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UGKS-BASED IMPLICIT ITERATIVE METHOD FOR MULTISCALE
NONEQUILIBRIUM FLOW SIMULATIONS\ast 

XIAOCONG XU\dagger , YAJUN ZHU\dagger , CHANG LIU\ddagger , AND KUN XU\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . The unified gas-kinetic scheme (UGKS) has been developed for rarefied and con-
tinuum flow simulations. To further enhance the computational efficiency of the implicit UGKS
(IUGKS) [Y. Zhu, C. Zhong, and K. Xu, J. Comput. Phys., 315 (2016), pp. 16--38] for the steady-
state solution, a two-step IUGKS is proposed in this paper. The multiscale solution of the UGKS
is determined by the integral solution of the kinetic model equation, which is composed of the La-
grangian integration of the equilibrium and the free particle transport of the nonequilibrium state.
With the implicit evaluation of the macroscopic variables in the first iterative step, the integration of
the equilibrium can be directly used in the flux calculation of macroscopic flow variables in the second
iterative step. This is equivalent to including the viscous flux in the implicit scheme to accelerate
the convergence of the solution instead of using the Euler flux in the iterative process of the original
IUGKS. In the present IUGKS, the update of macroscopic flow variables is closely coupled with the
implicit evolution of the gas distribution function. At the same time, to get a more accurate physical
solution the full Boltzmann collision term has been incorporated into the current scheme through
the penalty method. Different iterative techniques, such as lower-upper symmetric Gauss--Seidel and
multigrid, are used for solving the linear algebraic system of coupled macroscopic and microscopic
equations. The efficiency of the current IUGKS has reached an outstanding level among all implicit
schemes for the kinetic equations in the literature. Several numerical examples are used to validate
the performance of the IUGKS. Accurate solutions have been obtained efficiently in all cases from
rarefied to continuum regimes and from low to hypersonic speed.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . unified gas-kinetic scheme, implicit iterative method, Boltzmann collision operator,
multigrid

\bfM \bfS \bfC \bfc \bfo \bfd \bfe \bfs . 76P05, 76Pxx, 65M55

\bfD \bfO \bfI . 10.1137/21M1421398

1. Introduction. Gas dynamics can be modeled with a variable scale in dif-
ferent flow regimes. For the continuum flow, the well-known macroscopic governing
equations for fluid dynamics are the Euler and Navier--Stokes (NS) equations, while in
the rarefied regime, the kinetic equation on the particle mean free path scale becomes
a reliable and effective description for nonequilibrium flow. The Boltzmann equation
[1] is the fundamental equation for rarefied gas dynamics. Due to the complexity of
the collision operator in the Boltzmann equation, some relaxation models, such as the
Bhatnagar--Gross--Krook (BGK) model [2], the ellipsoidal statistical BGK model [3],
and the Shakhov BGK (S-BGK) model [4], have been developed and are commonly
used in both academic research and engineering application. Many kinetic solvers
have been constructed for flow simulation, and most of them are required to have
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IMPLICIT UGKS FOR MULTISCALE FLOW SIMULATIONS B997

kinetic scale resolution to provide valid solutions, while, in the continuum regime, the
kinetic method usually has poor performance due to the stiffness of the collision term
and the use of discretized particle velocity space. The hydrodynamic flow solvers with
the evolution of macroscopic flow variables become more accurate and efficient. The
Chapman--Enskog procedure [5] gives the quasi-equilibrium distribution function in
the continuum regime, which can be used directly in the construction of a hydro-
dynamic flow solver, such as the gas-kinetic scheme (GKS) for the NS solutions [6].
To simulate flows in all regimes, the unification of both kinetic and hydrodynamic
modelings becomes necessary in the multiscale method [7].

To solve the kinetic equations, there are mainly two types of numerical methods,
i.e., the stochastic methods and the deterministic methods. The direct simulation
Monte Carlo (DSMC) [8] is the most popular stochastic method for high-speed rarefied
flow. However, the particle method suffers from statistical noise, which makes it
difficult in the low-speed flow simulation. The discrete velocity method (DVM) [9],
as a deterministic method, is absent from noise but becomes extremely expensive due
to the discretization of particle velocity space, especially for the high-speed and high-
temperature flow. Both DSMC and conventional DVM are based on the operator
splitting treatment for particle transport and collision. To keep the accuracy, the
cell size--related numerical dissipation has to be properly controlled. In the above
DSMC and DVM, the cell size and time step are restricted to be less than the particle
mean free path and collision time in the explicit numerical evolution process. Under
such a constraint, the computational cost will increase rapidly for the near continuum
and continuum flow simulations. In order to design multiscale methods, asymptotic
preserving (AP) schemes have been proposed in the past decades. This idea was
originally used in neutron transport to capture the steady-state diffusion solution
in the diffusive regime [10]. Later, the AP schemes have been constructed for a
wide range of multiscale transport problems. Most AP schemes solve the microscopic
equations only, and the macroscopic solutions will be obtained automatically from
the kinetic solvers. Many of them are also based on micro-macro decomposition or
the penalty technique for the capturing the Euler/NS limits in the continuum regimes
[11, 12, 13]. Excellent AP schemes can be found in these review papers as well
[14, 15, 16, 17].

Different from many AP schemes, the unified GKS (UGKS) solves both micro-
scopic kinetic equation and macroscopic hydrodynamic equations. Based on the direct
modeling of the cell size and time step scale, the UGKS has been proposed for mul-
tiscale simulation in all flow regimes [18, 19, 20, 21, 22]. Let f = f(x, u, t) be the
unknown gas distribution function, g = g(x, u, t) be the reference gas distribution
function, x be the position, u be the particle velocity, and \tau be the local collision
time. The original UGKS aims at solving the following type of kinetic equation

\partial f

\partial t
+ u \cdot \nabla xf =

g  - f

\tau 

by the finite volume method

fn+1
i,k = fni,k +\Delta tFn

i,k +
\Delta t

2

\Biggl( 
gni,k  - fni,k

\tau n
+
gn+1
i,k  - fn+1

i,k

\tau n+1
i,k

\Biggr) 
with a proper flux function Fn, which accounts for the particle transport and collision
within a time step. Here n is the time index, x is the position index, and i is the
velocity index. For detailed construction of the flux function of UGKS, we refer to [18]
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B998 XIAOCONG XU, YAJUN ZHU, CHANG LIU, AND KUN XU

for more details. The key ingredient of the UGKS is that the numerical flux across the
cell interface is constructed from the integral solution of the kinetic model equation,
which couples the particle transport and collision in an evolution process and uses
the accumulating solution of particles' collision within a numerical time step for the
update of the solution. In other words, the local flow physics recovered by the UGKS
is determined by the ratio of particle collision time and the numerical time step, i.e.,
the cell's Knudsen number. The UGKS has an asymptotic limit to the NS solution in
the continuum flow regime without the kinetic scale restriction on the time step and
cell size.

For the steady-state calculation, many implicit schemes for the kinetic equations
have been developed for fast convergence. The high-order and low-order method
[23, 24] couples the high-order kinetic equation and a low-order fluid moment equation,
targeting fast convergence in both continuum and rarefied regimes. With a similarly
coupled system, the recently developed general synthetic iterative scheme [25, 26]
shows a promising efficiency in multiscale flow simulation, where the constitutive
relations of NS shear stress and heat conduction are explicitly used to guide the
convergence of macroscopic solutions. For the UGKS, the implicit scheme constructs
the flux function F at the n+ 1 step, which reads as

fn+1
i,k = fni,k +\Delta tFn+1

i,k +\Delta t

\Biggl( 
gn+1
i,k  - fn+1

i,k

\tau n+1
i,k

\Biggr) 
.

The problem boils down to the construction of Fn+1
i,k and the method for solving the

implicit system of equations. The detailed derivation will be introduced in section 3.
Standard implicit techniques in CFD, such as lower-upper symmetric Gauss--Seidel
(LU-SGS) and multigrid, can also be incorporated in implicit UGKS (IUGKS) [27,
28, 29], which made a significant improvement in convergence for the steady-state
solution.

The present work is targeting the further improvement of IUGKS, where an even
closer coupling of both macroscopic and microscopic evolution equations will be de-
veloped implicitly. We still start from the two aspects, the construction of Fn+1

i,k and
the method for solving the implicit system of equations, to improve the efficiency of
IUGKS. From the perspective of the construction of Fn+1

i,k , we take the NS dissipa-
tive terms into account and then construct a two-step IUGKS. On the other hand, to
solve the implicit system of equations efficiently, we equip the IUGKS with a multigrid
solver. A comparative study of efficiency will be presented from different algebraic
iterative methods. To treat the collision term in a fully implicit way, the macroscopic
governing equations will be solved implicitly first for the prediction of the equilibrium
state. Afterward, based on the predicted conservative flow variables, the evolution
equation of the distribution function forms a diagonal matrix system. Then both the
matrix systems derived from implicit macroscopic equations and implicit microscopic
equations are solved iteratively using the LU-SGS method with a multi-grid accelera-
tion. In addition, to achieve a reliable physical solution in the highly rarefied regime,
the full Boltzmann collision operator is integrated into the IUGKS for the steady-state
solutions.

The paper is organized as follows. In section 2, the explicit UGKS scheme is briefly
introduced. In section 3, a general framework of IUGKS is presented and described in
detail, which includes the discretization of the full Boltzmann collision operator and
the two-step acceleration technique. The numerical procedures for solving algebraic
systems raised from IUGKS for the evolution of microscopic and macroscopic equa-
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IMPLICIT UGKS FOR MULTISCALE FLOW SIMULATIONS B999

tions will be discussed in section 4. The numerical tests, including low-speed Couette
flow, the Fourier flow, lid-driven cavity flow, and the high-speed flow around a square
cylinder, will be presented in section 5. The conclusion will be drawn in section 6.

2. Kinetic equation and UGKS.

2.1. Kinetic equation. The kinetic equations describe the time evolution of
the probability distribution function (PDF) or velocity distribution function on the
kinetic scale. The kinetic equation models both particle transport and collision in the
following form:

(1) \partial tf + u \cdot \nabla xf = Q,

where f = f(x, t, u) is the velocity PDF, x is the spatial position, t is the time, and u
is the particle velocity. Here x, u,W are vectors in \BbbR 3. The collision term Q can be
modeled by the nonlinear Boltzmann collision term Q(f, f) and the kinetic relaxation
process. The Boltzmann collision term takes the form

(2) Q(f, f)(u) =

\int 
\BbbR 3

\int 
\BbbS 2
B(| u - u\ast | , \sigma ) [f(u\prime \ast )f(u\prime ) - f(u\ast )f(u)] d\sigma du\ast ,

where B(| u - u\ast | , \sigma ) is the collision kernel. The numerical evaluation of the nonlinear
Boltzmann collision operator is highly expensive due to its fivefold integration form. In
order to simplify the formulation, the relaxation type of collision operator is considered
here, such as the S-BGK model

(3) Q(f) =
g  - f

\tau 
,

where \tau = \mu /p is the local mean collision time computed from the dynamic viscosity
coefficient \mu and the pressure p. The equilibrium state g takes the form of

(4) g = gM
\biggl[ 
1 + (1 - Pr)c \cdot q

\biggl( 
c2

RT
 - 5

\biggr) \biggr] 
,

and gM is the Maxwellian distribution

(5) gM =
\rho 

(2\pi RT )3/2
exp

\biggl( 
 - c2

2RT

\biggr) 
,

where \rho is the mass density, R is the specific gas constant, Pr is the Prandtl number,
c = u - U is the peculiar velocity with U the macroscopic flow velocity, and q is the
heat flux. The relation between distribution function and macroscopic conservative
flow variables is defined as

(6) W =

\int 
f\psi du.

Here, \psi =
\bigl[ 
1, u, 12 | u| 

2
\bigr] T

is the vector of collision invariants, and W = [\rho , \rho U, \rho E]
T
is

the vector of conservative flow variables. The pressure tensor P and the heat flux q
can be also calculated from the PDF by

(7) P =

\int 
ccfdu, q =

1

2

\int 
c| c| 2fdu.

Based on the kinetic equation, a UGKS has been developed for capturing both kinetic
and hydrodynamic solutions in the corresponding regime [18].
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2.2. UGKS. In this subsection, the explicit UGKS is briefly introduced. The
UGKS takes direct modeling of flow physics on the discretization scales, i.e., the time
step and cell size. In the framework of a finite volume method, if the trapezoidal rule
is used for the collision term, the conservation of the gas distribution function can be
described as
(8)

fn+1
i,k = fni,k  - 1

Vi

\sum 
j\in N(i)

Sij

\int tn+1

tn
uk,Nfij,k(t)dt+

\Delta t

2

\Biggl( 
gni,k  - fni,k

\tau ni
+
gn+1
i,k  - fn+1

i,k

\tau n+1
i

\Biggr) 
,

where fni,k and fn+1
i,k are spatially averaged distribution functions of cell i at particle

velocity uk and at time tn and tn+1, respectively. N(i) is the index set of the neighbors
of cell i, and ij denotes the interface between cells i and j. Vi is the volume of cell
i, Sij is the area of the interface ij, uk,N is the normal projection of particle velocity
uk along the cell interface, and fij,k(t) is a time-dependent distribution function on
the interface ij at particle velocity uk.

Multiplying by the collision invariants and applying a quadrature rule in velocity
space, the conservation laws of macroscopic flow variables can be obtained from (8):

(9) Wn+1
i =Wn

i  - 1

Vi

\sum 
j\in N(i)

Sij

\Biggl( \sum 
k

\int tn+1

tn
uk,nfij,k(t)\psi kdt

\Biggr) 
.

Here, \psi k = [1, uk,
1
2 | uk| 

2]T . In order to evolve the above discretized equations, a time-
dependent distribution function fij,k(t) has to be constructed. Based on the integral
solution of (1), a multiscale fij,k(t) can be modeled as
(10)
fij,k(t) = f (xij , t, uk)

=
1

\tau 

\int t

tn
g (x\prime , t\prime , uk) e

 - (t - t\prime )/\tau dt\prime + e - (t - tn)/\tau f (xij  - uk (t - tn) , tn, uk) ,

where x\prime = xij  - uk(t - t\prime ) is the particle trajectory.
For a second-order spatial accuracy, the initial distribution function around the

cell interface ij can be approximated by

(11) f0,k (x) = f (x, tn, uk) =

\biggl\{ 
f iij,k + \sigma n

i \cdot x, nij \cdot x < 0,

f jij,k + \sigma n
j \cdot x, nij \cdot x \geq 0,

where f iij,k and f jij,k are the reconstructed initial distribution functions on both sides of
the cell interface ij, and nij is the unit normal vector of the cell interface ij. \sigma = \nabla xf
is the spatial gradient of the initial distribution function, which is nonlinearly limited
in case of discontinuity. In this paper, we use the least square reconstruction to obtain
the gradient. In addition, the equilibrium state is approximated by Taylor expansion,

(12) gk (x, t) = g (x, t, uk) = g0,k + x \cdot \nabla xg0,k + t\partial tg0,k,

where g0,k is the initial equilibrium at the cell interface ij, and \nabla xg0,k and \partial tg0,k
are the spatial and temporal gradients of the initial equilibrium state. The detailed
calculation for these terms can be found in previous literature [18]. Applying (11)
and (12) to (10), the time-dependent distribution function fij,k(t) can be computed
by

(13) fij,k(t) = q1g0,k + q2uk \cdot \nabla xg0,k + q3\partial tg0,k + q4f0,k + q5uk \cdot \nabla xf0,k,
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IMPLICIT UGKS FOR MULTISCALE FLOW SIMULATIONS B1001

where the coefficients q are

(14)

q1 = 1 - e - t/\tau ,

q2 = \tau 
\Bigl( 
e - t/\tau  - 1

\Bigr) 
+ te - t/\tau ,

q3 = t - \tau + \tau e - t/\tau ,

q4 = e - t/\tau ,

q5 =  - te - t/\tau .

Rewrite (13) into the following form:

(15)
fij,k(t) = gij,k + q2uk \cdot \nabla xgij,k + q3\partial tgij,k + q4 (fij,k  - gij,k) + q5uk \cdot \nabla xfij,k

\triangleq \~gij,k + \~fij,k,

where \~gij,k \triangleq gij,k + q2uk \cdot \nabla xgij,k + q3\partial tgij,k is related to the evolution of the equi-
librium state. This term gives the NS distribution function from the integration of
the equilibrium state as \Delta t >> \tau . \~fij,k \triangleq q4 (fij,k  - gij,k) + q5uk \cdot \nabla xfij,k is related
to the particle free transport of the initial nonequilibrium state. Note that under
this arrangement, the flux related to \~fij,k will mainly contribute to the nonequilib-
rium transport, which plays an important role in the rarefied regime. The above
formulation will be used in the construction of the IUGKS.

As long as the time-dependent distribution function fij,k(t) is obtained, the flux
term in (8) and (9) can be computed. Then we can update the averaged distribution
function fn+1

i,k and macroscopic flow variables Wn+1
i in each cell.

3. General framework of the IUGKS. For steady-state calculation, a finite
volume implicit discretization of (1) can be written as

(16)
fn+1
i,k  - fni,k

\Delta t
+

1

Vi

\sum 
j\in N(i)

Sijuk,Nf
n+1
ij,k =

\~gn+1
i,k  - fn+1

i,k

\tau n+1
i

.

Here, the implicit numerical time step \Delta t is introduced to improve the stability of the
scheme. In the above equation, a prediction step should be carried out first to obtain
an approximate equilibrium state \~gn+1 so that the collision term can be treated implic-
itly. For simplicity, the formulations in this section are presented for two-dimensional
cases, and the extension to three-dimensional cases would be straightforward.

3.1. Prediction step for \~\bfitg \bfitn +\bfone . Taking moments of (16), we can obtain the
implicit governing equations of macroscopic flow variables, i.e.,

(17)
\~Wn+1
i  - Wn

i

\Delta t
+

1

Vi

\sum 
j\in N(i)

SijF
n+1
ij = 0,

where Fn+1
ij are the fluxes for conservative variables at the interface ij. Subtracting

the fluxes at time tn from both sides, the governing equations could be rewritten as

(18)
1

\Delta t
\Delta Wn+1

i +
1

Vi

\sum 
j\in N(i)

Sij\Delta F
n+1
ij =  - 1

Vi

\sum 
j\in N(i)

SijF
n
ij ,
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where \Delta Wn+1
i = \~Wn+1

i  - Wn
i and \Delta Fn+1

ij = Fn+1
ij  - Fn

ij . In order to solve (18), the
fluxes on the left-hand side will be approximated by the Euler equation--based fluxes,
which will lead to a matrix-free algorithm,
(19)

\Delta Fn+1
ij \approx 1

2

\bigl[ 
Tn+1
i + Tn+1

j + \Gamma ij

\bigl( 
Wn+1

i  - Wn+1
j

\bigr) \bigr] 
 - 1

2

\bigl[ 
Tn
i + Tn

j + \Gamma ij

\bigl( 
Wn

i  - Wn
j

\bigr) \bigr] 
,

where T is the Euler flux, which can be determined by the conservative variables

(20) T =

\left[    
\rho Ux

\rho U2
x + p

\rho UxUy + p
(\rho E + p)Ux

\right]    nx +

\left[    
\rho Uy

\rho UxUy + p
\rho U2

y + p
(\rho E + p)Uy

\right]    ny.
Here, [nx, ny]

T
is the unit normal vector along the interface, and p is the pressure.

The factor \Gamma ij satisfies

(21) \Gamma ij \geq \Lambda ij = | Uij \cdot nij | + as,

where \Lambda ij represents the spectral radius of the Jacobian of the Euler flux, which can
be evaluated by the macroscopic velocity Uij and the speed of sound as at the interface
ij. Moreover, as stated in the previous literature [30], a stable factor sij related to
the viscosity coefficient can be introduced into the calculation of \Gamma ij :

(22) \Gamma ij = \Lambda ij + sij = \Lambda ij +
2\nu 

\Delta l
.

The above flux is the so-called Lax--Friedrichs flux, and in order to simplify the nota-
tions, we define

Ai (Wi) \triangleq 
Wi

\Delta t
+

1

Vi

\sum 
j\in N(i)

SijFLF (Wi,Wj)

=
Wi

\Delta t
+

1

Vi

\sum 
j\in N(i)

Sij
1

2
[Ti + Tj + \Gamma ij (Wi  - Wj)] .

Then the evolution equations can be rewritten as

(23) Ai

\Bigl( 
\~Wn+1
i

\Bigr) 
= Rn

i +Ai (W
n
i ) , Rn

i =  - 1

Vi

\sum 
j\in N(i)

SijF
n
ij ,

where Fn
ij are the fluxes calculated from the time-dependent distribution function

fij,k(t) in (16), which reads as

(24) Fn
ij =

1

\Delta ts

\sum 
k

\int \Delta ts

0

uk,Nfij,k(t)\psi kdt.

Here, the sum over k is the numerical procedure for integration over the velocity space.
\Delta ts is a small time step to determine the local physics scale, which is calculated the
same as that in the explicit UGKS by the stability condition

(25) \Delta ts = \alpha min
\Delta x

max | uk| 
,
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IMPLICIT UGKS FOR MULTISCALE FLOW SIMULATIONS B1003

where \Delta x is the mesh size and \alpha is the CFL number. It should be noticed that the
time step \Delta ts is different from the implicit numerical time step \Delta t. In the IUGKS,
\Delta ts can be regarded as a cell size--related time step to decide the local physical
solution in the corresponding scale by adjusting the combination of equilibrium and
nonequilibrium distribution function, and it is the time step to average the numerical
fluxes for controlling convergent steady-state solution, while \Delta t is the pseudo--time
step to increase the convergence stability for the steady-state solution.

At the steady state, the Lax--Friedrichs flux Ai (\cdot ) on the left- and right-hand side
of (23) will be canceled, and the convergent solution will be completely controlled by

(26)
1

Vi

\sum 
j\in N(i)

SijF
n
ij = 0,

which ensures identical steady solutions as the explicit UGKS.
By solving (23), we can get the prediction macroscopic conservative variables

\~Wn+1, and therefore \~gn+1 can be obtained simultaneously. The detail for solving
(23) by using a matrix-free algorithm will be given later.

3.2. Solving the microscopic system. With the predicted equilibrium state
\~gn+1, by introducing \Delta fn+1 = fn+1  - fn and then rearranging the terms, (16) can
be rewritten in a delta-form

(27)
1

\Delta t
\Delta fn+1

i,k +
1

Vi

\sum 
j\in N(i)

uk,NSij\Delta f
n+1
ij,k =

\~gn+1
i  - fni
\~\tau n+1
i

 - 1

Vi

\sum 
j\in N(i)

uk,nSijf
n
ij,k.

Here \~\tau n+1 can be also obtained from the predicted macroscopic variables. Since
different algorithms to compute the implicit fluxes at the left-hand side of (27) will
not affect the final convergent solutions, the first-order upwind scheme is adopted here
to compute \Delta fn+1

ij,k , which reads as

(28)
\Delta fn+1

ij,k =
1

2

\Bigl( 
\Delta fn+1

i,k +\Delta fn+1
j,k

\Bigr) 
+

1

2
sign (uk \cdot nij)

\Bigl( 
\Delta fn+1

i,k  - \Delta fn+1
j,k

\Bigr) 
,

=
1

2
[1 + sign (uk,n)]\Delta f

n+1
i,k +

1

2
[1 - sign (uk,n)]\Delta f

n+1
j,k .

Inserting (28) into (27), we can get a linear system,

(29) Di,k\Delta f
n+1
i,k +

\sum 
j\in N(i)

Dj,k\Delta f
n+1
j,k = (RHS)ni,k,

where

(30)

Di,k =
1

\Delta t
+

1

\~\tau n+1
i

+
1

2Vi

\sum 
j\in N(i)

uk,NSij [1 + sign (uk,N )] ,

Dj,k =
1

2Vi
uk,NSij [1 - sign (uk,N )] ,

(RHS)ni,k =
\~gn+1
i,k  - fni,k

\~\tau n+1
i

 - 1

Vi

\sum 
j\in N(i)

Sijuk,Nf
n
ij,k.

These terms Di,k and Dj,k will be the entries of a block diagonal matrix. Once the
steady state is reached, \Delta fn+1

i,k will go to zero, and the steady state should satisfy
(RHS)ni,k = 0.
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3.3. Extension to full Boltzmann collision operator. Consider the nonlin-
ear Boltzmann in the dimensionless form, which reads as

(31)
\partial f

\partial t
+ u \cdot \nabla xf =

1

Kn
Q(f, f).

where the collision operator Q is a bilinear operator, which can be written as

(32) Q(g, f)(u) =

\int 
\BbbR 3

\int 
\BbbS 2
B(| u - u\ast | , \sigma ) [g(u\prime \ast )f(u\prime ) - g(u\ast )f(u)] d\sigma du\ast .

Here (u, u\ast ) and (u\prime , u\prime \ast ) are the velocity pairs before and after a collision. By the
momentum and energy conservation, one can show that (u\prime , u\prime \ast ) can be represented in
terms of (u, u\ast ) as

(33) u\prime =
u+ u\ast 

2
+

| u - u\ast | 
2

\sigma , u\prime \ast =
u+ u\ast 

2
 - | u - u\ast | 

2
\sigma 

with \sigma = (u\prime  - u\prime \ast )/| u\prime  - u\prime \ast | varying in the unit sphere \BbbS 2. The collision kernel
B(| u - u\ast | , \sigma ) is a nonnegative function depending only on | v  - v\ast | and the cosine of
the deflection angle \theta . In the following numerical examples, we consider a simplified
collision kernel,

(34) B(| u - u\ast | , \sigma ) = C\alpha | u - u\ast | \alpha ,

which is the so-called variable hard sphere (VHS) model. The penalization technique
[31] is used in the construction of our numerical scheme, which can be formulated as

(35)

fn+1
i,k  - fni,k

\Delta t
+

1

Vi

\sum 
j\in N(i)

Sijuk,Nf
n+1
ij,k = Sn

i,k +
\~gn+1
i,k  - fn+1

i,k

\tau n+1
i

,

Sn
i,k =

[\scrQ (fni , f
n
i )]k

Kn
 - 
gni,k  - fni,k

\tau ni
.

This is an implicit scheme, and the collision operator is solved by the fast spectral
method explicitly [32, 15, 33]. In the continuum regime, the predicted \~gn+1

i in the
penalized term could boost the convergence of the implicit scheme. In the framework
of the IUGKS, the only difference with the above procedure is that the (RHS)ni,k
becomes

(36) (RHS)ni,k =
\~gn+1
i,k  - fni,k

\~\tau n+1
i

 - 1

Vi

\sum 
j\in N(i)

Sijuk,Nf
n
ij,k + Sn

i,k.

Compare this with the AP scheme [15], which can be written as

(37)

fn+1
i,k  - fni,k

\Delta t
+

1

Vi

\sum 
j\in N(i)

Sijuk,Nf
n
ij,k = Sn

i,k +
gn+1
i,k  - fn+1

i,k

\tau n+1
i

,

Sn
i,k =

[\scrQ (fni , f
n
i )]k

Kn
 - 
gni,k  - fni,k

\tau ni
.

We can see the main difference between the current scheme (35) and the AP scheme
is the calculation of the flux function. The AP scheme evaluates the flux function
explicitly, while in the current scheme we evaluate it implicitly.
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3.4. Two-step iteration for acceleration. The development of a new accel-
eration method is based on two observations. First, in the IUGKS, the microscopic
system is mainly driven by the predicted \~gn+1. Therefore, if we can have a good pre-
diction (closer to the steady solution), the computational cost can be much reduced,
especially in the continuum regime. The second observation is that in the continuum
regime, the UGKS flux is dominated by \~gij,k in (15). Instead of updating the fij,k in
each discrete velocity point and then using numerical quadrature to get the macro-
scopic flux, the macroscopic flux related to the analytical part \~gij,k can be computed
with relatively low computational cost by using the analytical formulations.

In the previous study, in the continuum regime, the left-hand side of the IUGKS is
driven by the Euler flux. Based on the multiscale property of the UGKS flux, we can
naturally take the viscosity flux into account and use the viscous solution to boost the
convergence of IUGKS. Similar consideration can be found in Yuan, Liu, and Zhong
[34].

Consequently, we can take one more prediction step for \~gn+1 in the computational
procedure. More specifically, by the first step iteration in solving (23) for macroscopic
variables, an equilibrium \~g\ast term in (16) can be predicted. Then, we can update the
macroscopic flux by

(38) Fn,\ast 
ij =

1

\Delta ts

\int \Delta ts

0

\langle u \cdot n\psi \~g\ast ij,k\rangle dt+
1

\Delta ts

\sum 
k

\int \Delta ts

0

uk,n \~fnij,k\psi kdt.

The evolution equations for the second step iteration can be written as

(39) Ai

\Bigl( 
\~Wn+1
i

\Bigr) 
= Rn,\ast 

i +Ai (W
\ast 
i ) , Rn,\ast 

i =  - 1

Vi

\sum 
j\in N(i)

SijF
n,\ast 
ij ,

where W \ast 
i is the conservative calculated by \~g\ast .

So far, a brief summary of the present implicit scheme can be given, and the
major steps are listed as follows:

1. Get the predicted \~gn+1 by iterating (23) and (39) in order from initial Wn.
2. Get the \Delta fn+1 by solving (29) with the predicted \~gn+1 and initial fn.
3. Update the distribution function fn+1 by fn+1 = fn + \Delta fn+1, and get the

updated macro conservative variables from (6).
4. Repeat the steps 1 to 3 until satisfying the convergence criterion.

4. Iterative methods for solving coupled macro-micro system. An im-
proved IUGKS will be presented to solve the implicit system. For each iteration of
(39), we are solving (23) with the refreshed Fij and Wi at the right-hand side. In the
following, the detailed methods for solving (23) and (29) will be discussed.

4.1. LU-SGS method. Subtracting Ai(W
n
i ) on both sides of (23) and perform-

ing the Taylor approximation, we can obtain

(40)
\partial A

\partial W
\Delta Wn = Rn.

The Jacobian matrix-splitting method in [35] can be used to solve the above system.
However, the computation of the Jacobian matrix requires additional storage. The
inverse linearization can be used to eliminate the computation of the Jacobian matrix
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[36], in which the following approximation is adopted:

(41)

\partial Ai

\partial Wi
\Delta Wn

i \approx Ai (W
n
i +\Delta Wn

i ) - Ai (W
n
i )

=

\left(  1

\Delta t
+

1

2

\sum 
j\in N(i)

Sij\Gamma ij

\right)  \Delta Wn

+
1

2

\sum 
j\in N(i)

Sij

\bigl[ 
T
\bigl( 
Wn

j +\Delta Wn
j

\bigr) 
 - T

\bigl( 
Wn

j

\bigr) 
 - \Gamma ij\Delta W

n
j

\bigr] 
.

Therefore, the LU-SGS method for the algebraic system (40) and (41) can be described
by a forward step

(42) \Delta W \ast 
i = D - 1

i

\left(  Rn
i  - 1

2

\sum 
j\in L(i)

Sij

\bigl[ 
T
\bigl( 
Wn

j +\Delta W \ast 
j

\bigr) 
 - T

\bigl( 
Wn

j

\bigr) 
 - \Gamma ij\Delta W

\ast 
j

\bigr] \right)  
and a backward step

(43) \Delta Wn
i = \Delta W \ast 

i  - D - 1
i

\left(  1

2

\sum 
j\in U(i)

Sij

\bigl[ 
T
\bigl( 
Wn

j +\Delta Wn
j

\bigr) 
 - T

\bigl( 
Wn

j

\bigr) 
 - \Gamma ij\Delta W

n
j

\bigr] \right)  ,

where Di is the diagonal element of the matrix

(44) Di =
1

\Delta t
+

1

2

\sum 
j\in N(i)

Sij\Gamma ij .

Here, L(i) is the index set of the neighboring cells of cell i occupying the lower
triangular part of the matrix, and U(i) is the index set of the neighboring cells of cell
i occupying the upper triangular part of the matrix. The numbering of the index is
essential to the LU-SGS sweeping, and bad numbering may lead to local degeneration
from Gauss--Seidel iteration to Jacobian iteration.

4.2. Multigrid method. In this subsection, the geometry type of multigrid
method [37] for solving the macro-system (23) and micro-system (29) will be imple-
mented and used in the calculation of two-dimensional numerical examples.

Firstly, the restriction and interpolation operator should be properly defined to
connect different levels of mesh [28]. The restriction operator IHh , which maps the
quantities from a fine mesh to a coarse mesh, can be naturally defined as the average
quantities of all the related cells in the fine mesh. Specifically, for a quantity Qh in a
fine mesh, the restricted quantity QH in a coarse mesh can be calculated as

(45) QH,i = IHh (\{ Qh,j , j \in S(i)\} ) =
\sum 

j\in S(i)Qh,jVh,j\sum 
j\in S(i) Vh,j

,

where the subscripts i, j denote the quantities in cell i, j, S(i) is the index set of the
related cells, and V is the volume of the cell. The interpolation operator IhH is a
bilinear interpolation operator. For the rectangular mesh as shown in Figure 1, let
(x1, y1), (x1, y2), (x2, y1), (x2, y2) be the four corner points of the current cell; IhH is
defined as

(46) Qh,i = IhH(\{ QH,j , j \in S(i)\} ) =
\sum 

j\in S(i) wjQH,j\sum 
j\in S(i) wj

,
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Fig. 1. Bilinear interpolation.

and

(47)

w1 = (x2  - xi)(y2  - yi),

w2 = (xi  - x1)(y2  - yi),

w3 = (x2  - xi)(yi  - y1),

w4 = (xi  - x1)(yi  - y1).

Here, (xi, yi) is the center coordinate of cell i.
After these two operations are determined, the multigrid method for solving (23)

and (29) can be constructed. For simplicity, the basic two-grid cycle method will be
discussed, and the multiple V-cycle can be done recursively.

4.3. Multigrid method for macro-system. Since (23) is a nonlinear system,
the full approximation scheme [38] will be used to solve this system. The algorithm
for a two-grid cycle can be described as follows.

\bullet Presmoothing: perform \nu 1 times LU-SGS to get an approximate solutionW \ast 
h,i

of (23), and then compute the residual by rh,i = Rn
h,i +A(Wn

h,i) - A(W \ast 
h,i).

\bullet Restriction: restrict W \ast 
h,i and rh,i to a coarse grid by rH,i = IHh (\{ rh,j , j \in 

S(i)\} ) and W \ast 
H,i = IHh (\{ W \ast 

h,j , j \in S(i)\} ).
\bullet Smoothing: perform \nu 2 times LU-SGS to get an approximation solutionW \ast \ast 

H,i

of the coarse grid problem A (WH,i) = rH,i +A
\bigl( 
W \ast 

H,i

\bigr) 
.

\bullet Correction: compute the error eH,i in the coarsegrid by eH,i =W \ast \ast 
H,i  - W \ast 

H,i,
and then correct the approximation solution in the fine grid byW \ast 

h,i =W \ast 
h,i+

IhH(\{ eH,j , j \in S(i)\} ).
\bullet Postsmoothing: perform \nu 3 times LU-SGS to get the final solution Wn+1

h,i of
(23) with the initial guess W \ast 

h,i.

4.4. Multigrid method for micro-system. For the linear system (29), the
two-grid correction scheme can be summarized as follows.

\bullet Presmoothing: perform \gamma 1 times symmetric Gauss--Seidel (SGS) to get an
approximate solution \Delta f\ast h,\{ i,k\} of (29), and then compute the residual by

rh,\{ i,k\} = (RHS)h,\{ i,k\}  - 

\left(  Dh,\{ i,k\} \Delta f
\ast 
h,\{ i,k\} +

\sum 
j\in N(i)

Dh,\{ j,k\} \Delta f
\ast 
h,\{ j,k\} 

\right)  .
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\bullet Restriction: restrict \Delta f\ast h,\{ i,k\} , rh,\{ i,k\} , and Dh,\{ i,k\} to a coarse grid by the

restriction operator IHh .
\bullet Smoothing: perform \gamma 2 times SGS to get a solution of the residual equation

DH,\{ i,k\} \Delta eH,\{ i,k\} +
\sum 

j\in N(i)

DH,\{ j,k\} \Delta eH,\{ j,k\} = rH,\{ i,k\} .

\bullet Correction: correct the approximation solution in the fine grid by \Delta f\ast h,\{ i,k\} =

\Delta f\ast h,\{ i,k\} + IhH(\{ eH,\{ i,k\} , j \in S(i)\} ),
\bullet Postsmoothing: perform \gamma 3 times SGS to get the final solution \Delta fn+1

h,\{ i,k\} of

(23) with the initial guess \Delta f\ast h,\{ i,k\} .
The two-step IUGKS with single grid is just a reduction of the two-step IUGKS
with multigrid, where the presmoothing and postsmoothing steps are kept. Since the
nonlinear system may take more steps to get an accurate solution, the smoothing
times \nu i for the nonlinear system are taken to be more than the smoothing times \gamma i
for the linear system. As demonstrated in [39], common choices are \gamma 1 + \gamma 3 \leq 3 in
practice. In this paper, we set \nu 1 = 10, \nu 2 = 10, \nu 3 = 5 and \gamma 1 = 2, \gamma 2 = 2, \gamma 3 = 1.

5. Numerical validation. In this section, several numerical examples will be
presented to validate the accuracy and efficiency of the IUGKS, including the ex-
tension to the full Boltzmann collision operator. For two-dimensional cases, we will
investigate the efficiency of three different IUGKSs, which include the original IUGKS
[27], the two-step IUGKS, and the two-step IUGKS with a V-cycle multigrid solver.

5.1. Couette flow. The first case is the planar Couette flow for argon gas with
\omega = 0.81. The full Boltzmann collision operator is considered in this case. The
Knudsen number is defined by Kn = \mu 0

\surd 
2\pi RT0/(2p0L), where T0 is the reference

temperature, \rho 0 is the reference density, \mu 0 is the viscosity, p0 = \rho 0RT0 is the pressure,
and L is the characteristic length. The nondimensional quantities are used in the
numerical simulation. Therefore, without loss of generality, we set T0 = 1.0, \rho 0 = 1.0,
and L = 1.0. The velocities at the left and right walls are set as UL = 0.25 and
UR =  - 0.25, respectively. The wall temperatures are fixed at Tw = T0 = 1.0, and the
diffusive boundary condition is adopted here.

In the calculation, the spatial region is covered by 100 unequally spaced cells
with the minimum cell size 0.005. The velocity space is truncated to [ - 4.8, 4.8]3,
and there are 48 uniform velocity mesh points in each direction. The cases with
Kn = 10, 1, 0.1, 0.01 are computed. The convergence criterion is set to be

(48) En =

\sum N
i=1

\bigm| \bigm| Wn
i  - Wn - 1

i

\bigm| \bigm| Vi\sum N
i

\bigm| \bigm| Wn - 1
i

\bigm| \bigm| Vi < 1\times 10 - 6.

Here N is the total number of the discrete cells in the computational domain. As
shown in Figure 2, the velocity and temperature profiles computed by the two-step
IUGKS match well with the reference solutions. The reference solutions are computed
by the conventional iterative scheme (CIS) [33], which reads as

(49) \nu (fn)fn+1 + u \cdot \nabla xf
n+1 = Q+(fn, fn),

where \nu is the collision frequency and Q+ is the gain term of the Boltzmann collision
operator. Table 1 shows the convergence history of two-step IUGKS and CIS in the
planar Couette flow. We can see that in the highly rarefied regime, both CIS and
two-step IUGKS are efficient. However, as Kn decreases, the CIS needs many more
steps to get the converged solutions than the two-step IUGKS.
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Fig. 2. (a) Velocity and (b) temperature profiles at different Knudsen numbers. The CIS
solutions are shown in symbols, and the IUGKS solutions are shown in lines.

Table 1
Efficiency of IUGKS for Couette flow.

State
IUGKS Two-step IUGKS
Steps Time(s) Steps Time(s) Rate

Kn = 10 9 27 9 28 0.96
Kn = 1 24 66 20 59 1.12
Kn = 0.1 150 407 114 325 1.25
Kn = 0.01 4241 11228 578 1613 6.96

5.2. Fourier flow. In the second case, we study the flow driven by the temper-
ature gradient, and we still consider the full Boltzmann collision operator here. This
case is similar to the planar Couette flow but with stationary walls. The temperatures
at the left and right walls are set as TL = 1.2 and TR = 0.8, respectively.

The meshes in physical and velocity space and the convergence criterion are the
same as the planar Couette flow. The cases at Kn = 10, 1, 0.1, 0.01 have been tested.
The density and temperature profiles in Figure 3 show that the two-step IUGKS
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Fig. 3. (a) Density and (b) temperature profiles in different Knudsen numbers. The CIS
solutions are shown in symbols, and the IUGKS solutions are shown in lines.
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Table 2
Efficiency of IUGKS for planar Fourier flow.

State
IUGKS Two-step IUGKS
Steps Time(s) Steps Time(s) Rate

Kn = 10 25 69 7 22 3.14
Kn = 1 26 72 19 56 1.29
Kn = 0.1 177 477 107 303 1.57
Kn = 0.01 5026 13331 555 1563 8.53

presents almost identical solutions as the CIS. However, as shown in Table 2, the
two-step IUGKS is more efficient than the CIS, especially when the Knudsen number
becomes small.

5.3. Lid-driven cavity flow. The lid-driven cavity flow is studied at differ-
ent Knudsen numbers. The collision model used in this case is the Shakhov model.
The cavity has a fixed wall temperature with Tw = 1.0. The initial gas inside the
cavity is argon gas with density \rho 0 = 1.0. The Knudsen number is defined by
Kn = \mu 0

\surd 
2\pi RT0/(2p0L), where L = 1.0 is the length of cavity sidewall, and \mu 0
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Fig. 4. Cavity flow at Kn = 10. (a) Temperature. Background: two-step multigrid IUGKS;
dashed line: IUGKS. (b) Heat flux. Line with arrowhead: two-step multigrid IUGKS; circle:
IUGKS. (c) U-velocity along the central vertical line. (d) V -velocity along the central horizontal
line.
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is evaluated by the variable hard sphere model with \omega = 0.81. The top wall has a
velocity of Uw = 0.148322 in x direction. A triple V-cycle multigrid solver is used
here.

For the case Kn = 10, 1, 0.075, the computational domain is discretized by a
uniform mesh with 64\times 64 cells in the physical space. The particle velocity points are
80\times 80 and 60\times 60 for Kn = 10 and Kn = 1, respectively. The trapezoidal integration
is used to compute the moments of the distribution function in the two cases, while for
the case of Kn = 0.075, the Gauss--Hermite quadrature with 28\times 28 points in velocity
space is adopted. The steady state is defined when the mean squared residuals of the
conservative variables are reduced to a level being less than 1.0 \times 10 - 6, where the
mean squared residuals are computed by

(50) Rn =

\sqrt{} \sum N
i=1(R

n
i )

2

N
.

The results for Kn = 10, 1, 0.075 are shown in Figures 4, 5, and 6, from which we
can see that the results computed by the two-step IUGKS with multigrid solver are
identical to those computed by the original IUGKS.
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Fig. 5. Cavity flow at Kn = 1. (a) Temperature. Background: two-step multigrid IUGKS;
dashed line: IUGKS. (b) Heat flux. Line with arrowhead: two-step multigrid IUGKS; circle:
IUGKS. (c) U-velocity along the central vertical line. (d) V -velocity along the central horizontal
line.
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Fig. 6. Cavity flow at Kn = 0.075. (a) Temperature. Background: two-step multigrid IUGKS;
dashed line: IUGKS. (b) Heat flux. Line with arrowhead: two-step multigrid IUGKS; circle:
IUGKS. (c) U-velocity along the central vertical line. (d) V -velocity along the central horizontal
line.

Two continuum cases at Re = 100 and 1000 are also tested. The mesh is stretched
to get a better resolution near the boundaries with \Delta xmin = 0.004. The particle ve-
locity points are 28\times 28, and the Gauss--Hermite quadrature is used. The streamlines
and the comparison with Ghia's data [40] are plotted in Figure 7. The detailed com-
putational time and acceleration rate in different flow regimes are listed in Table 3.
For the rarefied cases at Kn = 10 and 1, the convergence history of the original IUGKS
and two-step IUGKS are similar, and the multigrid solver can improve the efficiency
of the IUGKS. As the Knudsen number decreases, the two-step acceleration begins to
take effect. Especially for the continuum case, the improvement of the efficiency in
comparison with the original IUGKS is satisfactory.

5.4. Hypersonic flow past a square cylinder. The last example is the hy-
personic flow passing over a square cylinder at Knudsen numbers 1 and 0.1. The
Knudsen number is defined by

(51) Kn =
(5 - 2\omega )(7 - 2\omega )\mu \infty 

\surd 
2RT\infty 

15
\surd 
\pi p\infty L

.
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Fig. 7. Cavity flow at Re = 100 (left) and Re = 1000 (right). (a) and (b) Streamlines. (c) and
(d) Velocity along the central lines.

Table 3
Efficiency of different IUGKS for cavity flow.

State
IUGKS Two-step IUGKS Two-step \& multigrid IUGKS
Steps Time(min) Steps Time(min) Steps Time(min) Rate

Kn = 10 80 13.8 80 13.8 33 7.7 1.8
Kn = 1 79 7.7 77 7.6 33 4.4 1.75
Kn = 0.075 169 3.6 51 1.2 20 0.6 6.0
Re = 100 923 19.5 74 1.7 36 1.1 17.7
Re = 1000 3480 73.5 263 6.0 187 5.6 13.1

Here, L = 1 is the diameter of the square cylinder, and \omega = 0.81. The free streaming
argon gas has a speed of Ma = 5 and a temperature T\infty = 1. The temperature of the
solid surface of the square cylinder is set to be Tw = T\infty , and the diffusive boundary
condition is adopted in the calculations. Due to the symmetry, the solution on half
of the physical domain will be calculated.

The computational domain is discretized unequally with \Delta xmin = 0.01. For the
velocity space, 101 uniform discrete velocity points are used. The Newton--Cotes rule
is applied here to compute the numerical integration. A two-layer V-cycle multigrid
solver is used here. In this hypersonic case, the convergence criterion is set as Rn <
1\times 10 - 4.
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Fig. 8. Hypersonic flow around a square cylinder at Kn = 1 (left) and Kn = 0.1 (right). (a) and
(b) Temperature. (c) and (d) X-velocity. (e) and (f) Y -velocity. Background: two-step multigrid
IUGKS; dashed line: IUGKS.

Table 4
Efficiency of different IUGKS for hypersonic flow around a square cylinder.

State
IUGKS Two-step IUGKS Two-step \& multigrid IUGKS
Steps Time(min) Steps Time(min) Steps Time(min) Rate

Kn = 1 100 21.7 96 20.7 72 19.4 1.1
Kn = 0.1 214 45.6 102 22.2 67 17.8 2.56

The steady-state solutions are presented in Figure 8, and the solutions are com-
pared with the solutions computed by the original IUGKS. The flow variables along
the symmetric axis in the upstream are shown in Figure 9. The results from the cur-
rent two-step IUGKS with a multigrid solver are consistent with the original IUGKS.
The detailed efficiency information is shown in Table 4. Since the multigrid method
needs to do the calculations on both fine and coarse meshes, even with the same
steps, the cost for each time step is higher than that of the other two methods. In
the hypersonic rarefied case at Kn = 1, the improvement in efficiency by using the
multigrid method is not obvious. In the case of Kn = 0.1, the computational cost with
multigrid is reduced by more than two times, which is consistent with the conclusion
in the cavity flow.

6. Conclusion. In this paper, a two-step IUGKS is constructed for the steady-
state solution in all flow regimes. The full Boltzmann collision operator is also inte-
grated into the implicit scheme. Benefiting from the coupled iterative methods for the
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Fig. 9. Flow variables along the symmetric axis in front of the cylinder at Kn = 1 (left) and
Kn = 0.1 (right). (a) and (b) Density. (c) and (d) Temperature. (e) and (f) U-velocity.

implicit macroscopic and microscopic equations, the efficiency of the IUGKS can be
increased significantly for a steady-state solution. By taking into account the viscous
flux in the iterative matrix, the two-step acceleration technique can further improve
the efficiency of the original IUGKS, especially in the near continuum and continuum
flow regimes. In the current implicit scheme, the LU-SGS and the multigrid methods
are used to solve the algebraic systems for the macro-micro equations. Excellent nu-
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merical performance has been observed in all test cases, such as Couette flow, Fourier
flow, cavity flow, and hypersonic flow passing over a square cylinder. The reasons for
the speed-up can be classified into two aspects. In the rarefied regime, the collision
term is regular, and the multigrid method can be helpful for the fast convergence of
the linear system constructed by the numerical scheme. In the continuum regime,
the collision term becomes stiff, and directly solving the linear system will have very
low convergence rate. In order to solve such a linear system efficiently, our strategy
is to choose a good initial point, which is what we called the two-step acceleration
technique in section 3.4. In the first step we solve the continuum equations to get an
approximate solution. This solution can be used as an initial point for solving the
original linear system. In general, the UKGS provides a general framework. Many
commonly used acceleration techniques can be implemented easily into the scheme.

Acknowledgment. We would like to thank Prof. L. Wu for helpful discussions.
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