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In this paper, a unified gas-kinetic scheme (UGKS) for multiphase dilute gas-particle system 
is proposed. The UGKS multiphase (UGKS-M) is a finite volume method, which captures 
flow physics in the regimes from collisionless multispecies transport to the two-fluid 
hydrodynamic Navier-Stokes (NS) solution with the variation of Knudsen number, and from 
granular flow regime to dusty gas dynamics with the variation of Stokes number. The 
reason for preserving the multiscale nature in UGKS-M is mainly coming from the direct 
modeling of the flow physics in the scales of discrete cell size and time step, where the 
ratio of the time step to the particle collision time determines flow behavior in different 
regimes. For the particle phase, the time evolution solution of the kinetic model equation is 
used in the construction of numerical flux, which takes into account the particle transport, 
collision, and acceleration. The gas phase is assumed to be in the continuum flow regime 
and evolves numerically by the gas-kinetic scheme (GKS), which is a subset of the UGKS 
for the Navier-Stokes solutions. The interaction between the gas and particle phase is 
calculated based on a velocity space mapping method, which solves accurately the kinetic 
acceleration process. The stability of UGKS-M is determined by the CFL condition only. 
With the inclusion of the material temperature evolution equation of solid particles, once 
the total energy loss in inelastic collision transfers into particle material thermal energy, 
the UGKS-M conserves the total mass, momentum, and energy for the whole multiphase 
system. In the numerical tests, the UGKS-M shows multiscale property in capturing the 
particle trajectory crossing (PTC), particle wall reflecting phenomena, and vortex-induced 
segregation of inertial particles under different Stokes numbers. The scheme is also applied 
to simulate shock induced fluidization problem, where the simulation results agree well 
with experimental measurements.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Gas-particle multiphase system represents an important class of multiphase flow, which is widely applied in many fields 
of engineering applications, such as the chemical process industry, aerospace engineering, and environment science [41,2,
13]. The solid particle phase behaves as a granular flow. The rapid granular flow is described by the kinetic theory and 
has been an active research area in the past several decades [5,16,4]. The mechanics of a rapid granular flow or granular 
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gas is analogous to that of a classical molecular gas, but the grain size of the granular flow is much larger than the gas 
molecules, and the grain collisions are typically inelastic. In spite of the differences, the Chapman-Enskog kinetic theory 
of dense gas [6] can still be applied to the granular flow, according to which the Eulerian granular models have been 
developed in the past decades, where a pioneering work has been done by Jenkins and Savage [20]. Similar to the gas flow, 
the flow regime of granular gas is characterized by the granular Knudsen number (Kns), which represents the importance 
of the particle collisions relative to the particle transport [14]. When the granular Knudsen number is small and particle 
collisions are dominant, the dynamics of the granular flow follows the Eulerian-granular hydrodynamic models. Following 
the similar asymptotic analysis as Jenkins and Savage, several Eulerian-granular models have been developed by Lun et al. 
[25], Syamlal et al. [47], Ding and Gidaspow [12], which can be viewed as generalizations of the granular Navier-Stokes 
equations with modified constitutive relations. The Eulerian-granular models effectively predict the dynamics of the granular 
gas in the continuum regime with small particle Knudsen number. However, when the granular Knudsen number is large, 
the non-equilibrium effects will appear in wall bounded granular gases, and the Eulerian hydrodynamic models are no 
longer a good approximation [14]. In the rarefied regime, the kinetic equation and multiscale models are required in order 
to capture the physically consistent non-equilibrium phenomena.

The multiphase flow physics is greatly enriched when accounting the interstitial gas field. The interphase interaction is 
due to the hydrodynamic force and heat conduction. The hydrodynamic force includes the buoyancy force and drag force, 
which is determined by the particle Reynolds number (Res) [39,13]. Besides the Knudsen number and particle Reynolds 
number, another important parameter is the normalized particle inertial response time, or the particle Stokes number 
(Sts) [14]. If the Stokes number is sufficiently small, the particles are easily driven by the gas field. In such case, for the 
particle-laden turbulent flow the particle will not escape easily from circular flow field region, and the phenomenon of 
preferential concentration of particles emerges [42]. If the Stokes number is large, the gas field can barely affect the particle 
motion, and the phenomenon of particle trajectory crossing (PTC) occurs. In such regime, the velocity distribution function 
will be far from the local equilibrium, and most hydrodynamic models fail to capture the PTC phenomena. One important 
gas-particle multiphase flow is the dusty-gas flow, which has wide applications in the industry and environmental science 
[35,13,9,34]. In the dusty-gas model, the random motion of dusty phase is weak and the granular temperature is negligible. 
The gas phase follows the Euler equations, and the dust phase is modeled by a pressureless Euler equations. The interaction 
between gas phase and dust phase is due to the drag force and interspecies heat conduction. Since the pressureless Euler 
equations may develop δ-shocks at isolated points or along the surfaces of co-dimension one [8], to numerically solve the 
dusty-gas equations is challenging. Several robust and accurate numerical schemes have been developed for the dusty-gas 
model, including the finite volume schemes developed by Saito [33], Saito et al. [36], Pelanti and Leveque [31], and the 
finite-volume-particle hybrid scheme developed by Chertock et al. [8]. Besides the dusty-gas flow model, there has been 
continuous interest and efforts on the development of numerical schemes for different flow regimes of gas-particle system, 
such as the direct numerical simulation (DNS) [48,17], direct simulation Monte Carlo (DSMC) [3], multiphase particle in cell 
(MP-PIC) [30,40,1,28,29], method of moments (MOM) [11,27,14,15], and hydrodynamic two-fluid solvers [37]. Due to the 
rich flow physics and complex flow regimes, the development of efficient multiscale numerical methods is still an active 
research direction with extremely high demanding in both scientific research and engineering applications.

In this paper, we propose an effective multiscale scheme for monodisperse dilute gas-particle multiphase system, i.e. the 
UGKS-Multiphase (UGKS-M) scheme. The UGKS-M is applicable for a wide range of Knudsen and Stokes number, being able 
to capture the nonequilibrium flow effect such PTC and particle wall refection [26]. In the continuum regime, the UGKS-M 
can recover the hydrodynamic models effectively. Our scheme is constructed based on the kinetic equation for the solid 
phase, and the Navier-Stokes equations for the gas phase. The kinetic equation for solid phase is more fundamental than the 
Eulerian hydrodynamic equations, especially in the rarefied regime when the particle Knudsen number is large and the local 
velocity distribution function deviates from the equilibrium one. The nonequilibrium flow physics can be naturally captured 
by the kinetic equation for solid particles. The construction of the multiscale method is based on the direct modeling 
methodology of UGKS. The evolution solution provides UGKS flux to get a physically consistent multiscale dynamics with 
the variation of the ratio between the time step and the local particle collision time, and naturally bridges the kinetic 
flux and hydrodynamic one. Therefore, in the continuum regime current scheme can effectively recover the hydrodynamic 
solution including the viscous and heat conduction effect. Similar to the original UGKS for neutral gas [54], the cell size and 
time step are not limited by the mean free path and local collision time.

In the past years, based on the Boltzmann and kinetic model equations, the gas-kinetic scheme (GKS) for the Euler and 
Navier-Stokes equations [52], and the UGKS for the flow simulation in the whole flow regimes have been systematically de-
veloped [54,18,19,55,53]. Originally proposed for the neutral gas flow simulation, the UGKS has been successfully developed 
for many other multiscale transport problems in the subsequent studies. For neutral gas transport, the UGKS can capture 
gas dynamic physics from the highly non-equilibrium regime to continuum regime [50,51,23,49]; for radiative transport, 
the UGKS can present solutions from optically thin regime to optically thick regime [43,46,44,45]; for plasma transport, the 
UGKS can capture solution from collisionless Vlasov regime to highly collisional magnetized hydrodynamic regime [22]. The 
UGKS has distinguishable advantages compared with many other numerical methods. Compared with DSMC, UGKS is able 
to provide more accurate solution without suffering statistical noise. For the continuum flow and micro flow, the UGKS is 
much more efficient than DSMC. For the hypersonic flow simulations, the efficiency of the equation-based UGKS can be 
much improved through the use of implicit and multigrid techniques [57,58], and the efficiency becomes comparable to 
DSMC. In comparison with asymptotic preserving (AP) schemes, which mostly recover the Euler solutions in the contin-
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uum regime, the UGKS is able to present accurate solutions in the whole flow regimes from the Navier-Stokes to the free 
molecular transport [7]. To recover the Navier-Stokes solutions is a basic requirement for a multiscale method to present 
accurate and reliable solutions in the near-continuum and transition regimes [55]. The methodology of direct modeling in 
UGKS uses cell size and time step to do the modeling, constructs discrete multiscale governing equations, and gets the nu-
merical evolution solutions after modeling the interface flux function and inner cell collision. As a result, the UGKS provides 
a continuum spectrum of governing equations from the Navier-Stokes to the Boltzmann equation in a discretized space [23]. 
The GKS becomes a subset of UGKS for the continuum flow simulations only, especially for the Navier-Stokes solutions. In 
this work, we combine the GKS and UGKS to construct a multiscale scheme for gas-particle multiphase flow. The dynamics 
of the gas phase is modeled by GKS, and the evolution of particle phase is modeled by UGKS, while they are fully coupled 
in the UGKS-Multiphase scheme.

The outline of this paper is the following. In Section 2, we first introduce the governing equations for the construction 
of UGKS-M, namely the kinetic equation and material temperature evolution equation for solid phase and the Navier-Stokes 
equations for gas phase. Then we analyze the asymptotic behavior of the solid kinetic equation in the continuum regime. 
The UGKS-M is introduced in Section 3, including the UGKS for particle phase and GKS for gas phase. In Section 4, numerical 
experiments in a wide range of flow regimes are studied to validate the multiscale method. Section 5 is the conclusion.

2. Kinetic model for dilute disperse gas-particle flow

The unified gas kinetic scheme for multiphase flow is constructed based on the kinetic equation for the solid phase 
and Navier-Stokes equations for the gas phase. The time dependent evolution solution from kinetic model equation is used 
for the construction of the multiscale flux. Therefore, UGKS-M not only consists with the kinetic equation in the rarefied 
regime, but also preserves the hydrodynamic models in the continuum regime. According to Chapman-Enskog theory [6], 
the hydrodynamic models is the asymptotic limit of the kinetic equation in the continuum limit. In this section, we first 
introduce the kinetic equation for particle phase, and then study its asymptotic property in the continuum regime. The gas 
phase in continuum flow regime is solved by the gas kinetic scheme, which is a kinetic-based Navier-Stokes solver, and 
therefore we will also briefly introduce the gas phase kinetic equation.

2.1. Kinetic equations for particle phase

Consider a dilute monodisperse gas particle multiphase flow, where the solid particle diameter ds is much less than the 
particle mean free path �s . The evolution of the velocity distribution of solid phase apparent density f s(�x, t, �v) follows the 
Williams-Boltzmann kinetic equation [26], coupled with the solid temperature T M

s equation. The equation system can be 
written as

∂ f s

∂t
+ ∇�x · (�v fs) + ∇�v ·

[(
�g − 1

ρs
∇�x pg

)
f s

]
+ ∇�v ·

( �D
ms

f

)
= Q, (1)

∂Csρsεs T M
s

∂t
+ ∇�x · (Csρsεs T M

s
�Us) = rTm (1 − r2)

3εsρskB Ts

4τsms
+ Csεsρs

T g − T M
s

τT
. (2)

In Eq. (1), �v is the particle velocity vector; �g is the gravitational force; ρs is the material density of the solid particle; 
pg is the gas phase pressure; ms is the mass of one solid particle; the subscript s denotes the solid phase variables; and 
the subscript g denotes the gas phase variables. The interaction between the gas phase and solid phase is modeled by a 
hydrodynamic force

�Fhydro = −ms

ρs
∇�x pg + �D, (3)

where −ms
ρs

∇�x pg is a buoyancy force; �D is the drag force from gas phase on a particle; and term Q accounts the particle-
particle collisions. Eq. (2) includes the temperature transport, the heating from inelastic collision and heat conduction 
between solid and gas phase. In Eq. (2), kB is the Boltzmann constant; Cs is the specific heat capacity of solid phase; 
εs is the solid volume fraction; �Us is the macroscopic velocity of solid phase; T g is the temperature of gas phase; and r is 
the restitution coefficient of the inelastic collision. The heat conduction between phases is modeled by a relaxation time τT . 
rTm stands for the proportion of the kinetic energy loss in inelastic collision which is transferred into the material thermal 
energy. In current computational system, if rTm = 1, the total mass, momentum, and energy conserve; if rTm < 1, the den-
sity and momentum conserve, the energy loss due to the shape change and phase change, will not be included in current 
system. The collision term Q is modeled by a BGK-type relaxation model

Q = gs − f s

τs
, (4)

where τs is the relaxation time scale. The particle Knudsen number can be defined as the ratio between the particle 
relaxation time and the characteristic time scale Tref ,
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Kns = τs

Tref
, (5)

where the subscript ‘ref’ denotes the reference parameters. The equilibrium Maxwellian distribution function gs can be 
written as

gs(�x, t, �v) = εsρs

(
λs

π

) 3
2

exp
(
−λs(�vs − �Us)

2
)

, (6)

where λs relates to the granular temperature Ts of solid phase by

λs = ms

2kB Ts
. (7)

The macroscopic moments of f s and the Maxwellian distribution gs satisfyˆ
�ψ gsd� =

ˆ
�ψ ′ f sd�, (8)

where �ψ = (
1, �v, 1

2 �v2
)T

, �ψ ′ =
(

1, �v, 1
2 �v2 + r2−1

2 (�v − �Us)
2
)T

, and d� = d3�v . The restitution coefficient r varies from zero to 
one. r = 0 represents the fully inelastic collision and r = 1 represents the elastic collision. For dilute gas-particle flows, the 
drag force is approximated by [39]

�D( �U g, �v) = 3msρg

4dsρs
Cd

∣∣∣ �U g − �v
∣∣∣ ( �U g − �v), (9)

where �U g is the gas phase velocity, ρg is the gas phase density, and Cd is the particle drag coefficient given by [13]

Cd =
⎧⎨
⎩

24

Res
(1 + 0.15Re0.687

s ) if Res < 1000,

0.44 if Res > 1000,

(10)

where Res =
∣∣∣ �U g − �v

∣∣∣ds/νg is the particle Reynolds number with νg the kinematic viscosity of gas phase. In this work, 
an efficient multiscale numerical scheme UGKS-M is constructed. For large interspecies velocity difference and large drag 
coefficient, the drag force term becomes stiff and enforces a small explicit time step. In order to remove the stiffness 
constraint on time step, an implicit method is used to predict the velocity acceleration. Currently the implicit treatment 
requires a simpler form of drag force

�D( �U g, �v) = ms

τst
( �U g − �v), (11)

with a �v-independent particle inertial response time τst. For low particle Reynolds number, τst ≈ ρsd2
s /(18μg), and for large 

particle Reynolds number

τst ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d2
s ρs

18μg + 2.7(ρgds| �U g − �Us|)0.687μ0.313
, if Res < 1000

dsρs

0.33ρg | �U g − �Us|
, if Res > 1000

(12)

where μg is the dynamic viscosity of gas phase. For the computational tests in this paper, the simplified drag force for-
mulation Eq. (11) is used. The dimensionless particle inertial response time is the particle Stokes number, defined by 
Sts = τst/Tref. The above kinetic equation (1) and solid material temperature equation (2) are the equations we use to 
construct the UGKS-M. In the following, we give the asymptotic limit of the solid particle kinetic equation following the 
Chapman-Enskog asymptotic analysis [6].

When the elastic collision dominates, at the solid particle collision with the restitution coefficient r = 1, the hydrody-
namic equations for the solid phase in the Euler regime as τs → 0 are [6]

∂εsρs

∂t
+ ∇�x · (εsρs �Us) = 0,

∂εsρs �Us

∂t
+ ∇x · (εsρs �Us �Us + psI) = εsρs( �U g − �Us)

τst
− εs∇�x pg + εsρs �g,

∂εsρs Es + ∇�x · ((εsρs Es + ps) �Us) = εsρs �Us
( �U g − �Us) − εs∇�x pg · �Us + εsρs �Us �g − 3ps

,

(13)
∂t τst τst
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where ρs is the material density of solid particle; εsρs is the apparent density; �Us is the macroscopic velocity; Ts is the 
granular temperature; ps = εsρs Rs Ts is the granular pressure with Rs = kB/ms; and εsρses = 3

2 ps is the granular internal 
energy. The total granular energy density is εsρs Es = 1

2 εsρs�u2 + εsρses . In energy equation, term −3ps/τst stands for the 
energy loss due to interspecies friction. For inelastic collision with r < 1, the solid phase is governed by the pressureless 
Euler equation in the continuum regime [6]

∂εsρs

∂t
+ ∇�x · (εsρs �Us) = 0,

∂εsρs �Us

∂t
+ ∇x · (εsρs �Us �Us) = εsρs( �U g − �Us)

τst
− εs∇�x pg + εsρs �g.

(14)

The pressureless Euler equations together with the material temperature evolution equation Eq. (2) are also known as the 
dusty flow equations. In the numerical tests, we will also compare the UGKS-M solution with Navier-Stokes and pressureless 
Euler equations to demonstrate the multiscale property of the UGKS-M.

2.2. Governing equations for gas phase

The gas phase is in the continuum regime and is governed by the Navier-Stokes equations

∂εgρg

∂t
+ ∇�x ·

(
ρg �U g

)
= 0,

∂εgρg �U g

∂t
+ ∇�x ·

(
ρg �U g �U g + pgI− μgσ( �U g)

)
= −εsρs( �U g − �Us)

τst
+ εgρg �g + εs∇�x pg,

∂εgρg E g

∂t
+ ∇x ·

( �U g
(
ρg E g + pg

) − μgσ( �U g) �U + κg∇xT g

)
= −εsρs �Us

τst
( �U g − �Us) + εs∇�x pg · �Us + 3ps

τst

+ εgρg �U g · �g − Csεsρs
T g − T M

s

τT
,

(15)

where ρg is the density of gas phase; εgρg is the apparent density of gas phase; �U g is the macroscopic velocity; T g is the 
temperature; pg = ρg R g T g is gas pressure; and εgρg E g = εgρg �U 2

g/2 + εg pg/(γ − 1). Tensor σ( �U g) denotes the strain rate 
tensor given by

σ( �U g) =
(
∇�x �U g + (∇�x �U g)

T
)

− 2

3
div�x �U gI. (16)

The viscosity μg and the thermal conductivity κg are expressed as

μg = τg pg, κg = 5

2
R gτg pg . (17)

In the energy equation, 3ps/τst is the energy increase from the interspecies friction; and −Csεsρs(T g − T M
s )/τT is the energy 

change due to interspecies heat conduction. The above Navier-Stokes equations are solved by GKS [52], which is a kinetic 
equation based NS solver. The kinetic equation and the interspecies heat conduction equation can be written as

∂εg f g

∂t
+ ∇�x · (�v f g) + ∇�v ·

{[
1

τst
( �U g − �v) − 1

ρs
∇pg

]
f s

}
+ ∇�v · (�gεg f g) = εg gg − εg f g

τg
, (18)

dT g

dt
= − εsρsCs

εgρg C v

T g − T M
s

τT
, (19)

where εg = 1 − εs is the gas volume fraction; gg is the local equilibrium distribution function of gas phase; τg is the 
relaxation time of gas phase; C v is the specific heat capacity of gas phase at constant volume; and gg is the Maxwellian 
distribution satisfyingˆ

�ψg(gg − f g)d�vdξ = 0,

with

�ψg = (1, u, v, w,
1

2
(�v2 + ξ2))T .

The Navier-Stokes equations Eq. (15) can be recovered from the kinetic equation Eq. (18) in the continuum regime following 
the Chapman-Enskog asymptotic analysis [6].



C. Liu et al. / Journal of Computational Physics 386 (2019) 264–295 269
3. Unified gas-kinetic scheme for gas-particle multiphase flow

3.1. Unified gas-kinetic scheme for solid particle phase

3.1.1. General framework
The UGKS for solid particle phase is built on a finite volume framework. The phase space is divided into a set of 

numerical control volumes X ⊗ V = ∑
i �xi ⊗ ∑

j �v j = ∑
i j �i j . The scheme evolves the cell averaged distribution

f s,i j = 1

�i j

ˆ

�i j

f s(�x, t, �v)d�xd�v,

and cell averaged macroscopic variables

�W s,i = 1

�i

ˆ

�i

�W s(�x)d�x,

T M
s,i = 1

�i

ˆ

�i

T M
s,i(�x)d�x, (20)

where the macroscopic variables are �W s = (εsρs, εsρs �Us, εsρs Es)
T . The particle phase kinetic equation Eq. (1) is split as

Ls1 : ∂ f s

∂t
+ ∇�x · (�v fs) + ∇�v · ( �ω1 f s) = gs − f s

τs
, (21)

Ls2 : ∂ f s

∂t
+ ∇�v · ( �ω2 f s) = 0, (22)

where �ω1 = (�g − ∇pg/ρs
)

is the particle velocity-independent part of the acceleration, and �ω2 = ( �U g − �v)/τst is the particle 
velocity-dependent part of the acceleration term. For Ls1, the Eulerian finite volume scheme is adopted, while for Ls2 a 
velocity space mapping method is utilized to evolve the distribution function. The numerical evolution equations for the 
velocity distribution function are

Lsf 1 : f ∗
s,i j = f n

s,i j + 1

|�i |
tn+1ˆ

tn

˛

∂�i

f s,∂�i (t, �v j)�v j · d�sdt + 1

|� j|
tn+1ˆ

tn

˛

∂� j

f s,∂� j (�xi, t) �ω1 · d�sdt, (23)

Lsf 2 : f ∗∗
s,i j = 1

|� j|
ˆ

Pω2 (� j)

f ∗
s,i(�v)d�v, (24)

Lsf 3 : f n+1
s,i j =

(
f ∗∗

s,i j + �t

τs,i j
gn+1

s,i j

)
/

(
1 + �t

τs,i j

)
. (25)

The evolution of the velocity distribution function is coupled with the evolution of the macroscopic variables �W s,i , T M
s,i .

Lsw1 : �W ∗
s,i = �W n

s,i + 1

|�i|
˛

∂�i

tn+1ˆ

tn

ˆ
�ψ f s,∂ωi (�v, t)�v · �e1d�dtds + �t�Sn

s,i, (26)

Csρsε
n+1
s,i T ∗

s,i = Csρsε
n+1
s,i T n

s,i + 1

|�i |
˛

∂�i

tn+1ˆ

tn

ˆ
f sT ,∂ωi (�v, t)�v · �e1d�dtds (27)

Lsw2 : �Un+1
s,i = γU s1 �U∗

s,i + γU s2 �U∗
g,i, (28)

Lsw3 : �W ∗∗
s,i =

ˆ
�ψ f ∗∗

s,i jd�, (29)

Lsw4 : en+1
s,i = e∗∗

s,i/

(
1 + �t

2τs,i
(1 − r2)

)
, (30)

Lsw5 : T M,n+1
s,i = γT 1

(
T M,∗

s,i + �t(1 − r2)e∗∗
s,i

[2τs,i + �t(1 − r2)]Cs,i

)
− γT 2

(
T ∗

g,i + εs
n+1
i ρs(E∗∗

s,i − E∗
s,i)

εg
n+1
i ρn+1

g,i C v,i

)
, (31)
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where

�Sn
i = (0, θiρs �g − θi∇�x pn

g,i, θiρs �Us,i · �g − θi �Us,i · ∇�x pn
g,i),

and the coefficients

γU s1 =
εn+1

s,i ρs + εn+1
g,i ρn+1

g,i exp

[
−

(
1 + εn+1

s,i ρs

εn+1
g,i ρn+1

g,i

)
�t
τst,i

]
εn+1

g,i ρn+1
g,i + εn+1

s,i ρs
,

γU s2 =
εn+1

g,i ρn+1
g,i − εn+1

g,i ρn+1
g,i exp

[
−

(
1 + εn+1

s,i ρs

εn+1
g,i ρn+1

g,i

)
�t
τst,i

]
εn+1

g,i ρn+1
g,i + εn+1

s,i ρs
,

γT s1 =
εs

n+1
i ρsCs + εg

n+1
i ρn+1

g,i C v exp

[
−

(
1 + εs

n+1
i ρsCs

εg
n+1
i ρn+1

g,i C v

)
�t
τT ,i

]
εg

n+1
i ρn+1

g,i C v + εs
n+1
i ρsCs

,

γT s2 =
−εg

n+1
i ρn+1

g,i C v + εg
n+1
i ρn+1

g,i C v exp

[
−

(
1 + εs

n+1
i ρsCs

εg
n+1
i ρn+1

g,i C v

)
�t
τT ,i

]
εg

n+1
i ρn+1

g,i C v + εs
n+1
i ρs

.

3.1.2. Multiscale flux
The multiscale numerical fluxes in Eq. (23) and Eq. (26) are calculated from the integral solution of Eq. (21), which is 

critical for the multiscale property of UGKS. Let tn = 0, the normal direction of the physical cell interface �x0 is �e1, and the 
local basis of the physical cell interface �x0 is (�e1, �e2, �e3). The integral solution f s(�x0, t, �v j) can be written as

f s(�x0, t, �v j) = 1

τs

tˆ

0

gs(�x′, t′, �v ′)e−(t−t′)/τ dt′ + e−t/τs f s,0(�x0 − �ut, �v j − �ω1t), (32)

where x′ = �x0 − �v j(t − t′) and �v ′ = �v j − �ω1(t − t′) are the characteristics, and f0 is the initial distribution function at time 
tn . The initial distribution function is reconstructed as

f s,0(�x, �v) =
(

f l
s,0�x0 + ��x · ∇�x f l

s + ��v · ∇�v f l
s

)(
1 − H[��x · �e1]

)
− (

f r
s,0�x0 + ��x · ∇�x f r

s + ��v · ∇�v f r
s

) (
H[��x · �e1]

)
,

(33)

where ��x = �x − �x0, ��v = �v − �v j , and H[x] is the Heaviside function

H[x] =
{

1 x > 0,

0 x ≤ 0.
(34)

Slope limiter, such as the van-Leer limiter [21], is used to reconstruct the slopes of ∇�x f and ∇�v f in each control volume of 
phase space. The equilibrium Maxwellian distribution function is expanded in phase space and time as

gs(�x, t, �v) = gs(�x0,0, �v j)

{
1 + [al

sx(1 − H[�x · �e1]) + ar
sx H[�x · �er](x − x0)

+ asy(y − y0) + asz(z − z0) − 2λ( �Us − �v j)(�v − �v j) + astt

}
,

(35)

where x = �x · �e1, y = �x · �e2, z = �x · �e3. The initial Maxwellian distribution gs(�x0, 0, �v j) at cell interface is fully determined 
by the macroscopic quantities at (�x0, 0), and the required macroscopic variables are obtained by taking moments of the 
reconstructed distribution function f s,0(�x0, �v),

�W0(�x0) =
ˆ

�v·�e1>0

�ψ ′ f l
s,0d� +

ˆ

�v·�e1<0

�ψ ′ f r
s,0d�, (36)

where �ψ ′ =
(

1, �v, 1
2 �v2 + r2−1

2 (�v − �Us)
2
)

. The derivative coefficients al,r
sx , asy , asz , ast are related to spatial and time deriva-

tives of gs(�x, t, �v). All derivative coefficients are functions of particle velocities in the form of a = aiψi , where �ψ = (1, �v, 12 �v2)

is the collisional invariants, for example
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(
∂ gs

∂x

)l,r

�x0,0
=

(
al,r

sx,1 + al,r
sx,2u + al,r

sx,3 v + al,r
sx,4 w + 1

2
al,r

sx,5�v2
)

gs(�x0,0, �v), (37)

(
∂ gs

∂t

)
�x0,0

=
(

ast,1 + ast,2u + ast,3v + ast,4 w + 1

2
ast,5�v2

)
gs(�x0,0, �v), (38)

with u = �v · e1, v = �v · e2, w = �v · e3. The spatial derivative functions of Maxwellian distribution function are calculated from 
the linear system,

< al,r
sx >=

(
∂ �W g

∂x

)l,r

, < asy >=
(

∂ �W g

∂ y

)
, < asz >=

(
∂ �W g

∂z

)
, (39)

where < ... > is the notation for the moments of Maxwellian distribution defined by

< ... >=
ˆ

(...)gψd�. (40)

As an example, al,r
sx are

al,r
sx,5 = ρs

3p2
s

[
2

(
∂ρs Es

∂x

)l,r

+
(

�U 2 − 3ps

ρs

)(
∂ρs

∂x

)l,r

−
3∑

i=1

2Us,i

(
∂ρsUs,i

∂x

)l,r
]

, (41)

al,r
sx,i+1 = 1

p

[(
∂ρsUs,i

∂x

)l,r

− Us,i

(
∂ρs

∂x

)l,r
]

− Us,ia
l,r
sx,5 (i = 1,2,3), (42)

al,r
sx,1 = 1

ρs

(
∂ρ

∂x

)l,r

− Us,ia
l,r
sx,i+1 − 1

2

(
�U 2 + 3ps

ρs

)
al,r

sx,5. (43)

The time derivatives of Maxwellian satisfy the compatibility condition

< (al
sx(1 − H[�v · �e1]) + ar

sx H[�v · �e1])u + asy v + asz w − 2λ(�v − �Us) · �ω1 + ast >= (0,0,0,0,
r2 − 1

2τs
εs

nρsen
s ), (44)

from which the moments < ast > can be obtained, and hence ast can be calculated in a similar manner to the spatial 
derivative functions [52,54]. Substituting Eq. (33) and Eq. (35) into Eq. (32), the integral solution is

f s(�x0, t, �v j) = γ1 gs,0(�x0, �v j)

+ γ2((a
l
sx H[�v · �e1] + ar

sx(1 − H[�v · �e1]))u + asy v + asz w)gs,0(�x0, �v j)

− γ22λ(�v − �Us)ωs1 gs,0(�x, �v j) + γ3ast gs,0(�x0, �v j)

+ γ4( f l
s0(�x0, �v j)H[�v · �e1] + f r

s0(�x0, �v j)(1 − H[�v · �e1]))
+ γ5(�v · ∇�x f l

s0 + �ω1 · ∇�v f l
s0)H[�v · �e1]

+ γ5(�v · ∇�x f r
s0 + �ω1 · ∇�v f r

s0)(1 − H[�v · �e1]),

(45)

where

γ1 = (1 − exp(−t/τs)), γ2 = (t + τs)exp(−t/τs) − τs,

γ3 = (t + τs(exp(−t/τs) − 1)), γ4 = exp(−t/τs), γ5 = −t exp(−t/τs).
(46)

Similarly, the integral solution at velocity cell interface in the velocity space is constructed as

f s(�xi, t, �v0) = γ1 gs,0(�xi, �v0) + γ2((ãsxu + ãsy v + ãsz w)gs,0(�xi, �v0)

− γ22λ(�v0 − �Us) �ωs1 gs,0(�xi, �v0) + γ3ãst gs,0(�xi, �v0)

+ γ4( f l
s0(�xi, �v0)H[ �ω1 · �ev1] + f r

s0(�xi, �v0)(1 − H[ �ω1 · �ev1]))
+ γ5(�v · ∇�x fs0 + ω1 · ∇�v f l

s0)H[ �ω1 · �ev1]
+ γ5(�v · ∇�x fs0 + ω1 · ∇�v f r

s0)(1 − H[ �ω1 · �ev1]).

(47)

Analogous to velocity distribution function of solid apparent density, the integral solution of the velocity distribution of 
solid material temperature f sT (�x0, t, �v) can be obtained. The distribution of solid material temperature is related to the 
distribution of apparent solid density by
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f sT (�x, t, �v) = Cs T M(�x, t) f s(�x, t, �v). (48)

The numerical flux terms in the evolution equations Eq. (26), Eq. (27), and Eq. (23), can be calculated from the cell interface 
integral solutions. The flux of distribution function and conservative variables from tn to tn+1 are

tn+1ˆ

tn

ˆ ˛

∂�i

�ψ f s,∂�i (t, �v j)�v j · d�sd�dt =
N∑

i=1

si

tn+1ˆ

tn

ˆ
�ψ �v · �ni fs(�x0, t, �v j)dvdt, (49)

tn+1ˆ

tn

ˆ ˛

∂�i

f sT ,∂�i (t, �v j)�v j · d�sd�dt =
N∑

i=1

si

tn+1ˆ

tn

ˆ
�v · �ni fs,T (�x0, t, �v j)dvdt, (50)

tn+1ˆ

tn

˛

∂�i

f s,∂�i (t, �v j)�v j · d�sdt =
N∑

i=1

si

tn+1ˆ

tn

�v j · �ni fs(�x0, t, �v j)dt, (51)

tn+1ˆ

tn

˛

∂� j

f s,∂� j (�xi, t) �ω1 · d�sdt =
M∑

j=1

s j

tn+1ˆ

tn

�ω1 · �n j fs(�xi, t, �v0)dt, (52)

where the velocity integration in the macroscopic flux is calculated by numerical quadrature such as Newton-cotes formula 
or Gauss-Hermite quadrature.

3.1.3. Interspecies momentum exchange and velocity mapping method
The macroscopic momentum exchange between gas and solid phase is predicted by the ODE system⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dεn+1
s,i ρs �Us,i

dt
= εn+1

s,i ρs

�U g,i − �Us,i

τst
,

dεn+1
g,i ρn+1

g,i
�U g,i

dt
= −εn+1

s,i ρs

�U g,i − �Us,i

τst
,

(53)

from which the macroscopic velocities of gas and solid phase can be obtained at tn+1 as given in Lsw2. The evolution of 
velocity distribution of solid phase follows Eq. (24), which solves Ls2 by the following velocity space mapping method. 
Following the characteristics of Eq. (22)

d�v
dt

=
�Un+1

g − �v
τst

, (54)

the velocity space at tn+1 can be mapped onto the velocity space at tn by

Pω2(�v j) = �Un+1
g + e�t/τst(�v j − �Un+1

g ), (55)

as shown in Fig. 1. The velocity distribution function f n+1
s,i j can be updated by Eq. (24). For a structured rectangular velocity 

space, the evolution of velocity distribution follows

f ∗∗
s,ikl = 1

(uk+ 1
2

− uk− 1
2
)(vl+ 1

2 −v
l− 1

2

)

u′
k+ 1

2ˆ

u′
k− 1

2

v ′
l+ 1

2ˆ

v ′
l− 1

2

f ∗r
s,i (u, v)dudv, (56)

where⎧⎨
⎩

u′
k± 1

2
= Un+1

g + e�t/τst(uk± 1
2

− Un+1
g ),

v ′
l± 1

2
= Un+1

g + e�t/τst(ul± 1
2

− Un+1
g ),

(57)

and f ∗r
s,i (u, v) is the reconstructed velocity distribution function in velocity space. From the updated velocity distribution 

function, the total energy of solid phase can be updated by Eq. (29).
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Fig. 1. Solid lines show the velocity space �v j , and the dashed lines show the mapped velocity space Pω2 (�v j ) from tn+1 onto tn .

3.1.4. Particle collision and interspecies heat conduction
The kinetic energy loss Lsw4 due to the inelastic collision is calculated from

en+1
s − e∗

s

�t
= α2 − 1

2τst
en+1

s , (58)

which is given in Eq. (30). From the updated macroscopic variables �W n+1
s,i , the corresponding equilibrium Maxwellian 

distribution gn+1
s,i j can be constructed, and the velocity distribution can be updated at tn+1 by Eq. (25). The temperature 

conduction between solid and gas phase is modeled by Eq. (2) and Eq. (19). By solving the heat conduction ODE system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dεn+1
s,i ρsCs T M

s,i

dt
= εn+1

s,i ρsCs
T g,i − T M

s,i

τT
,

dεn+1
g,i ρn+1

g,i C v T g,i

dt
= −εn+1

s,i ρsCs
T g,i − T M

s,i

τT
,

(59)

with initial condition

T M
s,i(t

n) = T M,∗
s,i + �t(1 − r2)e∗∗

s,i

[2τs,i + �t(1 − r2)]Cs,i
, T g,i(t

n) = T ∗
g,i + εs

n+1
i ρs(E∗∗

s,i − E∗
s,i)

εg
n+1
i ρn+1

g,i C v,i
,

the material temperature of solid phase is evolved based on Eq. (31). In summary Eq. (23)-(31) compose the UGKS scheme 
for solid particle phase.

3.2. Gas kinetic scheme for gas phase

3.2.1. General framework
The numerical scheme for the gas phase is also built on a finite volume framework using the same physical space division 

as the solid phase, namely X = ∑
i �xi . Since the gas phase is in continuum regime governed by the Navier-Stokes equations 

(15), the GKS is utilized to evolve the cell averaged macroscopic variables,

�W g,i = 1

�i

ˆ
�W g(�x)d�x,

where �W g = (εgρg, εgρg �U g, εgρg E g)
T . The gas phase kinetic equation is split into

Lg1 : ∂εg f g

∂t
+ ∇�x · (�v f g) + ∇�v · (�gεg f g) = εg gg − εg f g

τg
, (60)

Lg1 : ∂εg f g

∂t
+ ∇�v ·

{
f s

[
1

τst
( �U g − �v) − 1

ρs
∇pg

]}
= 0. (61)
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The numerical evolution equations for gas phase macroscopic variables are

Lg w1 : �W n+1
g,i = �W n

g,i + 1

|�i|
tn+1ˆ

tn

ˆ ˛

∂�i

�ψ f g,∂ωi (�v, t)�u · d�sd�dt + �t�Sn
g,i − �t�Sn

s,i, (62)

Lg w2 : �Un+1
g,i = γug1 �Un

s,i + γug2 �Un
g,i, (63)

Lg w3 : �T n+1
g,i = γT g3

(
�T M,∗

s,i + �t(1 − r2)e∗∗
s,i

τs + �t(1 − r2)
ρsCs,i

)
+ γT g4

(
�T ∗

g,i + εn+1
s ρs(E∗∗

s,i − E∗
s,i)

εg
n+1
i ρn+1

g,i C v

)
, (64)

where �Sn
g,i = (0, εn

giρ
n
g,i �g, εn

giρ
n
g,i

�U g,i · �g), and the coefficients

γug1 =
θn+1

i ρs − θn+1
i ρs exp

[
−

(
1 + θn+1

i ρs

εn+1
g ρn+1

g,i

)
�t
τst,i

]
εn+1

g ρn+1
g,i + θn+1

i ρs
,

γug2 =
θn+1

i ρs + εn+1
g ρn+1

g,i exp

[
−

(
1 + θn+1

i ρs

εn+1
g ρn+1

g,i

)
�t
τst,i

]
εn+1

g ρn+1
g,i + θn+1

i ρs
,

γT g3 =
θn+1

i ρsCs,i − θn+1
i ρsCs exp

[
−

(
1 + θn+1

i ρsCs

εn+1
g ρn+1

g,i C v

)
�t
τT ,i

]
εn+1

g ρn+1
g,i C v + θn+1

i ρsCs
,

γT g4 =
θn+1

i ρsCs,i + εn+1
g ρn+1

g,i C v exp

[
−

(
1 + θn+1

i ρsCs

εn+1
g ρn+1

g,i C v

)
�t
τT ,i

]
εn+1

g ρn+1
g,i C v + θn+1

i ρsCs
.

3.2.2. Numerical flux
The numerical flux is calculated from the integral solution of Eq. (60). Assuming that the cell interface is located at �x0

with normal direction �e1 and local basis (�e1, �e2, �e3) and tn = 0, the integral solution is

f g(�x0, t, �v) = 1

τ

tˆ

0

gg(�x′, t′, �v ′)e−(t−t′)/τ dt′ + e−t/τ f g0(�x0 − �vt, �v − �gt), (65)

where �x′ = �x0 − �v(t − t′) and �v ′ = �v0 − �g(t − t′) are characteristics. The initial distribution is expanded as

f0,g(�x, �v) = gl
0,g[1 − τg(�al

gx · �v + agt − 2λ(�v − �U g)) + �al
gx · ��x](1 − H[��x · �e1])

+ gr
0,g[1 − τg(�ar

gx · �v + agt − 2λ(�v − �U g)) + �ar
gx · ��x]H[��x · �e1],

(66)

where �al,r
gx = (al,r

gx, a
l,r
gy, a

l,r
gz) are the derivative coefficient functions. And the equilibrium distribution function is expanded as

gg(�x, t, �v) = gg(�x0,0, �v j)

{
1 + [al

gx(1 − H[�x · �e1]) + ar
gx H[�x · �er](x − x0)

+ agy(y − y0) + agz(z − z0) − 2λ( �Us − �v j)(�v − �v j) + agtt

}
.

(67)

The Maxwellian distribution function as well as the derivative coefficient functions can be evaluated in a similar way as the 
solid phase Eq. (36)-(41). Substituting Eq. (66) and Eq. (67) into Eq. (65), the integral solution is expressed as
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f g(�x0, t, �v) = γ1 gg0(�x0, �v)

+ γ2((a
l
gx H[�v · �e1] + ar

gx(1 − H[�v · �e1]))u + agy v + agz w)gg0(�x0, �v)

− γ22λ(�v − �Us) · �g gg0(�x0, �v) + γ3agt gg0(�x0, �v)

+ γ4(gl
g0(�x0, �v)H[�v · �e1] + gr

g0(�x0, �v)(1 − H[�v · �e1]))
+ γ5 gr

g0(�ar
g · �v − 2λr(�v − �U g) · �g)H[�v · �e1]

+ γ5 gl
g0(�al

g · �v − 2λl(�v − �U g) · �g)(1 − H[�v · �e1])
+ γ6(a

r
gt gr

g0 H[�v · �e1] + al
gt gl

g0(1 − H[�v · �e1])),

(68)

where

γ1 = (1 − exp(−t/τg)), γ2 = (t + τg)exp(−t/τg) − τs,

γ3 = (t + τs(exp(−t/τg) − 1)), γ4 = exp(−t/τg),

γ5 = −(t + τg)exp(−t/τg), γ6 = −τg exp(−t/τg).

(69)

For the under-resolved region, artificial dissipation is needed to stabilize the scheme and suppress numerical oscillation. 
One effective method for GKS and UGKS is to modify the collision time τg by

τg = μg

pg
+ |pl

s − pr
s|

pl
s + pr

s
�t, (70)

where μg is gas dynamic viscosity, pg is gas pressure, pl
s and pr

s are the gas pressure at left and right side of the cell 
interface. The additional time-step proportional term in the above equation will enlarge the thickness of numerical shock 
structure to the cell size scale under the limitation principle of computational fluid dynamics [24]. The numerical flux 
terms in the evolution equation Eq. (62) can be calculated from the cell interface integral solutions. The fluxes for updating 
conservative variables from tn to tn+1 are

tn+1ˆ

tn

ˆ ˛

∂�i

�ψ f g,∂�i (t, �v j)�v j · d�sd�dt =
N∑

i=1

si

tn+1ˆ

tn

ˆ
�ψ �v · �ni f g(�x0, t, �v)dvdt. (71)

In summary, Eq. (62)-(64) compose of the GKS for gas phase, and the flow chart for UGKS-M is shown in Fig. 2.

3.3. Limiting solutions of UGKS-M

The UGKS-M for multiphase flow simulations preserves the flow regime for a wide range of particle Knudsen number 
Kns , particle Stokes number, and normalized particle response time τst. In the rarefied regime with Kns 
 1, the integral 
solutions Eq. (45) and Eq. (47) become

f s(�x0, t, �v j) = ( f l
s0(�x0, �v j)H[�v · �e1] + f r

s0(�x0, �v j)(1 − H[�v · �e1]))
+ t(�v · ∇�x f l

s0 + �ω1 · ∇�v f l
s0)H[�v · �e1]

+ t(�v · ∇�x f r
s0 + �ω1 · ∇�v f r

s0)(1 − H[�v · �e1]),
(72)

and

f s(�xi, t, �v0) = f r
s0(�xi, �v0)(1 − H[ �ω1 · �ev1]))

+ t(�v · ∇�x fs0 + �ω1 · ∇�v f l
s0)H[ �ω1 · �ev1]

+ t(�v · ∇�x fs0 + �ω1 · ∇�v f r
s0)(1 − H[ �ω1 · �ev1]).

(73)

The solid particle collision equation Eq. (25) degenerates to

f n+1
s,i j = f ∗

s,i j. (74)

The numerical governing equations for solid phase in rarefied regime consist of Eq. (23), (24), (74), (26)-(31) with the nu-
merical flux calculated from Eq. (72)-(73), which converge to a consistent numerical scheme for the collisionless Boltzmann 
equation

∂ f s

∂t
+ ∇�x · (�v fs) + ∇�v ·

(
�g − 1

ρs
∇�x pg fs

)
+ ∇�v ·

( �D
ms

f

)
= 0. (75)
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Fig. 2. Flow chart for UGKS-M.
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According to the analysis in [23], the integral solution in the continuous regime with Kns � 1 becomes

f s(�x0, t, �v j) =gs0(�x0, �v j)

− τs((a
l
sx H[�v · �e1] + ar

sx(1 − H[�v · �e1]))u + asy v + asz w)gs0(�x0, �v j)

+ τsλ(�v − �Us)ωs1 gs0(�x0, �v j) + tast gs0(�x0, �v j)

= f N S
s (�x0,0, �v j) + tast gs0(�x0, �v j),

(76)

and

f s(�xi, t, �v0) =gs0(�xi, �v0) − τs((ãsxu + ãsy v + ãsz w)gs0(�xi, �v0)

+ τsλ(�v0 − �Us)ωs1 gs0(�xi, �v0) + tãst gs0(�xi, �v0)

= f N S
s (�xi,0, �v0) + tast gs0(�xi, �v0).

(77)

Therefore, UGKS-M provides a consistent NS flux in the continuum regime. In the Euler regime with Kns → 0, Eq. (25)
converges to

f n+1
s,i j = gn+1

i j , (78)

which shows that the UGKS-M recovers the Euler equations in the Euler limiting regime.
In the granular flow regime with τst → ∞, Eq. (28) and Eq. (24) degenerate to

�Un+1
s = �U∗

s ,

f ∗∗
s,i j = f n

s,i j,
(79)

and the gas phase and particle phase are decoupled. In the other dusty gas limit with τst → 0, Eq. (28) and Eq. (24) converge 
to

�Un+1
s = �Un+1

g ,

f ∗∗
s,i j = δ(�v − �Un+1

g ),
(80)

where δ(�x) is the Dirac delta function

δ(�x) =
{

1 �x = 0,

0 �x = 0.
(81)

Therefore in the dusty gas regime, solid particle shares same speed with the gas flow.

4. Numerical test cases

In this section, we apply the UGKS-M to five numerical test cases to demonstrate the multiscale property of the nu-
merical scheme and its performance in capturing the non-equilibrium phenomenon. The test cases cover a wide range 
of particle Knudsen number and particle Stokes number. In current calculations, non-adaptive velocity space is used. The 
range of the velocity space is chosen to be [Us,min − 5

√
2kB Ts,max/m, Us,max + 5

√
2kB Ts,max/m], where Us,min, Us,max are 

the pre-estimated lower and upper bound of solid phase macroscopic velocities, and Tmax is the pre-estimated highest 
temperature in the computational domain. The grid size of the velocity is chosen to be 

√
2kB Ts,min/m/3, where Ts,min is 

the pre-estimated lowest temperature in the computational domain. For current test cases, if Tx,min = 0, we set the max-
imum velocity cell numbers to be 200, which gives satisfactory resolution. The technique of velocity adaptation will be 
implemented in UGKS-M in our future work, which can greatly reduce the computational cost. The results of UGKS-M will 
be compared with the experiment results and reference solutions. In the collisionless regime, the reference solutions are 
obtained by solving the collisionless Boltzmann equation using the multiphase particle in cell (MP-PIC) method [1]. In the 
continuum regime, the reference solution is obtained by solving the pressureless Euler system Eq. (14) under a finite vol-
ume framework [31], while the van Leer limiter is used for spatial reconstruction and the GKS-type flux [52] is used for 
time evolution. For the one-dimensional particle segmentation problem, the UGKS-M recovers the solution of collisionless 
Boltzmann equation in the collisionless regime and converges to the pressureless Euler solution in the continuum regime. 
For one dimensional shock tube test case, the results show that at the small particle Knudsen number, the UGKS-M recov-
ers the two-fluid NS solution, while at large particle Knudsen number the UGKS-M provides consistent solution with the 
solution of Boltzmann equation. In the two dimensional calculations of particle jets impinging problem, physical consistent 
solutions are obtained with different Knudsen numbers and restitution coefficients, such as the particle trajectory crossing 
(PTC) and particle wall rebounding. The calculation of particle motion in a Taylor-Green flow shows the capability of UGKS-
M in simulating the flow dynamics over a wide range of Stokes number. Lastly the experiment of shock induced fluidization 
of particle bed is calculated by UGKS-M and the solutions are compared with the experimental measurements.
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4.1. One dimensional particle concentration under a harmonic oscillatory flow

Firstly, we study the solid particle concentration in a one dimensional gas flow to test the multiscale property of UGKS-M. 
This test case is a one way coupling flow with a steady gas field with velocity distribution U g (x) = sin(2πx). Since the gas 
field is fixed, we leave out the particle material temperature and only consider the particle motion including the particle 
velocity distribution as well as the granular temperature in this calculation. The normalization is done according to the 
following reference parameters: the computational domain as the reference length, the initial solid phase apparent density 
as the reference density, the maximum of the gas velocity as the reference velocity, and the initial gas temperature as the 
reference temperature. The initial condition is set as εsρs = 1, Us = sin(2πx), Ts = 10−8; the boundary condition is set to 
be periodic and the particle collision is assumed to be fully inelastic collision with r = 0. The computational domain in 
physical space [0, 1] is equally discretized into 1000 cells, and the velocity space is [−1.5, 1.5] with 32 velocity cells. This 
test case is characterized by two important parameters, the Knudsen number and the Stokes number. Four limiting flow 
regimes are considered: (i) Large stokes number collisionless regime with Kns = 104 and τst = 0.3; (ii) Large stokes number 
continuum regime with Kns = 10−4 and τst = 0.3; (iii) Small Stokes number collisionless regime Kns = 104 and τst = 0.03; 
(iv) Small Stokes number continuum regime with Kns = 10−4 and τst = 0.03. The UGKS-M solutions are compared with the 
solutions of collisionless Boltzmann equation in collisionless regime, and compared with the pressureless Euler solutions in 
the continuum regime. For all flow regimes, the comparison between UGKS-M solutions and the reference solutions at t = 1
and t = 1.5 is shown in Figs. 3-4. For large stokes number τst = 0.3 and at collisionless regime, the interspecies friction is not 
enough to dissipate the particle kinetic energy, and the particles will oscillate in the gas field for a while before reaching the 
same speed of the gas field. In such regime, good agreement between UGKS-M and PIC solutions can be observed in Fig. 3(a) 
and 3(b). When the Knudsen number decreases, the intense inelastic collision dissipates the particle kinetic energy, and the 
particles show a tendency of concentration. The UGKS-M well recovers the pressureless Euler solution in such regime. When 
reducing the Stokes number to τst = 0.03, the oscillatory behavior of particles will be suppressed by a strong interspecies 
friction. In both collisionless and continuum regimes, the UGKS-M shows good agreements with reference solutions in the 
highly different flow regimes. The one dimensional particle concentration test shows the capability of UGKS-M in predicting 
the behavior of particles in continuum and rarefied flow regime with different Stokes numbers.

4.2. Wind-sand shock tube

We calculate the one-dimensional wind-sand shock tube problem, which is similar to the numerical calculations done by 
T. Saito [33], T. Saito et al. [36], but with a simplified drag force formulation Eq. (11). Initially the solid phase is uniformly 
distributed in the computational domain x ∈ [0, 1]. With the time evolution, the solid phase will be driven by gas due to 
friction. We use the nondimensional variables with respect to the following reference parameters:

ρref = ρg,L, U ref =
√

γ pg,L

ρg,L
, Tref = 0.5T g,L,

and the reference length is the computational domain. The initial condition is shown in Table 1. The nondimensional grav-
itational acceleration is �g = −0.1�x; the nondimensional restitution coefficient is r = 0.9999; the nondimensional solid heat 
capacity is Cs = 0.1, and the inelastic collision energy transfer coefficient is rT m = 1.0. The physical space is divided into 500
cells and the particle velocity space is [−3.0, 3.0] divided into 80 cells. The Knudsen number of gas phase is Kng = 10−4, 
and two Knudsen numbers are considered for solid phase, namely Kns = 10−4, and Kns = 1.0. For the continuum regime 
with Kns = 10−4, the two-fluid Navier-Stokes system is calculated by GKS [52], which serves as reference solution. For large 
Knudsen number, the kinetic equation is solved by discrete ordinate method (DOM) [56] under a fine mesh, which provides 
the cell converged kinetic solution. The accuracy test of UGKS-M is shown in Fig. 5, and the comparison between UGKS-M 
solutions and reference solutions is shown in Figs. 6–9. For the accuracy test, the solutions are calculated under the mesh 
size of �x = 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024, and 1/2048, with the parameters Kns = 10−4, τst = 10, τT = 10. We 
define the relative error as the difference between the coarse mesh gas density distribution and the gas density distribution 
under 1/2048 mesh size. The decrease of the relative error in L2 norm at t = 0.1 is given in Fig. 5. It can be observed 
from the results that the UGKS-M gives a first order accuracy on a coarse mesh when the discontinuity is not numerically 
resolved, and achieves a second order accuracy on a fine mesh when the flow field can be numerically resolved. Then we 
compare the solutions of UGKS-M and reference solution in various flow regimes with different Knudsen number Kn, par-
ticle response time τst, and the heat conduction time scale τT . We set the parameters Kns = 10−4, τst = 10, τT = 10, and 
compare the density, velocity, pressure, gas temperature, solid granular temperature, and solid material temperature with 
the two-fluid NS solutions at t = 0.2. As shown in Fig. 6, the UGKS-M solutions are shown in symbols and the reference 
solution in lines, and good agreements are shown in such flow regime. It can be observed that in comparison with the 
pure gas solution (dotted lines) the solid phase is slightly driven by the gas phase. Due to the interspecies friction, the gas 
is heated as the gas temperature is higher than the pure gas case, while the solid phase granular temperature decreases. 
The material temperature of solid phase doesn’t change much, as the gas-particle heat conduction is weak. Next, we keep 
Kns = 10−4 and decrease the Stokes number to τst = 0.1 and τT = 0.1, and compare the density, velocity, pressure, gas tem-
perature, solid granular temperature and solid material temperature with the two-fluid NS solutions at t = 0.1, 0.2. Good 
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Fig. 3. Apparent density distribution of particle phase for the one dimensional particle concentration test. (a) the density distribution at t = 1 with Kns = 104

and τst = 0.3; solid line is the UGKS-M solution and square shows the PIC result. (b) the density distribution at t = 1.5 with Kns = 104 and τst = 0.3; solid 
line is the UGKS-M solution and square shows the PIC result. (c) the density distribution at t = 1 with Kns = 10−4 and τst = 0.3; solid line is the UGKS-M 
solution and circle shows the Pressureless Euler solution. (d) the density distribution at t = 1.5 with Kns = 10−4 and τst = 0.3; solid line is the UGKS-M 
solution and circle shows the Pressureless Euler solution.

Table 1
Initial condition for wind-sand shock tube problem.

Phase ρg,L/εs,Lρs,L U L pL T g,L/T M,L ρg,R/εs,Rρs,R U R pR T g,R/T M,R

Gas 1.0 0 1.0 2.0 0.125 0 0.1 1.6
Solid 0.5 0 0.5 2.0 0.5 0 0.5 1.6

agreement can be observed in Fig. 7 and 8. In such case, the momentum and energy transfer between species are enhanced, 
which lead to a lower granular temperature. The decrease of granular temperature is due to the friction and the inelastic 
collision of solid particles. In this test case, the energy loss in the collision process purely increases the material temperature 
of solid particle. We also compare the velocity distribution of solid particle with the local Maxwellian distribution at x = 0.5. 
In such regime, two distribution functions agree well and the two-fluid model holds. Lastly, we keep τst = 0.1, τT = 0.1, and 
increase the Knudsen number Kns = 1.0, and compare with the kinetic solution with 2000 cells. As shown in Fig. 9, the 
UGKS-M performs well in the rarefied regime. It shows that velocity distribution of solid phase is a leptokurtic distribution 
and deviates from the local Maxwellian distribution. Since the near equilibrium assumption is violated, the hydrodynamic 
two-fluid modeling will not properly describe the flow dynamics.
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Fig. 4. Apparent density distribution of particle phase for the one dimensional particle concentration test. (a) the density distribution at t = 1 with Kns = 104

and τst = 0.03; solid line is the UGKS-M solution and square shows the PIC result. (b) the density distribution at t = 1.5 with Kns = 104 and τst = 0.03; 
solid line is the UGKS-M solution and square shows the PIC result. (c) the density distribution at t = 1 with Kns = 10−4 and τst = 0.03; solid line is the 
UGKS-M solution and circle shows the pressureless Euler solution. (d) the density distribution at t = 1.5 with Kns = 10−4 and τst = 0.03; solid line is the 
UGKS-M solution and circle shows the pressureless Euler solution.

4.3. Particle jets impinging problem

The particle trajectory crossing (PTC) and particle wall reflecting are two important tests to show the ability of the 
numerical scheme in capturing the non-equilibrium particle flow. The hydrodynamic models fail to capture these two phe-
nomena and gives nonphysical δ-shock [26]. In this example, we calculate the problem of two particle jets impinging into 
a rectangular chamber to demonstrate the ability of the UGKS-M to capture the PTC and particle wall reflecting in two-
dimensional flows. To omit the influence of gas phase, we set the Stokes number infinity. The channel geometry as well 
as the mesh geometry is shown in Fig. 10, the mesh we use is an unstructured mesh with �x = 0.1. Initially, two particle 
jets are injected from left top and left bottom corner of a rectangular chamber with adiabatic wall. The apparent density 
of the jet flow is used as the reference apparent density and set εsρs = 1, and the injection velocity is along 135o and 
225o directions with respect to the positive x-axis. The velocity magnitude of the jet is used as the reference velocity and 
set | �Us| = 1.0; and granular temperature is Ts = 0. The velocity space [−√

2, 
√

2] is divided into 17 × 17 cells. Four sets 
of particle Knudsen numbers and restitution coefficients are calculated. Firstly, we calculate the collisionless regime with 
infinite Knudsen number and compare with the PIC result, the distribution of particle apparent density at t = 20 is shown 
in Fig. 11. It can be observed that UGKS-M recovers the physical consistent PTC and wall reflecting phenomena. Then we 
decrease the particle Knudsen number to 1.0 × 10−4, and set the restitution coefficient r = 0. The distribution of particle 
apparent density at t = 20 is shown in Fig. 12, compared with the PIC result. In such a situation, two solid particles will 
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Fig. 5. Accuracy test of UGKS-M for the shock tube problem with Kns = 10−4, τst = 10, τT = 10.

share same speed after collision, and the two particle jets merge into a single one. Next, we increase the restitution coef-
ficient to r = 0.4 and r = 1.0, the density contours are shown in Fig. 13-14. The particle scattering effect appears and the 
particles fill the chamber due to elastic collision.

4.4. Particle segregation in Taylor-Green flow

Preferential concentration describes the tendency of particles to cluster in regions of high strain or low vorticity due to 
their inertia. The mechanisms which drive preferential concentration are due to centrifugal particle motion away from vortex 
cores and accumulation of particles in convergence zones. In this example, we use UGKS-M to study the particle segregation 
in Taylor-Green flow, which is a 2D extension of the one dimensional particle concentration under a harmonic oscillatory 
flow. Two initial conditions are shown in Fig. 15. The gas field is assumed to be a two-dimensional Taylor-Green vortex 
with periodic boundary condition. For the first initial condition, particles are uniformly distributed in space. And for the 
second initial condition, the particles are set to be uniformly distributed in a circle centered in (0.5, 1 − 5/(4π)) with radius 
1/(4π) [11]. For both test case, the initial particle velocity is the same as the initial gas flow velocity. The reference length 
is the length of the computational domain, the reference velocity is the largest velocity magnitude of the initial gas field, 
the reference density is the apparent density of the initial solid field, and the reference temperature is the temperature 
of the gas field. The initial gas density is ρg = 1, initial solid phase apparent density is εsρs = 1.0, the initial velocity 
field for both gas and solid phase is U = sin(2πx) cos(2π y) and V = − cos(2πx) sin(2π y), the initial gas pressure is p =
1 + (sin(4πx) + cos(4π y))/4, initial granular temperature of solid phase is Ts = 10−8, and the restitution coefficient is r = 0. 
The physical domain [0, 1] × [0, 1] is divided equally into 200 × 200 cells, and the velocity space [−1.2, 1.2] × [−1.2, 1.2] is 
covered with 42 × 42 velocity cells. This problem is characterized by two important parameters, i.e., the Knudsen number 
and the Stokes number. According to the analysis in [10], the critical Stokes number is Stc = 1/8π , below which the kinetic 
number density function will keep mono-kinetic, and above which the particle trajectory crossing can occur. For the first 
initial condition, we first take τst = 0.3 > Stc and Kns = 104. The solution of UGKS-M is compared with PIC solution at time 
t = 0.6 and t = 2.0 as shown in Fig. 16. The physical consistent particle trajectory crossing is captured, and UGKS-M gives 
satisfactory result comparing to PIC up to t = 0.6, however, due to the numerical dissipation of finite volume scheme, the 
numerical resolution decreases for a long time calculation at t = 2. Next, we decrease the Stokes number to 0.03, which is 
less than the critical Stokes number, the solution of the UGKS-M and PIC results are shown in Fig. 17. Under this Stokes 
number, the velocity distribution will remain mono-kinetic and particles will concentrate on the edge of vortexes. The 
UKGS-M solution agrees well with the PIC solution. Then we reduce the Knudsen number to Kns = 10−4. In such regime, 
the intense inelastic collision will dissipate the kinetic energy of particles and even for large Stokes number τst = 0.3, 
an efficient preferential concentration occurs. The density distribution at t = 0.6 of UGKS-M solution is shown in Fig. 18
comparing with the pressureless Euler solution. For the second initial condition, if the Stokes number is smaller than Stc , the 
particles will remain inside of a Taylor-Green vortex forever and no particle trajectory crossing will appear, and eventually 
the particles will accumulate at four corners of the vortex where the flow velocity is small. For the Stokes number larger 
than the critical stokes number, some particles will escape from the original vortex and enter into neighboring cells, and 
the particle trajectory crossing will appear [11,10]. We first set the parameter as Kns = 10−4 and τst = 0.1. The solutions 
of UGKS-M at t = 0.6 and t = 1.2 are shown in Fig. 19, comparing with the pressureless Euler equation. Then we reduce 
the Stokes number to τst = 10−3, and the UGKS-M solution and pressureless Euler solution are shown in Fig. 20. For both 
Stokes numbers, the solutions of UGKS-M are consistent with the theoretical analysis, and agrees well with Euler solution.
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Fig. 6. Results of the wind-sand shock tube problem at t = 0.2 with Kns = 10−4, τst = 10, and τT = 10. (a) apparent density, (b) velocity, (c) gas pressure, 
(d) gas temperature, (e) particle granular temperature, (f) particle material temperature. The solutions of UGKS-M are shown in symbols (circle for gas 
phase and square for solid phase), and the solutions of two-fluid NS system are shown in lines (solid for gas phase and dashed for solid phase). The pure 
gas solutions are shown in dotted lines for reference.
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Fig. 7. Results of the wind-sand shock tube problem at t = 0.1 with Kns = 10−4, τst = 0.1, and τT = 0.1. (a) apparent density, (b) velocity, (c) gas pressure, 
(d) gas temperature and particle material temperature, (e) particle granular temperature, (f) solid particle velocity distribution function (circle) and the 
local Maxwellian distribution (line) at x = 0.5. For (a)-(e), the solutions of UGKS-M are shown in symbols (circle for gas phase and square for solid phase), 
and the solutions of two-fluid NS system are shown in lines (solid for gas phase and dashed for solid phase). The pure gas solutions are shown in dotted 
lines for reference.
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Fig. 8. Results of the wind-sand shock tube problem at t = 0.2 with Kns = 10−4, τst = 0.1, and τT = 0.1. (a) apparent density, (b) velocity, (c) gas pressure, 
(d) gas temperature and particle material temperature, (e) particle granular temperature, (f) solid particle velocity distribution function (circle) and the 
local Maxwellian distribution (line) at x = 0.5. For (a)-(e), the solutions of UGKS-M are shown in symbols (circle for gas phase and square for solid phase), 
and the solutions of two-fluid NS system are shown in lines (solid for gas phase and dashed for solid phase). The pure gas solutions are shown in dotted 
lines for reference.
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Fig. 9. Results of the wind-sand shock tube problem at t = 0.2 with Kns = 1, τst = 0.1, and τT = 0.1. (a) apparent density, (b) velocity, (c) gas pressure, (d) 
gas temperature and particle material temperature, (e) particle granular temperature, (f) solid particle velocity distribution function (circle) and the local 
Maxwellian distribution (line) at x = 0.5. For (a)-(e), the solutions of UGKS-M are shown in symbols (circle for gas phase and square for solid phase), and 
the solutions of kinetic equation are shown in lines (solid for gas phase and dashed for solid phase). The pure gas solutions are shown in dotted lines for 
reference.
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Fig. 10. Channel geometry for the calculation of two impinging particle jets.

Fig. 11. Particle number density at t=20 for collisionless regime: (a) UGKS-M result, and (b) PIC result.

Fig. 12. Particle number density at t=20 for highly collision regime at Kns = 1.0 × 10−4 and r = 0: (a) UGKS-M result, and (b) PIC result.

4.5. Shock-induced fluidization of a particles bed

In this section, we study the experiment of shock induced fluidization of a particles bed [32,38]. The experiment set up is 
shown in Fig. 21, where initially a bed of particles is located at x = 15 cm, and three pressure gauges are located at 11 cm
below, 4.3 cm, and 71.8 cm above the particle bed. A shock wave with Mach number 1.3 is generated by a up-moving 
piston with velocity 151 m/s. In order to determine the Stokes number, we first calculate the particle bed with a single 
layer of 2 mm diameter glass spheres, and compare the simulation result with experiment data. The computational domain 
is divided into 4000 cells in physical space for x ∈ [0, 100] and 128 cells in velocity space for v ∈ [−284 m/s, 284 m/s]. 
The parameters for the experiment and simulations are shown in Table 2. From our numerical experiments, we find that 
the pressure signal and cloud front trajectories between UGKS-M and experiment match well with St = 0.62 results. The 
pressure signals measured by the pressure gauges at 71.8 cm upstream and 11 cm downstream of the particle bed are 
shown in Fig. 22, and the cloud front comparison is shown in Fig. 23. Then, we calculate a dense 2 cm bed composed of 
1.5 mm diameter glass particles. The initial volume fraction in the bed is 0.65, and the initial pressure is 105 Pa. When 
passing the dense particle bed, turbulence will be generated in gas phase. The turbulent energy is treated as the internal 
energy and in this calculation the internal degree of freedom of gas phase is modeled by k(t) = k0 + 0.15(t/tref)

1.5. The 
Stokes number is set to be 0.62, and Knudsen number is 1.0 × 10−3. The time dependent pressure signal measured by the 
pressure gauges at 4.3 cm upstream and 11 cm downstream of the bed is shown in Fig. 24, and the cloud front trajectories 
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Fig. 13. Particle number density at different output times with Kns = 1.0 × 10−4 and r = 0.4.

Fig. 14. Particle number density at different output times with Kns = 1.0 × 10−4 and r = 1.0.

are shown in Fig. 25. The UGKS-M gives satisfactory results in comparison with the experimental measurement. Fig. 26
presents the gas phase volume fraction at t = 4.5 ms.
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Fig. 15. Two initial particle apparent density and streamline used for Taylor-Green flow test cases.

Table 2
Parameters of a single layer of particles.

Air pre-shock density 1.2 kg/m3

Incident shock Mach number 1.3
Particle density 2500 kg/m3

Particle diameter 2 mm

5. Conclusion

In this paper, we propose a UGKS-M scheme for dilute disperse gas-particle multiphase flow. The scheme is built in 
a finite volume framework. For the solid particle phase, the numerical flux is constructed by the UGKS for preserving 
multiscale property. For the gas phase, the GKS flux is used for the gas flow in the continuum regime. The interaction 
between the solid and gas phase is calculated by a velocity space mapping method. The UGKS-M calculates the flow in 
regimes from collisionless to two-fluid NS regime with different Knudsen number, and from granular flow to dusty gas 
dynamics with different Stokes number. The stability condition of UGKS-M is the CFL condition, and no requirement is 
imposed by the Knudsen and Stokes numbers. By taking into account the material temperature, once the total energy loss 
in inelastic collision transfers into particle material thermal energy, the whole system conserves the total mass, momentum, 
and energy. The numerical experiments show that UGKS-M can capture the physical solution in different regimes, such 
as the particle trajectory crossing, particle wall reflection, and particle scattering through elastic collision. The simulation 
of Shock-induced fluidization test recovers the experiment measurements well. In conclusion, the UGKS-M is an accurate 
multiscale numerical method for the gas-particle multiphase system, which can be used confidently in many engineering 
applications. The methodology of direct modeling in UGKS is a powerful tool for the construction of numerical method for 
simulating multiscale transports.

Nomenclature

Notation

�g mean free path of gas phase
�s mean free path of solid phase
εg volume fraction of gas phase
εs volume fraction of solid phase
κg thermal conductivity of gas phase
λ Reciprocal of normalized temperature
I identity matrix
Q particle-particle collision term
Kng Knudsen number of gas phase
Kns Knudsen number of solid phase
Stc critical Stokes number
Sts particle Stokes number
μg dynamic viscosity of gas phase
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Fig. 16. The UGKS-M and PIC results of particle apparent density distribution in Taylor-Green flow at t = 0.6 and t = 2, with parameter Kns = 104 and 
Sts = 0.3.

∇ gradient
νg kinematic viscosity of gas phase
�i volume of i-th cell in physical space
� j volume of j-th cell in velocity space
∂� boundary of control volume
ρg density of gas phase
ρs material density of solid phase
σ( �U g) strain rate tensor of gas phase
τs relaxation time of particle phase
τT response time of interphase heat conduction
τst response time of solid particle
�ω1 particle velocity-independent part of the acceleration
�ω2 particle velocity-dependent part of the acceleration
�φ conservative moments
�ψ conservative moments
�D interspecies frictional force
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Fig. 17. The UGKS-M and PIC results of particle apparent density distribution in Taylor-Green flow at t = 0.6, with parameter Kns = 104 and Sts = 0.03.

Fig. 18. The UGKS-M and pressureless Euler results of particle apparent density distribution in Taylor-Green flow at t = 0.6, with parameter Kns = 10−4

and Sts = 0.3.

�Fhydro hydrodynamic force
�g gravitational acceleration
�U g macroscopic velocity of gas phase
�Us macroscopic velocity of solid phase
�v velocity
�W g,i j cell averaged value of macroscopic variables of gas phase
�W s,i j cell averaged value of macroscopic variables of solid phase
�x spacial variable
Cd drag coefficient
Cs heat capacity of solid phase
Cv the specific heat capacity of gas phase at constant volume
ds diameter of solid particle
E g energy per unit mass of gas phase
Es energy per unit mass of solid phase
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Fig. 19. The UGKS-M (contour) and pressureless Euler (lines) results of particle apparent density distributions in Taylor-Green flow at t = 0.6 and t = 1.2, 
with parameter Kns = 10−4 and Sts = 0.1.

Fig. 20. The UGKS-M (contour) and pressureless Euler (lines) results of particle apparent density distributions in Taylor-Green flow at t = 0.6 and t = 1.2, 
with parameter Kns = 10−4 and Sts = 10−3.

f s velocity distribution function of solid partial phase
f s,i j cell averaged value of velocity distribution function of solid phase
f sT velocity distribution of solid material temperature
gg Maxwellian distribution of gas phase
gs Maxwellian distribution of solid phase
kB Boltzmann constant
ms mass of one solid particle
pg pressure of gas phase
ps granular pressure
r restitution coefficient in inelastic collision
rTm proportion of the kinetic energy loss transferred into the material thermal energy in inelastic collision
Res particle Reynolds number
t Time
Tref characteristic time scale
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Fig. 21. Experiment set-up for fluidization shock tube test. A shock at Mach number 1.3 is created by the expansion of the high pressure gas through a 
moving piston at a speed of 151 m/s.

Fig. 22. Pressure signals measurement for a single layer of 2 mm diameter glass spheres from the transducers at 71.8 cm upstream and 11 cm downstream 
of the bed.

Fig. 23. Upper and lower front trajectories of the 2 mm bed impinged by a Mach 1.3 shock.
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Fig. 24. Pressure signals measurement for a 2 cm layer of 1.5 mm diameter glass spheres from the transducers at 4.3 cm upstream and 11 cm downstream 
of the bed.

Fig. 25. Upper and lower bed front trajectories for the 2 cm bed with 1.5 mm diameter glass spheres impinged by a Mach 1.3 shock in air.

Fig. 26. Gas phase volume fraction at time t = 4.5 ms for the 2 cm bed case with 1.5 mm diameter glass spheres impinged by a Mach 1.3 shock in air.
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T g temperature of gas phase
Ts granular temperature of solid phase
T M

s solid phase material temperature
Ts,i j Cell averaged value of material temperature of solid phase

Sup/Sub-scripts

∗ intermediary value for an operator splitting method
g gas phase
i averaged value on i-th cell in physical space
j averaged value on j-th cell in velocity space
M material (temperature)
n value at n-th time step
n + 1 value at (n + 1)-th time step
s solid phase
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