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The unified gas-kinetic scheme (UGKS) is a direct modeling method for both continuum 
and rarefied flow computations. In the previous study, the UGKS was developed for 
diatomic molecular simulations with translation and rotational motions. In this paper, a 
UGKS with non-equilibrium translational, rotational, and vibrational degrees of freedom, 
will be developed. The new scheme is based on the phenomenological gas dynamics model, 
where the translational, rotational, and vibrational modes get to the equilibrium with 
different time scales with the introduction of rotational and vibrational collision numbers. 
This new scheme is tested in a few cases, such as the homogeneous flow relaxation, 
shock structure, shock tube problem, and flow passing through a circular and semi-circular 
cylinders. The analytical and DSMC solutions are used for the validation of the UGKS, and 
reasonable agreements have been achieved.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Hypersonic flow around a flying vehicle in near space is a typical multiple scale flow problem, where the flow physics in 
different regions around the vehicle can lie in different flow regimes. For example, at Mach number 4 and Reynolds number 
59373, the local Knudsen number around a flying vehicle, which is defined as the ratio of local particle mean free path over 
the length scale of flow variable variation [1], can cover a wide range of values with five order of magnitude difference [2]. 
The development of multiple scale method in aerospace application seems necessary. Generally, the non-equilibrium in the 
hypersonic gas dynamics includes the following two aspects: (1) The translational non-equilibrium gas distribution function 
with highly non-equilibrium form, such as the bimodal distributions and prominent surface slip phenomena [3–5]. The 
translational non-equilibrium is the most difficult part to be captured. (2) The associated thermodynamic non-equilibrium 
related to the internal degrees of freedom, such as energy exchange among translational, rotational, and vibrational ones, 
and even the chemical reaction [6–8].

The study of vibrational relaxation of diatomic molecules is fundamental to the evaluation of dynamic properties of 
high temperature flow field [9–11]. Such studies are important not only for understanding the vibrational non-equilibrium 
process itself, but also for allowing to appropriately treat the strong coupling between vibrational relaxation and other 
non-equilibrium processes, such as dissociation, ionization, and radiation in hypersonic flight.
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Several approaches have been routinely used to solve the hypersonic rarefied flow problem. The direct simulation Monte 
Carlo (DSMC) method can model the non-equilibrium physics, but it becomes increasingly expensive as the Knudsen number 
approaches to the lower end of the transition regime. On the other hand, the traditional computational fluid dynamics (CFD) 
solution based on the continuity assumption starts to deteriorate as the flow goes into the transition regime [12]. The direct 
Boltzmann solver [13] is hampered by the difficulty of incorporating non-equilibrium flow physics, such as rotational and 
vibrational energy exchange, into the complete collision integral term, and is extremely expensive in terms of computational 
cost.

The Bhatnagar–Gross–Krook (BGK) model of the Boltzmann equation provides a viable model to solve the non-
equilibrium flow problem because of its simple formulation and easy modeling for the multi-temperature non-equilibrium 
effect [12]. Recently, a unified gas-kinetic scheme (UGKS) has been developed for the whole Knudsen number regime based 
on the gas-kinetic BGK model, with discretized particle velocity space [14]. The critical step is that an integral solution 
of the kinetic model equation is used in the flux construction across a cell interface. The integral solution describes the 
scale-dependent physical process from the kinetic particle free transport to the hydrodynamic equilibrium state formation. 
Therefore, the integral solution gives an accurate representation for both continuum and free molecular flows. Many other 
conventional kinetic solvers use an operator-splitting technique. This decoupled numerical treatment, same as the DSMC 
method, requires a cell size and time step to resolve the solution in the particle mean free path and collision time scales, 
even in the continuum flow regime. Otherwise, the dissipation proportional to the particle free transport length scale, such 
as the cell size, will become much larger than the physical one which is on the order of particle mean free path. The UGKS 
is a finite volume scheme which describes a gas evolution process in a scale of the numerical time step, which can be 
less and much larger than the local particle time in the rarefied and continuum regimes. In the continuum flow regime 
at high Reynolds number, same as the macroscopic NS solver, the UGKS can use the mesh size and time step which are 
much larger than the particle mean free path and collision time in the capturing of the NS solutions, such as the laminar 
boundary layer [15].

In the previous study, the UGKS based on the BGK and Shakhov models has been developed for monatomic gas in the 
whole flow regimes [16–19]. For the BGK model, the Prandtl number is unit. In order to correct the heat flux with a proper 
Prandtl number, many generalized BGK-type kinetic models have been developed. One of the well-knowns is the Shakhov 
model [20]. In addition, the UGKS based on the Rykov model was developed for diatomic gas [21]. In the diatomic gas 
modeling, the rotational degrees of freedom were included for capturing the energy exchange between translational and 
rotational energy through relaxation process. More specifically, the Rykov kinetic model was used to construct the time 
evolution solution of a gas distribution function for the flux evaluation [22].

As described above, the study of vibrational relaxation of diatomic molecules is fundamental to the evaluation of dy-
namic properties of high temperature flow field. Thus, the attempt to include the vibrational mode into the UGKS has been 
conducted. In a recent work by Zhang [23], a model with vibrational relaxation was proposed. In this paper, we will present 
a UGKS for non-equilibrium flow simulation with translational, rotational, and vibrational degrees of freedom. The model 
used here for the construction of UGKS is a phenomenological one, which is similar to the Larsen–Borgnakke model used 
in DSMC [1]. The construction of vibrational degrees of freedom, and the energy exchanges between different modes, will 
be presented in detail. This paper is organized in the following. The UGKS is presented in Section 2. Section 3 includes five 
numerical test cases to validate the proposed method. The last section is the concluding remarks.

2. UGKS for diatomic molecules with vibrational relaxation

2.1. Gas-kinetic model

For diatomic gas, besides the translational degrees of freedom, the rotational and vibrational degrees of freedom are 
included as well in a gas distribution function, i.e., f (t, �x, �u, εr, εv), where εr and εv are the rotational and vibrational 
energy, respectively; �x and �u are physical space and particle velocity space,respectively; t is time. The relations between the 
distribution function and macroscopic flow variables are defined as

ρ =
∫

f dudvdwdεrdεv ,

Ui = 1

ρ

∫
ui f dudvdwdεrdεv ,

Pij =
∫

cic j f dudvdwdεrdεv ,

nkTtran = 1

3

∫
c2 f dudvdwdεrdεv ,

nkTrot =
∫

εr

m
f dudvdwdεrdεv ,

K v
nkT vib =

∫
εv

f dudvdwdεrdεv ,

2 m
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qi =
∫

ci(
c2

2
+ εr

m
+ εv

m
) f dudvdwdεrdεv (1)

where �c = (u − U , v − V , w − W ) is the peculiar velocity, m is the molecular mass, n is the molecular number density, 
Ui is the i-direction flow velocity, Pij is the stress, k is Boltzmann constant, K v is the vibrational degree of freedom, Ttran is 
the translational temperature, Trot is the rotational temperature, T vib is the vibrational temperature, and qi is the heat flux 
related to translational, rotational and vibrational degrees of freedom.

In order to simplify the collisional model of the full Boltzmann equation, many kinetic models were proposed and used in 
the study of rarefied flows [20,24–28]. For diatomic gases, the non-equilibrium vibrational, rotational, and transitional energy 
should be included. Attempts have been done to construct the kinetic models and develop the corresponding gas-kinetic 
schemes [29–32].

The model used in the construction of the UGKS with vibrational mode is a phenomenological one, which basically 
includes different time scales in the translational, rotational, and vibrational relaxations. A two-dimensional formulation is 
considered, which has the following form.

∂ f

∂t
+ u

∂ f

∂x
+ v

∂ f

∂ y
= gtran − f

τ
+ grot − gtran

τ Zr∗ + gvib − grot

τ Z v∗ . (2)

The collision operator on the right-hand of the equation is consisted of three terms corresponding to the translational 
relaxation, rotational relaxation, and vibrational relaxation,respectively. In Eq. (2), gtran is the equilibrium state for the 
translational relaxation process with individual temperatures, grot is the equilibrium state for the translational and rotational 
energy exchange with two independent temperature, and gvib is the final equilibrium state with a single temperature for 
the energy exchange among all degrees of freedom, translation, rotation, and vibration. The equilibrium states are expressed 
as

gtran = ρ(
m

2πkTtran
)

3
2 e

− mc2
2kTtran

1

kTrot
e
− εr

kTrot
1

�(K v/2)

ε
K v/2−1
v

(kT vib)
K v/2

e
− εv

kT vib ϒ(λtran),

grot = ρ(
m

2πkT1
)

3
2 e

− mc2
2kT1

1

kT1
e
− εr

kT1
1

�(K v/2)

ε
K v/2−1
v

(kT vib)
K v/2

e
− εv

kT vib ϒ(λ1),

gvib = ρ(
m

2πkT
)

3
2 e− mc2

2kT
1

kT
e− εr

kT
1

�(K v/2)

ε
K v/2−1
v

(kT )K v/2
e− εv

kT ϒ(λ), (3)

with

ϒ = [1 + 4

5
(1 − Pr)λ2 �q · �c

ρ
(2λc2 − 5)],

�( j) =
∞∫

0

x j−1e(−x)dx,

where Pr is the Prandtl number, R = k/m is the gas constant, λ = m/2kT , τ = μ(Ttran)/ptran is the relaxation time, μ(Ttran)

is the viscosity coefficient of a diatomic gas, ptran is the pressure, T1 is the equilibrium temperature for translation and 
rotation, and T is the equilibrium temperature for all degrees of freedom. The relaxation time τ depends on translational 
temperature Ttran , because the translational temperature characterizes the relative velocity between colliding particles. Here 
Zr∗ is the rotational collision number, and is related to the number of collisions for the equilibrium state between the 
translational and rotational temperatures, and Z v∗ is the corresponding vibrational collision number in the vibrational 
mode. The above kinetic equation follows the similar consideration of Larsen–Borgnakke model, which is used in the DSMC 
method [1].

2.2. Reduced gas-kinetic model

The UGKS is a scheme for capturing the time evaluation of a gas distribution function f (t, �x, �u, εr, εv ), in which the 
particle velocity space �u is discretized, while the energy εr and εv are considered in a continuous space. In order to reduce 
the computational cost, reduced gas distribution functions [33] are used in the computation, and defined as,

H =
∫

f dwdεrdεv , B =
∫

w2 f dwdεrdεv ,

R =
∫

2εr

m
f dwdεrdεv , G =

∫
2εv

m
f dwdεrdεv . (4)

As a result, the relationship between the macroscopic flow variables and distribution functions can be written in terms of 
the moments of H, B, R and G ,
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W =

⎛
⎜⎜⎜⎜⎜⎝

ρ
ρU
ρV
ρE

ρErot

ρE vib

⎞
⎟⎟⎟⎟⎟⎠ =

∫
⎛
⎜⎜⎜⎜⎜⎜⎝

H
uH
v H

u2+v2

2 H + 1
2 B + 1

2 R + 1
2 G

1
2 R
1
2 G

⎞
⎟⎟⎟⎟⎟⎟⎠

dudv. (5)

Multiplying Eq. (2) by vector (1, w2, 2εr
m , 2εv

m )T and integrating the vector equation, the following system is obtained,

∂


∂t
+ u

∂


∂x
+ v

∂


∂ y
= 1

τ
(
eq − 
), (6)

where 
 = (H, B, R, G)T and⎛
⎜⎜⎝

Heq

Beq

Req

Geq

⎞
⎟⎟⎠ = νtran

⎛
⎜⎜⎝

Htran

Btran

Rtran

Gtran

⎞
⎟⎟⎠ + νrot

⎛
⎜⎜⎝

Hrot

Brot

Rrot

Grot

⎞
⎟⎟⎠ + νvib

⎛
⎜⎜⎝

H vib
B vib
R vib
G vib

⎞
⎟⎟⎠ , (7)

with νtran = 1 − 1/Zr∗, νrot = 1/Zr∗ − 1/Z v∗, νvib = 1/Z v∗ ,

Htran = Htran,Gaussian · Y1(λtran), Hrot = Hrot,Gaussian · Y1(λ1), H vib = H vib,Gaussian · Y1(λ),

Btran = Btran,Gaussian · Y2(λtran), Brot = Brot,Gaussian · Y2(λ1), B vib = B vib,Gaussian · Y2(λ),

Rtran = Rtran,Gaussian · Y1(λtran), Rrot = Rrot,Gaussian · Y1(λ1), R vib = R vib,Gaussian · Y1(λ),

Gtran = Gtran,Gaussian · Y1(λtran), Grot = Grot,Gaussian · Y1(λ1), G vib = G vib,Gaussian · Y1(λ). (8)

Htran,Gaussian = ρ(
λtran

π
)e−λtran((u−U )2+(v−V )2),

Hrot,Gaussian = ρ(
λ1

π
)e−λ1((u−U )2+(v−V )2),

H vib,Gaussian = ρ(
λ

π
)e−λ((u−U )2+(v−V )2),

Btran,Gaussian = K

2λtran
Htran,Gaussian, Brot,Gaussian = K

2λ1
Hrot,Gaussian, B vib,Gaussian = K

2λ
H vib,Gaussian,

Rtran,Gaussian = Kr

2λrot
Htran,Gaussian, Rrot,Gaussian = Kr

2λ1
Hrot,Gaussian, R vib,Gaussian = Kr

2λ
H vib,Gaussian,

Gtran,Gaussian = K v

2λvib
Htran,Gaussian, Grot,Gaussian = K v

2λvib
Hrot,Gaussian, G vib,Gaussian = K v

2λ
H vib,Gaussian. (9)

Y1(λ) = 1 + 4

5
(1 − Pr)λ2 [(u − U ) · qx + (v − V ) · qy]

ρ
(2λ[(u − U )2 + (v − V )2)] + K − 5),

Y2(λ) = 1 + 4

5
(1 − Pr)λ2 [(u − U ) · qx + (v − V ) · qy]

ρ
(2λ[(u − U )2 + (v − V )2)] + K − 3), (10)

where λ = m/(2kT ), K is the translational internal degree of freedom, Kr is the rotational degree of freedom. The construc-
tion of UGKS flux function for diatomic gas with vibrational relaxation is based on Eq. (6).

2.3. Unified gas-kinetic scheme

The unified gas-kinetic scheme is a finite volume method. The physical space in 2D is divided into control volumes �i, j . 
The temporal discretization is denoted by tn for the n-th time step. The particle velocity space is discretized in order to 
capture the non-equilibrium distribution. The discrete distribution functions in physical and velocity spaces are denoted by

Hn
i, j = Hn

i, j,α,β = H(tn, xi, y j, uα, vβ),

Bn
i, j = Bn

i, j,α,β = B(tn, xi, y j, uα, vβ),

Rn
i, j = Rn

i, j,α,β = R(tn, xi, y j, uα, vβ),

Gn = Gn = G(tn, xi, y j, uα, vβ). (11)
i, j i, j,α,β
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With the discrete particle velocity points, the moments of the gas distribution functions can be obtained by numerical 
quadrature over velocity space,

W n
i, j = �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

κ Hn
i, j

κ Hn
i, ju

κ Hn
i, j v

1
2κ((u2 + v2)Hn

i, j + Bn
i, j + Rn

i, j + Gn
i, j)

1
2κ Rn

i, j
1
2κGn

i, j

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

where κ is the weight of numerical quadrature. The UGKS method is constructed in the following.
(a) Integrating the model Eq. (6) over the control volume �i, j in a physical space and in a time interval (tn, tn+1).
(b) Discretizing the time integration of collision terms using a trapezoid rule.
(c) Updating the gas distribution functions (Hi, j, Bi, j, Ri, j, Gi, j) and macroscopic flow variables W in the control volume 
�i, j .

The UGKS updates the distribution functions and flow variables in the following equations.


n+1
i, j = (1 + �t

2τn+1
)−1[
n

i, j + 1

�i, j

tn+1∫
tn

∮
∂�i, j


c f (u, v, t)�u·d�Sdt + �t

2
(

n+1

eq,i, j

τn+1
+ 
n

eq,i, j − 
n
i, j

τn
)], (13)

W n+1
i, j = W n

i, j + 1

�x
(�Fi−1/2, j − �Fi+1/2, j) + 1

�y
(�Fi, j−1/2 − �Fi, j+1/2) + S, (14)

with

S =

⎛
⎜⎜⎜⎝

0,0,0,0,�t(
(ρErot,eq)

n
i, j − (ρErot)

n
i, j

2τn
+ (ρErot,eq)

n+1
i, j − (ρErot)

n+1
i, j

2τn+1
),

�t(
(ρE vib,eq)

n
i, j − (ρE vib)

n
i, j

2τn
+ (ρE vib,eq)

n+1
i, j − (ρE vib)

n+1
i, j

2τn+1
)

⎞
⎟⎟⎟⎠

T

,

�Fi−1/2 =
tn+1∫
tn

∫
u(ψ1 Hi−1/2 + ψ2 Bi−1/2 + ψ3 Ri−1/2 + ψ4Gi−1/2)dudvdt,

�F j−1/2 =
tn+1∫
tn

∫
v(ψ1 H j−1/2 + ψ2 B j−1/2 + ψ3 R j−1/2 + ψ4G j−1/2)dudvdt,

ψ1 = (1, u, v,
1

2
(u2 + v2),0,0)T ,

ψ2 = (0,0,0,
1

2
,0,0)T ,

ψ3 = (0,0,0,
1

2
,

1

2
,0)T ,

ψ4 = (0,0,0,
1

2
,0,

1

2
)T ,

where �S is the unit vector of a cell interface. 
n+1
i, j and 
n

i, j are the averaged reduced velocity distribution functions in 
the cell (i, j) at times tn+1 and tn , respectively. �t is the time step, τn and τn+1 are relaxation times. 
cf (u, v, t) is the 
time-dependent reduced gas distribution function at the cell interface, which plays a central role for the capturing multiple 
scale flow physics in UGKS. 
eq is obtained from Eq. (9), and ρErot,eq and ρE vib,eq are determined from Eqs. (5) and (9).

In the above system, in order to update the gas distribution functions in Eq. (13), 
n+1
eq depends on the macroscopic flow 

variables at (n + 1)-th step, which can be provided through the solution of Eq. (14). Therefore, the solutions in Eqs. (13)
and (14) are uniquely determined once the time dependent gas distribution functions for H, B, R, G at a cell interface are 
obtained. The construction of the time-dependent gas distribution function at the cell interface is the central ingredient for 
the development of UGKS.

In UGKS method, the time-dependent distribution function H at the cell interface is modeled by the local analytical 
solution of kinetic equation (Eq. (6)). A directional splitting scheme is developed in this paper. For a 2D flow, the kinetic 
equation, for example, in the x-direction, becomes,
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∂ H

∂t
+ u

∂ H

∂x
= 1

τ
(Heq − H). (15)

Taking the interface xi+1/2 = 0 and tn = 0, the time evolution solution is

H(0, t, uα) = 1

τ

t∫
tn

Heq(x′, t′, uα)e−(t−t′)/τ dt′ + e−t/τ H0(−uαt,0, uα). (16)

The initial distribution function H0 around the interface is,

H0(x,0, uα) =
{

H L
i+1/2,α + σ H

i,αx, x ≤ 0,

H R
i+1/2,α + σ H

i+1,αx, x > 0,
(17)

where H L
i+1/2,α and H R

i+1/2,α are the reconstructed initial distribution functions on the left and right sides of the interface. 
Thus,

H L
i+1/2,α = Hi,α + (xi+1/2 − xi)σ

H
i,α,

H R
i+1/2,α = Hi+1,α + (xi+1 − xi/2)σ

H
i+1,α,

where σ H
i,α is the slope of H at the i-th cell and α-th particle velocity. The van Leer limiter is used for the reconstruction,

σ H
i,α = (sign(s1) + sign(s2))

|s1||s2|
|s1| + |s2| , (18)

with s1 = (Hi,α − Hi−1,α)/(xi − xi−1), s2 = (Hi+1,α − Hi,α)/(xi+1 − xi), and the signal function sign(s1).
The Maxwellian distribution around the interface is approximated by Taylor expansion,

Heq(x, t, uα) =νtran Htran + [(1 − H[x])aL
H x + H[x]aR

H x + AHt]Htran,Gaussian

+ νrot Hrot + [(1 − H[x])bL
H x + H[x]bR

H x + B Ht]Hrot,Gaussian

+ νvib H vib + [(1 − H[x])cL
H x + H[x]cR

H x + C Ht]H vib,Gaussian,

(19)

where Htran,Gaussian ,Hrot,Gaussian , and H vib,Gaussian are the Maxwellian distributions at (x = 0, t = 0), Htran ,Hrot , and H vib are 
the modified Maxwellian distributions at (x = 0, t = 0), and H[x] is the Heaviside function. Here aL

H , aR
H , AH , bL

H , bR
H , B H , cL

H ,

cR
H , and C H are the spatial and temporal gradients for the equilibrium distribution function, and of the same form [14],

a = a1 + a2u + a3 v + a4
1

2
(u2 + v2), (20)

and a1, a2, a3, a4 are local constants. How to determine the above spatial and temporal gradients for the equilibrium distri-
bution function was explained in [14].

Inserting Eq. (17) and Eq. (19) into Eq. (16), one obtains,

H(0, t, uα) = νtran

[
(1 − e−t/τ )Htran + (τ (−1 + e−t/τ ) + te−t/τ )[aL

H H[uα] + aR
H (1 − H[uα])

Htran,Gaussian + τ (t/τ − 1 + e−t/τ )AH Htran,Gaussian
]

+ νrot

[
(1 − e−t/τ )Hrot + (τ (−1 + e−t/τ ) + te−t/τ )[bL

H H[uα] + bR
H (1 − H[uα])

Hrot,Gaussian + τ (t/τ − 1 + e−t/τ )B H Hrot,Gaussian
]

+ νvib

[
(1 − e−t/τ )H vib + (τ (−1 + e−t/τ ) + te−t/τ )[cL

H H[uα] + cR
H (1 − H[uα])

H vib,Gaussian + τ (t/τ − 1 + e−t/τ )C H H vib,Gaussian
]

+ e−t/τ ((H L
i+1/2,α − uαtσ H

i,α)H[uα] + (H R
i+1/2,α − uαtσ H

i+1,α)(1 − H[uα])). (21)

Similar procedure is taken for the computations of B, R, G at a cell interface.
In the above cell interface distribution functions, the spatial and temporal gradients in the equilibrium states, such as 

for H , need to be determined

aL
H = (∂ Htran,Gaussian/∂x)/Htran,Gaussian = aL

H,1 + aL
H,2u + aL

H,3 v + aL
H,4

1

2
(u2 + v2),

AL
H = (∂ Htran,Gaussian/∂t)/Htran,Gaussian = AL

H,1 + AL
H,2u + AL

H,3 v + AL
H,4

1
(u2 + v2).
2
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Suppose αH represents the spatial and temporal gradients of the equilibrium state H , with the coefficients α = α1 + α2u +
α3 v + α4

1
2 (u2 + v2). These coefficients are related to the spatial and temporal derivatives of macroscopic flow variables, 

such as ρ ′, U ′, V ′, λ′ for the derivatives of ρ, U , V , λ. The determination of the derivatives of the macroscopic flow variables 
in space and time will be shown later. The connections between the coefficients α and derivatives of ρ ′, U ′, V ′, λ′ are the 
following,

α1 = 2λρ ′ + ρ(−4λ2(U U ′ + V V ′) + (2 − 2(U 2 + V 2)λ)λ′)
2ρλ

,

α2 = 2(λU ′ + λ′U ),

α3 = 2(λV ′ + λ′V ),

α4 = −2λ′, (22)

where λ = m/(2kTtran) for aL
H , aR

H , and AH ; and λ = m/(2kT1) for bL
H , bR

H , and B H ; λ = m/(2kT ) for cL
H , cR

H , and C H . Similarly, 
βB for the spatial or temporal derivative of an equilibrium state B with β = β1 +β2u +β3 v +β4

1
2 (u2 + v2), are determined 

by

β1 = α1 − λ′

λ
,

β2 = α2,

β3 = α3,

β4 = α4, (23)

where λ = m/(2kTtran) for aL
B , aR

B , and AB ; λ = m/(2kT1) for bL
B , bR

B , and B B ; and λ = m/(2kT ) for cL
B , cR

B , and C B . Similarly, 
γ R for the spatial or temporal derivative of an equilibrium state R with γ = γ1 + γ2u + γ3 v + γ4

1
2 (u2 + v2), have the 

solutions

γ1 = α1 − λ′

λ
,

γ2 = α2,

γ3 = α3,

γ4 = α4, (24)

where in α1, λ = m/(2kTtran) for aL
R , aR

R , and AR ; in λ′
λ

, λ = m/(2kTrot) for aL
R , aR

R , and AR ; and λ = m/(2kT1) for bL
R , bR

R , 
and B R ; λ = m/(2kT ) for cL

R , cR
R , and C R . Similarly, χG for the spatial or temporal derivative of an equilibrium state G with 

χ = χ1 + χ2u + χ3 v + χ4
1
2 (u2 + v2), have

χ1 = α1 − λ′

λ
,

χ2 = α2,

χ3 = α3,

χ4 = α4, (25)

where in α1, λ = m/(2kTtran) for aL
G , aR

G , and AG ; in λ′
λ

, λ = m/(2kT vib) for aL
G , aR

G , and AG ; in α1,λ = m/(2kT1) for bL
G , bR

G , 
and BG ; in λ′

λ
, λ = m/(2kT vib) for bL

G , bR
G , and BG ; and λ = m/(2kT ) for cL

G , cR
G , and CG .

The spatial derivatives of macroscopic variables inside each cell can be obtained through the reconstruction of macro-
scopic flow variables with the application of nonlinear limiter. Therefore, all above spatial derivatives of ρ, U , V , λ can be 
subsequently derived. In order to get the time derivatives for ρ, U , V , λ, we need to do the following. Taking conservative 
moments on Eq. (6), due to the vanishing of conservative moments of the collision term, the moments of the temporal and 
spatial derivatives of a distribution function are coupled,∫

(νtran[ψ1(
dHtran

dt
) + ψ2(

dBtran

dt
) + ψ3(

dRtran

dt
) + ψ4(

dGtran

dt
)]

+ νrot[ψ1(
dHrot

dt
) + ψ2(

dBrot

dt
) + ψ3(

dRrot

dt
) + ψ4(

dGrot

dt
)]

+ νvib[ψ1(
dH vib

dt
) + ψ2(

dB vib

dt
) + ψ3(

dR vib

dt
) + ψ4(

dG vib

dt
)])dudv = S,

where d = ∂ + u ∂ , S = (0, 0, 0, 0, ρErot,eq−ρErot , ρE vib,eq−ρE vib )T .
dt ∂t ∂x τ τ
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Fig. 1. Schematic of the cells adjacent to the wall.

Consequently, the temporal derivatives of macroscopic variables are obtained by

∂W /∂t = −
∫

⎛
⎜⎜⎜⎜⎜⎝

νtran[ψ1u
∂ Htran

∂x
+ ψ2u

∂ Btran

∂x
+ ψ3u

∂ Rtran

∂x
+ ψ4u

∂Gtran

∂x
]

+ νrot[ψ1u
∂ Hrot

∂x
+ ψ2u

∂ Brot

∂x
+ ψ3u

∂ Rrot

∂x
+ ψ4u

∂Grot

∂x
]

+ νvib[ψ1u
∂ H vib

∂x
+ ψ2u

∂ B vib

∂x
+ ψ3u

∂ R vib

∂x
+ ψ4u

∂G vib

∂x
]

⎞
⎟⎟⎟⎟⎟⎠dudv + S. (26)

Then, along with Eq. (26), the temporal derivatives of distribution functions are fully determined using Eqs. (22)–(25).

2.4. Update of vibrational degrees of freedom

Different from the translational and rotational degrees of freedom, the vibrational degree of freedom K v is a temperature 
dependent variable. So a proper determination of K v in terms of temperature is very important. According to harmonic 
oscillator model, the specific vibrational energy associated with a characteristic vibrational mode temperature �v is the 
following [1]

ev = R�v

e(�v/T vib) − 1
. (27)

The vibrational temperature T vib can be obtained from the vibrational energy. Then, according to equal partition to each 
degree of freedom, the vibrational degree of freedom K v at temperature T vib can be determined by the following formula

K v = 2�v/T vib

e(�v/T vib) − 1
. (28)

2.5. Discussion on the wall boundary condition

The non-equilibrium effect is more profound near the wall, so it is necessary to discuss on the wall boundary condition. 
The diffusive reflection gas-surface wall condition is used. Only isothermal wall boundary condition in one dimensional case 
is discussed. As shown in Fig. 1, the wall (x = 1/2) is assumed to be on the left side. The incoming distribution function on 
the wall can be obtained by interpolation. For example, Hin

α , Bin
α , Rin

α , and Gin
α can be interpolated similarly from the data in 

the interior region,

Hin
α = 18H1,a − 2H2,a − 9σ H

1,a�x + 3σ H
2,α�x

16
, (29)

where Hin
α is the reduced gas distribution function of inflow at α-th discrete particle velocity uα . H1,α and H2,α are the 

reduced gas distribution function in cell 1 and 2 at α-th discrete particle velocity uα respectively. σ H
1,α and σ H

1,α are the 
slope of the reduced gas distribution function H in cell 1 and 2 at α-th discrete particle velocity uα . �x is the cell size. 
Then, we can calculate the density on the wall under the condition of no particle penetrating at the wall,∫

u>0

ugwd� +
∫

u<0

u f ind� = 0, (30)

where d� = dudvdwdεrdεv , which gives

ρw = �u<0καuα Hin
α

(λw
π )1/2�u>0καuαe−λw (uα−U w )2

, (31)

and U w , λw take the values of the wall. It is essential to emphasize that the equilibrium distribution function on the wall 
is as follows



Z. Wang et al. / Journal of Computational Physics 350 (2017) 237–259 245
gw = ρw(
λw

π
)

3
2 e−λw [(u−U w )2+v2+w2] 1

kTrot,in
e
− εr

kTrot,in
1

�(K v/2)

ε
K v/2−1
v

(kT vib,in)K v/2
e
− εv

kT vib,in , (32)

where Trot,in and T vib,in are rotational and vibrational temperatures of the inflow. Due to the short collision time between 
the particles and the wall, the translational, rotational, and vibrational temperatures keep different values at the wall. Based 
on Eq. (9), the corresponding reduced Maxwellian distributions H w

α , B w
α , R w

α , and G w
α on the wall are obtained. So the 

distribution function at the boundary interface is expressed as (same for Bα, Rα, Gα )

Hα = H w
α H[uα] + Hin

α (1 − H[uα]). (33)

Therefore, the fluxes of macroscopic flow variables and microscopic distribution functions on the wall can be determined by 
the numerical quadrature.

At end, we summarize the unified gas-kinetic scheme for diatomic gases with vibrational relaxation as follows:
1. The original kinetic model equation is split into four equations for the reduced distribution functions.
2. The time evolution of distribution functions at a cell interface is modeled by the integral solution of the kinetic model 
Eq. (6).
3. The initial condition and the integration of equilibrium states are determined explicitly in Eq. (16) for the flux evaluation. 
The macroscopic conservative flow variables inside the each cell are updated using Eq. (14).
4. A finite volume scheme is developed for the update of gas distribution functions with fluxes from Eq. (13), and with the 
source terms treatment inside the each cell.

2.6. Limiting solutions of UGKS in the continuum regime

In this section, we are going to analyze the UGKS with vibrational relaxation in the continuum limit at small τ , under 
the condition �t � τ . For the sake of simple presentation, the discussion is for the case in the one dimensional physical 
space. Following the Chapman–Enskog theory, at τ � 1 the cell reduced average solutions 
i (u) can be formally expressed 
as an asymptotic expansion of small parameter,


i = 
0
i + τ
1

i + O
(
τ 2

)
. (34)

The modified reduced equilibrium function 
(

eq

)
i can be expanded as

(

eq

)
i = (
Gaussian)i +

(

 f ix

)
i
, (35)

where 
 f ix is of order τ . According to reference [15], we have


i+1/2 (t, uα) = 
Gaussian,i+1/2,α (t) + 

f ix
i+1/2,α (t)

− τ
(
∂t
Gaussian,i+1/2,α (t) + uα∂x
Gaussian,i+1/2,α (t)

) + O
(
τ�t,�t2,�x2

)
. (36)

As an example, we will analyze the reduced distribution function H first,

Hi+1/2 (t, uα) = HGaussian,i+1/2,α (t) + H f ix
i+1/2,α (t)

− τ
(
∂t HGaussian,i+1/2,α (t) + uα∂x HGaussian,i+1/2,α (t)

) + O
(
τ�t,�t2,�x2

)
. (37)

The non-equilibrium part in Eq. (37) is

Hneq
i+1/2,α = H f ix

i+1/2,α (t) − τ
(
∂t HGaussian,i+1/2,α (t) + uα∂x HGaussian,i+1/2,α (t)

)
= νtran

[
H f ix

tran,i+1/2,α (t) − τ
(
∂t Htran,Gaussian,i+1/2,α (t) + uα∂x Htran,Gaussian,i+1/2,α (t)

)]
+ νrot

[
H f ix

rot,i+1/2,α (t) − τ
(
∂t Hrot,Gaussian,i+1/2,α (t) + uα∂x Hrot,Gaussian,i+1/2,α (t)

)]
+ νvib

[
H f ix

vib,i+1/2,α (t) − τ
(
∂t H vib,Gaussian,i+1/2,α (t) + uα∂x H vib,Gaussian,i+1/2,α (t)

)]
= νtran Hneq

tran,i+1/2,α + νrot Hneq
rot,i+1/2,α + νvib Hneq

vib,i+1/2,α, (38)

where
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Hneq
tran,i+1/2,α = Htran,Gaussian,i+1/2,α (t)

4 (1 − Pr) λ2
tran

5ρ
cα · qtran,x

(
2λtranc2

α − 3
)

− Htran,Gaussian,i+1/2,α (t) τ

[(
λtranc2

α − 3

2

)
cα · ∂ ln Ttran

∂x
+ cα · 1

ptran

∂
(

ptran − p̃
)

∂x

+
(

mcα
2 − kTtran

2kT 2
tran

(
�1 − 2

3
Ttran

)
+ 2λtranc2

α − 1

)
∂U

∂x

]
. (39)

Here cα denotes the peculiar velocity, and p̃ = νtran

(
ρ

2λtran

)
+ νrot

(
ρ

2λ1

)
+ νvib

( ρ
2λ

)
. �1 is determined by the following 

equation,

2νtran (Trot − Ttran) − 2Trot − K vνvib (T vib − T )

3
= −2Ttran

3
+ �1. (40)

Subsequently, other non-equilibrium parts Hneq
rot,i+1/2,α, Hneq

vib,i+1/2,α in Eq. (38) and obtained similarly.
Then the cell interface flux for the conservative variables up to O  (τ ) can be determined by

�F =
∫

u
(
ψ1 Hi+1/2 (t, u) + ψ2 Bi+1/2 (t, u) + ψ3 Ri+1/2 (t, u) + ψ4Gi+1/2 (t, u)

)
du

=
⎛
⎝ ρU

ρU 2 + p̃ − 4
3 μ̃Ux − �ρU(

ρE + p̃
)

U − 4
3 μ̃U Ux − kh Tx (1 − Pr) − C pμ̃Tx − �ρE

⎞
⎠ + O

(
τ�t,�t2,�x2

)
. (41)

In above equation, Prandtl number is defined as

Pr = C pμ̃/kh, (42)

where C p = 7+K v
2 R , kh is heat conduction coefficient. Then, Eq. (41) becomes

�F =
⎛
⎝ ρU

ρU 2 + p̃ − 4
3 μ̃Ux − �ρU(

ρE + p̃
)

U − 4
3 μ̃U Ux − kh Tx − �ρE

⎞
⎠ + O

(
τ�t,�t2,�x2

)
,

with the viscosity coefficient μ̃ = τ p̃ and heat conduction coefficient kh = C pμ̃/Pr. In addition,

�ρU = μ̃Ux

T̃
(νtran�1 + νrot�2 + νvib�3) (43)

and

�ρE = Rτ
(
νtran ptran

(
Ttran,x − Tx

) + νrot p1
(
T1,x − Tx

)) + ρRτ U Ux (νtran�1 + νrot�2 + νvib�3)

+ τ

[
νtran

((
1 + 3U 2λ2

tran

) (
ptran,x − p̃x

)
2λtran

)
+ νrot

((
1 + 3U 2λ2

1

) (
p1,x − p̃x

)
4λ1

)

+νvib

((
1 + 3U 2λ2

) (
px − p̃x

)
4λ

)]
, (44)

where �2 and �3 are determined by the following two equations,

−2T̃ + K vνvib (T vib − T )

5
= −2T1

3
+ �2, (45)

− 2T̃

5 + K v
= −2T

3
+ �3, (46)

with T̃ = p̃/(ρR).
Based on the above analysis, we can observe that in the continuum regime the UGKS with vibrational relaxation solves 

the following equations,

∂ρ

∂t
+ ∂ (ρU )

∂x
= O

(
�t2,�x2

)
,

∂ (ρU ) +
∂

(
ρU 2 + p̃ − 4

3 μ̃Ux − �ρU

)
= O

(
�t2,�x2

)
,

∂t ∂x
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∂ (ρE)

∂t
+

∂
((

ρE + p̃
)

U − 4
3 μ̃U Ux − kh Tx − �ρE

)
∂x

= O
(
�t2,�x2

)
, (47)

and the above equations have the following properties:
(a). In the limit without rotational and vibrational degrees of freedom, Eq. (47) can reduce to the UGKS for monatomic gas 
in the NS regime. It is demonstrated as follows. When the values of Zr∗ of and Z v∗ are infinity,

�ρU = τ ptranUx
�1

Ttran
= 0, (48)

�ρE = Rτ ptran
(
Ttran,x − Ttran,x

) + ρRτ U Ux�1 + τ

((
1 + 3U 2λ2

tran

) (
ptran,x − ptran,x

)
2λtran

)
= 0. (49)

Substituting Eqs. (48) and (49) into equation (47), it becomes

∂ρ

∂t
+ ∂ (ρU )

∂x
= O

(
�t2,�x2

)
,

∂ (ρU )

∂t
+

∂
(
ρU 2 + p − 4

3μUx

)
∂x

= O
(
�t2,�x2

)
,

∂ (ρE)

∂t
+

∂
(
(ρE + p) U − 4

3μU Ux − kh Tx

)
∂x

= O
(
�t2,�x2

)
, (50)

which is the Navier–Stokes equations in 1D case [15].
(b). In the limit of total equilibrium state, and with the assumption of equal relaxation rate Zr∗ = Z v∗ = 1, Eq. (47) can 
recover the NS equations with bulk viscosity for the rotational and vibrational degrees of freedom [34]. Eq. (47) becomes

∂ρ

∂t
+ ∂ (ρU )

∂x
= 0,

∂ (ρU )

∂t
+

∂
(
ρU 2 + p − 4

3μUx − �ρU

)
∂x

= 0,

∂ (ρE)

∂t
+

∂
(
(ρE + p) U − 4

3μU Ux − kh Tx − �ρE

)
∂x

= 0, (51)

where

�ρU = μUx
�3

T
= μUx

(
− 2

5 + K v
+ 2

3

)
, (52)

�ρE = ρRτ U Ux�3 = μU Ux

(
− 2

5 + K v
+ 2

3

)
. (53)

Substituting Eqs. (52) and (53) into Eq. (51), the NS equations are⎛
⎝ ρ

ρU
ρE

⎞
⎠

t

+
⎛
⎝ ρU

ρU 2 + p
(ρE + p) U

⎞
⎠

x

=
⎛
⎜⎝

0
2Kt,i

Kt,i+1τ pUx

kh Tx + 2Kt,i
Kt,i+1τ pU Ux

⎞
⎟⎠ , (54)

where Kt,i is the total internal degrees of freedom. Obviously, Eq. (54) is the same as that in reference [34].
(c). When 1 < Zr∗ < ∞, 1 < Z v∗ < ∞ and different translational, rotational, and vibrational temperatures, Eq. (47) includes 
non-equilibrium effect beyond the NS modeling, which is an extension of the non-equilibrium modeling equations with 
translational and rotational degrees of freedom only [32,35]. With the temperature non-equilibrium, even in the contin-
uum regime, the NS constitutive relationship between stress and strain is replaced by the temperature differences [30,32]. 
In other words, the kinetic formulation definitely provides a more general description for the gas dynamics than the NS 
solutions. The target of UGKS is to provide such a multiple scale non-equilibrium modeling in the continuum and rarefied 
regimes with a smooth transition.

3. Numerical teat cases

3.1. Rotational and vibrational relaxation in a homogeneous gas

For a diatomic homogeneous gas with different initial translational temperature Ttran , rotational temperature Trot , vibra-
tional temperature T vib , the system can evolve into an equilibrium one with the average temperature T , which is a constant. 
Due to the homogeneous space distributions, the governing equation can be simplified as
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∂ f

∂t
= gtran − f

τ
+ grot − gtran

τ Zr∗ + gvib − grot

τ Z v∗ . (55)

Multiplying Eq. (55) with εr and εv , respectively, and integrating it over the whole velocity, rotational energy, and vibrational 
energy space, the time evolution of rotational energy can be obtained,

∂Trot

∂t
= Ttr,r − Trot

Zr∗ + T − Ttr,r

τ Z v∗ , (56)

where Ttr,r is the average temperature of translational and rotational temperature. The vibrational energy evolves as

∂[K v(T vib)T vib]
∂t

= K v(T )T − K v(T vib)T vib

τ Z v∗ . (57)

If the vibrational degree of freedom is fixed, Eq. (57) can be simplified as

∂T vib

∂t
= T − T vib

τ Z v∗ . (58)

In the case with the constant rotational and vibrational collision numbers Zr∗ and Z v∗ , as well as relaxation time (r.t) τ , 
an analytical solution of Eqs. (56) and (58) can be obtained

Trot = T ∗ − (T ∗ − Trot(0))e(−t/τ Zr∗), (59)

T vib = T − (T − T vib(0))e(−t/τ Z v∗), (60)

where T ∗ = (Zr∗/Z v∗(T − Ttr,r) + Ttr,r). Thus, according to energy conservation, we get

Ttran = (5 + K v)T − K v T vib − 2Trot

3
. (61)

The critical point is to determine T and Ttr,r .
For the fixed K v case,

T = K vT vib(0) + 2Trot(0) + 3Ttran(0)

5 + K v
, (62)

and

Ttr,r = 2Trot(0) + 3Ttran(0)

5
. (63)

For the varied K v case,

T = K v(0)T vib(0) + 2Trot(0) + 3Ttran(0)

5 + 2�v/T
e(�v /T )−1

. (64)

For real diatomic gas, the relaxation time depends on the translational temperature even in the homogeneous case. 
Using variable hard sphere (VHS) model, the relaxation time is approximated as τ = μ/ptran∼T ω

tran/ρRTtran , which is a 
constant only for the Maxwell molecule with ω = 1. For nitrogen molecular (ω = 0.72), depending on the temperature 
there is no exact analytical solution. In this test, only one cell in physical space is used. The initial rotational and vibrational 
temperatures are set to zero and the initial translational temperature is set to 5000 K. Fig. 2(a) shows the rotational and 
vibrational relaxation at Zr∗ = 5, Z v∗ = 5, and K v = 1.1 for the Maxwell and nitrogen molecules, along with the analytical 
solution (Maxwell gas only). The relaxation time is calculated using the average temperature T , and used to normalize the 
time. The UGKS solutions for the Maxwell molecule agree well with the analytical prediction for the fixed K v . The collision 
frequency for the nitrogen molecule is higher than the Maxwell one, thus presents faster relaxation to the equilibrium state. 
Fig. 2(b) shows rotational and vibrational relaxation for Zr∗ = 5 and Z v∗ = 5 with the varied K v , in which T = 2520 K.

Considering the degree of freedom of the vibration is not constant, for convenience,the initial vibrational degree of 
freedom is given by the final equilibrium temperature,

K v(0) = 2�v/T

e(�v/T ) − 1
. (65)

Thus, it will tend to zero once the iteration begins because the initial vibrational temperature is zero. According to the 
relationship between the vibrational energy and temperature,

T vib = evib
1
2 K v R

. (66)

The vibrational temperature T vib can suddenly jump to 700 K under a certain vibrational energy. Similar phenomenon 
occurs in reference [1].
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Fig. 2. Rotational and vibrational relaxation in a homogeneous gas.

3.2. 1D shock tube problem

In order to validate the model with vibrational relaxation, the solution for Zr∗ → ∞ and Z v∗ → ∞ can be obtained as 
a limiting solution for the monatomic gas. In the computational domain x ∈ [0, L = 1800lmf p], 180 cells with uniform mesh 
in space are used, where lmf p is the mean free path for the state on the left side initially. In the particle velocity space, 200
points with uniform distribution are used. The reference temperature is 1000 K. The initial conditions for the mass density, 
velocity, and temperature are

ρL = 1, U L = 0, Ttran,L = Trot,L = T vib,L = 2, x ≤ 0.5L.

ρR = 0.125, U R = 0, Ttran,R = Trot,R = T vib,R = 1.6, x > 0.5L.

For convenience, the UGKS with vibrational relaxation is denoted by UGKS-Vib in the following. As shown in Fig. 3, 
the solutions from the Shakhov model and UGKS-Vib model agree well when Zr∗ → ∞ and Z v∗ → ∞. The reason for the 
smooth connection for the rotational and vibrational temperature between two sides is that at Zr∗ = Z v∗ = ∞ the rotational 
and vibrational temperatures are frozen due to the absence of energy exchange between them and the translational one. 
Basically, both UGKS-Vib model and Shakhov model simulate monatomic gas flow as Zr∗ → ∞ and Z v∗ → ∞. Fig. 4 shows 
the solution of UGKS-Vib when Zr∗ = 3 and Z v∗ = 30. The output time for all simulations is t = 360.

3.3. Shock structure

To test the UGKS-Vib scheme for planar shock structures, one natural requirement is to specify the post-shock equi-
librium state as the proper initial and downstream boundary condition. For diatomic molecules, because the vibrational 
degrees of freedom are activated under high temperature, the specific heat ratio γ is a variable across the shock wave. 
For this reason, we first proceed to obtain general formulations to compute the post-shock equilibrium state for diatomic 
or polyatomic molecules. At this post-shock equilibrium state, we assume that all temperature relaxation processes are 
completed.

Denoting the pre-shock as state 1 and the post-shock as state 2. The relations between these two states are as follows:

T2

T1
=

(
γ2

γ2−1 + γ2
2 M2

2)

(
γ1

γ1−1 + γ1
2 M2

1)
, (67)

U2

U1
= M2

√
γ2T2

M1
√

γ1T1
, (68)

ρ1

ρ2
= U2

U1
. (69)

In addition, the relation between pre-shock and post-shock Mach number is as follows

M2
2 =

γ 2
2

γ2−1 − 2α2γ2 −
√

(
γ 2

2
γ2−1 )2 − 4α2 γ 3

2
γ2−1 + 2α2γ 2

2

2α2γ 2 − γ 2
, (70)
2 2
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Fig. 3. UGKS-Vib solutions for shock tube (Zr∗ → ∞, Z v∗ → ∞), all x-coordinates and physical quantities are dimensionless.

where

α =
M1(

γ 2
1

γ1−1 + γ 2
1
2 M2

1)

1 + γ1M2
1

.

Although the preceding equations explicitly link the post-shock Mach number and the specific heat ratio γ2 , to solve the 
preceding equations, the expression for the specific heat ratio γ2 is needed to obtain the post-shock state Mach number. 
So the iteration process is used to obtain the post-shock equilibrium state. The effective vibrational degree of freedom at 
temperature T v can be obtained according to Eq. (28). In addition, the specific heat ratio is determined as follows,

γ = 3 + Kr + K v + 2

3 + Kr + K v
. (71)

The following iteration process is used for its solution. Firstly, with a specified γ2, use M1 and γ1 to compute an inter-
mediate post-shock Mach number M2. Secondly, use this Mach number M2 and the specific heat ratio γ2 to determine 
a post-shock temperature T2. Thirdly, use Eqs. (28) and (71) to determine a new specific heat ratio γ2. The above steps 
proceed until a converged solution is obtained.

For the nitrogen gas, the viscosity in DSMC simulation is calculated with VHS model (ω = 0.74). We performed two 
numerical simulations of strong planar shock waves with the same free stream temperature and density, T∞ = 226.149 K, 
ρ∞ = 1.7413 × 10−2 kg/m3, but different free stream Mach numbers: M∞ = 10.0, 15.0. The thermal non-equilibrium effects 
are significant, and the equilibrium specific heat ratio values are γ1 = 1.399 and γ2 = 1.3193, and 1.3021, correspondingly. 
In these UGKS-Vib simulations, the specific relaxation numbers are (Zr∗ = 3, Z v∗ = 40) for M∞ = 10.0, and (Zr∗ = 5, Z v∗ =
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Fig. 4. UGKS-Vib solutions for shock tube (Zr∗ = 3, Z v∗ = 30), all x-coordinates and physical quantities are dimensionless.

20) for M∞ = 15.0. In the following results, density and temperature profiles are normalized by the values at the two ends 
of the shocks: for example, T ′ = (T − T1)/(T2 − T1). The reference mean free path and viscosity are calculated through the 
hard sphere model. Figs. 5–6 show the simulations results for M∞ = 10 and 15 from both DSMC [12] and UGKS-Vib. It can 
be found that the solutions of UGKS agree well with the DSMC data.

3.4. Flow around a circular cylinder

We consider a hypersonic flow passing through a circular cylinder at Ma = 15.0 and Kn = 0.01. As shown in Fig. 7, 
the cylinder radius has a value of 0.04 m, and the computational domain is meshed with 40 × 55 quadrilateral cells for 
UGKS-Vib.

The inflow nitrogen gas has a velocity U∞ = 4511 m/s with temperature T∞ = 217.5 K, and molecule mass density ρ∞ =
7.48 × 10−5 kg/m3. The cylinder has a cold surface with a constant temperature T w = 1000 K. For UGKS-Vib, the domain 
(u, v) ∈ [−30 × √

RT∞, 30 × √
RT∞] × [−30 × √

RT∞, 30 × √
RT∞] in the velocity space is discretized with 89 × 89 mesh 

points based on Newton–Cotes rule. The relaxation time is calculated with τ = μ∞(T /T∞)ω/ptran , and the temperature 
exponent of the viscosity coefficient is ω = 0.74. According to reference [36], the rotational and vibrational collision number 
are obtained as follows.

Zr∗ = Kt

Kt + Kr

Zr∞

1 + (π1/2/2)(T ∗/Ttran)1/2 + (π + π2/4)(T ∗/Ttran)
, (72)

Z v∗ = Kt + Kr ·C1/T ω
tran exp(C2T −1/3

tran ), (73)

Kt + Kr + K v
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Fig. 5. Solutions for nitrogen gas for Ma = 10.0 shock structure with (Zr∗ = 3, Z v∗ = 40). All x-coordinates and physical quantities are dimensionless. 
Square: DSMC, solid line: UGKS-Vib.
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Fig. 6. Solutions for nitrogen gas for Ma = 15.0 shock structure with (Zr∗ = 5, Z v∗ = 20). All x-coordinates and physical quantities are dimensionless. 
Square: DSMC, solid line: UGKS-Vib.
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Fig. 7. Computational mesh for nitrogen gas around circular cylinder at Ma = 15.0 and Kn = 0.01.

Fig. 8. Flow distributions for nitrogen gas along the 45◦ extraction line at Ma = 15.0 and Kn = 0.01. Square: DSMC [38], solid line: UGKS-Vib.

Fig. 9. Surface heating coefficient for nitrogen gas flow around a circular cylinder at Ma = 15.0 and Kn = 0.01. Square: DSMC [38], solid line: UGKS-Vib. 

 is the angle from the stagnation point.

where Kt , Kr and K v are the degrees of freedom of nitrogen gas for the translational, rotational, and vibrational ones 
respectively, with Zr∞ = 12.5, T ∗ = 91.5 K, C1 = 3, and C2 = 220.

The comparisons between UGKS-Vib and DSMC solutions are plotted in Figs. 8 and 9. Fig. 8 shows the translational, 
rotational, and vibrational temperature along the 45◦ extraction line, in which the rotational and vibrational temperature 
are matched very well, while the translational temperature profile in UGKS-Vib solution raises up earlier than that in DSMC 
solution. This is consistent with the previous results of BGK-type models [15]. Fig. 9 shows the surface heating coefficient 
for nitrogen gas flow around circular cylinder from both UGKS-Vib and DSMC calculations. Reasonable agreement have been 
achieved.
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Table 1
Mesh distributions around a semi-circular cylinder.

Zone Grid Y1/mm Stretch ratio

1 15×55 0.1 1.1
2 60×55 0.1 1.1
3 15×60 0.1 1.1

Fig. 10. Computational mesh for nitrogen gas around semi-circular cylinder at Ma = 10.0 and Kn = 0.05.

3.5. Flow around a semi-circular cylinder

A hypersonic flow passing through a semi-circular cylinder at Ma = 10.0 and Kn = 0.05 is considered. As shown in 
Fig. 10, the cylinder radius has a value 0.1542 m, and the computational domain is divided into 3 zones. The detailed mesh 
information is shown in Table 1, in which Y1 is the height of the first layer of the mesh near the wall, and the stretching 
ratio is for the mesh in the radial direction.

The inflow nitrogen gas has a velocity U∞ = 2883 m/s with temperature T∞ = 200 K, and molecular mass density 
ρ∞ = 3.949 × 10−6 kg/m3. The semi-circular cylinder has a cold surface with a constant temperature T w = 500 K. For 
UGKS-Vib, the domain (u, v) ∈ [−30 ×√

RT∞, 30 ×√
RT∞] ×[−30 ×√

RT∞, 30 ×√
RT∞] in the velocity space is discretized 

with 89 × 89 mesh points based on Newton–Cotes rule. The relaxation time is calculated with τ = μ∞(T /T∞)ω/ptran , and 
the temperature exponent of the viscosity coefficient ω = 0.74. Fig. 11 shows flow contours for nitrogen flows around a 
semi-circular cylinder at Ma = 10.0 and Kn = 0.05. Fig. 12 shows the comparison of temperature distribution along central 
symmetric line in front of the stagnation point between the semi-circular (UGKS-Vib) and circular cylinder (DSMC) [37]. 
Fig. 13 shows the comparison of surface pressure, friction, and heating coefficient between the semi-circular (UGKS-Vib) 
and circular cylinder (DSMC). It can be concluded that the flow properties in Zone 1 between the semi-circular and circular 
cylinder are absolutely identical. However, in terms of the flow physics, the former and latter ones are different. The flow 
physics around a semi-circular cylinder is a multiscale one, where the mean free path can be changed gigantically in the 
front and rare parts of the cylinder. As shown in Fig. 14, for the flow around semi-circular cylinder, the local Knudsen 
number can cover a wide range of values with five orders of magnitude difference. Here the local Kundsen number is 
defined as

Kn = λ

L
, (74)

where

λ = 4α(7 − 2ω)(5 − 2ω)

5(α + 1)(α + 2)
(

1

2RT
)1/2 μ

ρ
,

and L = ρ/|∇ρ| for the hard sphere (HS) model (α = 1.0, ω = 0.5).
It can be seen that the local Knudsen number near the rear wall is very high, which is above 10, especially in the domain 

of D H = (x, y) ∈ [0, Y 1] × [0.1, 0.1542]. This simulation demonstrates that the UGKS can solve the multiple scale problem 
efficiently.

Furthermore, through the streamline in Zone 3, we can see that the density of flow in the domain D H is quite low due 
to the expansion wave. So the gas around the symmetric line near rear wall is pushed from behind to the domain D H . 
Therefore, as shown in Fig. 15, the friction coefficient on rear wall surface is negative in the vicinity close to Zone 2, 
which is positive near the symmetric line in Zone 3. In addition, Fig. 16 shows the temperature distributions along central 
symmetric line near the rear wall. It is observed that the flow in this region is highly non-equilibrium. The translational, 
rotational, and vibrational temperature are totally different. Among them, the vibrational temperature is almost constant 
due to the reason that the vibrational degrees of freedom have not been activated under such a low temperature and large 
local particle collision time. Moreover, the translational temperature is lower than the rotational temperature due to the 
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Fig. 11. Flow contours for nitrogen flows around a semi-circular cylinder at Ma = 10.0 and Kn = 0.05.

translational temperature reduction from the high flow expansion, and its inefficiency to exchange energy with the rotational 
and vibrational ones. Also, due to the short relaxation time for the translational mode, the translational temperature is closer 
to the wall temperature than the rotational one.

In summary, the flow around semi-circular cylinder is associated with multiscale flow physics. The particle mean free 
path can be changed several orders of magnitude from the front to the rear parts. The UGKS is suitable method for flow 
simulation with the existence of multiple flow regimes.

4. Conclusions

In this paper, a unified gas-kinetic scheme with vibrational relaxation is developed for the non-equilibrium flow simula-
tion of diatomic molecules. The current UGKS is based on a phenomenological model equation with translational, rotational, 
and vibrational relation and different relaxation times. Through the adoption of the time dependent integral solution of 
the kinetic model equation for the flux evaluation, the UGKS incorporates the flow physics from the particle free transport 
in the kinetic scale to the equilibrium formation in the hydrodynamic scale. As a result, the UGKS can simulate flows in 
all regimes without the requirement on the mesh size being less than the particle mean free path. The new scheme with 
vibrational mode has been tested in five cases, i.e. relaxation of homogeneous flow, shock structure calculations, shock tube 
problem, and hypersonic flow passing through a circular and semi-circular cylinders. The numerical results are compared 
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Fig. 12. Flow distributions for nitrogen gas along central symmetric line in front of the stagnation point at Ma = 10.0 and Kn = 0.05. Square: circular 
cylinder (DSMC), solid line: semi-circular cylinder (UGKS-Vib).

Fig. 13. Surface pressure, friction, and heating coefficient for nitrogen gas flow around circular cylinder at Ma = 10.0 and Kn = 0.05. Square: circular 
cylinder (DSMC), solid line: semi-circular cylinder (UGKS-Vib). 
 is the angle from the stagnation point.

with the analytical solutions and DSMC computations. Reasonable agreements between UGKS and other validated solutions 
have been obtained. In order to further develop the scheme for engineering applications, the vibrational relaxation with 
quantum energy levels will be implemented into UGKS in the future.
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Fig. 14. The local Knudsen number contour for nitrogen gas flow around semi-circular cylinder at Ma = 10.0 and Kn = 0.05.

Fig. 15. The rear wall surface friction coefficient for nitrogen gas flow around circular cylinder at Ma = 10.0 and Kn = 0.05.

Fig. 16. Temperature distributions for nitrogen gas along central symmetric line near the rear wall at Ma = 10.0 and Kn = 0.05.
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