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Abstract. As a continuation of developing multiscale method for the transport phe-
nomena, a unified gas kinetic scheme (UGKS) for multi-scale and multi-component
plasma simulation is constructed. The current scheme is a direct modeling method,
where the time evolution solutions from the Vlasov-BGK equations of electron and ion
and the Maxwell equations are used to construct a scale-dependent plasma simula-
tion model. The modeling scale used in the UGKS is the mesh size scale, which can
be comparable to or much larger than the local mean free path. As a result, with the
variation of modeling scales in space and time through the so-called cell’s Knudsen
number and normalized Larmor radius, the discretized governing equations can re-
cover a wide range of plasma evolution from the Vlasov equation in the kinetic scale to
different-type of magnetohydrodynamic (MHD) equations in the hydrodynamic scale.
The UGKS provides a general evolution model, which goes to the Vlasov equation
in the kinetic scale and many types of MHD equations in the hydrodynamic scale,
such as the two fluids model, the Hall, the resistive, and the ideal MHD equations.
All current existing governing equations become the subsets of the UGKS, and the
UGKS bridges these distinguishable governing equations seamlessly. The construc-
tion of UGKS is based on the implementation of physical conservation laws and the
un-splitting treatment of particle collision, acceleration, and transport in the construc-
tion of a scale-dependent numerical flux across a cell interface. At the same time,
the discretized plasma evolution equations are coupled with the Maxwell equations
for electro-magnetic fields, which also cover a scale-dependent transition between the
Ampère’s law and the Ohm’s law for the calculation of electric field. The time step
of UGKS is not limited by the relaxation time, the cyclotron period, and the speed of
light in the ideal-MHD regime. Our scheme is able to give a physically accurate so-
lution for plasma simulation with a wide range of Knudsen number and normalized
Larmor radius. It can be used to study the phenomena from the Vlasov limit to the
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scale of plasma skin depth for the capturing of two-fluid effect, and the phenomena
in the plasma transition regime with a modest Knudsen number and Larmor radius.
The UGKS is validated by numerical test cases, such as the Landau damping and two
stream instability in the kinetic regime, and the Brio-Wu shock tube problem, and the
Orszag-Tang MHD turbulence problem in the hydrodynamic regime. The scheme is
also used to study the geospace environment modeling (GEM), such as the challenging
magnetic reconnection problem in the transition regime. At the same time, the mag-
netic reconnection mechanism of the Sweet-Parker model and the Hall effect model can
be connected smoothly through the variation of Larmor radius in the UGKS simula-
tions. Overall, the UGKS is a physically reliable multi-scale plasma simulation method,
and it provides a powerful and unified approach for the study of plasma physics.

PACS: 05.60.-k, 47.11.St, 47.70Nd, 52.30Ex

Key words: Unified gas-kinetic scheme, plasma, Vlasov equation, two-fluid equations, MHD
equations, magnetic field reconnection.

Nomenclature

Constants

ǫ0 Vacuum permittivity

µ0 Vacuum permeability

c Speed of light in vacuum

e Charge of a proton

Characteristic variables

B0 Characteristic strength of magnetic field

l0 Characteristic length, plasma size

mi Characteristic molecular mass, ion molecular mass

n0 Characteristic number density

U0 Characteristic velocity, ion thermal velocity

Sup/Sub-scripts

α Components of plasma: α= i stands for ion, α= e stands for electron

·̂ Nondimensional quantities

· Averaged quantities in AAP model

i, j Index for numerical cell and numerical cell interface
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Variables

χ Ratio between the electric field divergence error propagation speed and
the speed of light

ℓα Particle mean free path of species α

γ Ratio between the magnetic field divergence error propagation speed
and the speed of light

λD Debye length

ℓ Particle acceleration due to Lorenz force

B Magnetic field

E Electric field

Fα Averaged Lorenz force on particles of species α

je Electron current density

ji Ion current density

j Total current density

Wα Conservative variables of species α

Eα Total energy density of species α

ναr Interspecies interaction coefficient

νee Collision rate of electrons

νii Collision rate of ions

ωc Cyclotron frequency

ωp Plasma frequency

Wα Averaged conservative variables in AAP model

φ Artificial potential to correct electric field divergence error

ψ Artificial potential to correct magnetic field divergence error

σ Electric conductivity

τα Relaxation parameter in BGK equation

Kn Knudsen number

Rem Magnetic Reynolds number

cm Fast magneto-sound speed

cs Sound speed

fα Velocity distribution function of species α

rLi
Ion Larmor radius

|si| Length of the i-th interface
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1 Introduction

Generally, plasma is a medium with positive, negative, and neutral particles. It is quasi-

neutral on the length scale larger than the Debye length λD =
√

ǫ0kBTi/nie2. The plasma
concerned is the weakly coupled plasma, such as the plasma in the solar corona, the
magnetosphere around the Earth, the plasma inside a Tokamak, etc. as shown in Fig. 1 [1].
The dynamics of a weakly coupled plasma can be described by kinetic equations. The
number of electron inside a Debye cubic, namely the plasma parameter ND is much larger
than one (equivalently the coupling parameter Γ≪ 1). In a weakly coupled plasma, the

ratio of the plasma frequency ωp=
√

nie2/ǫ0mi to the ion collision frequency νii is larger
than one, so that the collective behavior is observed on the time scale longer than the
plasma period ω−1

p , and on the length scale larger than the Debye length (λD =U0ω−1
p ).

In this work, we propose a unified gas kinetic scheme that can be applied to the fully
ionized weakly coupled plasma composed of electrons and ions.

Figure 1: Diagram shows some of the range of plasma phenomena. The UGKS is mainly used for the region
above the red dot-dashed line with ND =1 [1].

The motion of charged particles in a plasma is coupled with the evolution of elec-
tromagnetic field. The flow regime of a plasma is more complex than that of a neutral
gas. Many plasma parameters are important in characterizing plasma flow property,
such as the Debye length, the plasma frequency, the ion inertial length, and the plasma
beta, etc.. Among those parameters, two parameters are important in characterizing the
flow regimes of plasma, namely the Knudsen number Kn and the normalized Larmor
radius r̂Li

. The Knudsen number is the ratio between the particle mean free path to a
characteristic length, and the normalized Larmor radius is the ratio between the Lar-
mor radius rLi

=miU0/eB and the characteristic length. The Knudsen number indicates
the collision intensity and the normalized Larmor radius indicates the magnetization of
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Figure 2: Flow regimes of plasma.

plasma. On the kinetic scale, the dynamics of plasma is described by kinetic equations
such as the Fokker-Planck-Landau equation [2]. In the kinetic equations, the averaged
electromagnetic field effect is modeled to the order of the reciprocal of the normalized
Larmor radius and the collision term effect is modeled to the order of the reciprocal of
the Knudsen number. Different plasma physics is shown in Fig. 2. In the rarefied regime
with large Knudsen number, the plasma follows the collisionless Vlasov equation. In the
highly collisional regime, the plasma is described by the hydrodynamic-type equations.
When r̂Li

≪1, the plasma can be described by single-fluid MHD equations. The two-fluid
effect or the Hall effect becomes important in the flow regimes with large r̂Li

.

Numerical methods have been developed for plasma simulation since 1950s, such as
the particle-in-cell (PIC) method, the kinetic Vlasov solvers, and the hydrodynamic MHD
solvers. The traditional PIC method suffers from statistical noise and restricted time step
[3, 4]. In order to overcome those shortcomings, a series of asymptotic preserving PIC
methods are developed by Degond et al. [6–8], which remain stable and consist with
quasi-neutral models in the quasi-neutral limit. Reformulated Vlasov-Poisson/Maxwell
equations are used in the AP-PIC methods to unify models in different regimes. A good
review about AP-PIC methods and multiscale models for plasma physics was given by
Degond et al. recently [25].
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Based on high order phase space reconstruction techniques, many high order Vlasov
solvers are proposed such as the conservative method [5], the semi-Lagrange method [9],
the finite element method [10], and finite difference method [11]. The Vlasov solvers
can capture solutions of the collisionless Vlasov equation accurately. However only few
work has been done to study the full kinetic equation including both the electromagnetic
acceleration and the collision integral term for multi-species.

In the highly collisional and highly magnetized regimes, the plasma flow is governed
by the hydrodynamic-type equations. Riemann-solution-based MHD solvers [12,13] and
the kinetic-based MHD solvers [14, 15] have been proposed, which can recover the ideal
MHD equations, and the extended Hall-MHD or dissipative MHD equations. Those
methods aim to solve the single-fluid hydrodynamic equations, and hence can only be
applied on the scale much larger than the Larmor radius and in the regime close to equi-
librium. Another type of schemes are proposed based on the two-fluid system [16–20].
The two-fluid model takes into account the electron mass and the separation of electrons
and ions, which can recover the flow regimes from MHD to Euler one.

In the transitional regime, hybrid methods are usually proposed to connect the ki-
netic solver with the hydrodynamic one [21, 22]. In the hybrid models, the PIC method
is used in the collisionless regime and the hydrodynamic models are used in the col-
lisional regime. The main difficulty for the hybrid method is to find a proper criteria
to couple different numerical models. And the solutions are not physically reliable in
the transitional regime. A series of asymptotic preserving (AP) schemes have been de-
veloped for the kinetic FPL equations, which can preserve the collisionless and Euler
regimes [23, 24]. But currently the AP schemes are only developed for a single species
flow, and therefore cannot be applied to multi-component plasma transport. Even with
asymptotic preserving property, the cell size is still limited by the mean free path scale
for accuracy consideration for the capturing of dissipative solution in almost all existing
AP schemes.

In the past years, based on the methodology of direct modeling on the mesh size
and time step scales, the UGKS has been developed to simulate multiple scale transport
problems. The UGKS models the flow physics on the scale of mesh size and time step as
shown in Fig. 3. When the cell size is on the hydrodynamical scale the UGKS recovers
the hydrodynamic wave phenomenon, and when the cell size is on the scale less than the
mean free path the UGKS recovers the particle free transport. In the transitional regime
when the cell size is on the scale of mean free path, the UGKS provides a physically
consistent numerical flux based on the time accurate evolution solution of kinetic equa-
tion. The UGKS connects the hydrodynamic flow physics to the kinetic particle transport
seamlessly. For the rarefied gas dynamics, radiative transfer, and phonon transport, the
UGKS becomes a successful multi-scale method and provides accurate solutions in all
regimes [26–32].

In this paper, for the first time the UGKS is developed for the plasma simulation. The
corresponding scheme is based on the space and time evolution solution of the Vlasov-
BGK equations for electron and ion, and the Maxwell equations for electromagnetic field.
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Figure 3: Multi-scale modeling in UGKS on different mesh size scale.

During this modeling process, the evolution solution on the numerical cell size and time
step is used for the construction of the scheme. The coupling of the particle transport,
collision, acceleration in the flux calculation, and the implicit treatment of the source
terms inside each control volume, endow the scheme with multi-scale nature. With the
variation of Knudsen number, inter-species collision frequency, and dimensionless Lar-
mor radius, the scheme unifies the solutions in the kinetic Vlasov regime, the two-fluid
regime, and the MHD regime with a smooth transition among them.

The outline of this paper is the following. Section 2 reviews the kinetic equations, the
Maxwell equations, and their asymptotic behavior in limiting flow regimes. The detailed
formulation of UGKS is proposed in Section 3. Section 4 studies the numerical property
of UGKS as well as the stability constraint. The numerical test cases are given in Section
5 to validate the UGKS in different flow regimes. The last section is the conclusion.
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2 A review of kinetic and hydrodynamic model equations of

plasma

2.1 Kinetic equations and Maxwell equations

The dynamics of a fully ionized plasma are modeled by the Fokker-Planck-Landau (FPL)
equations on the kinetic level

∂ fα

∂t
+u·∇x fα+

Fα

mα
·∇u fα=∑

β

Qα,β( fα, fβ), (2.1)

where fα(x,t,u) is the velocity distribution function of species α (α= i for ion and α= e
for electron). The conservative variables Wα can be calculated by taking the conservative
moments of fα

Wα=
∫

Ψ fαdu, (2.2)

where Ψ=
(

1,u,v,w, 1
2(u

2+v2+w2)
)T

. Fα = e(E+uα×B) is the averaged electromagnetic
force. The collision term Qα,β( fα, fβ) describes the binary collisions between charged par-
ticles with long-range Coulomb interactions

Qα,β( fα, fβ)=∇u ·
(

∫

R3
Φ(u−u′)(∇u fα f ′β−∇′

u f ′β fα)du′
)

, (2.3)

where Φ(u) is a 3×3 matrix

Φ(u)=
1

|u|3 (|u|
2 I3−u⊗u).

In this work, in order to avoid the complexity and high computational cost of the non-
linear Landau collision term, a single BGK-type collision operator proposed by Andries,
Aoki, and Perthame (AAP model) is employed to model the collision process [33]. The
Landau collision operator can be built into our scheme as well using the method we pro-
posed for Boltzmann collision operator [35]. In AAP model, one global collision operator
is used for each component to take into account of both self-collision and cross-collision,
and the kinetic equations read

∂ fα

∂t
+u·∇x fα+

Fα

mα
·∇u fα =

f+α − fα

τα
, (2.4)

where post collision distribution f+α is a Maxwellian distribution

f+α =ρα

(

mα

2πkBTα

)3/2

exp

(

− mα

2πkBTα

(u−Uα)
2

)

. (2.5)
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The parameters Tα and Uα are connected to the macroscopic properties of individual
components by [33]

Uα=Uα+τα∑
r

2
mr

mα+mr
ναr(Ur−Uα),

3

2
kBTα=

3

2
kBTα−

mα

2
(Uα−Uα)

2

+τα∑
r

4mα
mr

(mα+mr)2
ναr

(

3

2
kBTr−

3

2
kBTα+

mr

2
(Ur−Uα)

2

)

,

(2.6)

where ναr are the interaction coefficients that measure the strength of intermolecular colli-
sion. The relaxation time is determined by τα=1/∑r ναr. The parameter ναr is determined
by molecular models, and the hard sphere model is used in this paper [34].

The averaged electric field E and magnetic field B follow the Maxwell equations,














∂B

∂t
=−∇x×E,

∂E

∂t
= c2∇x×B− 1

ǫ0
j,

(2.7)

where c is the speed of light, ǫ0 is the vacuum permittivity which is related to the vac-
uum permeability ν0 by c=(ν0ǫ0)−1/2. The electromagnetic field satisfies the divergence
constraints

∇x ·E=
e

ǫ0
(ni−ne), ∇x ·B=0, (2.8)

where e is the charge of a proton. Theoretically, the divergence constraints will always
hold if they are initially satisfied. However numerical techniques are needed to make
sure that the divergence constraints are satisfied by numerical solutions. The perfectly
hyperbolic Maxwell equations (PHM) [36] are used in current work to evolve the electro-
magnetic field which preserve the divergence constraints,

∂E

∂t
−c2∇x×B+χc2∇xφ=− 1

ǫ0
j,

∂B

∂t
+∇x×E+γ∇xψ=0,

1

χ

∂φ

∂t
+∇x ·E=

e

ǫ0
(ni−ne),

ǫ0µ0

γ

∂ψ

∂t
+∇x ·B=0,

(2.9)

where j is the total electric current density j= eniUi−eneUe, φ, ψ are artificial correction
potentials. Munz et al. proved that the propagation speed of magnetic field divergence
error and electric field divergence error are γc and χc [36]. Our scheme is built on the
BGK-Maxwell system Eqs. (2.4), (2.7), (2.8), which are able to cover the flow regimes of
plasma from the collisionless Vlasov regime to the continuum MHD regime.
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2.2 Asymptotic limits of BGK-Maxwell system

The BGK-Maxwell system is nondimensionalized by the characteristic length l0 (plasma
size) and characteristic velocity U0 =

√
kBT0/mi (ion thermal speed), which produce the

characteristic time of l0/U0. The characteristic molecule mass is ion mass mi, and the
characteristic number density n0, which produce the characteristic energy density min0U2

0 ,
and the characteristic velocity distribution min0/U3

0 . The electric field is normalized
by the product of the characteristic magnetic field B0 and characteristic velocity, i.e.,
E0=B0U0,

x̂=
x

l0
, û=

u

u0
, t̂=

u0

l0
t, m̂=

m

mi
, n̂α=

nα

n0
, Ê=

E

min0U2
0

,

f̂ α=
U3

0

min0
fα, B̂=

B

B0
, Ê=

E

B0U0
, ĵ=

j

en0U0
, λ̂D =

λD

rLi

.

(2.10)

In the following of this paper, all variables are nondimensionalized, and the hats are
omitted for simplicity. Inserting the normalized variables into the BGK-Maxwell system,
we get the following scaled BGK-Maxwell system

∂ fα

∂t
+u·∇x fα+

1

rLi
mα

(E+u×B)·∇u fα =
f+α − fα

τα
,

∂B

∂t
+∇x×E=0,

∂E

∂t
−c2∇x×B=− 1

λ2
DrLi

j,

(2.11)

where the divergence constraints for electromagnetic fields are

∇x ·E=
ni−ne

λ2
DrLi

, ∇x ·B=0. (2.12)

The physically significant similarity parameters are: normalized relaxation time τα, the
scaled Debye length λD, the normalized ion Larmor radius rLi

, the normalized speed of
light c, and the normalized electron mass me in the non-dimensional equations. In the fol-
lowing, we briefly review the asymptotic limits of the BGK-Maxwell system with respect
to these similarity parameters, and the detailed derivations are presented in Appendix
A.

The normalized relaxation time τα is proportional to the Knudsen number Knα, which
is defined as the ratio between the mean free path ℓα and the length scale l0. When
τα ≪min(1,ν−1

ie ), the first order of the BGK-Maxwell system with respect to τα gives the
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following hydrodynamic two-fluid Navier-Stokes equations

∂tρα+∇x ·(ραUα)=0,

∂t(ραUα)+∇x ·(ραUαUα+pαI−µσ(Uα))=
nα

rLi

(E+Uα×B)+Sα,

∂tEα+∇x ·((Eα+pα)Uα−µσ(Uα)U+κ∇xT)=
nα

rLi

Uα ·E+Qα,

(2.13)

where the tensor σ(U) denotes the strain rate tensor given by

σ(Uα)=
(

∇xUα+(∇xUα)
T
)

− 2

3
divxUαI. (2.14)

The viscosity µα and the thermal conductivity κα can be expressed by the relaxation pa-
rameter τα as

µα=ταnαkBTα, κα =τα
5

2

kB

m
nkBT. (2.15)

In the two-fluid system, Si =−Se and Qi =−Qe are the corresponding momentum and
energy exchange between electron and ion,

Sα=
∫

u
f+α − fα

τα
du=∑

r

2mαmr

mα+mr
nαναr(Ur−Uα),

Qα=
∫

1

2
|u−U|2 f+α − fα

τα
du

=∑
r

4mαmr

(mα+mr)2
nrναr

(

3

2
kBTr−

3

2
kBTα+

mr

2
(Ur−Uα)

2

)

.

(2.16)

In the non-conductive limit where the interspecies molecular interaction is intensive and
the electromagnetic waves cannot penetrate, i.e. ν−1

ie ≪min(1,rLi
), the zero-th order of the

two-fluid system with respect to τα and (rLi
νie)

−1 gives the Euler equations for common
velocity U=Ui=Ue and common temperature T=Ti =Te,

∂tρα+∇x ·(ραU)=0,

∂t(ρU)+∇x ·(nkBTI+ρUU)=0,

∂tE +∇x ·((E +nkBT)U)=0,

(2.17)

where

E =
3

2
nkBT+

ρ

2
U2=∑

α

Eα, (2.18)

with Eα the total energy density of species α. In the flow regime where me ≪ mi, λD ∼
c−1 ≪ 1 with a modest value of νie, the first order with respect to rLi

, the zero-th order
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with respect of τα, me/mi and λD of the two-fluid system give the Hall-MHD equations,

∂tρ+∇x ·(ρU)=0,

∂t(ρU)+∇x ·(ρUU+piI)=
ρi

mirLi

(E+U×B),

E+U×B=
rLi

σ
j+

1

nee
j×B+

rLi

nee
∇x pe,

∂tEα+∇x ·((Eα+pα)Uα)=
1

rLi

jα ·E,

∂tB+∇x×E=0,

j= rLi
λ2

Dc2∇x×B,

(2.19)

where ρ=ρi+ρe is the total density, and je =−neeUe is electron current density, ji=nieUi

is ion current density, and

σ=
nie

2(mi+me)

2mimeνie
≈ nie

2

2meνie

is the electrical conductivity, which is related to the magnetic Reynolds number Rem by
σ=Remλ2

Dr2
Li

c2.

The ideal-MHD equations are the zero-th order approximation of the MHD equations
(2.19) with respect to the Larmor radius, which read

∂tρ+∇x ·(ρU)=0,

∂t(ρU)+∇x ·(ρUU+pI)=
(B·∇x)B

µ0
−∇x

(

B2

2µ0

)

,

∂tE +∇x ·((E +p)U)=
1

µ0
ρU·(∇x×B×B),

∂tB+∇x×(U×B)=0,

(2.20)

where p = pi+pe is the total pressure, (B·∇x)B/µ0 is the magnetic tension force, and
∇x(B2/2µ0) is magnetic pressure.

The above analysis shows that in the continuum regime, when the interspecies colli-
sions are strong, the gas mixture behaves like dielectric material, and the BGK-Maxwell
equations goes to Euler equations Eq. (2.17). For a conductive plasma, the BGK-Maxwell
equations can span the complete range from the neutral two-fluid system to the resistive-
MHD, Hall-MHD, and ideal MHD equations as shown in Fig. 4. The developed UGKS
can be applied in the transition regime as well with modest Knudsen number, Debye
length, and Larmor radius, where the corresponding macroscopic governing equations
are not well defined.



C. Liu and K. Xu / Commun. Comput. Phys., 22 (2017), pp. 1175-1223 1187

BGK-Maxwell system

Two fluid system

τ̄α → 0

ν̄
−
1

ie

≪ 1,
r̄L

i

r̄
L
i ≤

ν̄
ie ≪

1

λ̂
D ∼

c −
2· r̄

L
i

Euler equations

Single-fluid description

MHD equations



















Resistivity ∼ O(ν̄ij)

Hall-effect ∼ O(r̄Li
)

electron inertia effect ∼ O(m̄e)



















ν̄ie,r̄Li
,m̄e→0−−−−−−−−−→ ideal-MHD

Figure 4: Asymptotic limits of BGK-Maxwell system.

3 Unified gas kinetic scheme

3.1 General framework

The UGKS is a finite volume scheme for the time evolution of both microscopic distri-
bution function in the phase space X=∑i Ωxi⊗∑j Ωuj =∑i,j Ωxi×uj, and the macroscopic
variables in the physical space ∑i Ωxi. The averaged macroscopic conservative variables
in a physical cell Ωxi are

(Wα)i=
1

|Ωxi|
∫

Ωxi

Wαdx,

similar for the cell averaged electromagnetic field and divergence correction terms Qi =
(E1i,E2i,E3i,B1i,B2i,B3i,φi,ψi)

T. The averaged distribution function in a phase space cell
Ωxi×uj is

( fα)ij=
1

|Ωxi×uj|
∫

Ωxi×vj

fαdxdu.

The time evolution of the velocity distribution function

( fα)
n+1
ij =( fα)

n
ij−

1

|Ωxi| ∑
si∈∂Ωxi

|si|F x
fαsi

− 1

|Ωuj| ∑
s j∈∂Ωuj

|sj|F v
fαs j

+
∫ tn+1

tn

f+αij− fαij

τα
dt, (3.1)

is coupled with the time evolution of the conservative variables

(Wα)
n+1
i =(Wα)

n
i −

1

|Ωxi| ∑
si∈∂Ωxi

|si|FWαsi
+

∆t

τα

(

(W̄)
n
i −(Wα)

n
i

)

+∆tSn+1
Wα i , (3.2)
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where W=(ρα,ραUα,ραE α)T, and Uα and E α are the averaged quantities in AAP model
as Eq. (2.6). More specifically, the componentwise macroscopic equations are

(ρα)
n+1
i =(ρα)

n
i −

1

|Ωxi| ∑
si∈∂Ωxi

|si|
∫ tn+1

tn

∫

u·nsi
fα(xsi

,t,u)dudt, (3.3)

(ραUα)
n+1
i =(ραUα)

n
i −

1

|Ωxi| ∑
si∈∂Ωxi

|si|
∫ tn+1

tn

∫

(u·nsi
)u fα(xsi

,t,u)dudt

+
∆t

τα
(ρn

αUn
α−ρn

αUn
α)+

∆t

rLi

nn+1
α (En+1+Un+1

α ×Bn+1), (3.4)

(ραEα)
n+1
i =(ραEα)

n
i −

1

|Ωxi| ∑
si∈∂Ωxi

|si|
∫ tn+1

tn

∫

(u·nsi
)

u2

2
fα(xsi

,t,u)dudt

+
∆t

τα
(ρn

αE n
α−ρn

αE
n

α )+
∆t

rLi

nn+1
α Un+1

α ·En+1. (3.5)

The time evolution of the electromagnetic fields is

Qn+1
i =Qn

i +
∆t

|Ωxi| ∑
si∈∂Ωxi

|si|FQsi
+∆tSn+1

Qi
, (3.6)

which include the equations

En+1
i =En

i +
∆t

|Ωxi| ∑
si∈∂Ωxi

|si|FEsi
− ∆t

λDrLi

(nn+1
i Un+1

i −nn+1
e Un+1

e ), (3.7)

Bn+1
i =Bn

i +
∆t

|Ωxi| ∑
si∈∂Ωxi

|si|FBsi
, (3.8)

φn+1
i =φn

i +
∆t

|Ωxi| ∑
si∈∂Ωxi

|si|Fφsi
+

∆tχ

λDrLi

(nn+1
i −nn+1

e ), (3.9)

ψn+1
i =ψn

i +
∆t

|Ωxi| ∑
si∈∂Ωxi

|si|Fψsi
, (3.10)

where |Ωxi| is the volume of the cell, si ∈ ∂Ωxi is the cell interface, and |si| is the length
of the i-th cell interface. The numerical fluxes in UGKS for the distribution function
and conservative variables are calculated from a time-dependent distribution function
fα(xsi

,t,u), which will be presented in the next subsection, such as

F
x
fαsi

=
∫ tn+1

tn
u·nsi

fα(xsi
,t,u)dt, (3.11)

FWαsi
=

∫ tn+1

tn

∫

Ψu·nsi
fα(xsi

,t,u)dudt, (3.12)

F
v
fαs j

=
∫ tn+1

tn
ℓ·ns j

f (x,t,us j
)dt, (3.13)
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where n is the outer normal direction at interface, Ψ =
(

1,u,v,w, 1
2(u

2+v2+w2)
)T

, and
ℓ=(lu,lv,lw)T is the acceleration due to Lorenz force.

3.2 Numerical fluxes in UGKS

In this subsection, the detailed formulation of numerical flux is derived (subscript α is
dropped for simplicity). The time dependent distribution function at a cell interface plays
an important role in UGKS for flux calculation, which is modeled based on the integral
solution of the kinetic equation Eq. (2.4),

f (x,t,u)=
1

τ

∫ t

tn
f+(x′,t′,u′)e−

t−t′
τ dt′+e−

t−tn

τ f0(x−u(t−tn),u−ℓ(t−tn)), (3.14)

where x′=x−u(t−tn−t′), u′=u−ℓ(t−tn−t′), and f0(x,u) is the initial distribution func-
tion at t = tn. Assume that the cell interface is located at x0, the velocity cell center is
located at uk, with the normal direction e1, and the local basis (e1,e2,e3). The initial dis-
tribution function is reconstructed as

f0(x,u)=

(

f L
0 (x0)+∆x· ∂ f L

0

∂x
+∆u· ∂ f L

0

∂u

)

(1−H[∆x·e1])

+

(

f R
0 (x0)+∆x

∂ f R
0

∂x
+∆u· ∂ f R

0

∂u

)

H[∆x·e1], (3.15)

where ∆x=x−x0, ∆u=u−uk, H[x] is the Heaviside function

H[x]=

{

1, x>0,

0, x≤0.
(3.16)

Slope limit, such as the van-Leer limiter, is used to reconstruct the slope ∂x f0 and ∂u f0 in
each phase space cell.

The post collision distribution function is expanded around the cell interface as

f+(x,t,u)= f+0 (x0,t,u)
[

1+(1−H[x̃])aL x̃+H[x̃]aR x̃+bỹ+cz̃+A(t−tn)
]

= f+0 (x0,t,uk)
[

1−2λ(u−Ũ)·∆u
]

[

1+(1−H[x̃])aL x̃+H[x̃]aR x̃+bỹ+cz̃+A(t−tn)
]

= f+0 (x0,t,uk)
[

1−2λ(u−Ũ)·∆u+(1−H[x̃])aL x̃+H[x̃]aR x̃+bỹ+cz̃+A(t−tn)
]

,

(3.17)
where x̃=∆x·e1, ỹ=∆y·e2, z̃=∆x·e3. The coefficients aL,R,b,c,A are related to the spatial
and time derivatives of f+, for example

aL,R =
1

f+0

∂ f+0
∂W0

∂WL,R
0

∂x

∣

∣

∣

∣

∣

x=x0

, A=
1

f+0

∂ f+0
∂W0

∂WL,R
0

∂t

∣

∣

∣

∣

∣

t=tn

, (3.18)
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and an analogous expression can be derived for b, c. From the reconstructed distribution
f0(x0,u), the macroscopic conservative variables at a cell interface can be calculated

W0(x0)=
∫

Ψ
(

f L
0 (x0)H[u·e1]+ f R

0 (x0)(1−H[u·e1])
)

du. (3.19)

Then, the averaged macroscopic variables W0 in Eq. (2.6) can be evaluated, and its spacial
derivative is reconstructed to be

∂W
L,R
0

∂x̃

∣

∣

∣

∣

∣

x=x0

=
W

L,R
0 (x0)−W0(xL,R)

(x0−xL,R)·n
. (3.20)

The time derivative are calculated by

∂W0

∂t
=

∫

(

(al
x H[u]+ar

x(1−H[u])u f+0 +ayv f+0 +(E+u×B)· ∂ f+0
∂u

)

Ψdu. (3.21)

Substituting Eq. (3.15) and Eq. (3.17) into the integral solution Eq. (3.14), the time
dependent distribution at the cell interface is

f (x0,t,u0)=
(

1−e(t−tn)/τ
)

f+0 (x0)

+
(

(t−tn+τ)e−(t−tn)/τ−τ
)(

aL H[ũ]+aR(1−H[ũ])
)

ũ f+0 (x0,u0)

+
(

(t−tn+τ)e−(t−tn)/τ−τ
)

(bṽ+cw̃)ũ f+0 (x0,u0)

−
(

(t−tn+τ)e−(t−tn)/τ−τ
)

2λ(u−Ũ)·ℓ f+0 (x0,u0)

+
(

t−tn+τ
(

e−(t−tn)/τ−1
))

A f+0 (x0,u0)

+e−(t−tn)/τ

(

f L
0 (x0,u0)−(t−tn)u· ∂ f L

0

∂x
−(t−tn)ℓ· ∂ f L

0

∂u

)

H[ũ]

+e−(t−tn)/τ

(

f R
0 (x0,u0)−(t−tn)u· ∂ f R

0

∂x
−(t−tn)ℓ· ∂ f R

0

∂u

)

(1−H[ũ]), (3.22)

where ũ = u·e1, ṽ = u·e2, w̃ = u·e3. Based on the above time dependent distribution
function at the cell interface, the UGKS flux can be calculated by Eq. (3.11), (3.12), and
(3.13).

Denote the Jacobian matrix of the PHM system Eq. (2.9) as A1 for x direction with
eigenvectors ℓ

p
1 and r

p
1 , and A2 for y direction with eigenvectors ℓ

p
2 and r

p
2 . The eigen-

systems of the Jacobian matrixes are given in Appendix B. The wave propagation method
proposed by LeVeque [17, 37] is used to construct the numerical flux in Eq. (3.6), for
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example

(

F
x
Q

)

i−1/2,j
=

1

2
(A1Qi,j+A1Qi−1,j)−

1

2
(A+

1 ∆Qi−1/2−A−
1 ∆Qi−1/2) (3.23)

+
1

2 ∑
p

sign(s
p
i−1/2,j)

(

1− ∆t

∆x
|sp

i−1/2,j|
)

LLL
p
1,i−1/2,jΦ(θ

p
1,i−/2,j)

− ∆t

2∆x
A+

1 AAA
−
2 ∆Qi,j+1/2−

∆t

2∆x
A+

1 AAA
+
2 ∆Qi,j−1/2

− ∆t

2∆x
A−

1 AAA
−
2 ∆Qi+1,j+1/2−

∆t

2∆x
A−

1 AAA
+
2 ∆Qi+1,j−1/2, (3.24)

where
LLL

p
1,i−1/2,j=ℓ

p
1,i−1/2,j ·(f1,i,j−f1,i−1,j)r

p
1,i−1/2,j. (3.25)

Φ(θ) is a limiter function [17] with

θ
p
1,i−1/2,j ≡

LLL
p
1,I−1/2,j ·LLL

p
1,i−1/2,j

LLL
p
1,i−1/2,j ·LLL

p
1,i−1/2,j

,

with I= i−1 if s
p
i−1/2>0 and I= i+1 if s

p
i−1/2<0. The left and right going fluctuations are

AAA
±
2 ∆Qi,j−1/2=A±

1 ∆Qi,j−1/2∓∑
p

sign(s
p
i,j−1/2)

(

1− ∆t

∆x
|sp

i,j−1/2|
)

LLL
p
1,i,j−1/2Φ(θ

p
1,i,j−1/2).

(3.26)
An analogous expression can be derived for the Y directional flux.

3.3 Numerical treatment of particle acceleration and collision

In many cases, the electromagnetic acceleration is so large that the time step is restricted
to be very small. In order to remove the constraint, we split the particle acceleration
and collision process into two steps. First we shift the velocity distribution between cell
centers, as shown in Fig. 5-i, which is based on the following considerations. The kinetic
equation

∂ f

∂t
+ℓ·∇u f =

f+− f

τ
(3.27)

V

Figure 5: Two steps to update distribution function.
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has exact solution

f (x,t,u)= f0(x,u−ℓt)e−t/τ+ f+(x,u−ℓt)(1−e−t/τ). (3.28)

Define W∗ as

(Wα)
∗
i =(Wα)

n
i −

1

|Ωxi| ∑
si∈∂Ωxi

|si|FWαsi
+

∆t

τα

(

(W̄)
n
i −(Wα)

n
i

)

, (3.29)

based on which W
∗

and f+∗ can be obtained. Based the exact solution Eq. (3.28), the
distribution functions are shifted as

f ∗∗(uk,vl,wm)= f ∗(uk−su,vl−sv,wm−sw)e
−∆t1/τ+ f+∗(uk−su,vl−sv,wm−sw)(1−e−∆t1/τ),

(3.30)
where su=∆t1lu/∆u, sv=∆t1 lv/∆v, sw=∆t1lw/∆w, and

∆t1 =min

(

∆u

|lu|

⌊ |lu|∆t

∆u

⌋

,
∆v

|lv|

⌊ |lv|∆t

∆v

⌋

,
∆w

|lw|

⌊ |lw|∆t

∆w

⌋)

.

Then the distribution function is updated to the next time step as shown in Fig. 5-ii
by

f n+1=



 f ∗∗− ∑
s j∈∂Ωvj

|sj|
∫ tn+1

tn+∆t1

ℓ·n f (xi,t,uk+1/2)dt+
∆t

τn+1
f+,n+1





/

(

1+
∆t

τn+1

)

, (3.31)

where f+,n+1 and τn+1 are obtained from the updated conservative variables W. As
tn+1−tn−∆t1 is smaller than the relaxation time τ, the simplified upwind flux can be
used in Eq. (3.31),

f (xi,t,uk+1/2)= f (xi,t
n+∆t1,uk+1/2). (3.32)

In summary, the UGKS algorithm is shown as the flowchart in Fig. 6.

4 Limiting solutions of UGKS

4.1 Limits of UGKS flux in different regimes

Define the time averaged UGKS flux as

F̃f =
1

∆t

∫ ∆t

0
u f j+1/2(t)dt. (4.1)

In the limit of ∆t≪τ, F̃f follows the particle transport and acceleration, which gives the
Vlasov flux

lim
∆t/τ→0

F̃f =u

[

fi+1/2−
1

2
∆tu·∂x fi+1/2−

1

2
∆tℓ·∂u fi+1/2

]

, (4.2)
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by net flux across physical cell interface

Calculate the interaction between flow 
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.
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Calculate flux

No
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Figure 6: Flowchart of UGKS algorithm.

which is consistent with the collisionless Vlasov equation. In the limit of ∆t ≫ τ, F̃f

converge to the hydrodynamic flux, which gives

lim
∆t/τ→∞

F̃f =u

[

gi+1/2−τ(∂tgi+1/2+u·∂xgi+1/2+ℓ·∂ugi+1/2)+
1

2
∆t∂t gi+1/2)

]

, (4.3)



1194 C. Liu and K. Xu / Commun. Comput. Phys., 22 (2017), pp. 1175-1223

from which the hydrodynamic two-fluid system can be recovered, as well as the MHD
equations. The flow dynamics depends on the ratio of local time step ∆t to the relaxation
parameter τ. In other words, the UGKS models the plasma evolution on the scales of the
cell size and time step.

4.2 Limits of the source terms for different kinds of MHD equations

Define U∗
α, and E∗ as

(

ρn+1
α U∗

α

)

i
=(ραUα)

n
i −

1

|Ωxi| ∑
si∈∂Ωxi

|si|FραUαsi
+

∆t

τα

(

(

ραUα

)n

i
−(ραUα)

n
i

)

,

E∗
i =En

i +
∆t

|Ωxi| ∑
si∈∂Ωxi

|si|FEsi
.

(4.4)

The update equations of momentum and electric field in UGKS, Eqs. (3.4), (3.7), and (3.9)
are























































ρn+1
i Un+1

i −ρn+1
i U∗

i =
∆t

rLi

nn+1
i (En+1+Un+1

i ×Bn+1),

ρn+1
e Un+1

e −ρn+1
e U∗

e =−∆t

rLi

nn+1
e (En+1+Un+1

e ×Bn+1),

En+1−E∗=− ∆t

λ2
DrLi

(

jn+1
i +jn+1

e

)

,

φn+1−φ∗=
∆tχ

λ2
DrLi

(nn+1
i −nn+1

e ),

(4.5)

which can be rearranged as the following linear system















































∑
α

mαnn+1
α Un+1

α −r−1
Li
(nn+1

i −nn+1
e )∆tEn+1+λ2

DEn+1×Bn+1

=λ2
DE∗×Bn+1+∑

α

mαnn+1
α U∗

α,

∆t(nn+1
e En+1+nn+1

e Ue×Bn+1)+rLi
men

n+1
e Un+1

e = rLi
men

n+1
e U∗

e ,

∆t(nn+1
i Un+1

i −nn+1
e Un+1

e )+λ2
DrLi

En+1=λ2
DrLi

E∗,

λ2
DrLi

φn+1=∆tχ(nn+1
i −nn+1

e )+λ2
DrLi

φ∗.

(4.6)

(4.7)

(4.8)

(4.9)

The implicit source term treatment endows the UGKS with the following two properties.
First, the time step is not restricted by the cyclotron period. As shown in Fig. 7 that

the linear system Eq. (4.5) are contract projection with respect to the helical motion of the
charged particles. The motion of particles will be confined to the magnetic field lines as
time step getting large, which ensures the stability of the scheme.

Second, the asymptotic limits of the BGK-Maxwell system are preserved. As rLi
,λD→

0, Eq. (4.8) preserves the synchronous motion of electron and ion, and the quasi-neutrality



C. Liu and K. Xu / Commun. Comput. Phys., 22 (2017), pp. 1175-1223 1195

−0.8
−0.6 −0.4 −0.2

0 0.2 0.4
0.6 0.8 1

−1

−0.5

0

0.5

0

10

20

30

40

50

60

70

80
E, B

a
−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

×
E, B

b

Figure 7: Helical trajectory calculated by semi-implicit scheme (solid line and square symbols) and by fully

implicit scheme (dotted line and circular symbols). Time step is set to be (a) ∆t=0.2ω−1
c , and (b) ∆t=2ω−1

c .

of plasma

(ji+je)
n+1=−rLi

λ2
D

En+1−E∗

∆t
rLi

,λD→0
−−−−−→ nn+1

i Un+1
i =nn+1

e Un+1
e , ∇·j=0, (4.10)

from which one can derive (ni−ne)∼O(λ2
DrLi

) provided that the system is quasi-neutral
initially. As rLi

→0, Eq. (4.7) converges to the ideal Ohm’s law

(neE+neUe×B)n+1=− rLi

∆t
(ρn+1

e Un+1
e −ρn+1

e U∗
e )

rLi
→0

−−−→ En+1+Un+1×Bn+1=0. (4.11)

As rLi
→0 and λD ∼ c−1, Eq. (4.6) gives nn+1

e =nn+1
i and the MHD momentum equation

∑
α

mαUn+1
α −mαU∗

α

∆t
=

En+1

rLi

(ni−ne)
n+1−λ2

D

En+1−E∗

∆t
×Bn+1

rLi
→0

−−−−→
λD∼c−1

∑
α

mαUn+1
α −mαU∗

α

∆t
≈ (∇×Bn)×Bn+1. (4.12)

In the limit of rLi
→0, the linear system (4.6)-(4.9) becomes











































∑
α

mαnn+1
α Un+1

α +λ2
DEn+1×Bn+1

=λ2
DE∗×Bn+1+∑

α

mαnn+1
α U∗

α,

En+1+Ue×Bn+1=0,

Un+1
i =Un+1

e ,

φn+1=φn.

(4.13)
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In this quasi-neutral regime, the electric field is automatically calculated from the Ohm’s
law. Eq. (4.11) indicates that UGKS provides a smooth transition from the Ampère’s Law
to the ideal Ohm’s law with a decreasing of the Larmor radius rLi

, which can remove the
speed of light constraint on time step in the continuum MHD regime. For large rLi

, the
time step constraint of UGKS is

∆t=
CFL∆x

max(U+4cs,c)
=CFL

∆x

c
. (4.14)

The CFL number increases as rLi
decreases. For example, in the Brio-Wu shock test case

in the next section, CFL=0.3 for rLi
<1, CFL=0.4 for rLi

=10−1, CFL=0.5 for rLi
=10−2,

CFL=1.2 for rLi
=10−3. When rLi

is set to be zero for ideal MHD solutions, the time step
will not be limited by the speed of light, and is determined by

∆t=CFL
∆x

U+max(cm,4cs)
, (4.15)

where cs is the sound speed and cm is the fast magneto-sound speed.

5 Numerical experiments

In this section, the UGKS is tested for cases from the collisionless regime to the MHD
one. In the collisionless Vlasov regime, we consider the classical test cases of Landau
damping and two stream instability. The relaxation parameter τ in Vlasov limit is set to
be τ=103 (in program exp(−∆t/τ) is assigned to 1 in order to avoid machine error). For
these test cases, we view ions as a fixed background and consider the motion of electrons.
The reason for the setting is that there is corresponding reference solutions under such a
condition. Because no magnetic field is involved, and the Maxwell equations degenerate
to the Poisson equation, so the FFT-based Poisson solver can be used to calculate the elec-
tric field. In MHD regime, we first calculate the one dimensional Brio-Wu shock tube test
case. With the reduction of normalized Larmor radius, the solution goes from the Euler
solution to Hall-MHD solution, and finally converges to the ideal-MHD solution. For
two dimensional test cases, we first consider the Orszag-Tang MHD turbulence problem
which tests the performance of UGKS in capturing MHD solutions. After testing UGKS
in both limiting regimes, the scheme is used to study the GEM magnetic reconnection
problem, which happens on the Debye length scale.

In order to reduce computational cost, the reduced distribution functions are used in
our numerical calculation. For the x-dimensional Brio-Wu shock tube problem which is
homogeneous in the y,z-dimensional physical space, the reduced distributions are de-
fined as

hα,0(u)=
∫ ∞

−∞

∫ ∞

−∞
fαdvdw, hα,1(u)=

∫ ∞

−∞

∫ ∞

−∞
v fαdvdw,

hα,2(u)=
∫ ∞

−∞

∫ ∞

−∞
w fαdvdw, hα,3(u)=

∫ ∞

−∞

∫ ∞

−∞
(v2+w2) fαdvdw.

(5.1)
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Similarly, the reduced post-collision distributions are defined as

Hα,0=
∫

f+α dw=ρα

√

λ̄α

π
exp

(

−λ̄α((u−Ūα)
2)
)

,

Hα,1=
∫

v f+α dw=ραVα

√

λ̄α

π
exp

(

−λ̄α((u−Ūα)
2)
)

,

Hα,2=
∫

w f+α dw=ραWα

√

λ̄α

π
exp

(

−λ̄α((u−Ūα)
2)
)

,

Hα,3=
∫

(v2+w2) f+α dw=ρα

(

V2
α +W2

α+
1

λ̄α

)

√

λ̄α

π
exp

(

−λ̄α((u−Ūα)
2)
)

.

(5.2)

And the reduced BGK equation can be derived as
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∂u
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H0−h0

τ
,

∂h1
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∂h1

∂x
+l1

∂h1

∂u
=

H1−h1

τ
+l2h0,

∂h2

∂t
+u

∂h2

∂x
+l1

∂h2
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=

H2−h2

τ
+l3h0,

∂h3

∂t
+u

∂h3

∂x
+l1

∂h3

∂u
=

H2−h2

τ
+2l2h1+2l3h2.

(5.3)

Similarly for the two dimensional Orszag-Tang Vortex and magnetic reconnection prob-
lem, the reduced distributions are defined as

hα,0(u,v)=
∫

f dw, hα,1(u,v)=
∫

w f dw, hα,2(u,v)=
∫

w2 f dw. (5.4)

And the corresponding reduced BGK equations can be derived. Therefore, in the fol-
lowing numerical test cases, the numerical velocity space is one dimensional for Brio-Wu
shock, multiple scale shock tube problem, and the numerical velocity space is two dimen-
sional for Orszag-Tang Vortex, magnetic reconnection problem. The numerical fluxes for
the two dimensional reduced distributions are given in Appendix C.

5.1 Linear Landau damping

A Vlasov-Poisson (VP) system is perturbed by a weak signal. The linear theory of Landau
damping can be applied to predict the linear decay of electric energy with time [2]. The
initial condition of linear Landau damping for the Vlasov Poisson system is

f0(x,u)=
1√
2π

(1+αcos(kx))e−
u2

2 , (5.5)

with α= 0.01. The length of the domain in the x direction is L= 2π/k. The background
ion distribution function is fixed, uniformly chosen so that the total net charge density for



1198 C. Liu and K. Xu / Commun. Comput. Phys., 22 (2017), pp. 1175-1223

time

lo
g

E
(t

)
L2

0 20 40 60

-12

-8

-4

UGKS
Theory

γ=-0.1533

time

lo
g

E
(t

)
L2

0 20 40 60

-8

-4

UGKS
Theory

γ=-0.0661

time

lo
g

E
(t

)
L2

0 20 40 60

-6

-4

-2

UGKS
Theory

γ=-0.0126

Figure 8: Weak Landau damping. Time evolution of electric field in L2 norm. k= 0.5 (upper), k= 0.4 (lower
left) and k=0.3 (lower right).

the system is zero. When perturbation parameter α= 0.01 is small enough, the Vlasov-
Poisson system can be approximated by linearization around the Maxwellian equilib-
rium. The analytical damping rate of electric field can be derived accordingly. We test
our scheme with different wave numbers and compare the numerical damping rates with
theoretical values. The phase space is discretized with Nx×Nu = 128×128 cells with
umax=5U0. We plot the evolution of electric field in L2 norm in Fig. 8 for k=0.5, k=0.4,
and k = 0.3. The correct decay rates of the electric field are observed and are matched
with theoretical values. In addition, the frequencies of oscillating solutions consist with
the theoretical values of ω= 1.41, ω= 1.29, ω= 1.16. The profile of velocity distribution
f (x= 0,u,t) is plotted in Fig. 9, which shows that the particles with low velocity absorb
energy from the electric wave.

5.2 Nonlinear Landau damping

When the VP system is perturbed by a large amplitude, the nonlinear effect will appear
[2]. For nonlinear landau damping, the initial condition is similar to the linear case while
the parameters are set as α=0.5 and k=0.5. The mesh size is set to be Nx×Nu=256×256.
Fig. 10 shows the L2 norms of electric field computed by UGKS. The linear decay rate
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Figure 10: Strong Landau damping. Time evolution of electric field in L2 norm.

of electric energy is approximately equal to γ1 =−0.287, which is identical to the value
obtained by Heath et al.. The growth rate provided by UGKS is approximately γ2=0.078,
which is between the value of 0.0815 computed by Rossmanith and Seal and 0.0746 by
Heath et al.. The contours of velocity distribution at different times are shown in Fig. 11.
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Figure 11: Strong Landau damping. Velocity distribution contours. Nx×Nu=256×256.

The profile of velocity distribution at x=0 is plotted in Fig. 12, from which the nonlinear
effect is clearly observed.

5.3 Linear two stream instability

Consider linear two stream instability problem with initial distribution function:

f (x,u,t=0)=
2

7
√

2π
(1+5v2)(1+α((cos(2kx)+cos(3kx))/1.2+cos(kx)))e−

u2

2 , (5.6)

where α= 0.001 and k= 0.2. The length of the domain in the x direction is L= 2π
k . The

background ion distribution function is fixed, uniformly to balance the charge density of
electron. After an initial transition, a linear growth rate of electric field can be found, and
the value can be theoretically calculated [2]. In Fig. 13, we plot the evolution of electric
field in L2 norm. The growth rate predicted by UGKS is the same as the theoretical one.
The velocity distribution contours at time t=70 with mesh sizes Nx×Nu =256×256 and
Nx×Nu =512×512 are presented in Fig. 14.
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5.4 Nonlinear two stream instability

For the nonlinear case of two stream instability, we use a symmetric initial condition

f (x,u,t=0)=
1

2vth

√
2π

[

exp

(

− (u−U)2

2u2
t

)

+exp

(

− (u+U)2

2u2
t

)]

(1+αcos(kx)), (5.7)
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with α= 0.05, U= 0.99, ut = 0.3, and k= 2
13 . In Fig. 15, we show the numerical results of

the contours of distribution function at t=70. The computations show that the detailed
structures of f can only be captured with very fine mesh Nx×Nu=512×512 for a second
order scheme.

5.5 Brio-Wu shock tube

The Brio-Wu shock tube is a standard test case for ideal MHD solvers in continuum
regime [13, 17]. The same initial condition as the Brio-Wu one is shown in Fig. 16. The
initial correct potential φ and ψ for electromagnetic field are set to be zero. The ion to
electron mass ratio is set to be 1836, and the ionic charge state is set to be unity. The
Knudsen number of the following test case is set to be 10−5, and νie is defined the same
as the one in the original AAP model [33]. The normalized Debye length is 0.01, and the
normalized speed of light is 100. The ion Larmor radius takes different values normal-
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Figure 16: Initial condition for Brio-Wu shock tube problems.

ized by the length of the domain, i.e. rLi
= 100,0.01,0.003. The grid points in physical

space are 1000. The velocity space is [−5,5] for ion and [−5
√

1836,5
√

1836] for electron
with 32 grid points.

In this test case, different time steps for electron and ion are used to reduce the com-
putational cost. Specifically, based on the CFL number, the time step ∆ti for ions is chosen
to be five times of the time step ∆te for electrons. During one ∆te the ions are supposed
to be fixed, after evolving the electrons five times with ∆te each, we update ions for one
∆ti and couple them with electrons through electromagnetic field.

The averaged density and velocity are calculated by

ρ=
ρimi+ρeme

mi+me
, U=

Uimi+Ueme

mi+me
.

The results of the density, velocity, and magnetic field profiles, which are compared with
the gas dynamic results, and MHD results are shown in Fig. 17. It can be observed that
the solutions behave like Euler solutions at large normalized Larmor radius. When nor-
malized Larmor radius gets small, the behavior of plasma fluid follows the Hall-MHD
and towards to ideal MHD solutions.

5.6 Multiple scale shock tube problem

In this calculation, we study how the solution is developed from the initial condition
to the final MHD one. Multi-scale solutions can be observed at different output times.
The ion to electron mass ratio is set to be 25 and νie is set to be zero. The characteristic
length is fixed to be 1000 ion Larmor radius. The upstream Debye length is 0.01rLi

. The
velocity space is [−3,3] for ion and [−15,15] for electron with 16 grid points. Based on
different output times, the cell size is initially fixed with different value. The ion number
density at times t= 10−5,10−4,10−3,10−2,10−1 by UGKS are shown in Fig. 18, which are
compared with the Vlasov solutions and hydrodynamic two-fluid solutions. The relative
Knudsen number Kn for each output solution, which is defined as the ratio between
the mean free path ℓ and the plotted domain length L is Kn= 10−1,10−2,10−3,10−4,10−5
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Figure 17: Results of the averaged density, averaged velocity, ion-electron density, ion-electron velocity, and
magnetic field profiles from top to bottom, at rLi

=100,0.01,0.003 from left to right.
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Figure 18: Solutions of the Brio-Wu shock tube at output times t=10−5 (a), 10−4 (b), 10−3 (c), 10−2 (d), 10−1

(e). The UGKS solutions are compared with the two fluid system solutions, Vlasov solutions (for t=10−5,10−4)

and MHD solution (for t=10−1).
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for solutions (a)-(e) in Fig. 18. For the solution at t = 10−5, the cell size is 2.0×10−7,
which is much less than the ion Larmor radius ∆x = 2×10−4rLi

, and the time step is
∆t = 3×10−3τi = 2×10−3ω−1

pi . At this output time, the UGKS solution goes to Vlasov

one due to this collisionless limit, which is different from the hydrodynamic two-fluid
solutions. The cell sizes used for solutions with output times t=10−4,10−3,10−2 are ∆x=
2.0×10−6,2.0×10−5,2.0×10−4 respectively. In the transition regime, in comparison with
the solutions from the Vlasov and hydrodynamic two-fluid equations, the solution of
UGKS should be physically reliable. A large cell size ∆x=2×10−3 is used for the solution
with the output time t = 0.1, and this cell size is two times as large as the ion Larmor
radius, and the time step for this case is ∆t=30τi =25ω−1

pi . It is shown that at the output

time t=0.1, both the UGKS and two fluid system solutions converge to the MHD solution
in this hydrodynamic regime. The computational time for UGKS to get solution at t=0.1
is 126 seconds on a 3.40GHz 4-core CPU machine.

5.7 Orszag-Tang vortex

This problem was introduced by Orszag and Tang as a simple model to study MHD
turbulence [38, 39]. The mass ratio is set as mi/me =25, the Knudsen number is 10−5 and
the Larmor radius is set to be zero for ideal MHD solutions first. The initial data for the
current study is

ni =ne=γ2, Pi=Pe=γ, By=sin(2x),

ui,x =ue,x=−sin(y), ui,y=ue,y=sin(x),

where γ= 5/3. The electromagnetic correction potentials are set φ=ψ= 0 initially. The
interspecies collision factor νie is set to be zero. The computation domain is [0,2π]×[0,2π]
with a uniform mesh of 200×200 cells. The velocity space for ion is [−3,3]×[−3,3] and
for electron is [−5

√
5,5

√
5]×[−5

√
5,5

√
5] with 32×32 velocity grids. Periodic bound-

ary conditions are imposed in both x and y-directions. Various values of Larmor radius
rLi

= 0,0.5,1.0,2.0 are used in our calculation. The total density, total pressure, magnetic
pressure, and total kinetic energy distributions at output times t = 0.5,2,3 for rLi

= 0 is
shown in Figs. 19-21. Fig. 22 shows the results for rLi

= 1.0 at t= 3. In Fig. 23, we plot
the pressure distribution along y=0.625π for rLi

=1.0 and rLi
=0 cases, and compare the

results of rLi
=0 with the ideal MHD solution.

The magnetic reconnection happens near the center of the computational domain as
shown in Fig. 24, which merges two ’magnetic rings’ into a single one with the time
evolution. The magnetic reconnection mechanism is different for different rLi

, as shown
in Fig. 24. For rLi

= 0 case, the aspect ratio of the reconnection layer is large where a
double Y-point geometry is observed. In this case, the reconnection is driven by the
magnetic diffusion, following the mechanism described by the Sweet-Parker model [40].
For rLi

=0.5,1.0 cases, the Hall effect shows up and the length of reconnection layer gets
shorter. Electron current sheet is observed along the reconnection layer. For rLi

=2.0 case,
the Hall effect becomes dominant and an X-point geometry is observed. The simulation
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Figure 19: The Orszag-Tang MHD turbulence problem (rLi
=0) with a uniform mesh of 192×192 grid points.

The output time is t=0.5. (a) density; (b) gas pressure; (c) magnetic pressure; (d) kinetic energy.
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Figure 20: The Orszag-Tang MHD turbulence problem (rLi
= 0) at output time t = 2. (a) density; (b) gas

pressure; (c) magnetic pressure; (d) kinetic energy.
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Figure 21: The Orszag-Tang MHD turbulence problem (rLi
= 0) at output time t= 3. (a) density; (b) gas

pressure; (c) magnetic pressure; (d) kinetic energy.
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Figure 22: The Orszag-Tang MHD turbulence problem (rLi
= 1.0) at output time t= 3. (a) density; (b) gas

pressure; (c) magnetic pressure; (d) kinetic energy.
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Figure 23: Pressure distribution along the line y=0.625π: (a) rLi
=0, UGKS solution and ideal-MHD solution

[39]. (b) rLi
=1.0, UGKS solution only.
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Figure 24: The topology of magnetic lines near the center of computational domain at t=2 with (a) rLi
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=0.5,(c) rLi

=1.0 and (d) rLi
=2.0. The electron current sheets during the reconnection process are shown

in (b), (c), and (d).
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shows that the reconnection rate is increased with a higher energy transfer efficiency as
rLi

increases.

5.8 Magnetic reconnection

Magnetic reconnection is a process in which the topology of the magnetic field lines
changes [41]. In ideal MHD, the magnetic field lines cannot be changed as the field lines
are ’frozen’ into the fluid. Various models were used to describe this phenomenon, for ex-
ample the electron MHD [42], MHD and Hall MHD [43,44], full particle [45], and hybrid
model [46]. It was found that the reconnection initiates at a length scale on the order of
the electron skin depth and the reconnection rate is governed by the ion dynamics. Our
scheme is based on the Vlasov-BGK equation which can describe the physics at electron
skin depth level. Hence it can be used to describe the reconnection process.

The simulation uses the same initial conditions as the GEM challenge problem [17].
The initial magnetic field is given by

B(y)=B0tanh(y/λ)ex,

and a corresponding current sheet is carried by the electrons

Je =−B0

λ
sech2(y/λ)ez.

The initial number densities of electron and ion are

ne =ni=1/5+sech2(y/λ).

The electron and ion pressures are set to be

Pi=5Pe =
5B0

12
n(y),

where B0 = 0.1, mi = 25me and λ = 0.5. The electromagnetic correction potentials are
set φ=ψ= 0 initially. The computational domain is [−Lx/2,Lx/2]×[−Ly/2,Ly/2] with
Lx = 8π, Ly = 4π, which is divided into 200×100 cells. Periodic boundaries are applied
at x=±Lx/2 and conducting wall boundaries at y=±Ly/2. To initiate reconnection, the
magnetic field is perturbed with δB=ez×∇xψ, where

ψ(x,y)=0.1B0 cos(2πx/Lx)cos(πy/Ly).

The velocity space for ion is [−3,3]×[−3,3] and for electron is [−25,25]×[−25,25] with
32×32 velocity grids. The computational time for UGKS is about 1342 mins on a 3.40GHz
4-core CPU.

Fig. 25 shows the reconnected flux of UGKS defined by

φ(t)=
1

2Lx

∫ Lx/2

−Lx/2
|By(x,0,t)|dx,
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Figure 26: Magnetic flux at ωt=40 with rL =1.

which are compared with other GEM results. The fast reconnection rate can be predicted
by UGKS, and the magnitude of reconnected flux depends on the plasma conditions.
It can be observed from the results that the reconnected flux from UGKS behaves likes
resistive-MHD result when the normalized Larmor radius is small (rL = 0.5), and ap-
proaches to Hall-MHD solution when the normalized Larmor radius is large (rL = 2).
Fig. 26 shows the magnetic flux at ωt=40, with rL =1. Fig. 27 shows the electromagnetic
and flow energy. The total energy of the system almost keeps a constant. The electron
and ion densities, and momentum distribution at t=40ω−1 are shown in Fig. 28, as well
as the electromagnetic fields.
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Figure 28: The reconnection process with rL = 1.0 at t = 40ω−1. (a) ion density; (b) electron density; (c)
x-directional electric current density; (d) y-directional electric current density; (e) z-direction magnetic field;
(e) z-direction electric field.
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6 Conclusion

In this paper, a multi-scale numerical method for multi-species plasma simulation in the
whole flow regimes has been constructed. The UGKS takes into account the collisions
among electrons and ions, and their coupling with the full Maxwell equations. The UGKS
describes the plasma evolution on the mesh size and time step scales, which intrinsically
provides the fundamental multi-scale discretized governing equations. The flow physics
covered by the current scheme is more general than those from either the collisionless
Vlasov equation or MHD equations in the corresponding kinetic or hydrodynamic limit
alone. More importantly, the UGKS can give a reliable physical solution in the transi-
tional regime as well, which has not been fully explored before from the particle-based
and MHD-based numerical methods.

In the generalized Brio-Wu test case, the UGKS presents a smooth transition from
neutral fluid results to the MHD solutions. At the same time, with the time evolution
the results from the kinetic Vlasov equation and the solutions from the hydrodynamic
two-fluid system have been recovered in the single UGKS formulation. The study of the
Orszag-Tang turbulence problem shows the ability of the UGKS in capturing all kinds
of MHD solutions and recovering the magnetic reconnection mechanism under different
conditions. The UGKS is also able to capture the phenomena on the scale of Debye length,
such as the fast magnetic reconnection in GEM case. The direct modeling methodology
makes it possible to construct UGKS for the study of multi-scale transport in the rarefied
gas dynamics, radiative transfer, and plasma physics.
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A Asymptotic limits of BGK-Maxwell system

A.1 Hydrodynamic two-fluid system in continuum regime

We study the asymptotic limit of nondimensional BGK-Maxwell system Eq. (2.11) in the
regime where the nondimensional collision rate ναα ≫max(1,νie) for α= i,e, equivalently
the nondimensional relaxation parameter τα ≪ 1. The velocity distribution function fα

and the post collision distribution function f+α can be expanded as

f+α = gα0+ταgα1+O(τ2
α ),

fα= fα0+τα fα1+O(τ2
α ),

(A.1)
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where g0 is the Maxwellian distribution with conservative moments

∫

Ψg0du= lim
τα→0

Wα=Wα. (A.2)

Substitute expansion Eq. (A.1) into Eq. (2.11), the balance of O(τ−1
α ) terms give

fα0= gα0. (A.3)

Therefore the zero-th order of the BGK equation is

∂gα0

∂t
+u·∇xgα0+

e

rLi
mα

(E+u×B)·∇ugα0=
f+α −gα0

τα
. (A.4)

By taking conservative moments to Eq. (A.4), the hydrodynamic two-fluid Euler equa-
tions can be obtained [17].

A.2 Euler equations in nonconductive limit

The hydrodynamic two-fluid Euler equations converge to one fluid Euler equations in
the nonconductive limit, when the interspecies collision rate is strong enough so that
the electromagnetic waves cannot penetrate. In this regime ν−1

ie ≪min(1,rLi
), the flow

velocity and temperature of ion can be expanded as

Ui=Ui0+ν−1
ie Ui1+O(ν−2

ie ),

Ti=Ti0+ν−1
ie Ti1+O(ν−2

ie ).
(A.5)

Substituting expansion Eq. (A.5) into the ion momentum equation in the two fluid Euler
system, the balance of O(νie) terms give

Ui0=Ue. (A.6)

Then, the velocity difference of electron and ion is to the order of ν−1
ie . The zero-th order

w.r.t. (rLi
νie)

−1 of the two fluid momentum equation gives

∂t(ραU)+∇x ·(ραUU+pα I)=0, (A.7)

where U=Ui0=Ue0 is the common velocity. Substitute expansion Eq. (A.5) into the ion
energy equation in the two fluid Euler system, the balance of O(νie) terms gives

Ti0=Te0. (A.8)

Therefore, the ion and electron share the same temperature to the zero-th order of ν−1
ie . In

the limit νie →∞, the zero-th order of the two fluid system w.r.t (rLi
νie)

−1 gives the Euler
equations for the total density, common velocity and temperature in Eq. (2.17).
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A.3 General Ohm’s law, Hall-MHD equations, and MHD equations

For a modest value of interspecies interaction coefficient νie, the Hall effect or the sepa-
rated motion of ions and electrons can take place. In such a case, the electron momentum
equation can be written as

E+Ui×B=
2rLi

mimeνie

(mi+me)nee2
j+

1

nee
j×B+

rLi

nee
∂t(ρeUe)+

rLi

nee
∇x ·(ρeUeUe+pe I). (A.9)

The first term on the righthand side is the electric resistivity, the second term corresponds
to the Hall effect, the last two term corresponds to the effect of electron inertia and pres-
sure. We write the center-of-mass velocity as U,

U=
miUi+meUe

mi+me
. (A.10)

In the limit me/mi≪1, we have

Ui =U+O
(me

mi

)

,

Ue =U− j

ne
+O

(me

mi

)

.
(A.11)

In the limit λD ∼ c−1≪1, the Ampère’s law becomes

j= rLi
λ2

Dc2∇x×B+O(U2
0/c2), (A.12)

where the displacement current is to the order of the square of ratio between the reference
velocity to the speed of light. The above low frequency Ampère’s law indicates that
∇·j=0, and therefore in this regime, the plasma is quasi-neutral, namely ni ≈ne. In the
limit me/mi→0 and λD∼c−1→0, the electron momentum equation gives the generalized
Ohm’s law

E+U×B=
rLi

σ
j+

1

nee
j×B+

rLi

nee
∇xpe. (A.13)

In such regime, the two fluid equations reduce to one fluid Hall-MHD equations (2.19).

The Hall term and the electron pressure term are on the order of Larmor radius. In
the limit rLi

→0, both the current density and the electric pressure term converge to zero,
and the generalized Ohm’s law reduces to the ideal Ohm’s law

E+U×B=0. (A.14)

Substituting Eq. (A.14) into Eq. (2.19), the ideal-MHD equations Eq. (2.20) can be ob-
tained, which is valid in the highly collisional and highly magnetized regime.
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B Eigen-system of perfectly hyperbolic Maxwell equations

The PHM equations [36] read

∂Q

∂t
+A1

∂Q

∂x
+A2

∂Q

∂y
= s, (B.1)

where Q=(E1,E2,E3,B1,B2,B3,φ,ψ)T, s=(−J1/ǫ,−J2/ǫ,−J3/ǫ,0,0,0,χρ/ǫ0 ,0)T,

A1=

























0 0 0 0 0 0 c2χ 0
0 0 0 0 0 c2 0 0
0 0 0 0 −c2 0 0 0
0 0 0 0 0 0 0 ν
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
χ 0 0 0 0 0 0 0
0 0 0 c2ν 0 0 0 0

























,

and

A2=

























0 0 0 0 0 −c2 0 0
0 0 0 0 0 0 c2χ 0
0 0 0 c2 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 ν
−1 0 0 0 0 0 0 0
0 χ 0 0 0 0 0 0
0 0 0 0 c2ν 0 0 0

























.

For A1, the eigenvalues are {c,c,cχ,cν,−c,−c,−cχ,−cν}. The right eigenvectors of A1

are given by the columns of the matrix

R1=

























0 0 c 0 0 0 −c 0
0 c 0 0 0 −c 0 0
−c 0 0 0 c 0 0 0
0 0 0 1/c 0 0 0 −1/c
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

























.
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The left eigenvectors are the rows of the matrix

L1=



























0 0 − 1
2c 0 1

2 0 0 0

0 1
2c 0 0 1

2 0 0 0
1
2c 0 0 0 0 0 1

2 0

0 0 0 0 c
2 0 0 1

2

0 0 1
2c 0 1

2 0 0 0

0 − 1
2c 0 0 1

2 0 0 0

− 1
2c 0 0 0 0 0 1

2 0

0 0 0 0 − c
2 0 0 1

2



























.

For A2, the eigenvalues are {c,c,cχ,cν,−c,−c,−cχ,−cν}. The right eigenvectors of A2

are given by the columns of the matrix

R2=

























0 −c 0 0 0 c 0 0
0 0 c 0 0 0 −c 0
c 0 0 0 −c 0 0 0
1 0 0 0 1 0 0 0
0 0 0 1/c 0 0 0 −1/c
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

























.

The left eigenvectors are the rows of the matrix

L2=



























0 0 1
2c

1
2 0 0 0 0

− 1
2c 0 0 0 0 1

2 0 0

0 1
2c 0 0 0 0 1

2 0

0 0 0 0 c
2 0 0 1

2

0 0 − 1
2c

1
2 0 0 0 0

1
2c 0 0 0 0 1

2 0 0

0 − 1
2c 0 0 0 0 1

2 0

0 0 0 0 − c
2 0 0 1

2



























.

C Numerical flux for the reduced distribution function and the

update of reduced distribution function

In this appendix, we present the numerical flux for reduced distribution function and the
update of reduced velocity distribution function due to Lorenz acceleration and collision.
The two dimensional problems are considered with three reduced distribution functions
introduced in Eq. (5.4), the subscript α is omitted in this appendix.
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C.1 Numerical flux for the reduced distribution function

The numerical flux for the reduced distribution function can be obtained by taking corre-
sponding moments and time integration to the integral solution of BGK equation (3.22).
Denoting the time integration by

Mt1=τe−∆t/τ+∆t−τ, Mt2=τ
(

−e−∆tτ(∆t+2τ)−∆t+2τ
)

,

Mt3=
(

−τ2e−∆t/τ+∆t2/2−τ∆t+τ2
)

, Mt4=τ
(

1−e−∆t/τ
)

,

Mt5=τ
(

e−∆t/τ(∆t+τ)−τ
)

.

The numerical flux for h0, h1 and h2 are

Fh0,i−1/2=
∫ ∆t

0

∫

u f (xi−1/2,yj,t,up,vq,wr)dwdt

=Mt1uH0+Mt2u2H(u)

(

aL
x ·
(

1,u,v,0,
1

2
(u2+v2)

)

H0+aL
x,4H1+

1

2
aL

x,5H2

)

+Mt2u2(1−H[u])

(

aR
x ·
(

1,u,v,0,
1

2
(u2+v2)

)

H0+aR
x,4H1+

1

2
aR

x,5H2

)

+Mt2uv

(

ay ·
(

1,u,v,0,
1

2
(u2+v2)

)

H0+a4
xH1+

1

2
a5

x H2

)

−Mt2u(l1λ(u−U)H0+l2λ(v−V)H0)

+Mt3u

(

A·
(

1,u,v,0,
1

2
(u2+v2)

)

H0+A4H1+
1

2
A5H2

)

+Mt4u(hL
0 H[u]+HL

0 (1−H[u]))

−Mt5H[u](u2hL
0x+uvhL

0y+ul1 f L
0u+vl2 f L

0v)

−Mt5(1−H[u])(u2hR
0x+uvhR

0y+ul1 f R
0u+vl2 f R

0v), (C.1)

Fh1,i−1/2=
∫ ∆t

0

∫

uw f (xi−1/2,yj,t,up,vq,wr)dwdt

=Mt1uH1+Mt2u2H[u]

(

aL
x ·
(

1,u,v,0,
1

2
(u2+v2)

)

H1+aL
x,4H2+

1

2
aL

x,5<w3
>H0

)

+Mt2u2(1−H[u])

(

aR
x ·
(

1,u,v,0,
1

2
(u2+v2)

)

H1+aR
x,4H2+

1

2
aR

x,5<w3
>H0

)

+Mt2uv

(

ay ·
(

1,u,v,0,
1

2
(u2+v2)

)

H1+a4
xH2+

1

2
a5

x <w3
>H0

)

−Mt2u(l1λ(u−U)H1+l2λ(v−V)H1+l3H0)
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+Mt3u

(

A·
(

1,u,v,0,
1

2
(u2+v2)

)

H1+A4H2+
1

2
A5

<w3
>H0

)

+Mt4u(hL
1 H[u]+HL

1 (1−H[u]))

−Mt5H[u](u2hL
1x+uvhL

0y+ul1 f L
1u+vl2 f L

1v−l3h0)

−Mt5(1−H[u])(u2hR
1x+uvhR

1y+ul1 f R
1u+vl2 f R

1v−l3h0), (C.2)

Fh2,i−1/2=
∫ ∆t

0

∫

uw2 f (xi−1/2,yj,t,up,vq,wr)dwdt

=Mt1uH2+Mt2u2H(u)

(

ax ·
(

1,u,v,0,
1

2
(u2+v2)

)

H2

+aL
x,4<w3

>H0+
1

2
aL

x,5<w4
>H0

)

+Mt2u2(1−H[u])

(

aR
x ·
(

1,u,v,0,
1

2
(u2+v2)

)

H2

+aR
x,4<w3

>H0+
1

2
aR

x,5<w4
>H0

)

+Mt2uv

(

ay ·
(

1,u,v,0,
1

2
(u2+v2)

)

H2+a4
x <w3

>H0+
1

2
a5

x <w4
>H0

)

−Mt2u(l1λ(u−U)H2+l2λ(v−V)H2+l3H1)

+Mt3u

(

A·
(

1,u,v,0,
1

2
(u2+v2)

)

H2+A4
<w3

>H0+
1

2
A5

<w4
>H0

)

+Mt4u(hL
2 H[u]+HL

2 0(1−H[u]))

−Mt5H[u](u2hL
2x+uvhL

2y+ul1 f L
2u+vl2 f L

2v−2l3h1)

−Mt5(1−H[u])(u2hR
2x+uvhR

2y+ul1 f R
2u+vl2 f R

2v−2l3h1). (C.3)

And the numerical flux for W is

Fw,i−1/2=Mt1ρ0<uφ>+Mt2ρ0(< axu2φ>+< ayuvφ>)+Mt3ρ0 <Auφ>

−Mt2ρ0
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−Mt5
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1
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2 ∑ω(2u(u2+v2)h0+2uh2+3u2u(h0+h1))















, (C.4)

where <···> is the moments of equilibrium distribution function and ∑ is the summation
over all velocity points with the weighting function ω.

C.2 Update of the reduced distribution function

Based the exact solution Eq. (3.28), firstly the distribution functions is shifted as

h∗∗0 (uk,vl)=h∗0(uk−su,vl−sv)e
−∆t1/τ+(H∗

0 (uk−su,vl−sv))(1−e−∆t1/τ),

h∗∗1 (uk,vl)=h∗1(uk−su,vl−sv)e
−∆t1/τ+(H∗

1 (uk−su,vl−sv)+τl3h∗0)(1−e−∆t1/τ),

h∗∗2 (uk,vl ,wm)=h∗2(uk−su,vl−sv)e
−∆t1/τ+(H∗

2 (uk−su,vl−sv)+2τl3h∗1)(1−e−∆t1/τ),

(C.5)

where the post-collision distribution H∗
0 , H∗

1 , H∗
2 are obtained from W

∗
in Eq. (3.29), and

su=∆t1lu/∆u, sv=∆t1 lv/∆v,

∆t1 =min

(

∆u

|lu|

⌊ |lu|∆t

∆u

⌋

,
∆v

|lv|

⌊ |lv|∆t

∆v

⌋)

.

Then the distribution function is updated to the next time step as shown in Fig. 5-ii by

hn+1
0 =






h∗∗0 − ∑

s j∈∂Ωvj

|sj|
∫ tn+1

tn+∆t1

ℓ·nh0(xi,t,uk+1/2)dt+
∆t

τn+1
Hn+1

0







/

(

1+
∆t

τn+1

)

,

hn+1
1 =






h∗∗1 − ∑

s j∈∂Ωvj

|sj|
∫ tn+1

tn+∆t1

ℓ·nh1(xi,t,uk+1/2)dt+∆tl3hn+1
0 +

∆t

τn+1
Hn+1

1







/

(

1+
∆t

τn+1

)

,

hn+1
2 =






h∗∗2 − ∑

s j∈∂Ωvj

|sj|
∫ tn+1

tn+∆t1

ℓ·nh2(xi,t,uk+1/2)dt+2∆tl3hn+1
1 +

∆t

τn+1
Hn+1

2







/

(

1+
∆t

τn+1

)

,

(C.6)
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where Hn+1
0 , Hn+1

1 , Hn+1
2 and τn+1 are obtained from the updated conservative variables

W. As tn+1−tn−∆t1 is smaller than the relaxation time τ, the simplified upwind flux can
be used in Eq. (C.6),

hi(xi,t,uk+1/2)=hi(xi,t
n+∆t1,uk+1/2), (C.7)

for i=0,1,2.
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techniques for Maxwell solvers based on a hyperbolic model,” J. Comput. Phys., vol. 161



C. Liu and K. Xu / Commun. Comput. Phys., 22 (2017), pp. 1175-1223 1223

(2000), no. 2, pp. 484–511.
[37] R.J. LeVeque, “ Finite volume methods for hyperbolic problems,” Cambridge university press

(2002).
[38] S. A. Orszag and C.-M. Tang, “Small-scale structure of two-dimensional magnetohydrody-

namic turbulence,” J. Fluid Mech., vol. 90 (1979), no. 01, pp. 129–143.
[39] H.-Z. Tang and K. Xu, “A high-order gas-kinetic method for multidimensional ideal magne-

tohydrodynamics,” J. Comput. Phys., vol. 165 (2000), no. 1, pp. 69–88.
[40] E.N. Parker, “Sweet’s mechanism for merging magnetic fields in conducting fluids,” J. Geo-

phys. Res., vol. 62 (1957), no. 4, pp. 509–520.
[41] J. Birn, J. Drake, M. Shay, B. Rogers, R. Denton, M. Hesse, M. Kuznetsova, Z. Ma, A. Bhat-

tacharjee, A. Otto, et al., “Geospace environmental modeling (GEM) magnetic reconnection
challenge,” J. Geophys. Res.-Space, vol. 106 (2001), no. A3, pp. 3715–3719.

[42] M. Hesse, J. Birn, and M. Kuznetsova, “Collisionless magnetic reconnection: Electron pro-
cesses and transport modeling,” J. Geophys. Res.-Space, vol. 106 (2001), no. A3, pp. 3721–3735.

[43] J. Birn and M. Hesse, “Geospace environment modeling (GEM) magnetic reconnection chal-
lenge: Resistive tearing, anisotropic pressure and hall effects,” J. Geophys. Res.-Space, vol. 106
(2001), no. A3, pp. 3737–3750.

[44] Z. Ma and A. Bhattacharjee, “Hall magnetohydrodynamic reconnection: The geospace envi-
ronment modeling challenge,” J. Geophys. Res.-Space, vol. 106 (2001), no. A3, pp. 3773–3782.

[45] P. Pritchett, “Geospace environment modeling magnetic reconnection challenge: Simula-
tions with a full particle electromagnetic code,” J. Geophys. Res.-Space, vol. 106 (2001), no. A3,
pp. 3783–3798.

[46] M. M. Kuznetsova, M. Hesse, and D. Winske, “Collisionless reconnection supported by
nongyrotropic pressure effects in hybrid and particle simulations,” J. Geophys. Res.-Space,
vol. 106 (2001), no. A3, pp. 3799–3810.


