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a b s t r a c t

The recently proposed discrete unified gas kinetic scheme (DUGKS) is a finite volume method for mul-

tiscale flow computations with asymptotic preserving property. The solution of the Boltzmann model

equation is directly used for the construction of numerical flux and makes the scheme applicable in all

flow regimes. In previous applications of the DUGKS, structured meshes have been mostly employed,

which may have difficulties for problems with complex geometries. In this paper we will extend the

DUGKS to unstructured meshes, with the implementation of computational fluid dynamics techniques to

the DUGKS. Several test cases, i.e., the cavity flow ranging from continuum to free molecular regimes,

a multiscale flow problem between two connected cavities with large pressure and density variations,

high speed flows past multiple cylinders in slip and transitional regimes, and an impulsive start problem

are performed. The results are compared with the well-defined Direct Simulation Monte Carlo (DSMC)

or Navier–Stokes (NS) solutions in their applicable regimes. The numerical results demonstrate the effec-

tiveness of the proposed DUGKS for the study of multiscale flow problems.

© 2016 Elsevier Ltd. All rights reserved.
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. Introduction

Gas flows can be classified into different flow regimes based

n the Knudsen number (Kn), which is defined as the ratio of the

ean free path of the gas to the physical characteristic length. For

ow with Kn > 0.001, non-equilibrium effects become important

nd the classical Navier–Stokes–Fourier (NSF) equations fail to de-

cribe such a flow [1], while the Boltzmann equation can serve

s a fundamental equation which is valid in the whole range of

nudsen numbers.

There are mainly two types of numerical approaches to solve

he Boltzmann equation. The first one is the widely used direct

imulation Monte Carlo (DSMC) method [1], which is the prevail-

ng technique for simulating high-speed rarefied gas flows. How-

ver, the DSMC is a single scale method, where the particle trans-

ort and collision processes are decoupled. As a result, the cell

ize and time step are required to be smaller than the mean free

ath and the mean particle collision time [1]. For flows in near

ontinuum or continuum regime, this requirement will lead to

normous computational costs. Another undesired feature of the

SMC is the statistical noise that must be reduced through in-

ensive sampling and averaging, which is more serious for low
∗ Corresponding author. Tel.: +8627 87545526.
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peed and small temperature variation flows [1]. Great efforts have

een devoted to reduce statistical noise of the DSMC method [2,3].

he second approach for solving the Boltzmann equation is to use

eterministic numerical schemes, i.e., the Discrete Velocity Meth-

ds (DVM) [4–6]. Most DVM schemes are single scale methods

ith decoupled particle transport and collision, which have the

ame constraints on the time step and cell size as the DSMC

7–9]. Recently, some asymptotic preserving (AP) schemes have

een proposed to overcome these disadvantages (e.g., [10–12]).

he AP schemes for Boltzmann equation are designed to reduce

o the appropriate discretization schemes for hydrodynamic equa-

ions automatically as the Knudsen number goes to zero, without

esolving the mean free path and particle collision time on the

omputational grids. The AP schemes also treats the collision term

mplicitly using efficient manners to overcome the stiffness prob-

em as the Knudsen number approaches to zero. Their stability

s independent of the Knudsen number. These schemes are able

o recover the Euler solutions in the continuum limit, but it is

till unclear whether the Navier–Stokes solutions can be accurately

btained [13].

Recently, a unified gas kinetic scheme (UGKS) has been con-

tructed for all Knudsen number flows [14–17]. The UGKS is an ag-

ressive extension of the gas kinetic scheme (GKS) which is a flux

olver for hydrodynamic equations and is mainly used to simulate

ontinuum flows [18]. In the UGKS, the particle transport and col-

ision effects are coupled when updating the discrete distribution

unction. Consequently, the restrictions on the cell size and time
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step are avoided, and the UGKS solutions depend on the ratio of

the local time step to the particle collision time [13].

An alternative unified kinetic method, i.e., the discrete unified

gas kinetic scheme (DUGKS), has been proposed for multi-regime

flow computations recently [19,20]. The DUGKS shares the same

modeling mechanism as the UGKS [19]. The main difference be-

tween the UGKS and the DUGKS lies in the construction of numer-

ical flux for the discrete distribution function at cell interface. In

UGKS, the flux is obtained from the time-dependent distribution

function at the cell interface, and this solution is based on the lo-

cal analytical integral solution of the model kinetic equation. While

in DUGKS, the flux is calculated from the distribution function at

a half time step, and this solution is determined from a numerical

characteristic solution of the model kinetic equation. The flux in

DUGKS couples the effects of particle transport and collision, and

the updating rule is much simpler than the UGKS.

The DUGKS shares some similarities with the well-known lat-

tice Boltzmann method (LBM) which can be viewed as a spe-

cial discrete velocity type method. Both of them are based on

the relaxation-type collision models, and employ the implicit-

to-explicit transformation. The idea behind the flux evaluation

method in the DUGKS is conceptually very similar to the stream-

ing step of the LBM, i.e., the particles arrived at the cell face (in the

DUGKS) or lattice node (in the LBM) are assumed to have streamed

from the upwind, with collision effect considered. However, there

are considerable differences between the DUGKS and the LBM. The

LBM is essentially an Navier–Stokes equation solver under the low

Mach number condition, thus can only be used to simulating near

incompressible continuum flows. The DUGKS employing the LBM

type discrete velocity set (i.e., the DnQm lattices) can be viewed as

a finite-volume based off-lattice Boltzmann method. Their relative

performances for continuum flows have been compared in [21]. It

is also found that the DUGKS is not a straight forward translation

of the finite-difference interpreted LBM [22].

In previous works [19,20], the DUGKS has been applied to both

low speed and high speed non-equilibrium flows using structured

meshes. However, most non-equilibrium flow problems involve

complicated geometries, such as those in the microelectromechan-

ical systems (MEMS) industrial and aerospace engineering. The use

of unstructured mesh is preferable. In this work we aim to extend

the DUGKS to unstructured meshes and demonstrate its effective-

ness for the multiscale non-equilibrium flows.

The rest of the paper is organized as following. In Section 2,

the general procedure of the DUGKS on unstructured meshes is

presented. In Section 3, several numerical examples, including the

micro cavity flow, an expansion flow between two connected cavi-

ties, and the rarefied gas flow passing through a single and double

circular cylinders, will be computed to demonstrate the capability

of the current method in simulating flows in different regimes. An

additional test case, the impulsive start plate problem is used to

verify the uniform convergence rate of DUGKS. A brief summary is

given in the last section.

2. Discrete unified gas kinetic scheme

2.1. Shakhov model

The DUGKS is based on the Boltzmann model equation. In

this study, the collision operator is approximated by the Shakhov

model [23] for monatomic gases. In D dimensional space, the

model equation is

∂ f

∂t
+ ξ · ∇ f = − 1

τ

[
f − f S

]
, (1)

where f = f (ξ,η, x, t) is the velocity distribution function of parti-

cles with velocity ξ = (ξ , . . . , ξ ) in D dimensional velocity space
1 D
t position x = (x1, . . . , xD) and time t. Here η = (ξD+1, . . . , ξ3) is

vector in a space with dimension L = 3 − D, which accounts for

he degrees of freedom other than the D-dimensional translational

nes. f S is the Shakhov equilibrium distribution function given by

he Maxwellian distribution function f eq plus a heat flux correction

erm

f S = f eq

[
1 + (1 − Pr)

c · q

5pRT

(
c2 + η2

RT
− 5)

)]
= f eq + fPr, (2)

here Pr is the Prandtl number and c = ξ − U is the peculiar ve-

ocity around the averaged macroscopic fluid velocity U; q is the

eat flux, R is the specific gas constant, and T is the temperature.

he collision time τ in Eq. (1) is related to the dynamic viscosity

and pressure p by τ = μ/p. The dynamic viscosity μ depends on

emperature as

= μref

(
T

Tref

)ω

, (3)

here μref is the viscosity at the reference temperature Tref, and

he exponent ω is a constant depends on the inter-molecular in-

eraction model. The viscosity μref can be related to the reference

ean free path λref. By using the Knudsen (Kn), Mach (Ma) and

eynolds (Re) numbers, the μref ∼ λref relation leads to (Eq. 1.29

n [24]),

n =
√

2γ

π

(5 − 2ω)(7 − 2ω)

15

Ma

Re
, (4)

here γ is the heat capacity ratio. The Kn, Ma and Re numbers

re define as

n = λref

Lref

, Ma = Uref√
γ RTref

, Re = ρrefUrefLref

μref

, (5)

here Lref, Uref, ρref are the referenced length, velocity and density,

espectively.

The Maxwellian distribution function f eq is given by

f eq = ρ

(2πRT )3/2
exp

(
− c2 + η2

2RT

)
, (6)

here ρ is the gas density. The conservative flow variables W ≡ (ρ ,

U, ρE)T are calculated as moments of the distribution function,

=
∫

ψ f dξdη, (7)

ere ψ =
(
1, ξ, 1

2 (ξ 2 + η2)
)T

and ρE = 1
2 ρU2 + CVT = 1

2 ρU2 +
p/(γ − 1), where CV is the heat capacity. The heat flux q is

efined by

= 1

2

∫
c(c2 + η2) f dξdη. (8)

The parameter η can be viewed as internal degree of freedom,

nd the dependence of f on η can be removed by using two re-

uced distribution functions [25]

(x, ξ, t) =
∫

f (ξ,η, x, t)dη, (9a)

(x, ξ, t) =
∫

η2 f (ξ,η, x, t)dη. (9b)

The conservative macroscopic variables can be computed from

hese reduced distribution functions as

=
∫

gdξ, ρU =
∫

ξgdξ, ρE = 1

2

∫
(ξ 2 g + h)dξ, (10)

nd the heat flux can be computed as

= 1

2

∫
c(c2 g + h)dξ. (11)
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Fig. 1. Sketch of two neighboring cells on a general unstructured mesh.
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F(
he evolution equations for the two distribution functions can be

educed from Eq. (1) as

∂g

∂t
+ ξ · ∇g =�h = − 1

τ

[
g − gS

]
, (12a)

∂h

∂t
+ ξ · ∇h =�g = − 1

τ

[
h − hS

]
, (12b)

here the reduced equilibrium distribution functions gS and hS can

e deduced as well,

S(x, ξ, t) =
∫

f S(ξ,η, x, t)dη = geq + g
Pr

, (13a)

S(x, ξ, t) =
∫

η2 f S(ξ,η, x, t)dη = heq + h
Pr

, (13b)

ith

eq = ρ

(2πRT )D/2
exp

[
− c2

2RT

]
, (14a)

eq =(3 − D)RTgeq, (14b)

Pr
=(1 − Pr)

c · q

5pRT

[
c2

RT
− D − 2

]
geq, (14c)

Pr
=(1 − Pr)

c · q

5pRT

[(
c2

RT
− D

)
(3 − D)

]
RTgeq. (14d)

.2. Discrete unified gas kinetic scheme on unstructured meshes

.2.1. Updating of the cell-averaged distribution function

The updating rules for g and h in Eq. (12) have the same struc-

ure as

∂φ

∂t
+ ξ · ∇φ = � = − 1

τ

[
φ − φS

]
, (15)

or φ = g or h. The generic symbol φ will be used to denote g and

in the following. The DUGKS is an explicit finite volume scheme

or solving Eq. (15). The computation domain is firstly divided into

ome control volumes (cells). By integrating Eq. (15) in each cell

rom time tn to tn+1, we have

n+1
j

(ξ) − φn
j (ξ) + t

|Vj|F
n+1/2
j

(ξ) = t

2

[
�n+1

j
+ �n

j

]
. (16)

ere φj and �j are the cell averaged values of φ and � in cell

; |Vj| is the cell’s volume and t = tn+1 − tn is the time step.

ote that the trapezoidal and middle-point rules are used for the

ollision and convection terms in Eq. (16), respectively. The term
n+1/2
j

in Eq. (16) is the flux of φ across the interface of cell j and

s evaluated as

n+1/2
j

(ξ) =
∑

k

ξ · Sk
jφ(xk

j , ξ, tn+1/2), (17)

here Sk
j is the outward normal vector of the kth face of cell j

ith face area |Sk
j |, and xk

j
is the center of the face. Eq. (16) can be

ewritten in an explicit form by introducing two new distribution

unctions [19,20],

˜n+1
j

= φ̃+,n
j

+ Fn+1/2
j

, (18)

here

˜ = φ − t

2
� = 2τ + t

2τ
φ − t

2τ
φS, (19a)

˜+ = φ + t

2
� = 2τ − t

2τ + t
φ̃ + 2t

2τ + t
φS. (19b)
Due to the conservative property of the collision term, the con-

ervative variables can also be calculated from φ̃ as [20]

=
∫

g̃dξ, ρU =
∫

ξg̃dξ, ρE = 1

2

∫
(ξ 2g̃ + h̃)dξ, (20)

nd

= 2τ

2τ + tPr
q̃, with q̃ = 1

2

∫
c(c2g̃ + h̃)dξ. (21)

herefore, in actual implementations, we track the evolution of φ̃
ccording to Eq. (18), instead of the original distribution function

in order to avoid implicit computations. This is also one of the

ajor differences between the DUGKS and the UGKS.

.2.2. Flux evaluation on unstructured meshes

To update φ̃ j according to Eq. (18), the flux Fn+1/2
j

is required.

rom the definition of Fn+1/2
j

given by Eq. (17), the original dis-

ribution functions at the middle time step at cell interfaces, i.e.
n+1/2(xk

j
, ξ), should be computed. This is done by integrating

q. (15) from time tn to tn+1/2 along the characteristic line which

nds at the face center xf,

n+1/2(x f , ξ) − φn(x f − ξs, ξ)

= s

2

[
�n+1/2(x f , ξ) + �n(x f − ξs, ξ)

]
, (22)

here s = tn+1/2 − tn is the half time step. Here the trapezoidal

ule is used again for the collision term. Similar to the treatment

f Eq. (16), another two auxiliary distribution functions are intro-

uced

¯ = φ − s

2
� = 2τ + s

2τ
φ − 2

2τ
φS, (23a)

¯ + = φ + s

2
� = 2τ − s

2τ + s
φ̄ − 2s

2τ + s
φS. (23b)

Then Eq. (22) can be expressed explicitly as

¯ n+1/2(x f , ξ) = φ̄+,n(x f − ξs, ξ). (24)

n this work, piecewise linear reconstructions in the upstream

eighboring cells are employed to interpolate φ̄+,n(x f − ξs) from

he cell centered φ̄+,n. The neighboring cells are identified by

he direction of the particle velocity ξ. To demonstrate this pro-

edure, here we consider a general case as illustrated in Fig. 1,

here AB is a cell interface with the center xf and its unit nor-

al vector nf points from cell P to cell N. The distribution function

¯ +(x f − ξs, ξ, tn) is evaluated as

¯ +(x f − ξs, ξ) = φ̄+(xC, ξ)

+ (x f − xC − ξs) · L
[
φ̄+(x, ξ), xC

]∇φ̄+(xC, ξ), (25)

here C stands for P if ξ · nf > 0, or N otherwise. The gradient

φ̄+ at the cell center is calculated using the least square method.

or instance, the gradient of cell P is evaluated as

∇φ̄+)
P

=
∑

i

ω2
i G−1 · di

[(
φ̄+)

P
−

(
φ̄+)

Ni

]
, (26)
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where the tensor G is defined as

G =
∑

i

ω2
i didi, (27)

with di being the spatial vector from P to its ith adjacent cell cen-

ter Ni, and ωi = 1/|di| being the weighting factor. The function

L
[
φ̄+(x, ξ), xC

]
in Eq. (25) denotes the gradient limiter which is

used to suppress numerical oscillations in regions with large dis-

continuities, such as the shock layer in continuum flow regime. In

this work, we adopt the Venkatakrishnan limiter [26] which is a

typical choice for flow computations on unstructured meshes.

The time step in the DUGKS is determined by the Courant-

Friedrichs-Lewy (CFL) condition,

t = α

(
x

|U | + |ξ|
)

min

, (28)

where 0 < α < 1 is the CFL number and x is the distance be-

tween the centers of two neighboring cells that share an interface.

It should be noted that the CFL condition is imposed by the treat-

ment of the convection term in the governing equation. Usually the

collision term also poses a restriction on the time step since the

computation can be unstable if t is much larger than the mean

collision time τ . However, in DUGKS, as long as the computation

is stable, accurate solutions can be obtained even if t is much

larger than the mean collision time [20], due to coupled treatment

of the collision and transport in the construction of numerical flux.

While in many DVM schemes, the lack of collision contribution in

the numerical flux leads to a numerical viscosity proportional to

the time step [13,27], such that the time step must be smaller than

the mean collision time in order to keep the numerical viscosity

being much smaller than the physical viscosity.

After getting φ̄ at face centers according to Eqs. (24) and

(25), the original distribution functions φ can be recovered from

Eq. (23a). The macro variables at time tn+1/2 used to evaluate the

equilibrium distribution functions φS are calculated from φ̄ as

ρ =
∫

ḡdξ, ρU =
∫

ξḡdξ, ρE = 1

2

∫
(ξ 2ḡ + h̄)dξ, (29)

and

q = 2τ

2τ + sPr
q̄, with q̄ = 1

2

∫
c(c2ḡ + h̄)dξ. (30)

Then the flux across each cell interface can be evaluated according

to Eq. (17). Finally, the cell centered φ̃ can be advanced to the new

time level according to Eq. (18).

The updating procedures presented above are all based on con-

tinuous velocity space for convenience. In actual implementations,

the continuous velocity space is discretized into a finite discrete

velocity set {ξi} like the DVM [25], and the distribution functions

such as g̃ and h̃ are defined at these discrete velocity points as g̃i

and h̃i. Proper quadrature rules such as the Newton-Cotes quadra-

ture or the Gauss-Hermite quadrature are then used to approxi-

mate the moments,

ρ =
∑

i

�ig̃i, ρU =
∑

i

�iξig̃i, ρE = 1

2

∑
i

�i

[
ξ 2

i g̃i + h̃i

]
,

(31)

where ϖi are the weight coefficients.

3. Numerical examples

We apply the proposed DUGKS on unstructured meshes to both

internal and external flows to demonstrate its performance in mul-

tiscale flow simulations. The first one is the two dimensional lid
riven cavity flow in different regimes, the second one is a multi-

cale unsteady gas expansion problem in which the Knudsen num-

er ranges from 10−3 to 10, the third one is a supersonic rarefied

as flow with Mach number Ma=5 passing through a circular cylin-

er at Kn = 0.1 and 1, the forth one is a Mach 2 rarefied gas flow

assing through a two side-by-side circular cylinders at Kn = 0.1,

he last one is the impulsive start problem, which is used to verify

he uniform convergence rate of the DUGKS.

The simulations start from equilibrium states based on given

nitial flow variables. For a steady problem, the flow field gradually

volves into the final steady state. The flow field will be assumed

o be steady when the average relative change of the temperature

eld in a two-successive steps is less than 10−8, i.e.,

n =
∑

i |T n+1
i

− T n
i
|∑

i T n
i

< 10−8, (32)

here the summations are taken over all cells.

In all tests, the gas is argon with molecular mass m = 6.63 ×
0−26kg and the molecular diameter d = 4.17 × 10−10m. The expo-

ent ω in the viscosity-temperature relation is 0.81, corresponding

o the variable hard sphere (VHS) model of molecular interaction

1]. However, in the calculation of the reference viscosity by Eq. 4,

is 0.5, corresponding to the hard sphere (HS) model of molecular

nteraction [1].

.1. Lid driven cavity flow

The two dimensional lid driven cavity flow is a standard bench-

ark problem for validating classical CFD methods in continuum

egime. This problem has also been studied recently by Benzi

t al. [28] using a parallel DSMC code at Knudsen numbers Kn =
0, 1.0, 0.075, and becomes a benchmark test to validate different

chemes in the whole flow regimes [13,17,19,21]. To demonstrate

he capability of the present DUGKS on unstructured meshes, we

lso simulate this flow in different regimes.

The flow domain is a square cavity with length L = 1m. The up-

er wall moves with a constant velocity Uw, while other walls are

ept fixed. The temperature at the four walls is fixed at Tw = 273K

nd is used as the reference temperature. The walls are fully diffu-

ive and the boundary conditions are the same as that presented

n Refs. [19,20]. The Knudsen number is defined as the ratio of the

ean free path corresponding to the initial density ρref and the

avity length L. Different Knudsen numbers can be obtained by ad-

usting the initial density.

Both rarefied and continuum flows are simulated. In rarefied

egimes, three values of the Knudsen number, Kn = 10, 1 and

.075, are considered. The velocity of the upper wall is set to be

w = 50m/s, which is the same as that used in the DSMC and

he UGKS simulations [17,28]. The corresponding Knudsen num-

ers are 3.7763 × 10−4 and 1.5105 × 10−4, respectively. Further-

ore, the Mach number is Ma = 0.1, so that the flow is nearly

ncompressible and the solutions in the continuum regime can be

ompared with the benchmark solutions [29] of the incompressible

avier–Stokes equations.

In the previous work [19], the DUGKS with structured meshes

as been employed to simulate the cavity flow in different flow

egimes. Here we choose unstructured meshes to demonstrate the

erformance of the proposed method. Fig. 2 presents the meshes

sed for flows with different Knudsen numbers and Reynolds num-

ers. Note that the mesh in Fig. 2(b) is a hybrid mesh with quadri-

ateral cells near the walls. It is suitable to capture the boundary

ayer effect which is important for continuum flows.

The discretization of velocity space and quadrature rules

sed depend on the Knudsen number. For highly rarefied

ows (i.e. Kn = 10, 1), we use the Newton–Cotes rule with

01 × 101 velocity points distributed uniformly in the range of
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Fig. 2. Meshes for the cavity flow. (a) Kn = 10, 1 and 0.075. (b) Re = 400 and 1000.
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−4
√

2RTw, 4
√

2RTw] × [−4
√

2RTw, 4
√

2RTw]. For the case of Kn =
.075, we adopt the half-range Gauss–Hermit quadrature with

8 × 28 velocity points. For continuum flows, we employ the half-

ange Gauss–Hermit quadrature rule with 8 × 8 velocity points.

he CFL number is fixed at 0.8 in all simulations unless stated

therwise.

Figs. 3–5 present the temperature field, heat flux, and velocity

U, V) on the vertical and horizontal center lines, for the cases of

n = 10, 1 and 0.075, respectively, together with the DSMC solu-

ions. It can be seen that the present results agree well with DSMC

ata. It is interesting to note that the direction of the heat flux is

ot following temperature gradient in each case, which indicates
a b

ig. 3. Results of the cavity flow at Kn = 10. (a) Temperature contours, black line: DSMC

SMC; red dashed line: DUGKS. (c) U-velocity along vertical center line and V-velocity

gure legend, the reader is referred to the web version of this article.)

a b

ig. 4. Results of the cavity flow at Kn = 1. (a) Temperature contours, black line: DSMC

SMC, red dashed line: DUGKS. (c) U-velocity along vertical center line and V-velocity

gure legend, the reader is referred to the web version of this article.)
he breakdown of Fourier law at the Knudsen number 0.075 and

ven smaller ones.

Figs. 6 and 7 show the streamlines and velocity profiles for the

ases of Re = 400 and 1000, respectively. The benchmark solutions

29] are also included for comparison. Even with the cell size and

ime step size being much larger than the mean free path and

ean collision time in these cases, for example, at Re = 1000, the

mallest cell size is about 45 times of the mean free path, and at

teady state the time step size is 20 times of the mean collision

ime, the DUGKS results still have good agreement with the bench-

ark data. So the DUGKS recovers the Navier–Stokes solutions in

he continuum limit. We would also like to point out that for most

raditional DVM methods, the numerical dissipation is proportional

o cell size due to the splitting treatment of particle transport and

ollision processes. This may lead to significant errors for unstruc-

ured meshes as the cell size changes dramatically. The above re-

ults indicate that the DUGKS can avoid this kind of difficulty with

oupled treatment of particle transport and collision. The stable

omputations of the cavity flow in the three different flow regimes

ith the CFL number fixed at 0.8 also indicate the uniform stability

f the current method with respect to the Kn.

.2. Multiscale flow expansion between two connected cavities

In the above subsection, the cavity flow at specific flow regimes

ave been simulated. Now we consider a gas expansion between

wo connected cavities with different initial pressures. This flow is
c

; white line with background: DUGKS. (b) Heat flux: blue solid line with arrows:

along horizontal central line. (For interpretation of the references to color in this

c

; white line with background: DUGKS. (b) Heat flux: blue solid line with arrows:

along horizontal central line. (For interpretation of the references to color in this
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a b c

Fig. 5. Results of the cavity flow at Kn = 0.075. (a) Temperature contours, black line: DSMC; white line with background: DUGKS. (b) Heat flux: blue solid line with arrows:

DSMC; red dashed line: DUGKS. (c) U-velocity along vertical center line and V-velocity along horizontal central line. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Fig. 6. Results of the cavity flow at Re = 400, Kn = 3.7763 × 10−4. (a) Velocity streamline (b) U-velocity alone vertical central line and V-velocity alone horizontal central

line.
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line.
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diaphragmKnA = 0.001
PA = 48.78Pa
TA = 273K

Cavity A Cavity B
KnB = 10

PB = 0.004878Pa 
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L L = 1m L

L
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Fig. 8. Gas expansion between two cavities connected by a channel.
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Fig. 9. Mesh for the gas expansion case.
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n unsteady multiscale problem where different flow regimes ap-

ear in a single run. The flow configuration is sketched in Fig. 8.

wo square cavities A and B connected by a channel are initially

aintained at different pressures and separated by a diaphragm at

he middle of the channel. The height of the cavity is L = 1m, and

he length and width of the channel are L and H with H = L/8.

he walls of the cavities and the channel are maintained at 273K,

nd are assumed to be fully diffusive. Initially, the temperature

f the gas in the system is 273K, which is used as the refer-

nce temperature. The initial Knudsen numbers in cavities A and

are KnA = 0.001 and KnB = 10, respectively, and the correspond-

ng pressures are PA = 48.78Pa and PB = 0.004878Pa, respectively.

t time t = 0, the diaphragm is removed suddenly. Then the gas

tarts to expand from the left cavity to the right one. We are in-

erested in the dynamic behavior of the gas during the expansion

rocess.

The computational mesh used in the simulation is shown in

ig. 9. As significant flow variations can take place in cavity B,

he mesh is much finer there. While in cavity A, the flow changes

lowly and the mesh is relatively coarser. Note that like the con-

inuum cavity flow, the cell size in cavity A is much larger than

he mean free path there. The correctness of using such a coarser

esh in cavity A is granted by the AP property of the DUGKS.

o account for the highly non-equilibrium effect in cavity B at

he early stage, we use 101 × 101 grid points distributed uni-

ormly in the range of [−7
√

2RTw, 7
√

2RTw] × [−7
√

2RTw, 7
√

2RTw]

or the velocity space discretization, and the Newton-Cotes quadra-

ure rule is used for the numerical integration. Note that in this

est case, the bound of the discrete velocity is larger than that used

n the cavity flow simulations, as we have to account for the su-

ersonic flow behavior in the channel and cavity B at the early
tage of expansion. In our simulations, the CFL number is set to be

.8.

We can define a characteristic time of the system as tc =
/
√

2RTw, and the flow fields at different times are measured. The

ocal Mach number, pressure, and streamlines at times t/tc = 1 and

are presented in Figs. 10–13. Figs. 10 and 11 show that the shock

ave reaches the center of cavity B at time t/tc = 1. At this mo-

ent the gas is still very rarefied there associated with ballistic

ehavior, and there is no vortex formation. As the gas moves into

avity B continuously, the pressure in cavity B rises with time, but

he pressure ratio between the two cavities is high enough to form

supersonic jet at the outlet of the channel. The initial shock wave

isappears, and two symmetric vortexes appear in cavity B at a

ater time.

To get a detail information of the expansion process, we

how the temperature, U-velocity and pressure profiles along

he horizontal symmetric line of the system at times t/tc =
.013, 0.1, 1, 2, 3 and 4 in Fig. 14. It can be seen that at the early

tage (t/tc = 0.013 and 0.1), the shock wave propagates in the

hannel, and the flow variables change sharply across the shock.

ith time increments, the pressure difference between the two

avities decreases. Consequently, the shock becomes weaker and

he flow rate decreases gradually.

To quantify the results, the temperature, velocity, and pressure

rofiles along the vertical center lines of the two cavities at dif-

erent times are presented in Figs. 15 and 16, respectively. Here

nly the results at the upper half ( 0 < y < L/2 ) of the domain

re shown owing to the symmetry of the flow. Fig. 15(b) shows

counterclockwise vortex development in the upper half of cav-

ty B, which enhances heat convection in the gas. Consequently,

he temperature field becomes uniform gradually, as indicated in
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Mach Number: 0.5 1 1.5 2 2.5 3 3.5

Fig. 10. Mach number contours for the gas expansion problem at time t/tc = 1.

Pressure: 0.1 0.2 0.5 1 10 20 30 40

Fig. 11. Pressure contours and streamlines for the gas expansion problem at time t/tc = 1.

Mach Number: 0.2 0.5 1 1.5 2 2.5

Fig. 12. Mach number contours for the gas expansion problem at time t/tc = 4.
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Fig. 15(a). On the other hand, the flow in cavity A changes slightly.

Actually, the temperature and pressure are almost uniform at each

time. With the decreasing of pressure in the cavity, the temper-

ature reduces as the internal energy is converted to the kinetic

energy.

3.3. Mach 5 rarefied gas flow passing through a circular cylinder

To further demonstrate the performance of the DUGKS on un-

structured meshes for high speed non-equilibrium external flows,

we simulate the rarefied gas flow passing through a circular
ylinder. This problem has been studied before [16] using the UGKS

ethod with structured mesh. We here adopt the same config-

ration and parameters as the early simulations. The free-stream

ach number is Ma∞ = 5, and the radius of the cylinder is r =
.01m. Two Knudsen numbers are considered (Kn∞ = λ∞/r = 0.1

nd 1). The free-stream gas temperature is T∞ = 273K and is used

s the reference temperature. The surface of the cylinder is main-

ained at constant temperature of Tw = 273K, and diffusive bound-

ry condition is assumed. The outer boundary of the computa-

ional domain is a circle with a diameter of Do = 22r, and forms

concentric annular along with the surface of the cylinder. The
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Pressure: 2 5 10 15 20 25 30 35 40

Fig. 13. Pressure contours and streamlines for the gas expansion problem at time t/tc = 4.
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Fig. 14. Temperature (a), horizontal velocity (b), pressure (c) and Mach number (d) along the horizontal center line across the cavities and the channel at different times for

the gas expansion problem.
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istribution functions coming to the computational domain from

he outer boundary are equilibrium state with the free-stream flow

onditions.

Hybrid meshes are adopted again for this test case (see Fig. 17).

ocally refined quadrilateral cells are used near the cylinder to re-

olve the boundary layer. We note that the mesh resolution in the

ormal direction of the cylinder wall should be fine enough to cap-

ure the large flow gradients correctly in the boundary layer. For

he case of Kn = 0.1, the mesh spacing around the cylinder wall is

ner than that for Kn = 1 (see Fig. 17(b)) since the boundary layer
ecome thinner as Kn decreases. The fine meshes around the cylin-

er wall are only used to capture the large gradients of the flow

eld, but not to resolve the mean free path scale. Actually, based

n the posterior estimation, the mesh spacing around the stagna-

ion point for the case of Kn = 1 is about 2 times of the mean free

ath there.

In our computations, the velocity space is discretized into 89 ×
9 uniform grid points in the range of [−15

√
2RT∞, 15

√
2RT∞] ×

−15
√

2RT∞, 15
√

2RT∞], and the Newton–Cotes quadrature rule is

sed for the numerical integration. To validate our simulation
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Fig. 15. Temperature (a), horizontal velocity (b), vertical velocity (c) and pressure (d) along the vertical center line (upper half) of the cavity B at different times for the gas

expansion problem.
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Fig. 16. Temperature (a) and pressure (b) along the vertical center line (upper half) of the cavity A at different times for the gas expansion problem.
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results, we use the open source dsmcFoam solver [30] to obtain the

DSMC results under the same flow conditions and computational

domain.

The contours of temperature and Mach number for the case of

Kn = 0.1 are shown in Fig. 18. Also included are the DSMC solu-

tions. The temperature and U-velocity profiles along the stagna-

tion line are shown in Fig. 19. Clearly both temperature and Mach
umber distributions of the DUGKS results agree with those of the

SMC results perfectly. However, there are some small discrepan-

ies in the front of the bow shock, which can be seen more clearly

n the temperature profile. This is due to the intrinsic defect of

he Shakhov model used in the current DUGKS [1], where the col-

ision frequency is independent of particle velocities. Despite of

he small deviations, the temperature agrees well with the DSMC



L. Zhu et al. / Computers and Fluids 127 (2016) 211–225 221

X

Y

-0.1 -0.05 0 0.05 0.1

-0.1

-0.05

0

0.05

0.1

Mesh for Kn=0.1

Mesh for Kn=1

Fig. 17. Meshes for the flow passing through a cylinder. (a) Global view of the mesh. (b) Local view of the meshes around the cylinder surface, upper: Kn = 1, lower:

Kn = 0.1.
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Fig. 18. Temperature (a) and Mach number (b) distribution for the flow passing through a cylinder at Kn = 0.1. Solid white line with colored background: DUGKS, dashed

black line: DSMC.
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results in the downstream the shock. The heat flux, normal pres-

sure and shear stress distribution along the cylinder’s surface pre-

dicted by the DUGKS and DSMC agree with each other quite well,

as shown in Fig. 20.

For the case of Kn = 1, the temperature and Mach number dis-

tributions are presented in Fig. 21. The temperature, U-velocity,

and density profiles along the stagnation line are shown in Fig. 22.

These results show that the DUGKS results agree with the DSMC

results as well. The discrepancies in the front of the bow shock

are slightly more obvious. Due to the increment of Kn, the non-

equilibrium effects get stronger, thus the Shakhov model devi-

ates more from the full Boltzmann collision operator. However,

the heat flux, normal pressure, and shear stress along surface

of cylinder predicted by DUGKS are still quite satisfactory in
 T
omparison with the DSMC results, as shown in Fig. 23. These re-

ults demonstrate that although the Shakhov model with intrinsic

efects is used in the current numerical modeling, the DUGKS still

ives rather satisfactory predictions, particularly the flow behaviors

ear the body. The DUGKS can be a very useful engineering tool for

ypersonic rarefied flow applications, especially in the regime of

n < 0.1.

.4. Mach 2 rarefied gas flow passing through two side-by-side

ircular cylinders

We further apply the DUGKS to the flow over two circular

ylinders in a side-by-side arrangement, as sketched in Fig. 24.

he computational domain is a 0.18m by 0.2m rectangular. Two
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Fig. 24. Mesh for the flow past two cylinders case.
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ylinders with radius of r = 0.01m are placed vertically in the com-

utational domain with a gap of 2r. The centers of the cylinders

re 8r away from the left boundary. The gas is argon and the free-

tream Mach number and temperature are Ma = 2 and T∞ = 273,

espectively. The Knudsen number based on the radius of the
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ig. 25. Temperature (a) and mach number (b) distribution for the flow passing through t

ine: DSMC.
ylinders and the mean free path of free-stream gas is 0.1. For this

eometry, it is difficult to use a simple structured mesh to rep-

esent the configuration. But for the present DUGKS, we can eas-

ly setup a hybrid structured-unstructured mesh, as illustrated in

ig. 24. The velocity space is discretized into 49 × 49 uniform grid

oints in the range of [−6
√

2RT∞, 6
√

2RT∞] × [−6
√

2RT∞, 6
√

2RT∞],

nd the Newton–Cotes rule is used for the calculation of the mo-

ents. In our simulations, the CFL number is set to be 0.8.

The results of the DUGKS are compared with those of the dsmc-

oam solver [30]. Fig. 25 shows the temperature and Mach number

istributions predicted by the DUGKS and DSMC. It can be seen

hat the contour lines of two results almost overlap each other, es-

ecially in the region near the surfaces of cylinders. In this case the

esults of the DUGKS and DSMC are nearly identical in the front

f the shock, suggesting that the deviation of the Shakhov model

rom the full Boltzmann collision model is small at this Mach num-

er. It is also observed that, the gas is chocked in the gap between

he two cylinders. The high temperature region in front of the

ylinders covers the inlet of the gap. At the outlet of the gap, the

emperature drops gradually, and the gas is accelerated to super-

onic speed. To quantify the comparison, we present in Fig. 26 the

eat flux, pressure, and shear stress on the upper cylinder’s sur-

ace. It can be seen that the results of the DUGKS and DSMC meth-

ds agree with each other quite well. Furthermore, from Fig. 26(c),

e can find the stagnation points are about 14 degrees away from

he left leading points at the cylinder surface.
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Fig. 26. Heat flux (a), pressure (b) and shear stress (c) alone the surface of the upper cylinder for the flow past tow cylinders case.
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Table 1

L2 errors of the velocity field and convergence orders at varies Knudsen numbers for the im-

pulsive start problem.

Kn = 10 Kn = 0.1 Kn = 0.001

Ni ‖δu‖i
2 Ei+1

i
Ni ‖δu‖i

2 Ei+1
i

Ni ‖δu‖i
2 Ei+1

i

5 6.05E−02 10 4.46E−03 20 7.82E−02

10 6.10E−03 3.31 20 1.19E−03 1.90 40 2.07E−02 1.92

20 1.30E−03 2.22 40 3.18E−04 1.91 80 3.30E−03 2.65

40 3.15E−04 2.04 80 8.16E−05 1.96 160 4.91E−04 2.75

n 2.50 1.92 2.46

U

e

N

0

t

‖

w

l

m

t

f

s

E

T

c

t

3.5. Impulsive start problem

In this test, we investigate the spatial convergence order of the

DUGKS at varies flow regimes (Knudsen numbers). The problem

considered is the flow of argon gas between two infinitely long

parallel plates, placed at y = L/2 and y = −L/2. The surfaces of the

plates are maintained at uniform temperature Tw and are assumed

to be diffusive boundaries. The flow filed is initially set at uniform

temperature Tw, density ρ0 and is static. At time t = 0, both of the

plates start to move in the X direction impulsively with velocity

w = 0.15
√

2RTw. The Knudsen number Kn is based on the distance

between the plates L and the initial density ρ0. Three Kn values,

Kn = 10, 0.1 and 0.001 are considered. The characteristic time of

the system is chosen as tc = L/
√

2RTw.

The flow can be treated as a pseudo one-dimensional problem,

as the flow fields at any time are independent of the x coordi-

nate. Uniform structured meshes with resolutions of N × 1 are

used in the simulation. The relatively small computation effort is

also the reason to use such a test case to investigate the conver-

gence rate of the DUGKS. Because in the investigation of spatial

convergence order, the CFL number is usually kept at very low val-

ues to suppress the errors induced by time integration, and very

fine meshes have to be used. At such condition, simulating a full

two-dimensional problem would be extremely expensive.
The L2 errors the horizontal velocity field against the refer-

nce solutions are computed at three successively refined meshes

0, N1 = 2N0, N2 = 4N0 at time t = te. For Kn = 10, N0 = 5, te =
.4tc. For Kn = 0.1, N0 = 10, te = 4tc. For Kn = 0.001, N0 = 20,

e = 40tc. The L2 error is defined as

δu‖i
2 :=

Ni∑
j=1

∥∥u(yj, te) − u∗(yj, te)
∥∥

2

Ni∑
j=1

∥∥u∗(yj, te)
∥∥

2

(33)

here u∗(yj, te) is the reference solution at the grid points and is

inearly interpolated from the solution obtained at a much finer

esh with mesh size Nm × 1. The reference solutions are assumed

o be the approximated accurate solutions. Nm are 80, 320 and 640

or Kn = 10, 0.1 and 0.001, respectively. Using two different mesh

izes Ni and Ni+1, the convergence order can be estimated by

Ni+1

Ni
= log(‖δu‖i

2/‖δu‖i+1
2 )

log (Ni+1/Ni)
. (34)

he overall convergence order n is linearly fitted from

(log ‖δu‖i
2, log Ni). We expected second convergence using the

urrent CFL condition with very low CFL numbers. For Kn = 10,

he velocity grid is a set of uniform spaced 201 × 201 points in the
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ange of [−4
√

2RT∞, 4
√

2RT∞] × [−4
√

2RT∞, 4
√

2RT∞]. Rectangular

ule is used for numerical integration in velocity space. Using of

uch a fine grid in the velocity space is to minimize the ray effect

t high Knudsen number. For Kn = 0.1 and 0.001, 28 × 28 points

nd 8 × 8 points half-range Gauss–Hermit quadrature rules are

sed respectively. The time step size is fixed for simulation at

ach mesh, and Eq. 28 is replaced by t = αx/(10
√

2RTw) where

= 0.01 is the CFL number for all of the above configurations. The

radient limiter function is not applied for accuracy consideration.

The errors and convergence orders are listed in Table. 1. The ve-

ocity profiles across the channel at each Kn are shown in Fig. 27.

rom Table. 1, we can observe that the convergence order is nearly

or even higher. The convergence order is independent of the

nudsen number.

. Concluding remarks

In this paper, the DUGKS based on the Shakhov model [20] is

xtended to unstructured meshes. The key feature of the DUGKS is

he discrete characteristic solution of the kinetic equation which is

sed in the modeling of the evolution of distribution function at

cell interface. Due to the coupled treatment of particle collision

nd transport processes, the method has the asymptotic preserv-

ng (AP) properties for capturing the Navier–Stokes solutions in the

ontinuum flow regime. Linear reconstruction and gradient limiter

re employed in the reconstruction to attain a second-order accu-

acy of the DUGKS.

The performance of the proposed method is explored by sev-

ral examples ranging from low speed micro flows to hypersonic

arefied flows. In the transitional and slip regimes, good agree-

ents between the results of DUGKS and DSMC solutions are ob-

erved. In the continuum regime, the DUGKS results agree well

ith the benchmark solutions of the Navier–Stokes equations. The

econd order spatial convergence order and uniform stability of the

UGKS have also been verified numerically. Thus the AP property

f the DUGKS for the Navier–Stokes limit is validated. This prop-

rty is important for flow that involves both continuum and rar-

fied regimes. As the mesh size in the continuum regimes can be

uch larger than the particle mean free path, the overall compu-

ational cost for the DUGKS can be largely reduced in comparison

ith the DSMC method and the traditional DVM. Since the DUGKS

s a direct modeling multiscale method [31], as the mesh size and

ime step size become larger than the particle mean free path and

ean collision time, the physical solutions will not be sensitive

o individual particle collision anymore. Therefore, in such a sit-

ation, the Shakhov model based DUGKS is accurate enough and

an be faithfully used in real engineering applications. The current

aper also presents a test case with two-cavities for the capturing

f multiple scale flow physics. It is highly recommended to use this

est to validate any claimed AP scheme for the gas dynamics.
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