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a b s t r a c t 

In this paper, a fourth-order multi-dimensional weighted essentially non-oscillatory (WENO) reconstruc- 

tion is developed, which is aiming at the complicated flows. In corporate with two-stage fourth-order 

temporal discretization, a high-order gas-kinetic scheme is proposed for the direct numerical simulation 

(DNS) and large eddy simulation (LES) of turbulence. In such WENO scheme, a simple strategy of selecting 

stencils is adopted and the topology independent linear weights are used. The fourth-order reconstruction 

improves the order of accuracy of the previous third-order WENO reconstruction [Computers and Fluids 

198 (2020) 104401], which is too dissipative for the simulation of turbulent flows. Compared with the 

classical dimension-by-dimension WENO reconstruction, the order of accuracy can be also achieved for 

any non-uniform and curvilinear meshes in the finite volume framework. Numerical examples, including 

the classical turbulence cases, are provided to illustrate the good performance of such WENO scheme for 

turbulence simulation. More importantly, the fourth-order WENO scheme is robust and works well from 

the subsonic to hypersonic flows. In the future, the current scheme will be extended to the genuinely 

unstructured meshes for more complicated turbulent flows. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Turbulence is an important research subject among physics, ap- 

lied mathematics, and engineering applications [35] . Currently, 

here are mainly three approaches for turbulence simulation, 

amely direct numerical simulations (DNS), large eddy simula- 

ions (LES) and Reynolds averaged Navier–Stokes methods (RANS). 

NS methods [25,31] resolve the turbulent structures above the 

olmogorov dissipation scale, which has been widely used for 

tudying the turbulent mechanism with low-Reynolds number. LES 

ethods [16,36,42] solve the filtered Navier–Stokes equations with 

esolvable turbulent structures above the inertial scale, gradually 

ecoming an indispensable tool to obtain high-resolution unsteady 

urbulent flow fields. RANS methods [38,45] are the work-hoarse 

or engineering turbulence simulations, which capture turbulent 

tructures above the integral scale under the constraints of com- 

utational resources. 
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To resolve small-scale flow structures and capture discontinu- 

ties in the compressible turbulent flow fields, the development of 

igh-order schemes is a long-standing goal of computational fluid 

ynamics research. Until now, there have been a gigantic number 

f publications about the introduction and survey of high-order 

chemes, such as total variation diminishing (TVD) schemes [17] , 

ssentially non-oscillatory (ENO) schemes, weighted ENO (WENO) 

chemes and discontinuous Galerkin (DG) schemes [11,12] , etc. The 

NO schemes were proposed in Harten et al. [18] , Shu and Os- 

er [39] and successfully applied to solve the hyperbolic conser- 

ation laws and other convection dominated problems. Follow- 

ng the ENO schemes, the WENO schemes [23,28] were developed 

ith the nonlinear convex combination of candidate polynomials. 

he WENO schemes achieve higher order of accuracy and keep 

on-oscillatory property essentially. However, the classical WENO 

chemes fail to recover the formal fifth-order accuracy near crit- 

cal points, where the low-order derivatives vanish. To deal with 

his problem, WENO-M and WENO-Z methods [5,19] were devel- 

ped. On the unstructured meshes, the WENO schemes were also 

eveloped [20,48] , in which the high-order of accuracy is also ob- 

ained by the non-linear combination of lower order polynomials. 

owever, its successful application is limited by the appearance of 

https://doi.org/10.1016/j.compfluid.2021.104927
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egative linear weights and very large linear weights. Instead of 

oncentrating on the reconstruction of interface values, there ex- 

st another two classes of WENO methods to reconstruct a poly- 

omial inside each cell based on all stencils, which is named as 

he WENO with adaptive order schemes [1,2,15] and simple WENO 

chemes [49–51] . The linear weights are topology independent and 

rtificially set to be positive numbers, and the non-linear weights 

re chosen to achieve the optimal order of accuracy in the smooth 

egion and suppress the oscillations near the discontinuous region. 

hese WENO schemes not only improve the efficiency, but also re- 

uce the complexity of the classical WENO scheme [20,48] , espe- 

ially for the unstructured meshes. However, they are rarely ap- 

lied for the simulation of turbulent flows. 

In the past decades, the gas-kinetic schemes (GKS) based on 

he Bhatnagar–Gross–Krook equation (BGK) [3,10] have been devel- 

ped systematically for the computations from the low speed flows 

o supersonic ones [46,47] . Different from the numerical methods 

ased on the Riemann solvers [41] , a time-dependent numerical 

ux function is provided at a cell interface for inviscid and vis- 

ous terms together. Based on the time-dependent flux function, 

 two-stage fourth-order method was developed for the general- 

zed Riemann problem solver [14,27] and gas-kinetic scheme [33] . 

n the construction of high-order schemes, a spatial-temporal cou- 

led evolution model becomes important, and the delicate flow 

tructures depend on the quality of flow solvers. With the high- 

rder spatial reconstruction, a reliable framework was provided for 

he fourth-order and even higher-order schemes [21] . More im- 

ortantly, the high-order gas-kinetic scheme is as robust as the 

econd-order scheme and works perfectly from the subsonic flows 

o hypersonic ones. The gas-kinetic schemes have also been ap- 

lied for the simulations of turbulent flows successfully. For high 

eynolds number turbulent flows, the gas-kinetic scheme coupled 

ith the traditional eddy viscosity turbulence model has been 

eveloped and implemented in the turbulence study [7,40] . The 

igh-order gas-kinetic scheme has been also developed for the di- 

ect numerical simulation of isotropic compressible turbulence [8] , 

hich was the first attempt by gas-kinetic scheme to the DNS 

tudy. 

Recently, more classical turbulent tests from nearly incompress- 

ble flows to the hypersonic ones are used to validate the paral- 

el scalability, efficiency, accuracy, and robustness of HGKS, which 

erifies the validity for compressible turbulence study [9] . The 

imension-by-dimension WENO reconstruction is used for spatial 

ccuracy, and the meshes are considered to be locally uniform 

ithout special treatment. However, such reconstruction encoun- 

ers difficulties for the flows with complicated geometry. One effi- 

ient way is to construct the high-order scheme in curvilinear co- 

rdinate system, and another way is to consider the mesh as an 

nstructured one. In the previous study [32] , a third-order gas- 

inetic scheme is developed on the three-dimensional structured 

eshes with the simple WENO type reconstruction, in which a 

imple strategy of selecting stencils for reconstruction is adopted 

nd the topology independent linear weights are used. However, 

he third-order reconstruction is too dissipative for the simula- 

ion of turbulent flows, and the small scale is smeared severely. 

n this paper, a fourth-order WENO scheme is developed, which 

mproves the order of accuracy with a larger stencil for reconstruc- 

ion. The similar strategies are adopted for both selection stencils 

nd non-linear weights. In corporate with the two-stage tempo- 

al discretization, a fourth-order gas-kinetic scheme is developed. 

oth accuracy and robustness are validated by the numerical ex- 

mples. With the high-order spatial and temporal discretization, 

he gas-kinetic scheme can be used for the direct numerical sim- 

lation (DNS) and large eddy simulation (LES) of turbulence, and 

he classical turbulent tests are provided to illustrate the good per- 

ormance of such WENO reconstruction. In the future, the current 
2 
cheme will be extended to the three-dimensional unstructured 

eshes for more complicated turbulent flows. 

This paper is organized as follows. In Section 2 , BGK equation 

nd turbulent model are briefly reviewed. The fourth-order gas- 

inetic scheme with the newly developed WENO reconstruction 

s given in Section 3 . Section 4 includes numerical simulation and 

iscussions. The last section is the conclusion. 

. BGK equation and turbulent model 

The three-dimensional BGK equation [3,10] can be written as 

f t + u f x + v f y + w f z = 

g − f 

τ
, (1) 

here u = (u, v , w ) is the particle velocity, f is the gas distribution

unction, g is the three-dimensional Maxwellian distribution and τ
s the collision time. The collision term satisfies the compatibility 

ondition 

 

g − f 

τ
ψ d � = 0 , (2) 

here ψ = (1 , u, v , w, 
1 

2 
(u 2 + v 2 + w 

2 + ς 

2 )) T , ς 

2 = ς 

2 
1 + . . . + ς 

2 
K 

s the internal variable, d � = d u d v d w d ς 1 . . . d ς K and K = (5 −
 γ ) / (γ − 1) is the degree of freedom for the three-dimensional 

ows, where γ is the specific heat ratio. According to the 

hapman–Enskog expansion for BGK equation, the macroscopic 

overning equations can be derived [46,47] . For the zeroth-order 

runcation f = g, the Euler equations can be obtained. For the first- 

rder truncation 

f = g − τ (ug x + v g y + wg z + g t ) , 

he Navier–Stokes equations can be obtained. With higher-order 

runcations, the Burnett and super-Burnett equations can be de- 

ived as well. 

For the turbulence modeling, we follow the concept of turbu- 

ent eddy viscosity, which models the effect of unresolved turbu- 

ent scales by the enlarged turbulent eddy viscosity [7,40] . An ex- 

ended BGK equation can be written as 

f t + u f x + v f y + w f z = 

g − f 

τ + τt 
, (3) 

here τt is an enlarged turbulent relaxation time proposed to de- 

cribe the turbulent flows. Based on the Chapman–Enskog expan- 

ion, Eq. (3) can recover the eddy viscosity model according to the 

ollowing relation between turbulent eddy viscosity μt and turbu- 

ent relaxation time τt 

+ τt = 

μ + μt 

p 
, (4) 

here p is the pressure. In this paper, the large eddy simulation 

LES) is considered. To keep the simple eddy viscosity closure form 

nd overcome the drawbacks of the original Smagorinsky model, 

he Vreman-type model [42] is used and the turbulent eddy vis- 

osity μt is given by 

t = 2 . 5 ρC 2 s 

√ 

B β

a i j a i j 

, (5) 

here ρ is the density and C s = 0 . 1 is the Smagorinsky constant. 

he left unknowns above can be determined through the combina- 

ion of velocity gradient in resolved flow fields 
 

 

 

 

 

αi j = 

∂U j 

∂x i 
, 

βi j = �2 
m 

αmi αm j , 

B β = β11 β22 + β11 β33 + β22 β33 − β2 
12 − β2 

13 − β2 
23 , 

here �m 

is the width of the numerical cell. 
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. High-order gas-kinetic scheme 

.1. Finite volume scheme and gas-kinetic solver 

In this paper, we mainly focus on the structured mesh. Tak- 

ng moments of Eq. (1) and integrating with respect to space, the 

emi-discretized finite volume scheme for the hexahedron cell �i jk 

an be obtained as follows 

∂Q i jk 

∂t 
= L (Q i jk ) , 

here Q i jk is the cell averaged conservative value. The operator L 

s defined as 

 (Q i jk ) = − 1 

| �i jk | 
6 ∑ 

p=1 

F p (t) = − 1 

| �i jk | 
6 ∑ 

p=1 

∫ ∫ 
p 

F (Q, t) · n d σ, 

(6) 

here | �i jk | is the area of �i jk , p is the cell interface of �i jk and

 is the outer normal direction. For some meshes, the vertexes of 

exahedron cell maybe non-coplanar, and the high-order accuracy 

an not be achieved without evaluating the volume and integrals 

ccurately. Thus, a trilinear interpolation is introduced for the hex- 

hedron cell �i jk 

 (ξ , η, ζ ) = 

8 ∑ 

m =1 

x m 

ψ m 

(ξ , η, ζ ) , 

here (ξ , η, ζ ) ∈ [ −1 / 2 , 1 / 2] 3 , x m 

is the vertex of a hexahedron

ell and the base function ψ m 

is given as follows 

 1 = 

1 

8 

(1 − 2 ξ )(1 − 2 η)(1 − 2 ζ ) , 

 2 = 

1 

8 

(1 − 2 ξ )(1 − 2 η)(1 + 2 ζ ) , 

 3 = 

1 

8 

(1 − 2 ξ )(1 + 2 η)(1 − 2 ζ ) , 

 4 = 

1 

8 

(1 − 2 ξ )(1 + 2 η)(1 + 2 ζ ) , 

 5 = 

1 

8 

(1 + 2 ξ )(1 − 2 η)(1 − 2 ζ ) , 

 6 = 

1 

8 

(1 + 2 ξ )(1 − 2 η)(1 + 2 ζ ) , 

 7 = 

1 

8 

(1 + 2 ξ )(1 + 2 η)(1 − 2 ζ ) , 

ψ 8 = 

1 

8 

(1 + 2 ξ )(1 + 2 η)(1 + 2 ζ ) . 

n the computation, the Gaussian quadrature is used for the fol- 

owing triple integral over the hexahedron cell with non-coplanar 

ertexes 

 ∫ ∫ 
�

x a y b z c d x d y d z = 

3 ∑ 

l,m,n =1 

ω lmn x 
a y b z c (ξl , ηm 

, ζn ) 

×
∣∣∣ ∂(x, y, z) 

∂(ξ , η, ζ ) 

∣∣∣(ξl ,ηm ,ζn ) �ξ�η�ζ , 

here ω lmn is the Gaussian quadrature weight and (ξl , ηm 

, ζn ) is 

he quadrature point. To achieve the spatial accuracy, the numeri- 

al integration is needed for the surface integral over the cell in- 

erface as well, and one of the numerical fluxes is given as an ex- 

mple 

 p (t) = 

∫ ∫ 
p 

F (Q ) · n d σ = 

∫ 1 / 2 

−1 / 2 

∫ 1 / 2 

−1 / 2 

F (Q(X (η, ζ ))) 

· n ‖ X η × X ζ‖ d ηd ζ
3 
= 

2 ∑ 

m 1 ,m 2 =1 

ω m 1 ,m 2 
F m 1 ,m 2 

(t) ‖ X η

× X ζ‖ m 1 ,m 2 
�η�ζ , 

here ω m 1 ,m 2 
is Gaussian quadrature weight. For the surface in- 

egral, the bilinear interpolation is used to parameterize the inter- 

ace 

 (η, ζ ) = 

4 ∑ 

m =1 

x m 

φm 

(η, ζ ) , 

here (η, ζ ) ∈ [ −1 / 2 , 1 / 2] 2 , x m 

is the vertex of the interface p 

nd φm 

is the base function 

1 = 

1 

4 

(1 − 2 η)(1 − 2 ζ ) , φ2 = 

1 

4 

(1 − 2 η)(1 + 2 ζ ) , 

φ3 = 

1 

4 

(1 + 2 η)(1 − 2 ζ ) , φ4 = 

1 

4 

(1 + 2 η)(1 + 2 ζ ) . 

ith the bilinear interpolation above, a local coordinate can be 

iven for each Gaussian quadrature point. 

The numerical flux at Gaussian quadrature point in the global 

oordinate F m 1 ,m 2 
(t) can be obtained by taking moments of the gas 

istribution function 

 m 1 ,m 2 
(t) = 

∫ 
u · n m 1 ,m 2 

ψ f (x m 1 ,m 2 
, t, u , ς ) d �. (7) 

n the actual computation, the reconstruction is performed in a 

ocal coordinate and a coordinate transformation is needed for 

he numerical fluxes. This procedure is similar with the numer- 

cal methods with Riemann solvers [41] , and more details for 

as-kinetic scheme can be found in Pan and Xu [32] . In the lo-

al coordinate, the gas distribution function is also denoted as 

f (x m 1 ,m 2 
, t, u , ς ) for simplicity. The integral solution of BGK equa- 

ion Eq. (1) is used for the gas distribution function at cell inter- 

ace 

f (x m 1 ,m 2 
, t, u , ς ) = 

1 

τ

∫ t 

0 

g(x ′ , t ′ , u , ς ) e −(t −t ′ ) /τ d t ′ + e −t/τ f 0 (−u t, ς ) , 

here x ′ = x m 1 ,m 2 
− u (t − t ′ ) is the trajectory of particles, u =

u, v , w ) is the particle velocity in the local coordinate, f 0 is the

nitial gas distribution function and g is the corresponding equilib- 

ium state. With the reconstruction of macroscopic variables, the 

econd-order gas distribution function at the cell interface can be 

xpressed as 

f ( x m 1 ,m 2 , t, u , ς ) = 

(
1 − e −t/τ

)
g 0 + 

(
( t + τ ) e −t/τ − τ

)
( a 1 u + a 2 v + a 3 w ) g 0 

+ 

(
t − τ + τ e −t/τ

)
A g 0 

+ e −t/τ g r 
[
1 − ( τ + t ) 

(
a r 1 u + a r 2 v + a r 3 w 

)
− τA r 

]
( 1 − H ( u ) )

+ e −t/τ g l 
[
1 − ( τ + t ) 

(
a l 1 u + a l 2 v + a l 3 w 

)
− τA l 

]
H ( u ) , 

(8) 

here g l , g r are the equilibrium states corresponding to the re- 

onstructed variables Q l , Q r at both sides of cell interface, and the 

quilibrium state g 0 and corresponding conservative variable Q 0 

re given by the compatibility condition Eq. (2) 
 

ψg 0 d � = Q 0 = 

∫ 
u> 0 

ψg l d � + 

∫ 
u< 0 

ψg r d �. 

he coefficients in Eq. (8) can be obtained by the reconstructed 

irectional derivatives in the local coordinate (n x , n y , n z ) and com-

atibility condition 

〈 a k 1 〉 = 

∂Q k 

∂n x 
, 〈 a k 2 〉 = 

∂Q k 

∂n y 
, 〈 a k 3 〉 = 

∂Q k 

∂n z 
, 〈 a k 1 u + a k 2 v + a k 3 w + A 

k 〉 = 0 , 

 a 1 〉 = 

∂Q 0 

∂ n x 
, 〈 a 2 〉 = 

∂Q 0 

∂ n y 
, 〈 a 3 〉 = 

∂Q 0 

∂ n z 
, 〈 a 1 u + a 2 v + a 3 w + A 〉 = 0 , 
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here k = l, r and the moments of the equilibrium g and defined 

y 

 . . . 〉 = 

∫ 
g( . . . ) ψ d �. 

he construction of 
∂Q l,r 

∂ n x 
, 
∂Q l,r 

∂ n y 
, 
∂Q l,r 

∂ n z 
will be presented in the fol- 

owing section. In the classical gas-kinetic scheme, an extra recon- 

truction is needed for the equilibrium part. However, such recon- 

truction introduces extra difficulty for the genuinely multidimen- 

ional scheme [21] . In this section, the spatial derivatives for the 

quilibrium part can be determined as follows 

∂Q 0 

∂ n x 
= 

∫ 
u> 0 

ψa l 1 g l d � + 

∫ 
u< 0 

ψa r 1 g r d �, 

∂Q 0 

∂ n y 
= 

∫ 
u> 0 

ψa l 2 g l d � + 

∫ 
u< 0 

ψa r 2 g r d �, 

∂Q 0 

∂ n z 
= 

∫ 
u> 0 

ψa l 3 g l d � + 

∫ 
u< 0 

ψa r 3 g r d �. 

he procedure above reduces the complexity greatly. More details 

f the gas-kinetic scheme can be found in Xu [46] . 

.2. Temporal discretization 

The two-stage fourth-order method is used for temporal dis- 

retization, which was developed for Lax–Wendroff type solvers 

14,27,33] . Consider the following time-dependent equation 

d Q 

d t 
= L (Q ) , 

here L is an operator for spatial derivative of flux given by 

q. (6) , the state Q 

n +1 at t n +1 = t n + �t can be updated with the

ollowing formula 

Q 

∗ = Q 

n + 

1 

2 

�tL (Q 

n ) + 

1 

8 

�t 2 
∂ 

∂t 
L (Q 

n ) , 

 

n +1 = Q 

n + �tL (Q 

n ) + 

1 

6 

�t 2 
( ∂ 

∂t 
L (Q 

n ) + 2 

∂ 

∂t 
L (Q 

∗) 
)
. 

t can be proved that for hyperbolic equations the above temporal 

iscretization provides a fourth-order time accurate solution [27] . 

o implement the two-stage method for Eq. (6) , a linear function 

s used to approximate the time dependent numerical flux 

 p (t) = F 

n 
p + ∂ t F 

n 
p (t − t n ) . (9) 

ntegrating Eq. (9) over [ t n , t n + �t/ 2] and [ t n , t n + �t] , we have

he following two equations 

F 

n 
p �t + 

1 

2 

∂ t F 

n 
p �t 2 = 

∫ t n +�t 

t n 

F p (t ) d t , 

1 

2 

F 

n 
p �t + 

1 

8 

∂ t F 

n 
p �t 2 = 

∫ t n +�t/ 2 

t n 

F p (t ) d t . 

he coefficients ∂ t F 

n 
p and ∂ t F 

n 
p can be determined by solving the 

inear system, and L (�n 
i jk 

) and temporal derivative ∂ t L (�n 
i jk 

) at t n 

an be given by 

 (Q 

n 
i jk ) = − 1 

| �i jk | 
6 ∑ 

p=1 

F 

n 
p , ∂ t L (Q 

n 
i jk ) = − 1 

| �i jk | 
6 ∑ 

p=1 

∂ t F 

n 
p . 

imilarly, L (�∗
i jk 

) , ∂ t L (�∗
i jk 

) at the intermediate state can be con-

tructed as well. 

.3. Spatial reconstruction 

In our previous study, a third-order multi-dimensional WENO 

econstruction was developed [32] . However, for the viscous flows 
4 
ith moderate Reynolds numbers, the third-order scheme is too 

issipative and a higher-order reconstruction is needed. In this 

ection, a fourth-order WENO reconstruction is developed on the 

tructured meshes and the extension to unstructured meshes will 

e developed in the future. 

For a piecewise smooth function q (x ) over the cell �i jk , a poly-

omial P 0 (x ) with degree r can be constructed to approximate q (x ) 

s follows 

 0 (x ) = q (x ) + O(h 

r+1 ) , 

here h ∼ | �i jk | 1 / 3 is the cell size. In order to achieve the fourth- 

rder accuracy and satisfy the conservative property, a cubic poly- 

omial is constructed 

 0 (x ) = Q i jk + 

3 ∑ 

| n | =1 

a n p n (x ) , (10) 

here Q i jk is the cell averaged variables of Q(x ) over �i jk , n =
n 1 , n 2 , n 3 ) is the multi-index, | n | = n 1 + n 2 + n 3 and 

p n (x ) = x n 1 y n 2 z n 3 − 1 ∣∣�i jk 

∣∣
∫ ∫ ∫ 

�i jk 

x n 1 y n 2 z n 3 d V. 

n order to fully determine this polynomial, a bigger stencil S

hown in Fig. 1 for �i jk is selected and the index of elements is 

earranged as follows 

 = 

{
�i + i 0 , j+ j 0 ,k + k 0 , i 0 , j 0 , k 0 = −1 , 0 , 1 

}⋃ {
�i ±2 , j,k , �i, j±2 ,k , �i, j,k ±2 

}
= 

{
�n , n = 0 , . . . , 26 

}⋃ {
�n , n = 27 , . . . , 32 

}
, 

here �0 = �i jk . The following constrains need to be satisfied in 

he big stencil 

1 

| �n | 
∫ ∫ ∫ 

�n 

P 0 (x ) d V = Q n , �n ∈ S, 

here Q n is the conservative variable with newly rearranged in- 

ex. To determine the cubic polynomial, an over-determined linear 

ystem is obtained 

 · a = �Q , 

here �Q = (Q 1 − Q 0 , . . . , Q 32 − Q 0 ) 
T , a = (a 1 , . . . , a 19 ) 

T . The

ulti-index n is also rearranged and the coefficient matrix 

 = (A jk ) , 1 ≤ j ≤ 32 , 1 ≤ k ≤ 19 is given as 

 jk = 

1 ∣∣� j 

∣∣
∫ ∫ 

� j 

p k (x, y ) d x d y d z. 
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or some cases, such as the turbulent channel flow, the reconstruc- 

ion becomes unstable and a weighted least square method is used 

 A 

T W A ) · a = A 

T W �Q , (11) 

here W is a diagonal matrix with w ii = 1 , i = 1 , . . . , 26 and w ii =
 . 1 , i = 27 , . . . , 32 . 

To deal with the discontinuity, several linear polynomials are 

onstructed based on the candidate sub-stencils 

 m 

(x ) = Q i jk + 

∑ 

| n | =1 

b m 

n p n (x ) , (12) 

here m = 1 , . . . M and M is the number of sub-stencils. In the pre-

ious paper [50] , the sub-stencils S ′ m 

, m = 1 , . . . , 24 are used and

ne third of them are given as follows 

 

′ 
1 = { �i jk , �i +1 , j,k , �i, j+1 ,k , �i +1 , j+1 ,k , �i, j,k +1 } , 
 

′ 
2 = { �i jk , �i −1 , j,k , �i, j+1 ,k , �i −1 , j+1 ,k , �i, j,k +1 } , 
 

′ 
3 = { �i jk , �i +1 , j,k , �i, j−1 ,k , �i +1 , j−1 ,k , �i, j,k +1 } , 
 

′ 
4 = { �i jk , �i −1 , j,k , �i, j+1 ,k , �i −1 , j−1 ,k , �i, j,k +1 } , 
 

′ 
5 = { �i jk , �i +1 , j,k , �i, j+1 ,k , �i +1 , j+1 ,k , �i, j,k −1 } , 
 

′ 
6 = { �i jk , �i −1 , j,k , �i, j+1 ,k , �i −1 , j+1 ,k , �i, j,k −1 } , 
 

′ 
7 = { �i jk , �i +1 , j,k , �i, j−1 ,k , �i +1 , j−1 ,k , �i, j,k −1 } , 

S ′ 8 = { �i jk , �i −1 , j,k , �i, j+1 ,k , �i −1 , j−1 ,k , �i, j,k −1 } . 

owever, such choice of sub-stencils costs more memory and re- 

uces the efficiency of computation. A simplified version with 

ight sub-stencils is adopted for the fourth-order reconstruction 

 1 = { �i jk , �i +1 , j,k , �i, j+1 ,k , �i, j,k +1 } , 
 5 = { �i jk , �i +1 , j,k , �i, j+1 ,k , �i, j,k −1 } , 
 2 = { �i jk , �i −1 , j,k , �i, j+1 ,k , �i, j,k +1 } , 
 6 = { �i jk , �i −1 , j,k , �i, j+1 ,k , �i, j,k −1 } , 
 3 = { �i jk , �i +1 , j,k , �i, j−1 ,k , �i, j,k +1 } , 
 7 = { �i jk , �i +1 , j,k , �i, j−1 ,k , �i, j,k −1 } , 
 4 = { �i jk , �i −1 , j,k , �i, j+1 ,k , �i, j,k +1 } , 

S 8 = { �i jk , �i −1 , j,k , �i, j+1 ,k , �i, j,k −1 } . 

he performances are comparable for the two types of candi- 

ate sub-stencils. For simplicity, the index of elements of the sub- 

tencils is also rearranged as follows 

 m 

= { �m 

i ′ , i 
′ = 0 , . . . , 4 } , 

here m = 1 , . . . , 8 . The following constrains need to be satisfied

n the big stencil 

1 

| �i ′ | 
∫ ∫ ∫ 

�m 
i ′ 

P m 

(x ) d V = Q 

m 

i ′ , �
m 

i ′ ∈ S m 

, 

here Q 

m 

i ′ is the call averaged variable with the rearranged index. 

n over determined linear system can be generated, and the co- 

fficients b m 

n in Eq. (12) can be determined by the least square 

ethod. 

With the reconstructed polynomial P m 

(x ) , m = 0 , . . . , 8 ,

he point-value Q(x G ) and the spatial derivatives 

 x Q (x G ) , ∂ y Q (x G ) , ∂ z Q (x G ) for reconstructed variables at Gaus-

ian quadrature point can be given by the non-linear combination 
5 
Q(x G ) = ω 0 ( 
1 

γ0 

P 0 (x G ) −
8 ∑ 

m =1 

γm 

γ0 

P m 

(x G )) + 

8 ∑ 

m =1 

ω m 

P m 

(x G ) , 

∂ x Q(x G ) = ω 0 ( 
1 

γ0 

∂ x P 0 (x G ) −
8 ∑ 

m =1 

γm 

γ0 

∂ x P m 

(x G )) + 

8 ∑ 

m =1 

ω m 

∂ x P m 

(x G ) , 

∂ y Q(x G ) = ω 0 ( 
1 

γ0 

∂ y P 0 (x G ) −
8 ∑ 

m =1 

γm 

γ0 

∂ y P m 

(x G )) + 

8 ∑ 

m =1 

ω m 

∂ y P m 

(x G ) , 

∂ z Q(x G ) = ω 0 ( 
1 

γ0 

∂ z P 0 (x G ) −
8 ∑ 

m =1 

γm 

γ0 

∂ z P m 

(x G )) + 

8 ∑ 

m =1 

ω m 

∂ z P m 

(x G ) . 

(13) 

here ∂ x P m 

(x G ) , ∂ y P m 

(x G ) , ∂ z P m 

(x G ) can be obtained by taking

erivatives of the candidate polynomials directly. The non-linear 

eights ω m 

and normalized non-linear weights ω m 

are defined as 

 m 

= 

ω m ∑ M 

m =0 ω m 

, ω m 

= γm 

[ 
1 + 

(
τ

βm 

+ ε

)] 
, 

here the linear weights γ0 = 0 . 9 and γi = 0 . 0125 , i = 1 , . . . , 8 in

he computation, ε is a small positive number and the parameter 

is chosen as 

= 

8 ∑ 

m =1 

( | β0 − βm 

| 
8 

)
2 . 

he smooth indicator βm 

is defined as 

m 

= 

r m ∑ 

| l| =1 

| �i jk | 2 | l| 3 −1 

∫ 
�i jk 

(
∂ l P m 

∂ l 1 x ∂ 
l 2 
y ∂ 

l 3 
z 

(x, y, z) 
)

2 d V, (14) 

here r 0 = 2 and r m 

= 1 , m = 1 , . . . , 8 . Eq. (13) ensures a fourth-

rder accuracy and a brief proof is given. According to the Taylor 

xpansion, the smooth indicator Eq. (14) can be rewritten as 

β0 = 

((∂Q 

∂x 

)
2 + 

(∂Q 

∂y 

)
2 + 

(∂Q 

∂z 

)
2 
)∣∣∣x 0 | �i jk | 2 / 3 (1 + O(| �i jk | 2 / 3 )) , 

m 

= 

((∂Q 

∂x 

)
2 + 

(∂Q 

∂y 

)
2 + 

(∂Q 

∂z 

)
2 
)∣∣∣x 0 | �i jk | 2 / 3 (1 + O(| �i jk | 1 / 3 )) , 

here m = 1 , . . . , 8 . Therefore, the non-linear weights can be ap-

roximated as 

 m 

∼ ω m 

= γm 

(1 + O(h 

2 )) , 

or the quadratic polynomial P 0 (x ) , the error of approximation can 

e written as 

 0 (x G ) = q (x G ) + A (x G ) h 

4 + O(h 

5 ) , 

here Q(x G ) is the exact solution at the Gaussian quadrature point 

 G . For the linear polynomial P m 

(x G ) , the error can be written as 

 m 

(x G ) = q (x G ) + B m 

(x G ) h 

2 + O(h 

3 ) , 

he reconstructed point value with non-linear weights can be writ- 

en as 

(x G ) = 

ω 0 

γ0 

P 0 (x G ) + 

8 ∑ 

m =1 

( ω m 

− ω 0 γm 

γ0 

) P m 

(x G ) , 

= q (x G ) + 

ω 0 

γ0 

(A (x G ) h 

3 + O(h 

4 )) 

+ 

8 ∑ 

m =1 

( ω m 

− ω 0 
γm 

γ0 

)(B m 

(x G ) h 

2 + O(h 

3 )) 

= q (x G ) + (A (x G ) + 

8 ∑ 

m =1 

B m 

(x G )) h 

4 + O(h 

5 ) . 

herefore, with the reconstructed point value and spatial deriva- 

ives, the spatial and temporal coupled gas-kinetic flow solver can 

e fully determined and the expected order of accuracy can be 

chieved. 
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Table 1 

Accuracy test: the advection of density perturbation for WENO- 

3 with uniform meshes. 

Mesh L 1 error Order L 2 error Order 

16 3 1.4612E −01 5.7820E −02 

32 3 2.0241E −02 2.8517 7.9355E −03 2.8651 

64 3 2.5712E −03 2.9768 1.0083E −03 2.9763 

128 3 3.2240E04 2.9955 1.2633E04 2.9966 

Table 2 

Accuracy test: the advection of density perturbation for 

WENO-4 with uniform meshes. 

Mesh L 1 error Order L 2 error Order 

16 3 5.8372E03 2.2805E03 

32 3 2.3680E04 4.6235 9.2951E05 4.6167 

64 3 1.1556E05 4.3569 4.6539E06 4.3199 

128 3 6.6095E07 4.1279 2.8008E07 4.0545 

Table 3 

Accuracy test: the advection of density perturbation for 

WENO-4 with non-coplanar meshes. 

Mesh L 1 error Order L 2 error Order 

16 3 1.0605E02 4.3992E03 

32 3 5.7093E04 4.2153 2.3355E04 4.2354 

64 3 2.9764E05 4.2616 1.2228E05 4.2554 

128 3 1.7431E06 4.0938 7.1849E07 4.0890 

Table 4 

Accuracy test: the advection of density perturbation for 

WENO-4 with moving meshes. 

Mesh L 1 error Order L 2 error Order 

16 3 1.4472E02 5.7134E03 

32 3 1.0741E03 3.7519 4.2541E04 3.7474 

64 3 7.0181E05 3.9359 2.7789E05 3.9362 

128 3 4.4374E06 3.9833 1.7564E06 3.9837 
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emark 1. As a feature of WENO type scheme, a very large stencil 

s needed which generates a large linear system, i.e. Eq. (11) . In the

ode, the matrix ( A 

T W A ) −1 · A 

T W is restored for each cell, which 

equires a large memory. However, for the moving-mesh computa- 

ion, the inverse procedure needs to be conducted every step and 

he efficiency will be reduced dramatically. 

Thus, it is difficult to go further for the higher-order reconstruc- 

ion in the current framework, and the development of high-order 

cheme with a compact stencil becomes demanding [22] . 

emark 2. In order to eliminate the spurious oscillation and im- 

rove the stability, the reconstruction can be performed for the 

haracteristic variables in the local coordinate. A simple limiting 

rocedure is used to improve the robustness. For the reconstructed 

ariables P m 

(x G ) , if any one value of the densities ρm 

(x G ) and

ressures p m 

(x G ) become negative, the derivatives are set as zero 

nd first-order reconstruction is adopted. 

. Numerical tests 

In this section, numerical tests for both inviscid and viscous 

ows will be presented to validate the current scheme. For the in- 

iscid flows, the collision time τ takes 

= ε�t + C| p l − p r 

p l + p r 
| �t, 

here ε = 0 . 01 and C = 1 . For the viscous flows, we have 

= 

μ

p 
+ C| p l − p r 

p l + p r 
| �t, 

here p l and p r denote the pressure on the left and right sides 

f the cell interface, μ is the dynamic viscous coefficient and p is 

he pressure at the cell interface. In smooth flow regions, it will 

educe to τ = μ/p. Without special statement, the specific heat 

atio γ = 1 . 4 and CFL number CF L = 0 . 35 are used in the com-

utation. In the numerical examples, the classical dimension-by- 

imension fifth-order WENO-Z scheme [33] and the third-order 

ENO scheme [32] are usually tested as reference, which are 

bbreviated as WENO-5 and WENO-3 respectively. The current 

cheme is abbreviated as WENO-4. 

.1. Accuracy test 

The advection of density perturbation for three-dimensional 

ows is presented to test the order of accuracy. For this case, the 

hysical domain is [0 , 2] × [0 , 2] × [0 , 2] and the initial condition is

et as follows 

0 (x, y, z) = 1 + 0 . 2 sin (π(x + y + z)) , p 0 (x, y, z) = 1 , 

U 0 (x, y, z) = 1 , V 0 (x, y, z) = 1 , W 0 (x, y, z) = 1 . 

he periodic boundary conditions are applied at boundaries, and 

he exact solution is 

(x, y , z, t) = 1 + 0 . 2 sin (π(x + y + z − t)) , p(x, y, z, t) = 1 , 

U(x, y, z, t) = 1 , V (x, y, z, t) = 1 , W (x, y, z, t) = 1 . 

he uniform meshes with �x = �y = �z = 2 /N are tested. As ref-

rence, the L 1 and L 2 errors and order of accuracy at t = 2 for the

ENO-3 reconstruction is given in Tab. 1 . For the WENO-4 recon- 

truction, the L 1 and L 2 errors and order of accuracy are presented 

n Tab. 2 , where the expected order of accuracy is achieved. The 

bsolute errors as well as the convergence orders are improved 

y the WENO-4 reconstruction. The order of accuracy with non- 

oplanar meshes is also tested. For the non-coplanar meshes, the 

ollowing mesh is considered 

 

x i = ξi + 0 . 1 sin (πξi ) sin (πη j ) sin (πζk ) , 
y j = η j + 0 . 1 sin (πξi ) sin (πη j ) sin (πζk ) , 
z k = ζk + 0 . 1 sin (πξi ) sin (πη j ) sin (πζk ) , 
6 
he L 1 and L 2 errors and orders of accuracy are presented in 

ab. 3 , and the expected order of accuracy is achieved for the non- 

oplanar meshes as well. The fourth-order WENO scheme can be 

lso implemented in the arbitrary-Lagrangian-Eulerian (ALE) for- 

ulation, and more details can be found in Pan et al. [34] . In this

ase, the time dependent mesh is given by 
 

x i = ξi + 0 . 05 sin (πξi ) sin (πη j ) sin (πζk ) sin πt, 
y j = η j + 0 . 05 sin (πξi ) sin (πη j ) sin (πζk ) sin πt, 
z k = ζk + 0 . 05 sin (πξi ) sin (πη j ) sin (πζk ) sin πt, 

here (ξ , η, ζ ) ∈ [0 , 2] × [0 , 2] × [0 , 2] and (ξi , η j , ζk ) are given

niformly with �ξ = �η = �ζ = 2 /N. The L 1 and L 2 errors and or- 

ers of accuracy at t = 2 are presented in Tab. 4 , and the expected

rder of accuracy is also achieved for moving-mesh computations. 

.2. Riemann problem 

In this case, the one-dimensional and three-dimensional Sod 

roblems are considered. The computational domain is (x, y, z) ∈ 

0 , 1] × [0 , 1] × [0 , 1] . For the one-dimensional problem, the initial

onditions are given as follows 

ρ, U, V, W, p) = 

{
(1 , 0 , 0 , 0 , 1) , 0 ≤ x < 0 . 5 , 

(0 . 125 , 0 , 0 , 0 , 0 . 1) , 0 . 5 < x ≤ 1 , 

here the non-reflection boundary conditions are imposed for all 

oundaries. For the three-dimensional problem, the initial condi- 

ions are given by 

ρ, U, V, W, p) = 

{
(1 , 0 , 0 , 0 , 1) , 0 ≤

√ 

x 2 + y 2 + z 2 < 0 . 5 ,

( 0 . 125 , 0 , 0 , 0 , 0 . 1) , 0 . 5 < 

√ 

x 2 + y 2 + z 2 ≤ 1 ,
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0 
here the symmetric boundary condition is imposed on the plane 

ith x = 0 , y = 0 and z = 0 , and the non-reflection boundary con-

ition is imposed on the plane with x = 1 , y = 1 and z = 1 . The ex-

ct solution of spherically symmetric problem can be given by the 

ollowing one-dimensional system with geometric source terms 

∂Q 

∂t 
+ 

∂F (Q ) 

∂r 
= S(Q ) , 

here 

 = 

( 

ρ
ρU 

ρE 

) 

, F (Q ) = 

( 

ρU 

ρU 

2 + p 
U(ρE + p) 

) 

, S(Q ) = − d − 1 

r 

( 

ρU 

ρU 

2 

U(ρE + p) 

) 

. 

he radial direction is denoted by r, U is the radial velocity, d

s the number of space dimensions. In the computation, the uni- 

orm mesh with �x = �y = �z = 1 / 100 is used. The density, ve-

ocity and pressure profiles along y = z = 0 are given in Fig. 2 for

D problem at t = 0 . 2 and for 3D problem at t = 0 . 25 . The current

cheme also well resolves the wave profiles and the symmetry of 

olution is well preserved. 

.3. Sedov problem 

This is a three-dimensional explosion problem to model blast 

ave from an energy deposited singular point [24] , which is used 

o test the robustness of spatial reconstruction especially for the 

agrangian and ALE computation. The initial density has a uniform 

nit distribution, and the pressure is 10 −6 everywhere, except in 

he cell containing the origin. For this cell containing the origin, 

he pressure is defined as p = (γ − 1) ε 0 /V, where ε 0 = 0 . 106384

s the total amount of released energy and V is the cell volume. 

he computational domain is [0 , 1 . 2] × [0 , 1 . 2] × [0 , 1 . 2] , and the

nitial uniform meshes are used. In this case, the computation is 

erformed in the ALE formulation and the grid velocity is given 

y the Lagrangian nodal flow solver [29] . Due to the singularity 

t the origin, a small CFL number CF L = 0 . 01 is used. After 10

teps, a normal CFL number is used. The symmetric boundary con- 

ition is imposed on the planes with x = 0 , y = 0 , z = 0 , and the

on-reflection boundary condition is imposed on the planes with 

 = 1 . 2 , y = 1 . 2 , z = 1 . 2 . The solution consists of a diverging infi-

ite strength shock wave whose front is located at radius r = 1 

t t = 1 [24] . Initially, 20 × 20 × 20 and 40 × 40 × 40 uniform cells

re used. The density profiles with respect to r at t = 1 are given

n Fig. 3 and three-dimensional density distributions are given in 

ig. 4 . A sharp discontinuity is captured by the ALE computation, 

nd the robustness of current scheme is validated by the case with 

trong discontinuity. 

.4. Taylor–Green vortex 

This problem is aimed at testing the performance of high-order 

ethods on the direct numerical simulation of a three-dimensional 

eriodic and transitional flow defined by a simple initial condi- 

ion, i.e. the Taylor–Green vortex [6,13] . With a uniform temper- 

ture field, the initial flow field is given by 

u = V 0 sin ( 
x 

L 
) cos ( 

y 

L 
) cos ( 

z 

L 
) , 

v = − V 0 cos ( 
x 

L 
) sin ( 

y 

L 
) cos ( 

z 

L 
) , 

 = 0 , 

p = p 0 + 

ρ0 V 

2 
0 

16 

( cos ( 
2 x 

L 
) + cos ( 

2 y 

L 
))( cos ( 

2 z 

L 
) + 2) . 

he fluid is then a perfect gas with γ = 1 . 4 and the Prandtl num-

er is P r = 0 . 71 . 

Numerical simulations are conducted with two Reynolds num- 

ers Re = 280 and 1600. The flow is computed within a periodic 
7 
quare box defined as −πL ≤ x, y, z ≤ πL . The characteristic convec- 

ive time t c = L/V 0 . In the computation, L = 1 , V 0 = 1 , ρ0 = 1 , and

he Mach number takes M 0 = V 0 /c 0 = 0 . 1 , where c 0 is the sound

peed. The volume-averaged kinetic energy can be computed from 

he flow as it evolves in time, which is expressed as 

 k = 

1 

ρ0 �

∫ 
�

1 

2 

ρu · u d �, 

here � is the volume of the computational domain, and the dis- 

ipation rate of the kinetic energy is given by 

 k = −d E k 
d t 

. 

n the computation, the uniform mesh with 192 × 192 × 192 mesh 

oints is used. For the case with Re = 280 , the normalized volume- 

veraged kinetic energy and dissipation rate are presented in Fig. 5 , 

nd the HGKS with WENO-3 reconstruction are presented as ref- 

rence. The current results agree well with the reference data in 

ang et al. [43] , and WENO-3 scheme is much more dissipative. 

he case with Re = 1600 is also tested. The normalized volume- 

veraged kinetic energy and dissipation rate are presented in Fig. 5 , 

nd the current results agree well with the reference data [6] . As 

eference, the results of HGKS with WENO-5 scheme are presented, 

hich performs better than the current scheme, especially at the 

eak of dissipative rate. The iso-surfaces of Q criterions colored 

y velocity magnitude for Re = 280 at t = 5 and 10 are shown in

ig. 7 , and for Re = 1600 at t = 10 and 15 are shown in Fig. 8 . For

he case with Re = 280 , the flow structure is relative simple. Mean- 

hile, the coherent structures breakdown at t = 10 for the case 

ith Re = 1600 . Beyond this breakdown, the flow is fully turbu- 

ent and the structures slowly decay until the flow comes to rest. 

or such complicated flows, more studies with HGKS can be found 

n Cao et al. [9] ( Figs. 6 and 10 ). 

.5. Compressible isotropic turbulence 

The compressible isotropic turbulence is regarded as one of cor- 

erstones to elucidate the effects of com pressibility for turbulence 

26,37,44] . In this case, we concentrate on the decaying isotropic 

ompressible turbulence without external force. The flow domain 

f numerical simulation is a cube box 0 ≤ x, y, z ≤ 2 π, with peri-

dic boundary conditions in all three Cartesian directions for all 

ow variables. A three-dimensional solenoidal random initial ve- 

ocity field is generated by a specified spectrum 

(κ) = A 0 κ
4 exp (−2 κ2 /κ2 

0 ) , (15) 

here A 0 is a constant to get a specified initial kinetic energy, κ
s the wave number, κ0 is the wave number at which the spec- 

rum peaks. The fixed A 0 and κ0 in Eq. (15) are chosen for all cases, 

hich are initialized by A 0 = 0 . 0 0 013 and κ0 = 8 . Evolution of this

rtificial system is determined by initial thermodynamic quantities 

nd two dimensionless parameters, i.e. the initial Taylor microscale 

eynolds number and turbulent Mach number 

e λ = 

(2 π) 1 / 4 

4 

ρ0 

μ0 

√ 

2 A 0 κ
3 / 2 
0 

, 

Ma t = 

√ 

3 √ 

γ RT 0 
u rms , 

here the initial density ρ0 = 1 and u rms is the root mean square 

f initial velocity field. With Re λ, Ma t and γ = 1 . 4 , the initial vis-

osity μ0 , pressure p 0 and temperature T 0 can be determined. The 

ynamic velocity can be also given by 

= μ0 ( 
T 

T 
) 0 . 76 . 
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Fig. 2. Sod problem: the density, velocity and pressure profiles along y = z = 0 for 1D problem at t = 0 . 2 (left) and 3D problem at t = 0 . 25 (right). 
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Fig. 3. Sedov problem: the three-dimensional density distributions at t = 1 for ALE computation with 20 × 20 × 20 and 40 × 40 × 40 cells. 
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Fig. 4. Sedov problem: the density distributions with respect to r at t = 1 for ALE computation with 20 × 20 × 20 and 40 × 40 × 40 cells. 
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Fig. 5. Taylor–Greenvortex: the time history of kinetic energy E k and dissipation rate ε(E k ) for Re = 280 . 
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Fig. 7. Taylor–Greenvortex: the iso-surfaces of Q criterions colored by velocity magnitude at t = 5 and 10 for Re = 280 . 

Fig. 8. Taylor–Greenvortex: the iso-surfaces of Q criterions colored by velocity magnitude at t = 10 and 15 for Re = 1600 . 
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Fig. 9. Compressible isotropic turbulence: convergence study of the normalized turbulent kinetic energy and root-mean-square density fluctuation of WENO-4 reconstruction 

with Ma t = 0 . 5 . 
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ith current initial strategy, the initial ensemble turbulent kinetic 

nergy K 0 , ensemble enstrophy �0 , ensemble dissipation rate ε 0 , 
arge-eddy-turnover time τto , Kolmogorov length scale η0 , and the 

olmogorov time scale τ0 are given as 

K 0 = 

3 A 0 
64 

√ 

2 πκ5 
0 , �0 = 

15 A 0 
256 

√ 

2 πκ7 
0 , τto = 

√ 

32 
A 0 

(2 π) 1 / 4 κ−7 / 2 
0 

, 

ε 0 = 2 

μ0 

ρ0 
�0 , η0 = (ν3 

0 /ε 0 ) 
1 / 4 , τ0 = (ν0 /ε 0 ) 

1 / 2 . 

(16) 

High-order compact finite difference method [44] was widely 

tilized in the simulation of compressible isotropic turbulence 

ith moderate turbulent Mach number ( Ma t ≤ 0 . 8 ). In the super-

onic regime, the strong compression regions are close to several 

egions of high expansion, which pose much greater challenge for 

igh-order schemes in supersonic regime. The compact finite dif- 

erence scheme usually fails to capture strong shocklets. The flow 
11 
n subsonic regime with Ma t = 0 . 5 is tested firstly. To test the con-

ergence of current WENO-4 scheme, the time history of ρrms (t) 

nd K(t) with 64 3 , 128 3 and 256 3 uniform cells are given in Fig. 9 ,

here the root-mean-square density fluctuation ρrms (t) and the 

urbulent kinetic energy K(t) are defined as 

rms (t) = 

√ 

〈 (ρ − 〈 ρ〉 ) 2 〉 , 
K(t) = 

1 

2 

〈 ρU · U 〉 . 
he numerical results agree well with the reference data [37] . As 

xpected, the current is less dissipative than WENO-3 scheme and 

ore dissipative than WENO-5 scheme. To test the robustness of 

urrent scheme, the cases in the supersonic regime with Ma t = 

 . 8 , 1 . 2 , 1 , 6 are also tested, where the mesh with 128 3 uniform

ells is used. The time history of ρrms (t) and K(t) are presented 

n Fig. 11 , and the numerical results agree well with the data pro- 
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Fig. 12. Turbulent channel flow: the mesh and initial streamwise velocity distributions. 
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Fig. 13. Turbulent channel flow: the mean flow velocity in log-linear plots for Re τ = 180 . 
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ided by WENO-5 scheme. The contours of dilation θ = ∇ · u at 

/τ = 1 , where the compression regions behave in the shape of 

arrower and longer “ribbon” with the increase of Ma t . 

.6. Turbulent channel flow 

Considering the simplicity of geometry and boundary condi- 

ions, the turbulent channel flows have been studied to understand 

he mechanism of wall-bounded turbulent flows. A large number 

f computational studies of turbulent channel flows have been car- 

ied out [25,30,31] . 

In the current study, the turbulent channel flow with fric- 

ion Reynolds number Re τ = 180 is tested. The physical domain is 

x, y, z) ∈ [0 , 2 π ] × [ −1 , 1] × [0 , π ] and the computational domain

akes (ξ , η, ζ ) ∈ [0 , 2 π ] × [0 , 3 π ] × [0 , π ] . The coordinate transfor-

ation is given by 
 

 

 

x = ξ , 

y = tanh (b g ( 
η

1 . 5 π
− 1)) / tanh (b g ) , 

z = ζ , 

here b g = 2 . The periodic boundary conditions are used in 

treamwise x -direction and spanwise z-directions, and the non- 

lip and isothermal boundary conditions are used in vertical y - 

irection. Then, the external force based on the constant moment 

ux is used. The fluid is initiated with ρ = 1 , Ma = 0 . 1 and the ini-

ial streamwise velocity profile is given by the perturbed Poiseuille 

ow profile 

(y ) = 1 . 5(1 − y 2 ) + white noise . 
w

13 
hite noise is added with 10% of local streamwise velocity. The 

riction Reynolds number is defined as 

e τ = ρu τ H/μ, 

here H = 1 is the half height of the channel and the frictional 

elocity u τ is given by 

 τ = 

√ 

τwall 

ρ
, τwall = μ

∂U 

∂y 
| wall . 

he plus unit and plus velocity are defined as 

 

+ = ρu τ y/μ, U 

+ = u/u τ . 

he frictional velocity is determined by u τ = U c /U 

+ 
c , where U c = 1

s the averaged velocity and U 

+ 
c is given by the logarithmic formu- 

ation for the channel flow. 

 

+ = 

1 

κ
ln Y + + B, (17) 

here von Karman constant κ = 0 . 4 , B = 5 . 5 [25] . 

This case is tested with the direct numerical simulation firstly. 

or this case, the mesh with 128 × 128 × 128 cells is used, where 

he grid points distributes uniformly in computational domian. Due 

o the explicit computation of high-order gas-kinetic scheme, a 

imple parallel strategy is adopted, where the two-dimensional do- 

ain decomposition is used. In the computation, 256 cores are 

sed, where the domain is divided into 16 parts in y -direction, 16 

arts in z-direction and no division is used in x -direction, respec- 

ively. The data communication is handled by the message passing 

nterface (MPI) libraries. The details of mesh are given in Table 5 , 

here �y + 
min 

and �y + max are the minimum and maximum grid 
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Fig. 14. Turbulent channel flow: the averaged Reynolds stress and root-mean-square velocity profiles for Re τ = 180 . 

Fig. 15. Turbulent channel flow: distributions of streamwise velocity with Y + = 8 . 5 . 
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p

pace in the y -direction. As reference, the distribution of mesh 

nd initial streamwise velocity in the physical domain are given 

n Fig. 12 . The frictional velocity u τ = U c /U 

+ 
c = 0 . 0541 , where U 

+ 
c 

s given by Eq. (17) with Y + c = 180 at the center line. This case

s also tested by the HGKS using classical WENO-5 reconstruc- 

ion [9] with the identical mesh. In a statistically stationary turbu- 

ent channel, the 200 periodic time as 200 H/U c is used. The mean 
14 
ow velocity is given in Fig. 13 , and the averaged Reynolds stress 

nd root-mean-square velocity profiles (turbulence intensities) are 

hown in Fig. 14 . The current numerical results are in reasonable 

greement with the spectral results, which is the first DNS result 

or the fully developed incompressible turbulent channel flow with 

29 × 192 × 160 grids [25] . The numerical results are also com- 

arable with the results of WENO-5 based HGKS. As the most 
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Fig. 16. Turbulent channel flow: the mean flow velocity in log-linear plots with 96 × 96 × 96 cells for LES. 
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Fig. 17. Turbulent channel flow: the averaged Reynolds stress and root-mean-square velocity profiles for LES. 

Table 5 

Turbulent channel flow: different sets of grids. 

Mesh size �y + 
min 

/ �y + max �x + �z + 

96 3 0.29/7.76 11.77 5.89 

128 3 0.21/5.83 8.83 4.42 
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l

opular mesoscopic methods for simulating nearly incompressible 

ows, the numerical results of the LBM with 200 × 400 × 200 grids 

nd DUGKS with 128 × 128 × 128 grids are also presented [4] . Con- 

idering the good agreement in near-wall region and the near- 

enter line region with the spectral benchmark, it is clear that 

GKS outweighs LBM and DUGKS [4] . Fig. 15 shows the distri- 

utions of streamwise velocity with Y + = 8 . 5 , and the near-wall

treaks between the high-speed and low-speed fluids are observed, 

hich is the dominant feature of the wall-turbulence. 

This case is also tested with the large-eddy simulation with 

he Vreman-type LES model [42] . The numerical cell itself acts as 

he filter and no explicit filter is adopted in current scheme, and 

ll the conserved macroscopic variables are calculated from gas- 

inetic scheme. The turbulent viscosity μt is obtained from the LES 

ddy viscosity model, i.e. Eq. (5) . In this case, no shock appears in

he flow fields and an enlarged collision time is used in Eq. (8) 
15 
total = τ + τt = 

μ + μt 

p 
. 

n the computation, the mesh with 96 × 96 × 96 cells is used, 

nd the details of mesh is given in Table 5 as well. The mean

ow velocity profile is presented in Fig. 16 , and the resolved 

eynolds stress and the r.m.s. fluctuation velocity are shown in 

ig. 17 . The profiles are generally in reasonable agreement with 

he DNS results, and the results slightly deviate from the DNS 

ata in the buffer layer due to the insufficient grid resolution. 

 better agreement would be obtained if the resolved quan- 

ities were compared with the filtered DNS data, or compare 

nfiltered DNS data with the sum of the resolved and unre- 

olved part from LES. Currently, no correction is implemented, 

nd the reasonable deficiency of Reynolds stress and turbulence 

ntensities from LES solutions are similar as the reference paper 

42] . 

. Conclusion 

In this paper, a multi-dimensional fourth-order WENO recon- 

truction is presented, in which a simple strategy of selecting sten- 

ils for reconstruction is adopted and the topology independent 

inear weights are used. In corporate with two-stage fourth-order 
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emporal discretization, a fourth-order gas-kinetic scheme is devel- 

ped for the direct numerical simulation and large eddy simulation 

f turbulent flows. The fourth-order reconstruction improves the 

rder of accuracy of the previous third-order WENO reconstruction 

32] , which is too dissipative for the simulation of turbulent flows. 

ompared with the classical WENO reconstruction, the high-order 

ccuracy can be also achieved for any non-uniform and curvilin- 

ar meshes in the finite volume framework. More importantly, the 

ourth-order reconstruction is robust and works well from the sub- 

onic to hypersonic flows. Numerical results, from low speed to hy- 

ersonic flows, are provided to illustrate the good performance of 

uch WENO reconstruction for turbulence simulation. The numer- 

cal results show the potential of current scheme in DNS and LES 

f turbulence. In the future, the current scheme will be extended 

o the genuinely three-dimensional unstructured mesh, and more 

hallenging turbulent cases will be studied. 
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