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For the two-layer shallow water equations, a high-order compact gas-kinetic scheme (GKS) on 
triangular mesh is proposed. The two-layer shallow water equations have complex source terms 
in comparison with the single layer equations. The main focus of this study is to construct a 
time-accurate evolution solution at a cell interface and to design a well-balanced scheme. The 
evolution model at a cell interface provides not only the numerical fluxes, but also the flow 
variables. In the development of the well-balanced scheme, the time-dependent flow variables 
at the cell interfaces surrounding the cell can be utilized to update the cell-averaged gradients. 
These time-evolving gradients are subsequently applied in the discretization of source terms inside 
each control volume. Based on the cell-averaged flow variables and their gradients, high-order 
initial data reconstruction can be achieved with compact stencils. The compact high-order GKS 
has advantages to simulate the flow evolution in complex domain covered by unstructured mesh. 
Many test cases are used to validate the accuracy and robustness of the scheme for the two-layer 
shallow water equations.

1. Introduction

The shallow water equations (SWE) are useful in studying both large-scale ocean circulations and small-scale coastal and channel 
flows, such as tsunamis, pollutant transport, tidal waves, and dam break problems. However, real flows often exhibit stratification, 
which cannot be captured accurately by a single-layer SWE. For instance, the injection of freshwater into seawater creates plumes 
that are important for the coastal marine environment, with salinity stratification being a possible feature. In addition, the flow 
velocity at coastal area may vary significantly or exhibit stratification along the depth. To model the stratified water flow, the multi-

layer SWE will be used with the superposition of coupled layers with the force interaction between them. This paper will focus on the 
development of high-order compact scheme for the two-layer SWE (TLSWE), which is the basis for the multi-layer SWE. In particular, 
the numerical scheme developed in this study for TLSWE can be naturally extended to multi-layer SWE with the inclusion of the 
interaction between layers as the source terms and their dynamic effect in the calculation of numerical fluxes.

Numerous numerical schemes have been developed for solving SWE with second-order accuracy [1–3]. High-order numerical 
methods have gained popularity in recent years due to their advantages in accuracy and computational efficiency [4–7]. As a result, 
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several high-order numerical schemes have been proposed for solving SWE [8,9,4]. However, there are few works on numerical 
methods for the two-layers SWE. Most of them are still based on the 1-D model [10–13] or 2-D model on structured mesh [14,15]. 
Second-order schemes for 2-D TLSWE on unstructured mesh have been developed [16], with great difficulties due to the loss of 
hyperbolicity under certain conditions and the stiff coupling between layers with the product of flow variables and their derivatives 
[11,17,18].

Unstructured mesh is highly adaptable to complex geometries, making it a popular choice in the numerical applications [19]. 
This is particularly relevant for coastal hydrodynamics simulation, given the irregular and multiscale nature of coastal boundary 
geometries. However, to construct a high-order finite volume method (FVM) on unstructured mesh presents a challenge due to the 
use of large stencils in the reconstruction [20]. Most high-order schemes for single-layer SWE on unstructured mesh are based on 
the discontinuous Galerkin (DG) formulation [4,19], and there are few high-order finite volume schemes for solving TLSWE. The 
DG method updates the inner degrees of freedom (DOFs) from its weak formulation, and is widely used to solve compressible gas 
dynamics equations due to its compact spatial discretization [21,22]. However, for flows with discontinuities, additional numerical 
treatments, such as identifying troubling cells and limiting procedures, must be designed within the DG framework [23–25].

The traditional FVM is more robust to flows with strong shock waves, but hardly becomes a compact scheme. The finite volume 
compact gas-kinetic schemes (GKS) from 4th- to 6th-order on triangular mesh have been proposed for compressible flow simulations 
in [26], where both cell-averaged flow variables and their gradients are updated through the finite volume conservative form and 
the application of Gauss’s theorem around the control volume. By using the cell-averaged variables and their gradients, high-order 
spatial reconstructions are implemented on compact stencils that involve only neighboring cells, ensuring linear stability of the 
scheme. It also indicates that the numerical and physical domains of dependence are basically the same under the CFL number on the 
order O(1). The high-order compact GKS demonstrates the characteristics of uniformly maintaining high-order accuracy and strong 
robustness for both smooth vortices and strong shock waves without detecting troubling cells and limiting the updated solutions. 
The compact GKS has been successfully developed for the single-layer SWE as well with the incorporation of complicated source 
terms, such as the bottom friction and bottom morphodynamics related to the bed-load transport [27]. The highlight of GKS for SWE 
lies in maintaining its compactness and well-balanced property with complex source terms. The well-balanced property means the 
preservation of the steady-state solution with a non-flat bottom topography in numerical computation. The effect of advection and 
source terms can be easily incorporated in the time evolution of gas distribution function in the current 4th-order compact scheme 
for the flux and flow variable evaluation. Compared to the single-layer SWE, the TLSWE introduces additional source terms, posing 
challenges in constructing well-balanced compact scheme. In this paper, the cell interface evolution solution for TLSWE is properly 
designed to include the physical effect from complex source terms. At the same time, the 2-stage 4th-order (S2O4) multistage and 
multiderivative method is adopted in the compact GKS for achieving high-order temporal accuracy with less stages [26–28].

The structure of this paper is as follows. Section 2 introduces the GKS for TLSWE. Section 3 discusses the high-order compact 
reconstruction on unstructured mesh and temporal discretization. In Section 4, the compact GKS is validated by studying shallow 
water flow in various cases. Finally, Section 5 is the conclusion.

2. Two-layer shallow water equations and gas-kinetic evolution model

This section will present the gas-kinetic evolution model for solving TLSWE, which is an extension from the single-layer SWE 
[27]. The interaction between layers will be explicitly included in the evolution model.

2.1. Two-layer shallow water equations

In [18], three equivalent forms of TLSWE are presented. In this study, the conservative form of TLSWE will be adopted and the 
interaction between layers is included in the source terms,
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Fig. 1. Schematic of the two-layer shallow water flow.

Here W are the flow variables, and F𝑥 and F𝑦 are the corresponding fluxes in the 𝑥 and 𝑦 directions. 𝐵 is the bottom topography, 𝐺
is the gravitational acceleration, and 𝜒 is the density ratio 𝜒 = 𝜌2∕𝜌1, where 𝜌1 and 𝜌2 are the densities of the first and second fluid 
layer. The flow variables of the lower and upper layers are denoted as 𝐖1 and 𝐖2, respectively. The fluxes of the two layers are 
(𝐅𝑥

1 , 𝐅
𝑦

1) and (𝐅𝑥
2 , 𝐅

𝑦

2) with the corresponding source terms 𝐒1 and 𝐒2. Fig. 1 presents a schematic of the two-layer shallow water flow.

By adopting the form of TLSWE in Eq. (1), the equations for each layer are similar as the single-layer SWE except the additional 
source terms related to the interaction between layers. The source terms make the TLSWE conditionally hyperbolic [18], which may 
cause difficulty in the construction of numerical scheme based on Riemann solver and flux splitting method. In addition, the source 
terms related to the interaction between layers are nonlinear and may have difficulties in the discretization for the high-order scheme. 
In the gas-kinetic scheme, the dynamics in the TLSWE will be reformulated by the time evolution of gas distribution function, and 
the effect of source terms will be incorporated into the particle transport process. The numerical fluxes will be directly evaluated 
from the time-dependent gas distribution function. Since the governing equations of each layer in the TLSWE have similar forms, the 
scheme presented in the following is general and can be applied to each layer with the appropriate definition of the source term.

2.2. Gas-kinetic evolution model

The GKS is based on the time evolution solution of the gas distribution function for the flux evaluation [29]. The gas-kinetic BGK 
model for the shallow water flow can be written as [3]

𝑓𝑡 + u ⋅∇x𝑓 +∇Φ ⋅∇u𝑓 = 𝑔 − 𝑓

𝜏
, (2)

where 𝑓 is the distribution function 𝑓 (x, 𝑡, u), u = (𝑢, 𝑣) is the particle velocity, and 𝑔 is the equilibrium state approached by 𝑓 . 𝜏 is 
the relaxation time. ∇Φ is the acceleration of particle due to external force and is related to the source terms in TLSWE, such as the 
force from bottom topography and the friction. The equilibrium state 𝑔 is a Maxwellian distribution function [3],

𝑔 = ℎ
( 𝜆

𝜋

)
𝑒−𝜆(𝐮−𝐔)2 , (3)

where 𝜆 is defined by 𝜆 = 1∕𝐺ℎ. Due to the conservation in relaxation process from 𝑓 to 𝑔, 𝑓 and 𝑔 satisfy the compatibility 
condition,

∫
𝑔 − 𝑓

𝜏
𝜓𝜓𝜓dΞ = 0, (4)

where 𝜓𝜓𝜓 = (𝜓1, 𝜓2, 𝜓3)𝑇 = (1, 𝑢, 𝑣)𝑇 and dΞ = d𝑢d𝑣.

Based on the moments of the gas distribution function, the flow variables and their fluxes can be obtained. Due to the similar 
equations for different layers, the schemes for layer 1 and layer 2 can be formulated similarly. In the general scheme, the macroscopic 
flow variables and the fluxes can be obtained from the distribution function 𝑓 as

W = ∫ 𝑓𝜓𝜓𝜓dΞ, (5)

and (
F𝑥,F𝑦

)𝑇 = ∫ 𝑓𝜓𝜓𝜓𝐮dΞ. (6)

The source term S becomes

S = −∫ ∇Φ ⋅∇u𝑓𝜓𝜓𝜓dΞ, (7)

and ∇Φ is determined by
3

∇Φ= 𝐒∕ℎ, (8)
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where 𝐒 takes 𝐒1 = ℎ1(0, −𝐺𝐵𝑥 −𝐺𝜒ℎ2,𝑥, −𝐺𝐵𝑦 −𝐺𝜒ℎ2,𝑦)T and 𝐒2 = ℎ2(0, −𝐺𝐵𝑥 −𝐺ℎ1,𝑥, −𝐺𝐵𝑦 −𝐺ℎ1,𝑦)T for layer 1 and layer 2, 
respectively.

The formal solution of the BGK model in Eq. (2) with external forcing term is

𝑓 (x, 𝑡,u) = 1
𝜏

𝑡

∫
0

𝑔(x′, 𝑡′,u′)𝑒−(𝑡−𝑡′)∕𝜏d𝑡′ + 𝑒−𝑡∕𝜏𝑓0(x0,u0), (9)

where x is the numerical quadrature point on the cell interface for flux evaluation, and x can be set as (0, 0) for simplicity in a local 
coordinate system with both normal and tangential directions as the x- and y-directions. The formal solution describes an evolution 
process for the distribution function. The trajectory of fluid particle is given by x = x′ + u′(𝑡 − 𝑡′) + 1

2∇Φ(𝑡 − 𝑡′)2, and the velocity of 
the particle is u = u′ + ∇Φ(𝑡 − 𝑡′). The acceleration has a second-order effect (∼ 𝑡2) on the particle trajectory, but has the first-order 
contribution (∼ 𝑡) to the particle velocity.

The second-order in time and the well-balanced explicit evolution solution 𝑓 is obtained for SWE [27]. In this paper, the same 
evolution solution of 𝑓 is used for the individual layer. The solution of 𝑓 is

𝑓 (x, 𝑡,u) = 𝑔(𝐱,0,𝐮)
[
𝐶1 +𝐶2

(
𝐚𝑙 ⋅ 𝐮𝐻(𝑢) + 𝐚𝑟 ⋅ 𝐮(1 −𝐻(𝑢))

)
+𝐶3𝐴

]
+𝐶2𝑔(𝐱,0,𝐮)

[
− 2𝛼𝑘,𝑚𝜆

(
∇Φ𝑙𝐻(𝑢) + ∇Φ𝑟(1 −𝐻(𝑢))

)
⋅ (𝐮−𝐔)

]
+𝐶4

[
𝑔𝑙(𝐱,0,𝐮)𝐻(𝑢) + 𝑔𝑟(𝐱,0,𝐮)(1 −𝐻(𝑢))

]
+𝐶5𝑔

𝑙(𝐱,0,𝐮)
[
𝐚𝑙 ⋅ 𝐮− 2𝛼𝑘,𝑚𝜆𝑙∇Φ𝑙 ⋅ (𝐮−𝐔𝑙)

]
𝐻(𝑢)

+𝐶5𝑔
𝑟(𝐱,0,𝐮)

[
𝐚𝑟 ⋅ 𝐮− 2𝛼𝑘,𝑚𝜆𝑟∇Φ𝑟 ⋅ (𝐮−𝐔𝑟)

]
(1 −𝐻(𝑢)),

(10)

where 𝛼𝑘,𝑚 (𝑘 = 1, 2, 𝑚 = 1, 2, 3) are constants for a well-balanced scheme, (𝛼1,1, 𝛼1,2, 𝛼1,3) = (1, 3∕4, 1∕4) and 𝛼2,𝑚 = 1, 𝑚 and 𝑘 is 
related to taking moment, and the details are given in the Appendix of [27]. The coefficients 𝐶𝑖 (𝑖 = 1, 2, ⋯ , 5) are

𝐶1 = 1 − 𝑒−𝑡∕𝜏 , 𝐶2 = −𝜏(1 − 𝑒−𝑡∕𝜏 ) + 𝑡𝑒−𝑡∕𝜏 , 𝐶3 = −𝜏(1 − 𝑒−𝑡∕𝜏 ) + 𝑡,

𝐶4 = 𝑒−𝑡∕𝜏 , 𝐶5 = −𝑡𝑒−𝑡∕𝜏 .

The fluxes at the cell interface are evaluated by taking moments of the above gas distribution function and the total transport of mass 
and momentum within a time step can be further integrated in time. More details in the formulation can be found in [29].

2.3. Acceleration force modeling at the interface between two water layers

The interaction between layers is modeled as the acceleration term in the kinetic equation. The spatial derivatives of the water 
column height determine the acceleration, where the values of the height derivatives can be obtained by the compact reconstruction 
at the cell interface. However, the potential discontinuity in water height at the interface between layers may induce an abrupt 
“pull” or “push” force between them. In instances involving discontinuity, the spatial derivatives of the water height derived from 
the reconstruction will not be utilized to compute the force. The “step effect” resulting from the discontinuity needs to be taken into 
account. The acceleration originating from a discontinuous interface will be modeled accordingly.

Without loss of generality, for the momentum equation of layer 2 in x direction as an example, the corresponding acceleration is 
given by

∇Φℎ2𝑈2
= −𝐺𝐵𝑥 −𝐺ℎ1,𝑥.

For the continuous bottom topography 𝐵 and water height ℎ1, the acceleration can be directly evaluated based on the functions of 
𝐵𝑥 and the reconstructed ℎ1,𝑥. However, when the water height is discontinuous at a cell interface, such as the reconstructed dash 
lines in Fig. 2, the corresponding forcing term between layers will be modeled from a re-constructed continuous profile at the cell 
interface. The construction of this continuous profile will take into account the forcing interaction between neighboring cells.

Firstly, let’s construct a piecewise linear distribution with no jumps on the cell interface. In each cell, the continuous line connects 
the respective unique values of the water height on the cell interfaces 𝑥𝑗±1∕2, which are denoted by ℎ̂1(𝑥𝑗±1∕2) as the black dots in 
Fig. 2 with the values determined later. The continuous line in the cell is obtained as

𝑃 1
𝑗 (𝑥) =

1
2
(ℎ̂1(𝑥𝑗+1∕2) + ℎ̂1(𝑥𝑗−1∕2)) +

ℎ̂1(𝑥𝑗+1∕2) − ℎ̂1(𝑥𝑗−1∕2)
𝑥𝑗+1∕2 − 𝑥𝑗−1∕2

(𝑥− 𝑥𝑗 ),

where 𝑃 1
𝑗
(𝑥) is a linear interpolation based on the values at the cell interfaces of the cell. ℎ̂1(𝑥𝑗+1∕2) are modeled based on the 

discontinuous left and right states

ℎ̂1(𝑥𝑗+1∕2) = 𝜉ℎ𝑙
1(𝑥𝑗+1∕2) + (1 − 𝜉)ℎ𝑟

1(𝑥𝑗+1∕2),

where ℎ𝑙
1(𝑥𝑗+1∕2) and ℎ𝑟

1(𝑥𝑗+1∕2) are the reconstructed values at the cell interface. 𝜉 is a coefficient for the convex combination, and 
4

it is defined as
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Fig. 2. A 1-D schematic is used to model the discontinuous interface between water layers, aiming to evaluate the acceleration term in the BGK model. Within the 
1-D discretized space, the reconstructed distributions of the water interface inside each cell may exhibit possible discontinuity at the cell interface. The topography 
between layers, represented by the connected solid line, is used to evaluate the effects of the source terms in determining the evolution model.

𝜉 = 1
2
erfc

(
(𝑈𝑙

1(𝑥𝑗+1∕2) +𝑈𝑟
1(𝑥𝑗+1∕2))∕2

)
,

where the function erfc(⋯) is the complementary error function, and 𝑈𝑙,𝑟
1 (𝑥𝑗+1∕2) are the left and right values of the velocity at the 

interface. erfc(⋯) makes a smooth transition from 2 to 0 when the independent variable covers (−∞, +∞) with a value erfc(0) = 1. 
The above linear distribution in the cell has dynamically upwind-biased slope.

In the smooth case, the derivative of the water height by the initial reconstruction can be used in the evaluation of acceleration 
inside each cell. In order cope with both discontinuous and smooth cases, the final derivative of the water height is determined by 
the following nonlinear convex combination method

ℎ̃𝑙
1,𝑥(𝑥𝑗+1∕2) =𝑤𝑗+1∕2ℎ

𝑙
1,𝑥(𝑥𝑗+1∕2) + (1 −𝑤𝑗+1∕2)𝑃 1

𝑗,𝑥(𝑥𝑗+1∕2),

ℎ̃𝑟
1,𝑥(𝑥𝑗+1∕2) =𝑤𝑗+1∕2ℎ

𝑟
1,𝑥(𝑥𝑗+1∕2) + (1 −𝑤𝑗+1∕2)𝑃 1

𝑗+1,𝑥(𝑥𝑗+1∕2),
(11)

where 𝑤𝑗+1∕2 is a nonlinear weighting function to identify the smoothness of the solution. 𝑤𝑗+1∕2 tends to 1 in the smooth region 
and to 0 in the discontinuous region. The value of 𝑤𝑗+1∕2 is the same nonlinear weight as that in the high-order time stepping 
reconstruction scheme of [30].

In two dimensions, similar modeling of the derivative of the water height can be constructed. Different from the one-dimensional 
one, the modeled continuous line in Fig. 2 is extended to a 2-D continuous plane. A smooth linear interpolation in the cell is 
determined by the following constraints.

𝑃 1(𝑥𝑐
𝑘
, 𝑦𝑐

𝑘
) = ℎ̂1(𝑥𝑐

𝑘
, 𝑦𝑐

𝑘
), 𝑘 = 1,2,3,

where (𝑥𝑐
𝑘
, 𝑦𝑐

𝑘
) is the center of the cell interface, ̂ℎ1(𝑥𝑐

𝑘
, 𝑦𝑐

𝑘
) can be obtained by taking the arithmetic average of the values ̂ℎ1(𝑥𝑚, 𝑦𝑚), 

where 𝑚 = 1, 2, on the Gaussian quadrature points of the corresponding cell side.

3. Compact GKS based on high-order compact reconstruction

In this section, the compact GKS for the TLSWE will be presented. The scheme is composed of high-order compact reconstruction 
and 2-stage 4th-order (S2O4) temporal discretization. Since the equations for each layer can be discretized equally, the following 
scheme will not distinguish 𝐖1 and 𝐖2 and is uniformly represented for the evolution of 𝐖.

3.1. Finite volume discretization

Taking moments 𝜓𝜓𝜓 on Eq. (2), the flow variables in a cell Ω𝑗 are updated by

𝜕W𝑗

𝜕𝑡
= − 1|||Ω𝑗

||| ∫𝜕Ω𝑗

F ⋅ nd𝑠+ 1|||Ω𝑗
||| ∫Ω𝑗

SdΩ, (12)

where |||Ω𝑗
||| is the area of the cell, W𝑗 is the cell-averaged flow variable, and F = (F𝑥, F𝑦) is the time-dependent flux at the cell 

interface. The flux can be obtained from the moments of the gas distribution function given in Eq. (10). W𝑗 is defined as

W𝑗 ≡ 1|||Ω𝑗
||| ∫Ω𝑗

W(x)dΩ. (13)
5

The line integral of the flux in Eq. (12) can be discretized by a q-point Gaussian quadrature formula,



Journal of Computational Physics 498 (2024) 112651F. Zhao, J. Gan and K. Xu

Fig. 3. A schematic of flow variables and fluxes on the interface given by the time-dependent evolution solution in the compact GKS. The dots represent time accurate 
flow variables at the interface with possible discontinuities, but with a single valued flux function.

− 1|||Ω𝑗
||| ∫𝜕Ω𝑗

F ⋅ nd𝑠 = − 1|||Ω𝑗
|||

𝑙0∑
𝑙=1

(|||Γ𝑙
||| 𝑞∑
𝑘=1

𝜔𝑘F(x𝑘,𝑙) ⋅ n𝑙

)
≡ 𝐹

𝑗 (W),

(14)

where |||Γ𝑙
||| is the side length of the cell, 𝑙0 is the total number of cell sides, such as 𝑙0 = 3 for a triangular mesh, n𝑙 is the unit outer 

normal vector, x𝑘,𝑙 is the Gaussian quadrature point on the cell interface, and 𝑞 and 𝜔𝑘 are the number of integration points and 
weights of the Gaussian integration formula. In order to evaluate the above numerical flux, the initial value W(x𝑘) is reconstructed 
using the compact spatial stencil, which is presented in Section 3.3. The spatial operator related to the source term S is defined as

𝑆
𝑗 (W) ≡ 1|||Ω𝑗

||| ∫Ω𝑗

SdΩ.
(15)

The simplified form of Eq. (12) is as follows

𝜕W𝑗

𝜕𝑡
=𝐹

𝑗 (W) +𝑆
𝑗 (W). (16)

In the current compact GKS, besides the update of cell-averaged flow variables by Eq. (13), the cell-averaged derivatives can be 
updated as well by the Gauss’s theorem as

∇𝐖𝑗 (𝑡𝑛+1) =
1|Ω𝑗 | ∫

𝜕Ω𝑗

𝐖(𝐱, 𝑡𝑛+1)𝐧d𝑠, (17)

with the discretized form

∇W𝑛+1
𝑗 = 1|||Ω𝑗

|||
𝑙0∑
𝑙=1

(|Γ𝑙|𝐧𝑙

𝑞∑
𝑘=1

𝜔𝑘W𝑛+1(x𝑘)
)
, (18)

where |Ω𝑗 |, |||Γ𝑙
|||, 𝑙0, 𝜔𝑘 and n𝑙 have the same definition as those in Eq. (14). The flow variables 𝐖(𝐱, 𝑡𝑛+1) should be provided at 

the inner sides of the cell interface of the control volume at the time step 𝑡𝑛+1. Fig. 3 shows the time-accurate flow variables and 
fluxes on the cell interface from the evolution solution of the gas distribution function in the compact GKS. In the discrete scheme, 
discontinuous evolution solution 𝐖𝑙,𝑟(𝐱, 𝑡𝑛+1) at the cell interface has been constructed in GKS for the highly compressible Navier-

Stokes solutions [30]. However, in the current study for the shallow water flow, a continuous evolution solution at the cell interface, 
namely 𝐖𝑙 =𝐖𝑟, will be used for the update of cell-averaged derivatives in the control volume by Eq. (17), which works very well.

3.2. Discretization for source terms

The source term in the momentum equations includes two parts, the first one depends on the bottom topography, and the second 
one is related to the variation of the interface between layers and the water height of the up layer.

The first part of the source terms depending on the bottom topography is defined as

𝑆1
𝑗
(W) ≡ 1|||Ω𝑗

||| ∫Ω𝑗

(0,−𝐺ℎ𝐵𝑥,−𝐺ℎ𝐵𝑦)𝑇 dΩ
(19)
6

= ℎ𝑗 (0,−𝐺𝐵𝑗,𝑥,−𝐺𝐵𝑗,𝑦)𝑇 ,
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where ℎ𝑗 is the cell average of ℎ in Ω𝑗 . High-order spatial and temporal discretizations of the first part can be implemented directly, 
as in the single-layer SWE in [27].

The second part of 𝑆
𝑗
(W) is related to the spatial variation of the water height. Taking the source term in the equation of ℎ1𝑈1

as an example, the spatial discretization becomes

𝑆2
ℎ1𝑈1 ,𝑗

(W) ≡ 1|Ω𝑗 | ∫
Ω𝑗

−𝜒𝐺ℎ1ℎ2,𝑥d𝑥d𝑦

= −𝜒𝐺
1|Ω𝑗 | ∫

Ω𝑗

ℎ1d𝑥d𝑦 ⋅
1|Ω𝑗 | ∫

Ω𝑗

ℎ2,𝑥d𝑥d𝑦+𝑂(Δ𝑋2)

= −𝜒𝐺
1|Ω𝑗 | ∫

Ω𝑗

ℎ1d𝑥d𝑦 ⋅
1|Ω𝑗 | ∫

𝜕Ω𝑗

ℎ2𝑛𝑥d𝑠+𝑂(Δ𝑋2)

= −𝜒𝐺

3∑
𝑘=1

2∑
𝑙=1

𝑤̃𝑘,𝑙ℎ1(𝐱𝑘,𝑙) ⋅
1|Ω𝑗 |

3∑
𝑘=1

( 2∑
𝑙=1

𝑤𝑘,𝑙ℎ2(𝐱𝑘,𝑙)
)
𝑛𝑘,𝑥|Γ𝑘|+𝑂(Δ𝑋2),

(20)

where |Ω𝑗 |, |||Γ𝑘
|||, 𝜔𝑙 , 𝑛𝑥 and 𝐱𝑘,𝑙 have the same definition as those in Eq. (14), Δ𝑋 is the mesh cell size, 𝑤̃𝑘,𝑙 is the weight to obtain the 

numerical integration over Ω𝑗 based on ℎ1(𝐱𝑘,𝑙), and 𝑤̃𝑘,𝑙 = 1∕6. The second-order spatial discretization is implemented in Eq. (20). 
High-order discretization of 𝑆2

𝑗
(W) can be achieved by introducing more numerical integration points. However, considering the 

balance between accuracy and efficiency, the simple method given in Eq. (20) is adopted for the spatial discretization of the second 
part of the source terms in this paper.

3.3. Updates of flow variables and their derivatives

By adopting the S2O4 time stepping method [28,31], the fully discretized form of the TLSWE in Eq. (16) over the cell Ω𝑗 in a 
time step [𝑡𝑛, 𝑡𝑛+1] is given by

W
𝑛+1∕2
𝑗

=W𝑛
𝑗 +

1
2
Δ𝑡𝑗 (W𝑛) + 1

8
Δ𝑡2

𝜕

𝜕𝑡
𝑗 (W𝑛),

W𝑛+1
𝑗 =W𝑛

𝑗 +Δ𝑡𝑗 (W𝑛) + 1
6
Δ𝑡2

𝜕

𝜕𝑡
𝑗 (W𝑛) + 1

3
Δ𝑡2

𝜕

𝜕𝑡
𝑗 (W𝑛+1∕2),

(21)

where 𝑗 =𝐹
𝑗
+𝑆

𝑗
includes the flux and source terms contribution.

In order to obtain a high-order time-accurate flow variable at the quadrature point to update the cell-average gradients in Eq. (18), 
the macroscopic flow variable is evolved by two stages

W𝑛+1∕2(x) = W𝑛(x) + 1
2
Δ𝑡W𝑛

𝑡 (x),

W𝑛+1(x) = W𝑛(x) + Δ𝑡W
𝑛+1∕2
𝑡 (x),

(22)

where W𝑛(x) is the initial state. W𝑛
𝑡 (x) and W𝑛+1∕2

𝑡 (x) are the moments of the time-derivative of gas distribution function in Eq. (10)

at the stages 𝑡𝑛 and 𝑡𝑛+1∕2 respectively. The detailed formulation can be found in [26].

The compact GKS for the TLSWE is well-balanced as shown below. A well-balanced scheme preserves steady-state solution with 
a non-flat bottom topography. For the two-layer shallow water flow, the initial condition for the steady-state problem is given as

ℎ1 +𝐵 = Const,

ℎ2 = Const,

and (𝑈1, 𝑉1) = (𝑈2, 𝑉2) = (0, 0). According to the definition of the well-balanced scheme, the condition 𝐖𝑛+1
𝑗

=𝐖𝑛
𝑗

needs to be kept, 
which is not trivial for the momentum equations. For the high-order compact GKS in this study, the well-balanced condition is 
achieved based on 1). the well-balanced evolution solution on the cell interface; and 2). the spatial discretization balance from the 
net flux crossing the cell interface with the integration of the source terms within the cell.

The well-balanced evolution solution of GKS for SWE is constructed in [3,27]. Under the steady-state condition, the well-balanced 
evolution solution in Eq. (10) for the TLSWE gives

𝐅𝑛(𝐱0, 𝑡) = 𝐅𝑛(𝐱0,0),

𝐖(𝐱0, 𝑡) =𝐖(𝐱0,0),

where 𝐱0 is the quadrature point on the cell interface, 𝐅𝑛 is the flux along the direction of the normal vector. This implies that 
convection term and the source terms in the evolution solution are precisely balanced to determine the flow variables and numerical 
flux at the cell interface. Indeed, the equilibrium state of the evolution solution at a cell interface arises from the balanced spatial-
7

temporal evolution of the particle distribution function. This balance is influenced by particle transport, collision, and the acceleration 
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Fig. 4. A schematic of reconstruction stencil of compact GKS. The dotted circle is the physical domain of dependence of the cell 0, which is covered compactly by the 
cells surrounding 0. In each cell, the flow variables and their derivatives in the x- and y-directions are known.

derived from the source term. At the same time, under the steady-state condition and adopting the surface reconstruction method 
[2], we have

ℎ2(𝐱0) = Const, ∇ℎ2(𝐱0) = 𝟎,

ℎ1(𝐱0) +𝐵(𝐱0) = Const, ∇(ℎ1(𝐱0) +𝐵(𝐱0)) = 𝟎.

Therefore, combined with the well-balanced property in time, it follows directly that  = 0, 𝑡 = 0 for the momentum equations of 
the layer 2. The evolution of the momentum equation of the layer 1, taking the x-direction momentum equation as an example, 
degenerates to

ℎ1𝑈1 ,𝑗
(W) = − 1|||Ω𝑗

|||
𝑙0∑
𝑙=1

(|||Γ𝑙
||| 𝑞∑
𝑘=1

𝜔𝑘
1
2
𝐺ℎ2

1(x𝑘,𝑙)𝑛𝑙,𝑥

)
−𝐺ℎ1,𝑗𝐵𝑗,𝑥 = 0,

𝜕ℎ1𝑈1 ,𝑗
(W)∕𝜕𝑡 = 0,

which holds true for steady-state solution in a control volume. More detailed analysis is given in [27].

3.4. High-order compact reconstruction

In this section, the high-order compact spatial reconstruction for flow variables will be presented. Based on the cell averages and 
their gradients, the high-order reconstruction can be obtained compactly with the stencils involving the closest neighboring cells 
only, as shown in Fig. 4. The compact stencil provides consistent domains of dependence between the numerical and physical ones. 
The reconstruction with the accuracy from fourth-order to sixth-order can be obtained on the compact stencils [26]. The fourth-order 
reconstruction will be used in this study.

For the fourth-order reconstruction, 𝑃 3(𝒙) polynomial is constructed as

𝑃 3(𝒙) =
9∑

𝑘=0
𝑎𝑘𝜑𝑘(𝒙), (23)

where 𝑎𝑘 is the degrees of freedom (DOFs) of 𝑃 3(𝒙), the total number of 𝑎𝑘 is 10 and the complete polynomial basis with the highest 
order of 3 is included, and 𝒙 = (𝑥, 𝑦) is the coordinate. The basis function 𝜑𝑘(𝒙) can take the zero-averaged basis as

1, 𝛿𝑥− 𝛿𝑥
(0)

, 𝛿𝑦− 𝛿𝑦
(0)

,
1
2
𝛿𝑥2 − 1

2
𝛿𝑥2

(0)

, 𝛿𝑥𝛿𝑦− 𝛿𝑥𝛿𝑦
(0)

,
1
2
𝛿𝑦2 − 1

2
𝛿𝑦2

(0)

, ⋯ . (24)

To fully determine 𝑃 3(𝒙), the DOFs on the cells of the compact stencils are selected to give the constraints on 𝑃 3(𝒙).( 1|||Ω𝑙
||| ∫Ω𝑙

𝜑𝑘(𝒙)d𝑥d𝑦
)
𝑎𝑘 =𝑄𝑙,

( 1|||Ω𝑙
||| ∫Ω𝑙

𝜑𝑘,𝑥(𝒙)d𝑥d𝑦
)
𝑎𝑘 =𝑄𝑙,𝑥,

( 1|||Ω𝑙
||| ∫Ω𝑙

𝜑𝑘,𝑦(𝒙)d𝑥d𝑦
)
𝑎𝑘 =𝑄𝑙,𝑦,

(25)

where the same subscript 𝑘 of 𝜑𝑘 and 𝑎𝑘 on the left-hand side of the equations follow the Einstein summation. 𝑄𝑙, 𝑄𝑙,𝑥 and 𝑄𝑙,𝑦 are 
8

the DOFs in the cells for any component of 𝐖.
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Due to arbitrary geometrical triangular mesh, the number of equations 𝑀 in Eq. (25) should be greater than the number of DOFs 
𝑎𝑘 so as to avoid an ill-conditioned system. For the fourth-order reconstruction, the set of DOFs 𝑆0 is given by

𝑆0 = {𝑄𝑙1
,𝑄𝑙2 ,𝑥

,𝑄𝑙2 ,𝑦
}, 𝑙1 = 0, 𝑖, 𝑗, 𝑘, 𝑖1, 𝑖2,⋯ , 𝑘2, 𝑙2 = 0, 𝑖, 𝑗, 𝑘. (26)

Eq. (25) can determine a linear system of 𝑎𝑘, and it is written as

𝑎0 =𝑄0, (27)

and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴1,1 𝐴1,2 ⋯ 𝐴1,9
𝐴2,1 𝐴2,2 ⋯ 𝐴2,9
⋮ ⋮ ⋮ ⋮

𝐴9,1 𝐴9,2 ⋯ 𝐴9,9
𝐴𝑥
0,1 𝐴𝑥

0,2 ⋯ 𝐴𝑥
0,9

𝐴
𝑦

0,1 𝐴
𝑦

0,2 ⋯ 𝐴
𝑦

0,9
⋮ ⋮ ⋮ ⋮

𝐴
𝑦

3,1 𝐴
𝑦

3,2 ⋯ 𝐴
𝑦

3,9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎝
𝑎1
𝑎2
⋮
𝑎9

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑄1 −𝑄0
𝑄2 −𝑄0

⋮
𝑄9 −𝑄0
𝑄0,𝑥ℎ
𝑄0,𝑦ℎ
⋮

𝑄3,𝑦ℎ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (28)

where 𝐴𝑙,𝑘 and 𝐴𝑙,𝑘 are defined as

𝐴𝑙,𝑘 =
1|||Ω𝑙
||| ∫Ω𝑙

𝜑𝑘(𝒙) d𝑥d𝑦,

𝐴𝑟
𝑙,𝑘

= ℎ|||Ω𝑙
||| ∫Ω𝑙

𝜕𝜑𝑘(𝒙)∕𝜕𝑟 d𝑥d𝑦, 𝑟 = 𝑥, 𝑦, 𝑘 = 1,2,⋯ ,9.
(29)

The system can be solved by the least square (LS) method. The solution of 𝑎𝑘, (𝑘 = 1, 2, ⋯ , 9) is given by

𝐚 =
[
(𝐀T𝐀)−1𝐀T]𝐐, (30)

where 𝐚 is the vector of DOFs without 𝑎0, 𝐀 is the coefficient matrix in Eq. (28), and 𝐐 is the vector of the RHS in Eq. (28).

To deal with discontinuities in the solution, the nonlinear reconstruction is needed. The nonlinear compact reconstruction is 
obtained based on the WENO method by nonlinearly combining the high-order polynomial 𝑃 3 and several lower-order polynomials, 
where the lower-order polynomials are determined based on the sub-stencils by using the LS method. The nonlinear reconstruction 
in the compact GKS has been developed in [26], and the same techniques will be used here.

4. Numerical examples

The compact GKS for the two-layer SWE will be validated by the cases of two-layer shallow flow in this section. All the computa-

tions in this section are performed on 2-D triangular mesh. The time step used in the computation is determined by the CFL condition 
as Δ𝑡 = 𝐶𝐹𝐿 Δ𝑋

𝑈𝑚𝑎𝑥
, where Δ𝑋 is the size of the mesh cell, 𝑈𝑚𝑎𝑥 =max{

√
𝑈2
1 + 𝑉 2

1 +
√

𝐺ℎ1, 
√

𝑈2
2 + 𝑉 2

2 +
√

𝐺ℎ2}, and 𝐶𝐹𝐿 number 
takes 0.5. The gravitational acceleration is taken as 𝐺 = 9.81 if not specified.

The collision time 𝜏 in the BGK model for inviscid flow at a cell interface is defined by

𝜏 = 𝜀Δ𝑡+ 𝜀𝑛𝑢𝑚|ℎ2
𝑙
− ℎ2

𝑟

ℎ2
𝑙
+ ℎ2

𝑟

|Δ𝑡,

where 𝜀 = 0.05, 𝜀𝑛𝑢𝑚 = 5, and ℎ2
𝑙

and ℎ2
𝑟 are the pressures at the left and right sides of a cell interface. The reason for including the 

pressure jump term in the relaxation time is to enhance the artificial dissipation in case of bore wave.

4.1. Accuracy test

The accuracy of the compact GKS with high-order compact reconstruction is tested. In order to calculate the error in the numerical 
solution, an initial condition with analytical evolution solution is used directly

ℎ1 = 0.9 + 0.02𝑒−50((𝑥−1)2+(𝑦−1)2),

ℎ2 = 1 − ℎ1,

with a uniform velocity (𝑈1, 𝑉1) = (𝑈2, 𝑉2) = (1, 1). The density ratio is taken as 𝜒 = 1.0. The free boundary condition is taken. The 
9

analytical solution of this problem is given by
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Table 1

Accuracy test: errors and convergence orders of compact GKS with 
high-order reconstruction.

ℎ𝑟𝑒 𝐸𝑟𝑟𝑜𝑟𝐿1 (ℎ1) 𝐿1 (ℎ1) 𝐸𝑟𝑟𝑜𝑟𝐿1 (ℎ2) 𝐿1 (ℎ2)

1/8 1.2664e-04 1.2015e-04

1/16 1.9987e-05 2.66 1.8203e-05 2.72

1/32 1.0744e-06 4.22 9.4509e-07 4.27

1/64 1.4263e-07 2.91 1.2522e-07 2.92

Fig. 5. Well-balanced property study: the left figure shows the bottom profile and the unstructured mesh with cell size Δ𝑋 = 0.05, and the right figure presents the 
water level contours at 𝑡 = 100. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

ℎ1(𝑡) = 0.9 + 0.02𝑒−50((𝑥−1−𝑡)2+(𝑦−1−𝑡)2),

ℎ2(𝑡) = 1 − ℎ1(𝑡),

(𝑈1(𝑡), 𝑉1(𝑡)) = (𝑈2(𝑡), 𝑉2(𝑡)) = (1,1).

The computational domain is taken as [0, 2] × [0, 2]. The triangular mesh is used.

The 𝐿1 errors of ℎ1 and ℎ2 at 𝑡 = 0.1 and the convergence orders are presented in Table 1. The convergence order of current 
compact GKS does not keep the 4th order, which is due to the second-order approximation is used when discretizing the source terms 
in Eq. (20). Although the optimal 4th-order convergence is not realized, the advantages of high resolution from the compact spatial 
reconstruction will be demonstrated in other complex flow problems.

4.2. Well-balanced property

The well-balanced property of the compact GKS on unstructured mesh is validated in the following. The initial condition is a 
two-dimensional steady state solution with non-flat bottom topography. The bottom topography is

𝐵(𝑥, 𝑦) = 0.5𝑒−50[(𝑥−1)2+(𝑦−1)2].

The steady state is

ℎ1 = 0.8 −𝐵(𝑥, 𝑦),

ℎ2 = 0.2,

and all the velocities are 0. The density ratio and the gravitational acceleration are taken as 𝜒 = 1.0 and 𝐺 = 9.81, respectively. The 
computational domain is [0, 2] × [0, 2]. The triangular mesh with cell size Δ𝑋 = 0.05 is used. The wall boundary condition is imposed 
on all boundaries.

The discretized bottom topography is shown in Fig. 5. The errors history of flow variables is plotted in Fig. 6. The error remains 
at the same level at different computational time. At very long computation times, the errors of water surface level and momentum 
10

are less than 1.0 × 10−8. The current compact GKS is able to maintain an initial balanced steady state solution.
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Fig. 6. Well-balanced property study: the left figure shows the water level distributions along the horizontal centerline in the computational domain at 𝑡 = 100 and 
the right figure presents the time evolution of the numerical error.

Fig. 7. Riemann problem I: the left figure shows the unstructured mesh with cell size Δ𝑋 = 1∕100, and the right figure is the 3-D water surface distributions at 𝑡 = 0.1.

4.3. Riemann problems of TLSWE

In this section, the Riemann problems with a discontinuity at the interface between two fluid layers are studied to validate the 
compact GKS for TLSWE. Due to unequal densities of the two layers of fluid, the discontinuity at the interface will evolve and 
propagate.

The first test was introduced to verify the stability of the numerical schemes for unsteady two-layer exchange flows [10]. It can 
also be used to evaluate the accuracy of different numerical schemes in computing unsteady solutions over a flat bottom. The initial 
water level is set as

(ℎ1, ℎ2) =

{
(0.5,0.5), 0 ≤ 𝑥 < 0.3,
(0.55,0.45),0.3 ≤ 𝑥 ≤ 1,

and the uniform velocity (𝑈1, 𝑉1) = (𝑈2, 𝑉2) = (2.5, 0) is given in the whole domain. In the computation, the 2-D computational 
domain is taken as [0, 1] × [0, 0.5], and the triangular mesh is used. The computational time is 𝑡 = 0.1. The density ratio is 𝜒 = 0.98. 
The gravitational acceleration is taken as 𝐺 = 10 in this case.

The coarse mesh with Δ𝑋 = 1∕100 used in the computation and the 3-D water surface obtained by the compact GKS are shown in 
Fig. 7. The solution of the evolved free surface has a square-wave structure with small variation. The current compact GKS captures 
this solution with no obvious numerical oscillations. In Fig. 8 and Fig. 9, the water levels along the horizontal centerline of the 
computational domain are plotted, where the results on a finer mesh with Δ𝑋 = 1∕400 are also given to verify the mesh convergence 
solution from the current compact GKS. To quantitatively verify the correctness of the results obtained by the current scheme, the 
reference solution obtained by the 1-D model with a cell size of Δ𝑋 = 1∕10000 in [14] is also plotted. The compact GKS gives 
consistent solutions on both coarse and fine meshes. The resolution of the local solution structure on the fine mesh by the compact 
GKS is comparable to the reference solution.

The second case is the Riemann problem with a large discontinuity at the interface between the two layers [14]. The initial values 
of water level are given by{

(0.2,1.8), 0 ≤ 𝑥 < 5,
11

(ℎ1, ℎ2) = (1.8,0.2), 5 ≤ 𝑥 < 10.
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Fig. 8. Riemann problem I: the left figure is the 1-D distributions of water level and the right figure is about the discharge along the horizontal centerline at 𝑡 = 0.1.

Fig. 9. Riemann problem I: comparison of the water levels obtained by the compact GKS and from the reference solution.

The initial velocity is 0. The water density ratio is 𝜒 = 0.98. The gravitational acceleration is taken as 𝐺 = 9.81. The computational 
domain is set as [0, 10] × [0, 1]. The triangular mesh with a cell size of Δ𝑋 = 1∕40 is used in the computation.

The evolved results at 𝑡 = 1.0 obtained by the compact GKS are presented in Fig. 10 and Fig. 11. In Fig. 10 the result of ℎ1 on 
the 2-D triangular mesh is compared with the reference solution presented in [14]. The results of the compact GKS come from a 
mesh with cell sizes 1∕12.5 of those used in the reference solution of 1-D TLSWE model, and almost equivalent solutions have been 
obtained, such as the capturing of internal discontinuous wave. The water levels of the first layer together with the water surface 
and discharge are plotted in Fig. 11.

4.4. Dam-breaks problems at various density ratios

The two-layer dam-break flows are used to validate the compact GKS. The initial state is given as

(ℎ1, ℎ2) =

{
(0.357,1),0 ≤ 𝑥 < 0.5,
(0.357,0),0.5 ≤ 𝑥 ≤ 1.

The velocity is set as (𝑈1, 𝑉1) = (𝑈2, 𝑉2) = (0, 0) in the whole domain, and the computational domain is [0, 1] × [0, 0.5]. Dam-break 
flows at two density ratios are studied. In the computation, a coarse triangular mesh with Δ𝑋 = 1∕100 and a fine triangular mesh 
with Δ𝑋 = 1∕400 are used.

The first case is the dam-break flow at same density of the two layers, i.e., the density ratio with 𝜒 = 1. The 3-D water level 
distributions of ℎ1 + ℎ2 and ℎ1 at 𝑡 = 0.08 obtained by the compact GKS on the coarse mesh are shown in Fig. 12. The water levels 
and discharge distributions along the horizontal centerline are given in Fig. 13. The results from the coarse mesh are consistent with 
those from the fine mesh, and the water levels obtained by the current compact scheme are consistent with those in [18].

The second case is the dam-break flow of a light fluid over a dense one. The density ratio is 𝜒 = 0.2. The 3-D water level 
12

distributions of ℎ1 + ℎ2 and ℎ1 at 𝑡 = 0.08 obtained by the compact GKS are shown in Fig. 14. The 1-D water levels and discharge 
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Fig. 10. Riemann problem II: the left figure shows the 3-D water level contours of ℎ1 and the right figure gives the 1-D distribution of ℎ1 along horizontal centerline 
at 𝑡 = 1.

Fig. 11. Riemann problem II: the left figure is the 1-D distributions of water level and the right figure is about the discharge along the horizontal centerline at 𝑡 = 1.

Fig. 12. Dam-break flow at 𝜒 = 1: the 3-D contours of ℎ1 + ℎ2 (left) and ℎ1 (right) at 𝑡 = 0.08. The cell sizes of the coarse and fine meshes are Δ𝑋𝐶𝑀 = 1∕100 and 
Δ𝑋𝐹𝑀 = 1∕400.

distributions along the horizontal centerline are given in Fig. 15. Due to the complexity of the solution, the fine mesh result has a 
13

better spatial resolution and gives the solution close to the reference ones in [18].
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Fig. 13. Dam-break flow at 𝜒 = 1: the water levels (left) and discharge distributions (tight) along the horizontal centerline at 𝑡 = 0.08. The cell sizes of the coarse and 
fine meshes are Δ𝑋𝐶𝑀 = 1∕100 and Δ𝑋𝐹𝑀 = 1∕400.

Fig. 14. Dam-break flow of a light fluid over a dense fluid with 𝜒 = 0.2: the 3-D height distributions of ℎ1 + ℎ2 (left) and ℎ1 (right) at 𝑡 = 0.08. The cell sizes of the 
coarse and fine meshes are Δ𝑋𝐶𝑀 = 1∕100 and Δ𝑋𝐹𝑀 = 1∕400.

Fig. 15. Dam-break flow of a light fluid over a dense fluid with 𝜒 = 0.2: the height (left) and discharge (right) along the horizontal centerline at 𝑡 = 0.08. The cell 
14

sizes of the coarse and fine meshes are Δ𝑋𝐶𝑀 = 1∕100 and Δ𝑋𝐹𝑀 = 1∕400.
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Fig. 16. Channel flow with non-flat bottom: the 2-D contours of the water levels (up) and the water level distributions along the horizontal centerline (down) at 
𝑡 = 0.1 (left) and 𝑡 = 1.0 (right).

4.5. Channel flow with non-flat bottom

This case is about the two-layer flow through a channel with non-flat bottom topography. The bottom topography is defined by

𝐵(𝑥, 𝑦) = 0.5𝑒−100(𝑥−0.5)2 .

The initial condition is given as

ℎ1 = 0.8 −𝐵(𝑥, 𝑦), ℎ2 = 0.4,

𝑈1 = −0.2, 𝑈2 = 0.15.

The channel covers a domain [0, 1] × [0, 0.25]. The reflecting boundary condition is applied at the channel walls. The free boundary 
condition is used on the left and right boundaries. The triangular mesh with a cell size of Δ𝑋 = 1∕200 is used in the computation.

Fig. 16 shows the water levels at 𝑡 = 0.1 and 𝑡 = 1.0, respectively. Due to the non-flat bottom topography, the interface between 
two layers evolves from an initial smooth interface to a discontinuous one. The reference solutions are the results of 1-D TLSWE on 
a uniform mesh with 1000 cells in [13]. At the early time, a smooth interface evolves, such as the left figures in Fig. 16, and the 
solution has good agreement with the reference one. At a later time, a discontinuous interface emerges, as shown in the right figure 
of Fig. 16, and the position of the discontinuity from the compact GKS has a good match with the reference solution.

4.6. 2-D interface propagation

The 2-D circular interface propagation Riemann problem is studied. The initial condition of the test case is given by

(ℎ1, ℎ2) =

{
(1.8,0.2), (𝑥− 5)2 + (𝑦− 5)2 < 4.0,
(0.2,1.8), otherwise.

The initial velocity is (𝑈1, 𝑉1) = (𝑈2, 𝑉2) = (0, 0) in the computational domain [0, 10] × [0, 10]. The density ratio between layers is 
𝜒 = 0.98. The free boundary condition is adopted on all boundaries. The triangular mesh with a cell size of Δ𝑋 = 1∕10 is used in the 
computation.

The 3-D water level distributions of ℎ1 and its distributions along the horizontal centerline at 𝑡 = 0, 𝑡 = 2.0 and 𝑡 = 4.0 are 
15

presented in Fig. 17 and Fig. 18, respectively. The results show the circular propagation of the water column.
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Fig. 17. 2D interface propagation: the 3-D water level distributions of ℎ1 at 𝑡 = 0, 𝑡 = 2.0 and 𝑡 = 4.0. The cell size of the triangular mesh is Δ𝑋 = 1∕10.

Fig. 18. 2D interface propagation: the water level distribution of ℎ1 along the horizontal centerline at 𝑡 = 0, 𝑡 = 2.0 and 𝑡 = 4.0. The cell size of the triangular mesh is 
Δ𝑋 = 1∕10.

Fig. 19. 2-D dam-break in an irregular domain: the left figure is the computational domain and mesh, and the right figure is the enlarged view of the mesh around 
the dam breach. The mesh size far away from the dam is Δ𝑋 = 2.5, and the mesh size is refined by 3.3 times in the region close to dam breach.

4.7. 2-D dam-break in an irregular domain

The 2-D dam-break problem in [32,9] is used in the current study to validate the compact GKS. Fig. 19 shows the computational 
domain and the mesh. The length of the dam breach is 75 and it starts at 𝑦 = 95. The dam itself has a width of 10 and its left side is 
located at 𝑥 = 95. At 𝑡 = 0, the stationary water surface has a discontinuity with ℎ𝑙 = 10 and ℎ𝑟 = 𝜖 across the breach, and two values 
of 𝜖 = 5 and 𝜖 = 1 × 10−3 are used to simulate the wet and dry bed cases, respectively. For the wet case, the individual water levels 
of layer 1 and layer 2 are set as

(ℎ1, ℎ2) =

{
(9,1), 0 ≤ 𝑥 < 95,
(5, 𝜖), 95 ≤ 𝑥.
16

For the dry case, the individual water levels of layer 1 and layer 2 are set as
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Fig. 20. 2-D dam-break in an irregular domain with a wet bed: the 3-D contours of water levels and the distributions along the horizontal centerline of the breach. 
The computational time is 𝑡 = 7.2.

Fig. 21. 2-D dam-break in an irregular domain with a dry bed: the 3-D contours of water levels and the distributions along the horizontal centerline of the breach. 
The computational time is 𝑡 = 7.2.

(ℎ1, ℎ2) =

{
(9,1), 0 ≤ 𝑥 < 95,
(𝜖, 𝜖), 95 ≤ 𝑥.

The boundary condition on the far right is the free boundary, and the other boundary conditions are the non-penetration slip wall 
boundaries. The mesh size far from the breach is ℎ𝑚𝑒𝑠ℎ = 2.5, and is locally refined by 3.3 times around the dam breach.

The 3-D water surface heights at 𝑡 = 7.2 are shown in Fig. 20 and Fig. 21. The discontinuous bore waves are captured without 
spurious oscillation. It clearly shows that the wave propagating speed is higher in the dry bed case. The water levels along the 
centerlines of the breach are also given in Fig. 20 and Fig. 21. The dam-break waves are sharply captured in the wet case without 
numerical oscillations.

5. Conclusion

In this paper, the compact high-order Gas-Kinetic Scheme (GKS) on triangular mesh is designed to solve two-layer shallow water 
equations (TLSWE). The compact scheme is able to capture the discontinuous interface between layers while maintaining robustness 
and accuracy when dealing with complex source terms. The scheme’s success is largely attributed to the explicit incorporation 
of particle dynamics - including free transport, collisions, and acceleration from external forcing terms - into the gas evolution 
model at the cell interface in the kinetic scheme. The scheme yields time-accurate evolution solutions that not only update flow 
variables within each cell through interface fluxes, but also calculate the gradients of flow variables from updated cell interface 
solutions using Gauss’s theorem. Accordingly, updated flow variables and their gradients facilitate the use of compact stencils in the 
reconstruction, which are essential factors for the design of compact scheme. The compact GKS exhibits several key characteristics 
when solving TLSWE. It naturally achieves high-order compact reconstruction on a triangular mesh. The existence of time-accurate 
flux function, such as the time derivative, allows the implementation of multi-stage multi-derivative technique to attain fourth-order 
time accuracy with just two stages. This is in contrast to the traditional Runge-Kutta method which requires multiple middle stages 
and corresponding reconstructions. The compact GKS can be reliably employed to solve TLSWE in the exploration of environmental 
17

aspects of coastal and estuary fluid motion.
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