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Abstract
The radiative transfer equations in cylindrical coordinates are important in the application 
of inertial confinement fusion. In comparison with the equations in Cartesian coordinates, 
an additional angular derivative term appears in the cylindrical case. This term adds great 
difficulty for a numerical scheme to keep the conservation of total energy. In this paper, 
based on weighting factors, the angular derivative term is properly discretized, and the 
interface fluxes in the radial r-direction depend on such a discretization as well. A uni-
fied gas kinetic scheme (UGKS) with asymptotic preserving property for the gray radia-
tive transfer equations is constructed in cylindrical coordinates. The current UGKS can 
naturally capture the radiation diffusion solution in the optically thick regime with the cell 
size being much larger than photon’s mean free path. At the same time, the current UGKS 
can present accurate solutions in the optically thin regime as well. Moreover, it is a finite 
volume method with total energy conservation. Due to the scale-dependent time evolution 
solution for the interface flux evaluation, the scheme can cover multiscale transport mecha-
nism seamlessly. The cylindrical hohlraum tests in inertial confinement fusion are used to 
validate the current approach, and the solutions are compared with implicit Monte Carlo 
result.
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1  Introduction

In this paper, we continue our study of developing asymptotic preserving schemes for vari-
ous radiative transfer systems. The current research is to propose an asymptotic preserv-
ing scheme for the gray radiative transfer equations in the cylindrical coordinate system. 
The radiation transport in such a geometry is important in laser-driven inertial confinement 
fusion (ICF), such as in the study of the popular hohlraum problem. Different from radia-
tive transport equations in Cartesian coordinates, an additional angular derivative appears 
in the cylindrical case. This brings great difficulty to construct a numerical scheme with 
total energy conservation and capture transport physics in optically thin and optically thick 
regions uniformly.

The system of the gray radiative transfer equations models the radiation energy trans-
port and exchange with background material. It is a simplification of the full transport-
ing equations, but keeps the key ingredients in the transport process. For radiation, the 
background material properties influence greatly on the way of energy transport. For a low 
opacity (background) material, the interaction between the radiation and material is weak, 
and the radiation propagates in a transparent way. The numerical method in this regime is 
well defined by tracking the rays through upwind discretization of the streaming term in 
the equations, such as the step method. However, for a high opacity (background) mate-
rial, there is severe interaction between radiation and material with a diminishing photon’s 
mean free path. As a result, the radiation propagates as a diffusive process. To solve the 
radiative transfer equation, the spatial mesh size is usually required to be comparable to 
the photon’s mean free path, which is very small in the optically thick (i.e., high opacity) 
regime. This kind of approach for solving kinetic equations is associated with huge compu-
tational cost. Instead, the macroscopic diffusion equation is usually solved in the optically 
thick region to get the solution efficiently. But, the diffusion equation is not accurate in 
the optically thin (i.e., low opacity) region, and the boundary between optically thin and 
thick regions is difficult to be clearly defined. To accurately present the physical transport 
process efficiently, a multiscale method has to be developed. This method should be able to 
connect solutions in the optically thin and thick regions seamlessly. Intensive investigation 
has been devoted on the development of such a multiscale method in the past decades, i.e., 
the search for the so-called asymptotic preserving (AP) methods [6–10, 12].

Recently, unified gas kinetic schemes (UGKS) with AP properties have been proposed 
for linear radiation transport model [17], gray radiative transfer equations [19, 21], and fre-
quency-dependent radiative transfer equations [20, 22, 23]. All these schemes are designed 
in a Cartesian coordinate system. The success of the UGKS is mainly from the coupled 
treatment of particle transport and collision in the flux evaluation in a finite volume scheme 
[25]. This time and scale evolving solution at a cell interface covers the transport physics 
from the kinetic particle free transport to the macroscopic diffusion limit with the varia-
tion of the ratio of the time step t ∈ [tn, tn+1] over the particle collision time � . The local 
ratio Δt∕� , controls different photon’s transport behavior in the optically thin region Δt < 𝜏 
and optically thick region Δt ≪ 𝜏 . As a result, the solutions in different regimes can be 
obtained simultaneously due to the local variation of Δt∕� . In UGKS, the cell size and time 
step used are not limited by the particle mean free path and collision time [2, 5].

In many engineering applications, e.g., in ICF, the use of cylindrical coordinates is much 
convenient to solve the physical problems. In this paper, for the first time, a unified gas kinetic 
scheme will be developed for the radiative transfer equations in the cylindrical coordinate [18]. 
The developed scheme is asymptotic preserving for the gray radiative transfer equations in RZ 
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cylindrical coordinates, where the diffusive solution will be captured accurately in the opti-
cally thick region without using a cell size being smaller than photon’s mean free path. Besides 
the diffusion limit, the scheme can also capture the solution in the optically thin regime. For 
the current finite volume scheme, the total energy, i.e., the sum of radiation and material ther-
mal ones in the system, will be conserved precisely. A cylindrical hohlraum example in ICF 
will be studied by the current scheme.

This paper is organized as follows. Section 2 gives the model equations of gray radiation 
transfer in the cylindrical RZ geometry. Section 3 presents the unified gas kinetic scheme in 
such a coordinate system. Section 4 gives the asymptotic preserving analysis for the cylindri-
cal gray radiative transfer equations. In Sect. 5, numerical cylindrical hohlraum problems in 
inertial confinement fusion are included to demonstrate the accuracy and robustness of the 
proposed scheme. The conclusion is given in Sect. 6.

2 � Gray Radiative Transfer Equations in Cylindrical RZ Geometry

The gray radiative transfer equations model the radiative transfer and energy exchange 
between radiation and material. In the cylindrical RZ geometry, the scaled equations can be 
written in the following form:

The cylindrical coordinate system is given in Fig. 1, where � = cos �, � = sin � cos� , and 
� = sin � sin � . Here, the spatial variable is denoted by x⃗ = (z, r), Ω⃗ = (𝜉,𝜇, 𝜂) is the angular 
variable, and t is the time variable, I(x⃗, Ω⃗, t) is the radiation intensity, T(x⃗, t) is the material 
temperature, 𝜎(x⃗, T) is the opacity, a is the radiation constant, c is the speed of light, 𝜖 > 0 is 
the Knudsen number, and U(x⃗, t) is the material energy density. For the simplicity of presenta-
tion, we have omitted the internal source and scattering terms in (2.1).

For the small parameter � , Eq. (2.1) is a relaxation model for the radiation intensity to the 
local thermodynamic equilibrium, in which the emission source is a Planckian at the local 
material temperature:

The material temperature T(x⃗, t) and the material energy density U(x⃗, t) are related by

where Cv(x⃗, t) is the heat capacity.
At the small parameter limit � → 0 , Larsen et al. [11] have shown that, away from bounda-

ries and initial times, the intensity I approaches to a Planckian at the local temperature, i.e.,

(2.1)
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and the corresponding local temperature T (0) satisfies the following nonlinear diffusion 
equation:

In this paper, we shall construct an AP scheme for (2.1) in cylindrical coordinates. A dis-
crete ordinate method will be constructed to solve the radiative transfer equation (2.1). The 
scheme has asymptotic preserving (AP) property for the gray radiation transfer equations 
(2.1), thus leading to a correct discretization of the diffusion limit equation (2.2) when � is 
small. At the same time, the scheme is uniformly stable in �.

3 � Unified Gas Kinetic Scheme for System (2.1)

All previous unified gas kinetic schemes for radiative transfer equations are constructed 
in Cartesian coordinates [19–21]. In cylindrical coordinates, a proper discretization of 
angular derivative in the radiative system (2.1) is very important for the implementa-
tion of total energy conservation. The method in [18] for the discretization of angular 
derivative will be used in the current UGKS. In the following, we present the UGKS 
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Fig. 1   Coordinate system for RZ 
geometry



121Communications on Applied Mathematics and Computation (2019) 1:117–139	

1 3

for solving the system (2.1) numerically. We first discretize the first radiative transfer 
equation in the system (2.1); then solve the material energy equation in Sect. 3.4.

3.1 � Angular Discretization

For the angular discretization, it is standard to use a symmetric quadrature set with N levels of 
discrete � values, and at each nth level there are Mn number of discrete � values, see [13] for 
details. Certainly, other quadrature sets are also available. Our scheme can use other quadra-
ture set which is symmetric and has weights summing to 4π . For a symmetrical RZ coordinate 
system, only the case of 𝜂 > 0 is considered. For the discrete ordinate discretization in this 
paper, the angular flux is evaluated at every (m, n) discrete direction in the quadrature set, with 
directions Ω⃗m,n = (𝜉m,n,𝜇m,n, 𝜂m,n) and integration weight �m,n.

With the definition � = acT4 and angular discretization, the radiative transfer equation 
of system (2.1) in the discrete ordinate discretization becomes

Given the definitions in Eq. (3.1), it is easy to show that these � -s preserve a constant 
solution [18]. For a constant solution with zero gradient, the solution should satisfy

which imposes a constraint on � in Eq. (3.1). With angular derivative differences in Eq. 
(3.1), Im,n and I

m+
1

2
,n

 are connected. To determine the solution, we solve � = −
√
1 − �2 for 

the starting direction angular flux on each �-level to obtain I1∕2,n at angular position � = π . 
The resulting transport equation in the starting direction is equivalent to a transport equa-
tion in XY geometry along the starting direction of Ω⃗1∕2,n = (𝜉n,−

√
1 − 𝜉2

n
, 0) , which is 

given by

Up to now, we still need to construct one more relationship between Im,n and Im+1∕2,n to 
close the system. A weighted diamond relationship between angular fluxes at the discrete 
ordinate points and the points between them [18] is used. This relationship is given by
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where the values of �m,n are defined such that a linear solution in � will be preserved, i.e.,

with

By virtue of the relation (3.3), the first equation in (3.1) for non-staring direction 
point can be rewritten as

This completes the angular discretization for Eq. (2.1)1 at the starting direction point 
(3.2) and other points (3.6).

3.2 � Time and Spatial Discretizations

Let zi = iΔz , rj = jΔr and tk = kΔt ( i, j, k ∈ ℤ ) be the uniform mesh in Cartesian coordi-
nates, where these Δz,Δr and Δt are the mesh sizes in the z-, r- and t-directions, respec-
tively; and let Ci,j denote the cell {(z, r)∶ zi−1∕2 < z < zi+1∕2, rj−1∕2 < r < rj+1∕2} , where 
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tk over cell (i, j) with cell mass center (zi,j, ri,j) calculated by

Since the starting direction equation (3.2) is similar to the one in Cartesian coordi-
nates, the aforementioned method in Cartesian coordinates (see [19–21]) can be used 
directly to discretize (3.2); hence, we omit the details of discretization here. For the non-
starting direction Ωm,n , we integrate Eq.(3.6) over the cell (i, j) from time tk to tk + Δt to 
give a conservative finite volume numerical scheme for Eq.(3.6) in the following form:
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Here, Fi±1∕2,j,m,n and Hi,j±1∕2,m,n are the time-dependent numerical fluxes in the z- and 
r-directions across the cell interfaces, respectively, Vi,j = ∫

Ci,j
rdzdr is the cell volume, and 

Ai,j = ∫
Ci,j

dzdr is the area. The specific formulations for some terms on the right-hand side 
of (3.8) are given by

(3.8)
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where the notations E
i±

1

2
,j
,E

i,j±
1

2

 refer to the edges of the cell Ci,j, and S
i±

1

2
,j
, S
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1

2

 are the 
corresponding rotation areas of the edges.

To update the system (3.8), we have to determine all terms in (3.9) explicitly. First, it 
is easy to see that the term Ĩi,j,m,n in (3.9) can be approximated implicitly by

which should be combined with the same term on the left-hand side of Eq. (3.8).
The angular boundary function Ik+1

i,j,m−1∕2,n
 in (3.8) is given by solving the starting direc-

tion equation (3.2) to obtain Ik+1
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 first, then goes to the relation (3.3). The formula for 𝜙̃i,j 
in (3.9) will be determined later. In the following, we present the construction for the inter-
face fluxes Fi±1∕2,j,m,n and Hi,j±1∕2,m,n in (3.9).

3.3 � Construction of the Interface Fluxes in (3.9)

For the RZ cylindrical coordinate system, the interface fluxes Fi±1∕2,j,m,n in the z-direction can 
be constructed in the same way as the case in the Cartesian coordinate system. In cylindri-
cal case, we only need to get the expression for the interface fluxes Hi,j±1∕2,m,n in the r-direc-
tion in Eq. (3.8), which is a generalization of the method in [17, 25]. For the r-direction flux 
Hi,j−1∕2,m,n close to the singular point r = 0 , the following initial value problem at the cell 
interface z = zi, r = rj−1∕2 is solved,

where the function 𝜙̄ and the initial value Im,n,0 will be reconstructed later. For Eq. (3.10), a 
formal time-dependent evolution solution can be obtained,
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Similarly, we get

The initial function r̂Im,n,0 in (3.11) is constructed by a piecewise linear reconstruction:

Here �r(rI)ki,j−1,m,n = ri,j−1�rI
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 are the reconstructed slopes at cell center (i, j − 1) and (i,  j) in the  
r-direction, respectively, where the second-order MUSCL-type slope limiter [24] is used to 
remove spurious oscillations.

The function �r𝜙̄(zi, r, t) is implicitly constructed by
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k+1,L

i,j−1∕2
, �r�

k+1,R

i,j−1∕2
, �t�k+1

i,j−1∕2
 will 

be determined in the next subsection.

3.4 � Macroscale Evolution Equations

The unified gas kinetic scheme updates both microscopic and macroscopic variables [19, 20]. 
The function 𝜙̃ in (3.9) and the unknowns in (3.13) can be determined by solving the follow-
ing macroscopic equations, which are obtained by taking angular moment of the first equation 
in (2.1). With the definition 𝜌 = ∫ IdΩ⃗ , and keeping in mind that � = acT4 , we take the angle 
integration of (2.1)1 to obtain the following macroscopic system:

Î
i,j−1∕2,m+

1

2
,n
=

⎧
⎪⎨⎪⎩

Ik
i,j−1,m+

1

2
,n
, if 𝜇m,n > 0,

Ik
i,j,m+

1

2
,n
, if 𝜇m,n < 0.

Î
i,j−1∕2,m−

1

2
,n
=

⎧⎪⎨⎪⎩

Ik
i,j−1,m−

1

2
,n
, if 𝜇m,n > 0,

Ik
i,j,m−

1

2
,n
, if 𝜇m,n < 0.

(3.12)�rIm,n,0(zi, r, t
k) =

{
ri,j−1I

k
i,j−1,m,n

+ 𝛿r(rI)
k
i,j−1,m,n

(r − ri,j−1), if r < rj−1∕2,

ri,jI
k
i,j,m,n

+ 𝛿r(rI)
k
i,j,m,n

(r − ri,j), if r > rj−1∕2.

(3.13)

�r𝜙̄(zi, r, t) = rj−1∕2

(
𝜙k+1
i,j−1∕2

+ 𝛿t𝜙
k+1
i,j−1∕2

(t − tn+1)
)

+

{
𝛿r(r𝜙)

k+1,L

i,j−1∕2
(r − rj−1∕2), if r < rj−1∕2,

𝛿r(r𝜙)
k+1,R

i,j−1∕2
(r − rj−1∕2), if r > rj−1∕2,

�r(r�)
k+1,L

i,j−1∕2
= rj−1∕2�r�

k+1,L

i,j−1∕2
+ �k+1

i,j−1

�r(r�)
k+1,R

i,j−1∕2
= rj−1∕2�r�

k+1,R

i,j−1∕2
+ �k+1

i,j
.
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where we have denoted the angular vector integration 
⟨
Ω⃗I

⟩
 by

and the gradient operator ∇ is in RZ-cylindrical coordinates. For a function f, the diver-
gence operator reads as

To obtain the macro-quantities � and � at the next time step through Eq. (3.14), we first 
define an exact relationship between the material energy density U and the radiation energy 
density � by

Then, the system (3.14) can be rewritten as

Thus, the finite volume discretization of the system (3.16) can be written as

where the above macro-cell interface fluxes are given through micro-fluxes from (3.9) as 
follows:

(3.14)

⎧
⎪⎨⎪⎩

𝜖

c

𝜕𝜌

𝜕t
+ ∇ ⋅

�
Ω⃗I

�
=

𝜎

𝜖
(𝜙 − 𝜌),

𝜖2Cv

𝜕T

𝜕t
≡ 𝜖2

𝜕U

𝜕t
= 𝜎(𝜌 − 𝜙),

⟨
Ω⃗I

⟩
= ∫ Ω⃗IdΩ⃗ = ∫ (𝜉,𝜇)Id𝜉d𝜔,

∇ ⋅ f =
1

r

�rf

�r
+

�f

�z
.

(3.15)�(x, t) =
��

�U
=

d�

dT

dT

dU
=

4acT3

Cv(T)
.

(3.16)

⎧⎪⎨⎪⎩

𝜖

c

𝜕𝜌

𝜕t
+ ∇ ⋅

�
Ω⃗I

�
=

𝜎

𝜖
(𝜙 − 𝜌),

𝜖2
𝜕𝜙

𝜕t
= 𝛽𝜎(𝜌 − 𝜙).

(3.17)

⎧⎪⎪⎨⎪⎪⎩

�k+1
i,j

= �k
i,j
+

Δt

Vi,j

�
Φk+1

i−1∕2,j
− Φk+1

i+1∕2,j

�

+
Δt

Vi,j

�
Ψk+1

i,j−1∕2
− Ψk+1

i,j+1∕2

�
+

�k+1
i,j

cΔt

�2

�
�k+1
i,j

− �k+1
i,j

�
,

�k+1
i,j

= �k
i,j
+

(��)k+1
i,j

Δt

�2

�
�k+1
i,j

− �k+1
i,j

�
,

(3.18)

Φk+1
i−1∕2,j

=

N∑
n=1

Mn∑
m=1

F
i−

1

2
,j,m,n

�m,n,

Φk+1
i+1∕2,j

=

N∑
n=1

Mn∑
m=1

F
i+

1

2
,j,m,n

�m,n,

Ψk+1
i,j−1∕2

=

N∑
n=1

Mn∑
m=1

H
i,j−

1

2
,m,n

�m,n,

Ψk+1
i,j+1∕2

=

N∑
n=1

Mn∑
m=1

H
i,j+

1

2
,m,n

�m,n.
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Thus, based on the macro-interface fluxes, Eq. (3.17) reduce to a coupled nonlinear sys-
tem of the macro-quantities �k+1

i,j
 and �k+1

i,j
 only, where the parameters �k+1

i,j
 and �k+1

i,j
 depend 

implicitly on the material temperature Tk+1
i,j

 . This nonlinear system can be solved by an 
iterative method [19, 20].

After obtaining �k+1
i,j

 iteratively, we take 𝜙̃ in (3.9) as

is the cell boundary value in (3.13). The left and right one-sided finite differences in (3.13) 
are given by

For the time derivative �t�k+1
i,j−1∕2

 in (3.13), we use

At this point, with the determined macroscopic variables in Eq. (3.17), the radiation inten-
sity in Eq. (3.8) can be updated, which is the main procedure in our unified gas kinetic scheme. 
Then, the final step is to solve the second equation in (2.1) to give the material temperature 
with the newly obtained value Ik+1

i,j,m,n
 . The solution for the energy equation (3.17)2 is given by

Based on (3.19), the material temperature is determined by Tk+1
i,j

= (𝜙̂k+1
i,j

∕(ac))1∕4 . This 
completes the construction of our UGKS scheme for the gray radiative transfer equations 
(2.1).

3.5 � Summary of the Algorithm

In this subsection, we summarize the above solution procedure to the following algorithm for 
convenience.
Loop of UGKS: Given Ik

i,j,m,n
 and Tk

i,j
 , one has �k

i,j
 and �k

i,j
 . Find Ik+1

i,j,m,n
 and Tk+1

i,j
.

	 (i)	 With Ik
i,j,m,n

 in hand, use (3.18) to calculate the macro-flux. Solve the system (3.17) 
to obtain �k+1

i,j
 , �k+1

i,j
.

	(ii)	 With the obtained values �k+1
i,j

 and �k+1
i,j

 from the step (i), solve the resulting equation 
(3.8) for Ik+1

i,j,m,n
.

	(iii)	 With the solution Ik+1
i,j,m,n

 , solve (3.19) to get 𝜙̂k+1
i,j

 , and then the new material tempera-
ture Tk+1

i,j
.

	(iv)	 Go to the next computational step.

End

𝜙̃ = 𝜙k+1
i,j

, and 𝜙k+1
i,j−1∕2

=
(
𝜙k+1
i,j

+ 𝜙k+1
i,j−1

)
∕2

�r�
k+1,L

i,j−1∕2
=

�k+1
i,j−1∕2

− �k+1
i,j−1

Δr∕2
, �r�

k+1,R

i,j−1∕2
=

�k+1
i,j

− �k+1
i,j−1∕2

Δr∕2
.

�t�
k+1
i,j−1∕2

=
�k+1
i,j−1∕2

− �k
i,j−1∕2

Δt
.

(3.19)𝜙̂k+1
i,j

=
𝜙k
i,j
+ Δt(𝛽𝜎)k+1

i,j

∑N

n=1

∑Mn

m=1
𝜔m,nI

k+1
i,j,m,n

∕𝜖2

1 + Δt(𝛽𝜎)k+1
i,j

∕𝜖2
.
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Now, the algorithm loop of our asymptotic preserving scheme for the gray radiative trans-
fer equations in cylindrical coordinates is complete. In the next section, we give the asymp-
totic analysis of the above-constructed numerical scheme.

4 � Asymptotic Analysis of UGKS

In this section, we adapt the idea in [17] to show that the above UGKS is asymptotic preserv-
ing (AP). The numerical flux plays a dominant role for the AP property. Firstly, the numerical 
flux in the r-direction

can be exactly computed [19, 20]. From Eq. (3.11), we have

where (rI)k,−
i,j−1∕2,m,n

, (rI)k,+
i,j−1∕2,m,n

 are used to denote the interface values with

The coefficients in (4.1) are given by

with � =
c�

�2
 . With the expression (4.2), we have

Hi,j−1∕2,m,n =
c�m,nΔz

�Δt ∫
tk+1

tk
ri,j−1∕2Im,n(t, zi, rj−1∕2,�m,n, �m,n)dt

(4.1)

Hi,j−1∕2,m,n = Δz
{
Ai,j−1∕2𝜇m,n

(
(rI)k,−

i,j−1∕2,m,n
1𝜇m,n>0

+ (rI)k,+
i,j−1∕2,m,n

1𝜇m,n<0

)

+Di,j−1∕2

(
𝜇2
m,n

𝛿r(r𝜙)
k+1,L

i,j−1∕2
1𝜇m,n>0

+ 𝜇2
m,n

𝛿r(r𝜙)
k+1,R

i,j−1∕2
1𝜇m,n<0

)

+Bi,j−1∕2

(
𝜇2
m,n

𝛿r(rI)
k
i,j−1,m,n

1𝜇m,n>0
+ 𝜇2

m,n
𝛿r(rI)

k
i,j,m,n

1𝜇m,n<0

)

+ rj−1∕2

(
Qi,j−1∕2𝜇m,n𝛿t𝜙

k+1
i,j−1∕2

+ Ci,j−1∕2𝜇m,n𝜙
k+1
i,j−1∕2

)

+Pi,j−1∕2𝜇m,n

(
𝛼m+1∕2,nI

k+1
i,j−1,m+1∕2,n

−𝛼m−1∕2,nI
k+1
i,j−1,m−1∕2,n

𝜔m,n

1𝜇m,n>0

+
𝛼m+1∕2,nI

k+1
i,j,m+1∕2,n

−𝛼m−1∕2,nI
k+1
i,j,m−1∕2,n

𝜔m,n

1𝜇m,n<0

)}
,

(rI)k,−
i,j−1∕2,m,n

= ri,j−1I
k
i,j−1,m,n

+ �r(rI)
k
i,j−1,m,n

(rj−1∕2 − ri,j−1),

(rI)k,+
i,j−1∕2,m,n

= ri,jI
k
i,j,m,n

+ �r(rI)
k
i,j,m,n

(rj−1∕2 − ri,j).

(4.2)

A =
c

�Δt�

(
1 − e−�Δt

)
,

C =
c2�

2πΔt�3�

(
Δt −

1

�

(
1 − e−�Δt

))
,

D = −
c3�

2πΔt�4�2

(
Δt(1 + e−�Δt) −

2

�

(
1 − e−�Δt

))
,

B = −
c2

�2�2Δt

(
1 − e−�Δt − �Δte−�Δt

)
,

Q =
c2�

2π�3�3Δt

(
1 − e−�Δt − �Δte−�Δt − 1

2
(�Δt)2

)
,

P = −
c2

Δt�2�

(
Δt −

1

�

(
1 − e−�Δt

))
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On the other hand, for the z-direction, the interface flux F
i−

1

2
,j
 is given by

which can be expressed by

Here Ik,−
i−1∕2,j,m,n

, I
k,+

i−1∕2,j,m,n
 are interface values given by

where �zIki−1,j,m,n and �zIki,j,m,n are slopes in the z-direction and can be constructed similar to 
those in the r-direction above.

The behavior of the scheme in the small � limit is completely determined by the property of 
the coefficient functions that are given by

Proposition 1  Let � be positive. Then, as � tends to zero, we have

•	 A(Δt, �, �, �) tends to 0;
•	 B(Δt, �, �, �) tends to 0;
•	 D(Δt, �, �, �) tends to −c∕(2π�);
•	 P(Δt, �, �, �) tends to −c∕�.

In the following, we use the notation ∫
2π
d�d� to denote the angular integration in the half 

sphere. Thus, the corresponding macroscopic diffusion flux Φk+1
i−1∕2,j

 in the z-direction, defined 
by

(4.3)

Ai,j−1∕2 = A(Δt, �, �i,j−1∕2, �i,j−1∕2),
Ci,j−1∕2 = C(Δt, �, �i,j−1∕2, �i,j−1∕2),
Di,j−1∕2 = D(Δt, �, �i,j−1∕2, �i,j−1∕2),
Bi,j−1∕2 = B(Δt, �, �i,j−1∕2, �i,j−1∕2),
Qi,j−1∕2 = Q(Δt, �, �i,j−1∕2, �i,j−1∕2),
Pi,j−1∕2 = P(Δt, �, �i,j−1∕2, �i,j−1∕2).

Fi−1∕2,j,m,n =
cSi−1∕2,j�m,n

�Δt ∫
tk+1

tk
Im,n(t, zi−1∕2, rj,�m,n, �m,n)dt,

(4.4)

Fi−1∕2,j,m,n = Si−1∕2,j

{
Ai−1∕2,j𝜉m,n

(
I
k,−

i−1∕2,j,m,n
1𝜉m,n>0

+ I
k,+

i−1∕2,j,m,n
1𝜉m,n<0

)

+Di−1∕2,j

(
𝜉2
m,n

𝛿z𝜙
k+1,L

i−1∕2,j
1𝜉m,n>0

+ 𝜉2
m,n

𝛿z𝜙
k+1,R

i−1∕2,j
1𝜉m,n<0

)

+Bi−1∕2,j

(
𝜉2
m,n

𝛿zI
k
i−1,j,m,n

1𝜉m,n>0
+ 𝜉2

m,n
𝛿zI

k
i,j,m,n

1𝜉m,n<0

)

+Qi−1∕2,j𝜉m,n𝛿t𝜙
k+1
i−1∕2,j

+ Ci−1∕2,j𝜉m,n𝜙
k+1
i−1∕2,j

}
.

I
k,−

i−1∕2,j,m,n
= Ik

i−1,j,m,n
+ �zI

k
i−1,j,m,n

(zi−1∕2 − zi−1,j),

I
k,+

i−1∕2,j,m,n
= Ik

i,j,m,n
+ �zI

k
i,j,m,n

(zi−1∕2 − zi,j),

(4.5)
Φk+1

i−1∕2,j
=
⟨

cSi−1∕2,j�

�Δt
∫ tk+1

tk
I(t, zi−1∕2, rj,�, �)dt

⟩

= ∫
2π

cSi−1∕2,j�

�Δt
∫ tk+1

tk
I(t, zi−1∕2, rj,�, �)dtd�d�
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has the following limit:

The limit (4.6) gives a numerical flux of the asymptotic limiting equation (2.2) in the 
z-direction.

On the other hand, the corresponding macroscopic diffusion flux Ψk+1
i,j−1∕2

 in the r-direction, 
defined by

has the following limit:

The limit (4.8) gives a numerical flux of the limiting equation (2.2) in the r-direction.
Next, we shall see that the above constructed UGKS for the radiative transfer 

equations (2.1) is in fact asymptotic preserving, which is verified in the following 
proposition.

Proposition 2  Let � be positive. Then, as � tends to zero, the numerical scheme given by 
(3.8) and (3.9) approaches to the standard implicit diffusion scheme for the diffusion limit 
equation (2.2) in cylindrical coordinates.

(4.6)

Φk+1
i−1∕2,j

= Si−1∕2,j

N∑
n=1

Mn∑
m=1

�m,nFi−1∕2,j,m,n

����������������→

�→0
−Si−1∕2,j

(
c

6�i−1∕2,j
�z�

k+1,L

i−1∕2,j
+

c

6�i−1∕2,j
�z�

k+1,R

i−1∕2,j

)

= −
cSi−1∕2,j

3�i−1∕2,j

�k+1
i,j

−�k+1
i−1,j

Δz
.

(4.7)
Ψk+1

i,j−1∕2
=
⟨

c�Δz

�Δt
∫ tk+1

tk
rj−1∕2I(t, zi, rj−1∕2,�, �)dt

⟩

= ∫
2π

c�Δz

�Δt
∫ tk+1

tk
rj−1∕2I(t, zi, rj−1∕2,�, �)dtd�d�

(4.8)

Φk+1
i,j−1∕2

= Δz

N∑
n=1

Mn∑
m=1

𝜔m,nHi,j−1∕2,m,n

����������������→

𝜖→0
−Si,j−1∕2

(
c

6𝜎i,j−1∕2
𝛿r𝜙

k+1,L

i,j−1∕2
+

c

6𝜎i,j−1∕2
𝛿r𝜙

k+1,R

i,j−1∕2

)

−
cΔz

𝜎i,j−1∕2

N∑
n=1

Mn∑
m=1

𝜔m,n𝜇m,n

×

{(
𝜇m,n

𝜙k+1
i,j

2π
+

𝛼m+1∕2,nI
k+1
i,j,m+1∕2,n

−𝛼m−1∕2,nI
k+1
i,j,m−1∕2,n

𝜔m,n

)
1𝜇m,n<0

+

(
𝜇m,n

𝜙k+1
i,j−1

2π
+

𝛼m+1∕2,nI
k+1
i,j−1,m+1∕2,n

−𝛼m−1∕2,nI
k+1
i,j−1,m−1∕2,n

𝜔m,n

)
1𝜇m,n>0

}

= −
cSi,j−1∕2

3𝜎i,j−1∕2

𝜙k+1
i,j

−𝜙k+1
i,j−1

Δr
−

cΔz

𝜎i,j−1∕2

N∑
n=1

Mn∑
m=1

𝜔m,n𝜇m,n

×

{(
𝜇m,n

𝜙k+1
i,j

2π
+

𝛼m+1∕2,nI
k+1
i,j,m+1∕2,n

−𝛼m−1∕2,nI
k+1
i,j,m−1∕2,n

𝜔m,n

)
1𝜇m,n<0

+

(
𝜇m,n

𝜙k+1
i,j−1

2π
+

𝛼m+1∕2,nI
k+1
i,j−1,m+1∕2,n

−𝛼m−1∕2,nI
k+1
i,j−1,m−1∕2,n

𝜔m,n

)1𝜇m,n>0

}
.
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Proof  Firstly, in view of the order �−2 term in the non-starting direction equation (3.8), as 
the parameter � tends to zero, one has

Integrating the above equation with respect to the angular variable, we obtain as � → 0 
that

Similarly, for the starting direction equation (3.2), in view of the order �−2 term in its 
discretization equation, as the parameter � tends to zero, we get

Secondly, for the order �−1 term in Eq. (3.8), such as the left flux Fk+1
i−1∕2,j,m,n

 given by the 
formula (4.4), integrating the flux Fk+1

i−1∕2,j
 in the angular variable, we obtain the macro-flux 

Φk+1
i−1∕2,j,m,n

 in Eq. (4.6). As � → 0 , we deduce by Proposition 1 that

Similarly, as � → 0, the right macro-interface flux implies

For the lower r-direction boundary flux Hk+1
i,j−1∕2,m,n

 given by Eq. (4.1), integrating the 
flux Hn+1

i,j−1∕2,m,n
 in the angular variable, we have the macro-flux Ψk+1

i,j−1∕2
 in Eq. (4.8). By the 

relations in (3.1), (3.3), (4.9), (4.11), and Proposition 1, as � → 0 we infer that

Similarly, as � → 0, the right macro-interface flux goes to

Then, the remaining �−1 term in (3.8) satisfies
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1

2π
�k+1
i,j

.
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.
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(4.13)Φk+1
i+1∕2,j

→ −
cSi+1∕2,j

3�k+1
i+1∕2,j

�k+1
i,j

− �k+1
i+1,j

Δz
.

(4.14)Ψk+1
i,j−1∕2

→ −
cSi,j−1∕2

3�k+1
i,j−1∕2

�k+1
i,j

− �k+1
i,j−1

Δr
.

(4.15)Ψn+1
i,j+1∕2

→ −
cSi,j+1∕2

3�k+1
i,j+1∕2

�k+1
i,j

−�k+1
i,j+1

Δr
.

(4.16)
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)
= 0.
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Thirdly, adding Eq. (3.8) to (3.19), integrating the resulting equation in the angular vari-
able, and using (4.12), (4.13), (4.14), (4.15) and (4.16), we see that

By virtue of the relation (4.10), Eq. (4.17) is a standard five-point scheme for the dif-
fusion equation (2.2) in cylindrical coordinates. Therefore, this shows that our UGKS for 
the gray radiative transfer equations (2.1) is asymptotic preserving (AP), where the current 
UGKS can capture the exact diffusion solution without the constraint on the cell size being 
smaller than the photon’s mean free path.

5 � Numerical Examples

In this section, we present numerical examples arising from inertial confinement fusion to 
validate the proposed AP-UGKS in cylindrical coordinates. In the computation, the unit of 
the length is centimeter, the mass unit is gramme (g), the time unit is nanosecond (ns), the 
temperature unit is kilo electronvolt (KeV), and the energy unit is 109 Joules (GJ). With the 
above units, the light speed is 29.98 cm/ns and the radiation constant a is 0.013 72 GJ/cm3 
KeV4 . For angle discretization, we take N = 8 in the following simulations.

Example 1  (see [1]) The computational domain is given in Fig.  2. It is a thirteen-
millimeters square with a thin wall of material around the outside edge. There are two 
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Fig. 2   The computation region for Example 1. The red regions are optically thick region, and the blue 
region is vacuum region. This is an axial symmetric problem
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millimeter openings on the left side of the hohlraum, and there is a rectangular block of 
material in the center of the system. The material is a purely absorber with �a = 100 cm−1 
and �Cv = 5.0 × 105 J/m

3
K. The rest of the device is a void with zero opacity. The initial 

material and radiation temperatures are set to be T0 = 300K . A source boundary con-
dition is applied along the entire left hand side. The source has a temperature of 
Tsource = 3.5 × 106 K . To show the performance of the numerical scheme, we calculated 
the problem with coarse mesh with 130 × 65 cells and fine mesh with 260 × 130 cells, 
respectively. In Fig. 3, we give the contours of both material and radiative temperatures 
at time = 1 ns in the upper half region since the problem is cylindrically symmetric. And 
in Figs. 4 and 5 we compare the results of two mesh cases at line y = 0.05 and y = 0.39 , 
respectively. Further in Fig.  6, we compare the time evolution values of material and 
radiation temperatures at two points (0.005, 0.005) and (0.46, 0.39) in both mesh cases. 
It is clear to see that the current UGKS can simulate the vacuum region and the optical 
thick region accurately.
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Fig. 3   The contours of material and radiation temperature for Example 1 at time = 1 ns. The left sub-fig-
ures are the material temperatures, and the right sub-figures are the radiation temperature. The above two 
figures are calculated by coarse mesh with 130 × 65 cells, while the bottom two figures are calculated by 
fine mesh with 260 × 130 cells
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Example 2  (see [16]) In this test we solve a simplified hohlraum problem. The layout is 
given in Fig. 7, where the red regions have � = 100T−3 cm−1 for T in KeV and the blue 
region is vacuum. On the left boundary, there is a 1KeV blackbody source-emitting radia-
tion into the initially cold material. In Fig. 8, we give the contours of material and radia-
tive temperature at time=10 ns. To validate the solutions, we present the computed results 
by both UGKS and the implicit Monte Carlo (IMC) method (see [3, 4, 14]) for the tem-
peratures in Figs. 9 and 10 along the two lines of z = 0.05 and z = 0.44 , respectively. In 
Figs. 11 and 12, we show the temperature evolution computed by both UGKS and the IMC 
method at two points (0.105, 0.005) and (0.56, 0.44), respectively. It is obvious to see that 
both UGKS and the IMC method can simulate the transport in vacuum and optical thick 
regions, while UGKS gives a smooth transition in different transport regimes. The compar-
ison of computation time for UGKS and IMC is given in Table  1; here, the computation 
platform is LENOVO personal computer with Intel(R) Core(TM) i7-4770 CPU, and with 
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Fig. 4   The comparing results of UGKS for material and radiation temperatures at y = 0.05 cm and time = 
1 ns with coarse and fine meshes. The left one is the material temperature, and the right one is the radiation 
temperature
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Fig. 5   The comparing results of UGKS for material and radiation temperatures at y = 0.39 cm and time = 
1 ns with coarse and fine meshes. The left one is the material temperature, and the right one is the radiation 
temperature
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points (0.105, 0.005) and (0.46, 0.39) with time evolution. The left one is the material temperature, and the 
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Table 1   The computation time 
comparison for UGKS and IMC

UGKS (min) IMC (min)

293 3 405

Fig. 7   The computation region 
for Example 2, the red regions 
are optically thick region, and 
the blue region is vacuum region. 
This is an axial symmetric 
problem
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Fig. 8   The contours of material and radiation temperature for Example 2 at time = 10 ns. The left one is the 
material temperature, and the right one is the radiation temperature
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1 million particles in IMC simulation. From this, we can see that the UGKS can save the 
computational time greatly.

6 � Conclusion

In this paper, we present a unified gas kinetic scheme (UGKS) for the gray radiative 
transfer equations in cylindrical geometry. Due to the time-dependent un-splitting treat-
ment of photon transport and collision in the flux evaluation, the current UGKS can 
give accurate solutions in all transport regimes. It has asymptotic preserving property in 
the optical thick region to recover the diffusion solution without using a mesh size being 
smaller than the photon mean free path. At the same time, accurate solutions can be 
obtained by UGKS in the optical thin regime, even the free transport solution in vacuum 
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time evolution. The left one is the material temperature, and the right one is the radiation temperature
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regime. For a physical problem with multiscale transport in different regions, the cur-
rent UGKS gives a smooth transition from the optically thin to optically thick regions 
with the variation of the ratio between the time step and local photon’s collision time. 
The cylindrical hohlram examples in inertial confinement fusion are tested to validate 
the current approach. The current scheme can be naturally extended to the study of cou-
pled system among radiative transfer [20], fluid dynamics [25], and plasma physics [15].
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