(1 + ( 𝜎

𝜖 + 𝛽𝑚
)2),

𝜔̄𝑚,𝑛 =
𝜔̄𝑚,𝑛∑
𝜔𝑚,𝑛

= 𝛾𝑚,𝑛 +𝑂(ℎ4),
(46)

where 𝑚 = 0, 1, 2 for 𝑛 = 2 and 𝑚 = 0, 1 for 𝑛 = 1, and 𝜖 takes 10−8 to avoid zero in the denominator.

Replacing 𝛾𝑚,𝑛 by the normalized non-linear weights 𝜔̄𝑚,𝑛 in Eq. (43) and Eq. (44), the final reconstructed polynomials are given 
by

𝑅3𝑟𝑑 (x) = 𝜔̄2,2𝑝2 + 𝜔̄1,2𝑝1 + 𝜔̄0,2𝑝0 (47)

for a third-order spatial accuracy, and

𝑅2𝑛𝑑 (x) = 𝜔̄1,1𝑝1 + 𝜔̄0,1𝑝0 (48)

for a second-order spatial accuracy.

As a result, the non-linear reconstruction meets the requirement for a third-order accuracy 𝑅(x) = 𝑃 (x) + 𝑂(ℎ3). If any of these 
values yield negative density or pressure, the first-order reconstruction is used instead. The desired non-equilibrium states at Gaussian 
points can be obtained from the weighted polynomials

𝑄
𝑙,𝑟
𝑝,𝑘

=𝑅𝑙,𝑟(x𝑝,𝑘), (𝑄𝑙,𝑟𝑥𝑖 )𝑝,𝑘 =
𝜕𝑅𝑙,𝑟

𝜕𝑥𝑖
(x𝑝,𝑘). (49)

4.3. A two-step reconstruction

According to the definition in Eq. (45), the smooth indicator of the zeroth-order polynomial 𝑃 0(x) is always 0. So, a new smooth 
indicator for 𝑃 0(x) has to be defined and can be given as a non-linear combination of the first-order biased sub-stencils as suggested 
in [39]. One of the choices is

𝑃 1
1 on 𝑆1 = {𝑄̄0, 𝑄̄1, 𝑄̄2, 𝑄̄3}, 𝑃 1

2 on 𝑆2 = {𝑄̄0, 𝑄̄1, 𝑄̄2, 𝑄̄4},

𝑃 1
3 on 𝑆3 = {𝑄̄0, 𝑄̄1, 𝑄̄3, 𝑄̄4}, 𝑃 1

4 on 𝑆4 = {𝑄̄0, 𝑄̄2, 𝑄̄3, 𝑄̄4}.

In this plan, a total of 16 × 9 +3 × 4 +3 × 3 × 5 = 192 words is required on each cell for reconstruction. Different from that proposed in 
[39], the plan above is compact. The plan in [39] is non-compact, e.g., one of the sub-stencils is 𝑃 1

1 on 𝑆̂1 = {𝑄̄0, 𝑄̄1, 𝑄̄2, 𝑄̄3, 𝑄̄4}. Note 
that 𝑄̄4 is the neighbor-neighbor cell. Therefore, our plan has a better mesh adaptability. However, since only compact information 
is used, this plan shows poor robustness for the third-order reconstruction since the coefficient matrices for these sub-stencils can be 
close to singular under poor mesh quality. In other words, the smooth indicators for 𝑃 0 can be greater than those of 𝑃 1 and 𝑃 2 under 
irregular mesh and the WENO will fail to suppress oscillations.

Inspired by the method in [31], a two-step reconstruction is designed as follows to maintain the compact manner of the scheme:

• Reconstruction Step 1: Construct the first-order polynomial 𝑃 1(x) in each cell by Eq. (41). Compute the slopes, e.g., 𝑏1, 𝑏2, 𝑏3
for each component, and store them. A coefficient matrix with dimension 3 × 4 is stored for 𝑃 1(x) and another matrix with 
dimension 5 × 3 for the slopes.

• Reconstruction Step 2: Conduct the multi-resolution reconstruction for each cell, and the smooth indicator 𝛽0 for 𝑃 0(x) is given 
as a non-linear combination of the smooth indicators of 𝑃 1

𝑗
(x) from the neighbor cells, i.e.,

𝛽0,𝑗 = |Δ0|(𝑏21,𝑗 + 𝑏22,𝑗 + 𝑏23,𝑗 ),
𝜎1𝑠𝑡 = (1

6
(
∑|𝛽0,𝑗 − 𝛽0,𝑘|)) 43 ,

𝜔1𝑠𝑡
𝑗 = 1 + 𝜎1𝑠𝑡

𝜖 + 𝛽𝑗
,

𝜔̄1𝑠𝑡
𝑗 =

𝜔𝑗∑
𝜔𝑗
,

𝛽0 =
∑

𝜔̄1𝑠𝑡
𝑗 𝛽0,𝑗 ,

(50)

where 𝑗, 𝑘 = 1, 2, 3, 4 and 𝑗 > 𝑘. Then, the second-order reconstruction is complete.

For the third-order reconstruction, only one extra beta 𝛽2 in Eq. (45) is needed. A coefficient matrix with dimension 9 × 16 is stored 
11

for 𝑃 2(x).
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Through the reconstruction step 1, the sub-stencils are extended to neighboring cells of the neighbors. Compared with the first 
plan, the robustness and mesh adaptability is significantly improved. 16 × 9 + 3 × 4 + 3 × 5 = 171 words are required on each cell 
for the two-step reconstruction, which is even less than the first plan. However, one more communication is needed if the code is 
parallelized on different nodes. In this paper, only the numerical results based on the two-step reconstruction are presented.

4.4. Reconstruction for the boundary cells

The strategy of the two-step and multi-resolution reconstruction are extended to the boundary condition treatment. The one-sided 
reconstruction without ghost cell is adopted here with special care on Dirichlet boundary condition, i.e. the non-slip adiabatic wall 
and the non-slip isothermal one. For the non-slip adiabatic boundary, the velocities are constrained. For the non-slip isothermal 
boundary condition, both the velocities and the temperature are constrained.

• Reconstruction Step 1.

For ith (i=0,...,4) conservative variables:

– If there is no constraint for all the boundary faces:

* If the neighboring cell number is no less than 3, construct the first-order polynomial 𝑃 1(x). If the coefficient matrix is found 
to be nearly singular, which suggesting a poor mesh quality, set 𝑃 1(x) = 𝑃 0(x).

* If the neighboring cell number is less than 3, use the cell-averaged slopes as the slopes of the first-order polynomial instead.

– If there exists at least one constraint for all the boundary faces on the targeted cell, the weighted constrained least square 
reconstruction involving all the neighboring cells and boundary faces are conducted. The weights for those boundary faces 
that do not have constraint are set to be zero. In this step, each constrained boundary face has one constraint, which is located 
at the geometric center of the face.

* If the sum of the neighboring cell number and the constraint number is no less than 3, and the constraint number is no 
greater than 3, construct the first-order polynomial 𝑃 1(x) by using constrained least-square method.

* If the constraint number is greater than 3 (which is impossible for tetrahedron mesh), construct the first-order polynomial 
𝑃 1(x) by using the least-square method.

* If the sum of the neighboring cell number and the constraint number is less than 3, use the cell-averaged slopes as the slopes 
of the first-order polynomial instead.

For non-slip adiabatic wall, each component is reconstructed in the following order.

* Step 1. One-sided reconstruction for density.

* Step 2. One-sided constrained reconstruction for momentum 𝜌U = 𝜌U𝑤𝑎𝑙𝑙 where the reconstructed density is used.

* Step 3. One-sided reconstruction for energy.

For non-slip isothermal wall, each component is reconstructed in the following order.

* Step 1. One-sided reconstruction for density.

* Step 2. One-sided constrained reconstruction for momentum 𝜌U = 𝜌U𝑤𝑎𝑙𝑙 where the reconstructed density is used.

* Step 3. One-sided constrained reconstruction for energy 𝜌𝐸 = 1
2𝜌U

2
𝑤𝑎𝑙𝑙

+ 𝜌𝑇𝑤𝑎𝑙𝑙∕(𝑟 − 1), where the reconstructed density is 
used.

• Reconstruction Step 2.

For a second-order reconstruction, the WENO procedure in Eq. (48) is complete. If a third-order reconstruction is adopted, the 
second-order polynomial 𝑃 2(x) is needed. For the ith (i=0,...,4) conservative variables:

– If there is no constraint for all the boundary faces:

* If the neighboring cell number is no less than 3 and the coefficient matrix is not singular, construct the second-order 
polynomial 𝑃 2(x), by constraining the cell-averaged values. Otherwise, the first-order polynomial from the 𝑃 2(x) stencils 
will be constructed in a least-squares sense.

* For the smooth reconstruction, the first-order polynomial using the 𝑃 2(x) stencils is reconstructed instead.

– If there exists at least one constrained face on the targeted cell, the weighted constrained least square reconstruction involving 
all the neighbor cells and boundary faces are conducted. The weights for those boundary faces that do not have constraint are 
set to be zero. Each constrained triangular face has three constraints, which are located at the corresponding Gaussian points.

* If the sum of the numbers of neighboring cell-averaged data and the constraint are no less than 9, and the constraint number 
is no greater than 9, construct the first-order polynomial 𝑃 1(x) by using constrained least-square method.

* If the constraint number is greater than 9 (which never happens in the tests of this paper), construct the first-order polyno-

mial using the 𝑃 2(x) stencils by the weighted least-square instead.

* If the sum of neighboring cell-averaged data and the constraint number is less than 9, construct the first-order polynomial 
using the 𝑃 2(x) stencil by the weighted least-square instead.

The constrained quantities and reconstruction order for the non-slip wall boundaries are the same as those in the reconstruction 
step 1.

It should be emphasized that the above criteria are general for other types of mesh and hybrid mesh. After obtaining the inner 
state (assume as W̃𝑟

) at a boundary Gaussian point, a ghost state (assume as W̃𝑙
) can be assigned according to boundary condition 

under local coordinates. There is possible discontinuity between W̃𝑙
and W̃𝑟

if the WENO reconstruction is used. The ghost state 
12

setting at the solid wall boundary is given as follows (the tilde is omitted).
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Fig. 2. The process of the compact two-step multi-resolution reconstruction.

• Slip wall. The conservative variables under local coordinate (𝜌, 𝜌𝑈1, 𝜌𝑈2, 𝜌𝑈3, 𝜌𝐸)𝑙 = (𝜌, −𝜌𝑈1, 𝜌𝑈2, 𝜌𝑈3, 𝜌𝐸)𝑟. The normal deriva-

tives (𝜌𝑈1)𝑙𝑥1 = (𝜌𝑈1)𝑟𝑥1 while the normal derivatives for other components are 𝑊𝑖
𝑙
𝑥1

= −𝑊𝑖
𝑟
𝑥1
, 𝑖 = 0, 2, 3, 4. The tangential deriva-

tives (𝜌𝑈1)𝑙𝑥𝑗 = −(𝜌𝑈1)𝑟𝑥𝑗 , 𝑗 = 2, 3 while the tangential derivatives for other components are 𝑊𝑖
𝑙
𝑥𝑗

=𝑊𝑖
𝑟
𝑥𝑗
, 𝑖 = 0, 2, 3, 4, 𝑗 = 2, 3.

• Non-slip adiabatic wall. The conservative variables under local coordinate are given as (𝜌, 𝜌𝑈1, 𝜌𝑈2, 𝜌𝑈3, 𝜌𝐸)𝑙 = (𝜌, −𝜌𝑈1, −𝜌𝑈2,

−𝜌𝑈3, 𝜌𝐸)𝑟. The derivatives for all momenta (𝜌𝑈𝑖)𝑙𝑥𝑗 = (𝜌𝑈𝑖)𝑟𝑥𝑗 , 𝑖 = 1, 2, 3, 𝑗 = 1, 2, 3, while the normal derivatives for other 
components are 𝑊𝑖

𝑙
𝑥𝑗

= −𝑊𝑖
𝑟
𝑥𝑗
, 𝑖 = 0, 4, 𝑗 = 1, 2, 3.

• Non-slip isothermal wall.

– Assume the same pressure 𝑝𝑙 = 𝑝𝑟. The velocity is opposite 𝑈𝑙
𝑖
= −𝑈𝑟

𝑖
, 𝑖 = 1, 2, 3. The temperature is set as 𝑇 𝑙 = 2𝑇 0 −𝑇 𝑟, where 

𝑇0 = 𝑇𝑤𝑎𝑙𝑙 . Then, 𝜌𝑙 = 𝑝𝑙∕𝑅𝑇 𝑙 = 𝑝𝑟∕𝑅𝑇 𝑙 = 𝑝𝑟∕𝑅(2𝑇 0 − 𝑇 𝑟).
– Use primitive variables (𝜌, U, 𝑝)𝑙 to get (𝜌, U, 𝜌𝐸)𝑙 .
– From the chain rule, 𝜕𝑈𝑖 =

𝜕(𝜌𝑈𝑖)−𝜕𝜌𝑈𝑖
𝜌

𝑖 = 1, 2, 3. Denote 𝑄 = 1
2
∑
𝑈2
𝑖
, 𝜕𝑄 = ∑

𝜕𝑈𝑖𝑈𝑖. Then, 𝜕𝜌𝐸 = 𝜕𝜌𝑄 + 𝜕𝑄𝜌 + 1
𝛾−1 𝜕𝑝 and 

𝜕𝑝 = (𝛾 − 1)(𝜕𝜌𝐸 − 𝜕𝜌𝑄 − 𝜕𝑄𝜌). From 𝑝 = 𝜌𝑅𝑇 , 𝜕𝑇 = 𝜕𝑝−𝑅𝜕𝜌𝑇
𝑅𝜌

is obtained. And 𝜕𝑈𝑙
𝑖
, 𝑖 = 1, 2, 3, 𝜕𝑝𝑙 , and 𝜕𝑇 𝑙 are determined.

– The derivatives of the primitive variables for the ghost states are set as 𝜕𝑈𝑙
𝑖
= 𝜕𝑈𝑟

𝑖
, 𝑖 = 1, 2, 3. 𝜕𝑇 𝑙 = 𝜕𝑇 𝑟. 𝜕𝑝𝑙 = −𝜕𝑝𝑟.

– Then, obtain 𝜕𝜌𝑙 by 𝜕𝜌 = 𝜕𝑝−𝑅𝜕𝑇𝜌
𝑅𝑇

and 𝜕(𝜌𝑈𝑖)𝑙 by 𝜕(𝜌𝑈𝑖) = 𝜕𝜌𝑈𝑖 + 𝜕𝑈𝑖𝜌.
– Finally, get 𝜕(𝜌𝐸)𝑙 by 𝜕𝜌𝐸 = 𝜕𝜌𝑄 + 𝜕𝑄𝜌 + 1

𝛾−1 𝜕𝑝.

A summary for the reconstruction procedure is shown in Fig. 2.

4.5. Reconstruction of the equilibrium state

The reconstructions for the non-equilibrium states have the same spatial order and can be used to get the equilibrium state 𝑔𝑐, 𝑔𝑐𝑥𝑖
directly by a suitable average of 𝑔𝑙,𝑟, 𝑔𝑙,𝑟𝑥𝑖 . To be consistent with the construction of 𝑔𝑐 , we make an analogy of the kinetic-based 
weighting method for 𝑔𝑐𝑥𝑖 , which are given by

ˆ
𝜓𝜓𝜓𝑔𝑐dΞ = W𝑐 =

ˆ

𝑢>0

𝜓𝜓𝜓𝑔𝑙dΞ+
ˆ

𝑢<0

𝜓𝜓𝜓𝑔𝑟dΞ,

ˆ
𝜓𝜓𝜓𝑔𝑐𝑥𝑖

dΞ = W𝑐
𝑥𝑖
=
ˆ

𝑢>0

𝜓𝜓𝜓𝑔𝑙𝑥𝑖
dΞ+

ˆ

𝑢<0

𝜓𝜓𝜓𝑔𝑟𝑥𝑖
dΞ. (51)

The data for this method has compact support. In programming, this procedure is included inside the subroutine of the gas distribution 
function, since it is performed at the local coordinate. Thus, it is also cache-friendly. This method has been validated in the non-

compact WENO5-GKS [8]. In this way, all components of the microscopic slopes in Eq. (26) have been fully obtained. It is worth to 
remark that the above reconstruction procedure can be directly implemented to arbitrary mesh.

5. Numerical examples

In this section, numerical tests will be presented to validate the proposed scheme. The time step is determined by

Δ𝑟𝑖 (Δ𝑟𝑖)2
13

Δ𝑡 = 𝐶𝐶𝐹𝐿Min( |U𝑖|+ (𝑎𝑠)𝑖
,

3𝜈𝑖
), (52)



Journal of Computational Physics 497 (2024) 112590X. Ji, F. Zhao, W. Shyy et al.

Fig. 3. The brief algorithm of the compact GKS.

where 𝐶𝐶𝐹𝐿 is the CFL number, and |U𝑖|, (𝑎𝑠)𝑖, and 𝜈𝑖 = (𝜇∕𝜌)𝑖 are the magnitude of velocities, sound speed, and kinematic viscosity 
coefficient for cell i. The Δ𝑟𝑖 is taken as the approximated inscribed sphere radius of a tetrahedron,

Δ𝑟𝑖 =
3|Ω𝑖|∑|Γ𝑖𝑝| .

All reconstructions will be performed on the conservative variables. Quadratic elements and a 𝐶𝐹𝐿 = 1 are used if no specified. An 
algorithm flowchart of the compact GKS is given in Fig. 3.

5.1. 3-D sinusoidal wave propagation

The advection of density perturbation is tested with the initial condition

𝜌(𝑥, 𝑦, 𝑧) = 1 + 0.2 sin(𝜋(𝑥+ 𝑦+ 𝑧)),

U(𝑥, 𝑦, 𝑧) = (1,1,1), 𝑝(𝑥, 𝑦, 𝑧) = 1,

within a cubic domain [0, 2] × [0, 2] × [0, 2]. In the computation, a series of uniform meshes with 6 ×𝑁3 cells are used. With the 
periodic boundary condition in all directions, the analytic solution is

𝜌(𝑥, 𝑦, 𝑧, 𝑡) = 1 + 0.2 sin(𝜋(𝑥+ 𝑦+ 𝑧− 𝑡)),

U(𝑥, 𝑦, 𝑧) = (1,1,1), 𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 1.

The collision time 𝜏 = 0 is set since the flow is smooth and inviscid. The 𝐿1, 𝐿2 and 𝐿∞ errors and the corresponding orders with linear 
and non-linear Z-type weights at 𝑡 = 2 for the third-order compact GKS are given in Table 1 and Table 2. On the same mesh, the errors 
of the current CGKS are smaller than those provided in the third-order non-compact FVM [39]. For example, on the 6 ×203 mesh, the 
𝐿1 error is 3.29e-4 for CGKS while 1.79e-3 for FVM [39]. The stability proof for the present spatial-temporal coupled scheme under 
the tetrahedral mesh needs future study. The result with non-linear Z-type weights for the second-order scheme is also presented in 
Table 3. Expected accuracy is achieved for all cases. Note that the errors from the WENO nonlinear weights are usually larger than 
those from the linear scheme on a coarse mesh, and they will become the same on a fine mesh. This is a general observation of 
WENO-type schemes. It is worth remarking that the improved nonlinear reconstruction, such as TENO, might overcome this problem 
[11] and future study is needed.

5.2. One dimensional Riemann problems

(a) Shu-Osher problem

This is the Shu-Osher problem [26] with the initial condition

(𝜌,𝑈, 𝑝) =

{
(3.857143,2.629369,10.33333), 0 < 𝑥 ≤ 1,
14

(1 + 0.2 sin(5𝑥),0,1), 1 < 𝑥 < 10.
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Table 1

Accuracy test for the 3D sin-wave propagation by the linear third-order compact reconstruction. 
CFL=1.0.

Mesh number 𝐿1 error Order 𝐿2 error Order 𝐿∞ error Order

6 × 53 2.220404e-02 2.458004e-02 3.674171e-02

6 × 103 2.714856e-03 3.03 3.035792e-03 3.02 4.794437e-03 2.94

6 × 203 3.285843e-04 3.05 3.666555e-04 3.05 6.093576e-04 2.98

6 × 403 4.360713e-05 2.92 4.862997e-05 2.91 8.411243e-05 2.87

Table 2

Accuracy test for the 3D sin-wave propagation by the third-order compact HWENO reconstruction with 
𝑑0 ∶ 𝑑1 ∶ 𝑑2 = 100 ∶ 10 ∶ 1. CFL=1.0.

Mesh number 𝐿1 error Order 𝐿2 error Order 𝐿∞ error Order

6 × 53 4.119490e-02 4.675556e-02 7.211452e-02

6 × 103 6.593180e-03 2.64 8.682551e-03 2.43 2.501214e-02 1.53

6 × 203 4.217035e-04 3.97 5.481270e-04 3.99 1.251195e-03 4.32

6 × 403 4.287225e-05 3.30 4.947759e-05 3.47 1.138919e-04 3.46

Table 3

Accuracy test for the 3D sin-wave propagation by the second-order WENO reconstruction with 𝑑0 ∶ 𝑑1 =
10 ∶ 1. CFL=1.0.

mesh number 𝐿1 error Order 𝐿2 error Order 𝐿∞ error Order

6 × 53 2.705626e-02 3.377431e-02 6.219542e-02

6 × 103 6.963215e-03 1.96 7.839272e-03 2.10 1.311175e-02 1.37

6 × 203 2.370280e-03 1.55 2.640328e-03 1.57 4.165732e-03 1.65

6 × 403 6.351481e-04 1.90 7.069711e-04 1.90 1.100743e-03 1.92

Fig. 4. Shu-Osher problem. Mesh number: 6 × 200 × 2 × 2. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

The computational domain is [0, 10]. The non-reflecting boundary condition is given on the left boundary, and the fixed wave 
profile is extended on the right boundary. The computed density profiles and local enlargements at 𝑡 = 1.8 with mesh size 1∕200 and 
1∕400 are plotted in Fig. 4 and Fiq. 5. The third-order compact GKS shows a better resolution in resolving the sinusoidal wave than 
the second order method on the coarse mesh. Both schemes resolve the waves nicely with the fine mesh.

(b) Blast wave problem

The initial conditions for the blast wave problem [30] are given as follows

(𝜌, 𝑢, 𝑝) =

⎧⎪⎪⎨⎪
(1,0,1000),0 ≤ 𝑥 < 0.1,

(1,0,0.01),0.1 ≤ 𝑥 < 0.9,
15

⎪⎩(1,0,100),0.9 ≤ 𝑥 ≤ 1.
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Fig. 5. Shu-Osher problem. Mesh number: 6 × 400 × 2 × 2.

Fig. 6. Blastwave problem. Mesh number: 6 × 200 × 2 × 2.

Fig. 7. Blastwave problem. Mesh number: 6 × 400 × 2 × 2.

In the computational domain, 6 × 200 × 2 × 2 and 6 × 400 × 2 × 2 mesh points are used. Reflection boundary conditions are applied at 
both ends. The density distributions at 𝑡 = 0.038 are presented in Fig. 6 and Fig. 7. Both the second-order and third-order schemes 
16

show good robustness for such a strong shock-shock interaction.
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Fig. 8. Lid-driven cavity flow. Left: uniform mesh with near wall size ℎ = 1∕32. Right: non-uniform mesh with near wall size ℎ = 1∕64.

Fig. 9. Lid-driven cavity flow: Re=1,000. The velocities profiles compared with the reference data in [24].

5.3. 3-D lid-driven cavity flow

A 3-D cavity is bounded in a unit cube and is driven by a uniform translation of the top boundary. In this case, the flow 
is simulated with Mach number 𝑀𝑎 = 0.15 and 𝛾 = 5∕3. All boundaries are isothermal and nonslip. The computational domain 
[−0.5, 0.5] × [−0.5, 0.5] × [−0.5, 0.5] is covered by a uniform mesh with 6 × 32 × 32 × 32 points and a refined uniform mesh with 
5 × 40 × 40 × 40 points, as shown in Fig. 8. A CFL number of 0.5 is used. The flow is initialized with 𝜌 = 1, 𝑈1 = 0.15, 𝑈2 = 𝑈3 = 0, 
and 𝑝 = 1∕𝛾 . Since the flow is nearly incompressible and mesh is regular, the smooth reconstruction and the simplified solver in 
Eq. (26) are adopted in the computations. The simplified evolution solution in Eq. (27) from a continuous initial reconstruction at a 
cell interface has less numerical dissipation than the general GKS formula in Eq. (26) for the discontinuous flow. However, for low 
Mach numbers, with the increasing order of the reconstruction the general evolution model for discontinuous flow can also give very 
accurate results, as reported in [37].

(a) Re=1,000

For the Reynolds number 𝑅𝑒 = 1, 000, both results from the second-order and third-order reconstruction are presented under the 
uniform mesh. A low-order boundary treatment is used for the second-order scheme, which ensures a stable solution. The 𝑈 -velocities 
along the line 𝑥 = 0, 𝑧 = 0, and 𝑉 -velocities along the line 𝑦 = 0, 𝑧 = 0, are shown in Fig. 9. The velocity profiles from the third-order 
scheme match very well with the benchmark data [24]. The velocity magnitude contours and streamlines by the third-order scheme 
are shown in Fig. 10. The cavity case demonstrates the high-order accuracy of the compact GKS.

(b) Re=3,200

The flow becomes transient when 𝑅𝑒 > 2000. Experimental results can be found in [20,21] at Re=3200. The mean velocity and 
root-mean-square (RMS) velocity profiles are collected during a time interval, which corresponds to 7 to 10 minutes in the experiment 
[20] and 172 non-dimensional time in the simulation. The results obtained from the third-order scheme for the 𝑈 velocity component 
along the line 𝑥 = 0, 𝑧 = 0, and the 𝑉 velocity component along the line 𝑦 = 0, 𝑧 = 0 are presented in Fig. 11. Both results under the 
uniform mesh and the refined non-uniform mesh agree well with the experimental data. A better agreement in the RMS U-velocity 
17

𝑈𝑟𝑚𝑠 can be observed in the refined mesh calculation.
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Fig. 10. Lid-driven cavity flow: Re=1,000. Top left: The velocity magnitude contours. Others: The streamlines on 𝑥 = 0, 𝑦 = 0, and 𝑧 = 0 planes.

Fig. 11. Lid-driven cavity flow: Re=3,200. The mean and RMS velocity profiles obtained by the third-order compact GKS are compared with the experimental data 
in [20,21].

5.4. Subsonic viscous flow around a sphere at Re=118

A low-speed viscous flow passing through a sphere is tested. The Reynolds number based on the diameter of the sphere 𝐷 = 1 is 
118. In such case, a drag coefficient 𝐶𝐷 = 1 was reported from the experiment in [27]. The far-field flow condition outside boundary 
of the domain is set with the free stream condition

1

18

(𝜌,𝑈,𝑉 ,𝑊 ,𝑝)∞ = (1,0.2535,0,0,
𝛾
),
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Fig. 12. Subsonic flow passing through a viscous sphere. Mesh number: 399,546.

Fig. 13. Subsonic flow passing through a viscous sphere. Ma=0.2535. Re=118. Left: The second-order GKS. Right: The third-order GKS.

Table 4

Quantitative comparisons among different compact schemes for the viscous flow over a sphere.

Scheme Mesh number Cd 𝜃 L Cl

Experiment [27] – 1.0 122 1.07 –

Current 2nd 399,546 1.027 126.9 1.00 1.5e-2

Current 3rd 399,546 1.018 127.4 1.00 1.7e-3

Implicit third-order DDG [3] 160,868 1.016 123.7 0.96 –

Implicit fourth-order VFV [28] 458,915 1.014 – – 2.0e-5

Implicit third-order AMR-VFV [18] 621,440 1.016 – – –

with 𝛾 = 1.4, 𝑀𝑎∞ = 0.2535. The surface of the sphere is set as a non-slip adiabatic wall. The first mesh off the wall has a size 
ℎ ≈ 1.5 × 10−2𝐷, as shown in Fig. 12. Both second-order and third-order schemes with non-linear reconstructions are tested. A clean 
and symmetric velocity contour is observed from the third-order compact GKS, as shown in Fig. 13. The pressure contour and 
the 3-D streamline are also presented in Fig. 14, where the high resolution from the non-linear compact reconstruction has been 
demonstrated, even with mesh irregularity. The quantitative results are given in Table 4, including the drag coefficient 𝐶𝐷 , the 
separation angle 𝜃, and the closest wake length 𝐿, as defined in [10].

5.5. Supersonic viscous flow passing through a sphere at Re=300

To validate the robustness of the current scheme for the high-speed viscous flow, a supersonic flow passing through a sphere with 
19

𝑀𝑎 = 1.2 is tested. The non-slip adiabatic boundary condition is imposed on the surface of the sphere. The Reynolds number is 300 
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Fig. 14. Subsonic flow passing through a viscous sphere by the third-order compact GKS. Ma=0.2535. Re=118.

Fig. 15. Supersonic flow passing through a viscous sphere. Mesh number: 665,914.

Table 5

Quantitative comparisons between the current scheme and the reference solution for the 
supersonic viscous flow over a sphere.

Scheme Grid Number Cd 𝜃 L Shock stand-off

WENO6 [17] 909,072 1.282 126.9 1.61 0.69

Current 3rd 665,914 1.274 126.3 1.64 0.66-0.82 (0.72)

based on the diameter 𝐷 = 1. The Prandtl number is 𝑃𝑟 = 1. The tetrahedral mesh with an upstream length of 5 and a downstream 
length of 40 is shown in Fig. 15. The first mesh size at the wall has a thickness 2.3 × 10−2𝐷. The numerical results obtained by the 
third-order compact GKS are shown in Fig. 16. Quantitative results are listed in Table 5, which have good agreement with those 
given by Nagata et al. [17]. Note that the proposed second-order GKS cannot survive for this case. The phenomenon that the second-

order GKS is less robust than the third-order CGKS in the current study is probably due to the instability associated with the linear 
second-order least-square reconstruction as analyzed in [5].

5.6. Transonic inviscid flow around ONERA M6 wing

As a classic validation case for compressible external flow, the transonic flow over the ONERA M6 wing is tested. Experimental 
data are reported in [22], where the flow is fully turbulent. Same as the inviscid calculation in [14], an incoming Mach number 
Ma=0.8395 and an angle of attack AOA=3.06◦ are used, which correspond to a rough prediction of the flow field under a very 
20

high Reynolds number. In the computation, the wing has a slip wall boundary condition, and the Riemann invariants are applied 10 
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Fig. 16. Supersonic flow passing through a viscous sphere by the third-order compact GKS. Ma=1.2. Re=300.

Fig. 17. Mesh for the inviscid ONERA M6 wing. Left: Mesh I with 294,216 cells. Right: Mesh II with 347,094 cells.

Fig. 18. Transonic flow over an inviscid ONERA M6 wing under Mesh I. Ma=0.8935. AOA=3.06◦ . Left: The second-order GKS. Right: The third-order GKS.

times of the root chord length away from the wing. Two sets of meshes are used to test the mesh sensitivity, as shown in Fig. 17. 
For each mesh, the results from the second and third-order GKS are presented. The surface pressure distributions and Mach number 
slices at different wing sections under Mesh I for both schemes are shown in Fig. 18. The “Lambda” shock is resolved from both 
schemes. Third-order scheme presents accurate solutions with high resolution in pressure and Mach contours in smooth region. 
Similar conclusions can be drawn from the results obtained from Mesh II, as shown in Fig. 20. Quantitatively comparisons on the 
pressure distributions at six different locations on the wing are given in Fig. 19 and Fig. 21. A better agreement in the secondary 
21

shock position is obtained with Mesh II at the semi-span locations Y/B = 0.20, 0.44, and 0.65.
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Fig. 19. Pressure distributions for wing section at different semi-span locations Y/B on the ONERA M6 wing under Mesh I. Ma=0.8935. AOA=3.06◦ . Top: Y/B=0.20, 
0.44, 0.65 from left to right. Bottom: Y/B=0.80, 0.90, 0.95 from left to right.

Fig. 20. Transonic flow over an inviscid ONERA M6 wing under Mesh II. Ma=0.8935. AOA=3.06◦ . Left: The second-order GKS. Right: The third-order GKS.

5.7. Supersonic flow over a YF-17 fighter

The inviscid supersonic flow passing through a complete aircraft model is computed. The computational mesh for a YF-17 (“Co-

bra”) fighter model is shown in Fig. 22 which is provided at “https://cgns .github .io /CGNSFiles .html”. A free stream at a Mach number 
Ma=1.8 and an angle of attack AOA=1.25 are adopted as the initial conditions. The surface pressure, Mach number distributions, 
and streamlines are presented in Fig. 23 for the GKS with the second-order WENO reconstruction. Complicated shocks appear in 
the locations including the nose, cockpit-canopy wing, horizontal stabilizer, and vertical stabilizer. A slightly smoother solution is 
obtained by the compact GKS with the third-order HWENO reconstruction, as shown in Fig. 24. The maximum Mach number on the 
surface is 2.4 for the second-order scheme and 2.28 for the third-order one. The current algorithm can handle complicated geometry, 
such as the mesh skewness near the wing tips and the lack of neighboring cell for the cell near boundary corners. The compact GKS 
demonstrates good mesh adaptability in the computation. The residuals for both cases cannot be reduced to a very small value, same 
as that in lots of WENO reconstruction-based schemes. This issue needs further investigation.

5.8. Hypersonic flow around a blunt body

A space-shuttle-like blunt-body model is considered to test the robustness of the schemes for the hypersonic inviscid flow. The 
initial condition has Ma=5 and AOA=0◦. The surface mesh is given in Fig. 25, where the controlling points of the quadratic 
elements are shown. The pressure distributions are shown in Fig. 26, where no significant differences are observed in the results 
22

from the second-order and the third-order GKS. The Mach number distribution and streamlines are also plotted in Fig. 27.

https://cgns.github.io/CGNSFiles.html
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Fig. 21. Pressure distributions for wing section at different semi-span locations Y/B on the ONERA M6 wing under Mesh II. Ma=0.8935. AOA=3.06◦ . Top: Y/B=0.20, 
0.44, 0.65 from left to right. Bottom: Y/B=0.80, 0.90, 0.95 from left to right.

Fig. 22. Supersonic flow passing through a YF-17 (“Cobra”) model. Ma=1.8. AOA=1.25. Mesh number: 325,096.

6. Conclusion

A third-order compact Gas-Kinetic Scheme (GKS) has been developed for the Euler and Navier-Stokes solution on three-

dimensional tetrahedral meshes. One of the key innovations of this third-order compact GKS, compared to traditional Riemann-solver-

based Finite Volume Methods (FVM), lies in its reliance on the time-dependent evolution solution of the gas distribution function. 
This function, evaluated at the Gaussian points of the cell interface, allows for precise calculation of both time-accurate conservative 
flow variables and their fluxes throughout the entire time step. Consequently, the cell-averaged conservative flow variables and their 
gradients within each control volume are updated via the time-integration of the interface flux transport and the surface integral of 
the conservative flow variables around the control volume boundaries (interfaces). With the cell-averaged flow variables and their 
gradients inside each control volume, a third-order spatial reconstruction can be attained through compact stencils utilizing only 
23

von Neumann neighbouring cells. In contrast, traditional third-order finite volume Weighted Essentially Non-Oscillatory (WENO) 
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Fig. 23. Supersonic flow passing through a YF-17 (“Cobra”) model by the second-order GKS. Ma=1.8. AOA=1.25◦ .

Fig. 24. Supersonic flow passing through YF-17 (“Cobra”) model by the third-order GKS. Ma=1.8. AOA=1.25◦ .

Fig. 25. Hypersonic inviscid flow over a blunt body. Mesh number: 117,221.

schemes, such as the one referenced in [39], necessitate the use of non-compact stencils that involve neighbouring-neighbour cells. 
The present third-order compact GKS outperforms traditional third-order finite volume WENO schemes in terms of parallelism and 
programming portability. This is due to the employment of the same data structure as the second-order finite volume method in 
terms of the reconstruction stencils.

High-order methods, particularly when transitioning from structured to unstructured tetrahedral meshes, can lead to linear in-

stability. Even a second order FVM on a tetrahedral mesh may become linearly unstable when using a compact stencil with only 
von Neumann neighbouring cells. Similar instabilities are also associated with high-order methods based on Riemann solvers with 
a compact stencil. Moreover, traditional WENO strategies based on these compact stencils struggle to handle discontinuities. How-

ever, the compact third-order GKS, which directly evolves the cell-averaged first-order spatial derivatives of flow variables, has 
proven numerically the linear stability on tetrahedral mesh through smooth inviscid and viscous tests. To further enhance the mesh 
adaptability and robustness of the scheme, a new reconstruction based on two-step and multi-resolution WENO methods has been 
proposed. This also naturally yields a new second-order GKS as a byproduct, maintaining compactness in the reconstruction. The 
proposed reconstruction considers potential singularities resulting from mesh distortion or boundary corners and is well-suited for 
arbitrary meshes in engineering applications.

The compact GKS employs a two-stage time discretization to ensure temporal accuracy and demonstrates greater efficiency 
compared to third-order FVMs based on Runge-Kutta time stepping in hexahedral mesh [10]. The compact GKS exhibits robustness, 
24

high accuracy, and low dissipation. The reliable mesh adaptability is validated in the supersonic flow computation over a complete 
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Fig. 26. Pressure distributions around the blunt body. Ma=5.0. AOA=0.0◦ . Left: the second-order GKS. Right: the third-order GKS.

Fig. 27. Mach number distribution, stream-lines, and surface density distributions around the blunt body. Ma=5.0. AOA=0.0◦ . Left: the second-order GKS. Right: the 
third-order GKS.

aircraft model. A large explicit time step with a CFL number 1 can be used for most test cases. In summary, the proposed compact 
GKS, employing two-stage time discretization and two-step multi-resolution WENO reconstruction, displays excellent numerical 
performance among current compact schemes on a tetrahedral mesh. The compact GKS has also been developed for hybrid meshes 
with high aspect ratios in the boundary layer for supersonic and hypersonic viscous flow computations.
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