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A third-order compact gas-kinetic scheme is proposed for three-dimensional compressible flow computations. The

new scheme is based on three key ingredients: the time-accurate gas evolution model for interface flux, the Hermite

weighted essentially nonoscillatory reconstruction, and the two-stage temporal discretization. In contrast to the

Riemann-solver-based methods, due to the use of time-accurate flux function the proposed scheme can achieve a

third-order temporal accuracy with two stages instead of three stages in the standard Runge–Kutta method. As an

extension of the existing high-order reconstructions, a Hermite weighted essentially nonoscillatory reconstruction is

specifically designed for the current schemewith the implementation of the constrained least-square technique,which

subsequently improves the accuracy and robustness of the compact scheme. There is no trouble cell identification

in the current scheme. A third-order accuracy can be achieved even with curved boundary. Numerical examples

for both smooth and discontinuous flows show the robustness and high accuracy of the compact third-order scheme,

which has a comparable performance as the fifth-order noncompact gas-kinetic scheme. A large Courant–

Friedrichs–Lewy number around 0.5 can be used in the computations.

Nomenclature

A = temporal derivative for the gas distribution function
axi = spatial derivative for the gas distribution function

(i is equal to 1, 2, 3)
CD = drag coefficient
F = fluxes for conservative variables
f, g = gas distribution function
K = the number of internal degree of freedoms
L = spatial operator
Ma = Mach number
Pr = Prandtl number
p = pressure
Re = Reynolds number
S = entropy
t = time
U; U; V;W = macroscopic velocity vector and each components
u = particle velocity
W = conservative variables
x = location in physical space
β = smoothness indicator
γ = specific heat ratio
δ = normalized nonlinear weight
μ = dynamic viscosity coefficient
ξ = internal degree of freedom
ρ = density
σ = global smoothness indicator
τ = physical collision time
τn = numerical collision time
ω = nonlinear weight

Subscript

∞ = freestream

I. Introduction

T REMENDOUS efforts have been paid on the development
of high-order computational fluid dynamics (CFD) methods

for the compressible Euler and Navier–Stokes (N-S) equations in
past decades. Representative methods include weighted essentially
nonoscillatory (WENO) methods [1], discontinuous Galerkin (DG)
methods [2], the flux reconstruction (FR) [3] or correction procedure
via reconstruction (CPR) [4] methods, etc. WENO-type recon-
struction has been widely applied on structured grids, which can
keep good robustness with very high order of accuracy [5]. However,
due to the use of large stencils it is not a trivial task to extend the
WENO approach to unstructured mesh or nonuniform mesh with
the high-order accuracy. A new class of WENO schemes has been
proposed recently in the attempt of releasing the problems [6].
On the other hand, the development of high-order compact meth-

ods, which only involve the target cell and its von Neumann neigh-
bors for the update of numerical solution, becomes a hot research
project due to its attractive properties, such as the good mesh adapt-
ability and scalability [7]. Two main representatives of compact
methods are the DG methods with a combination of finite volume
and finite element frameworks, and the FR/CPR methods with the
hybridization of finite difference and finite volume discretization.
These methods can achieve arbitrary high-order accuracy with com-
pact stencil and have great mesh adaptability. Numerical results have
demonstrated their performance in large-eddy simulation (LES) [8]
and Reynolds-averaged Navier–Stokes calculations [9] for smooth
flow. However, in the flow simulations with strong discontinuities,
these methods seem lack of robustness. Many attempts have been
used tomodify the updates of the internal degrees of freedom [10]. At
the same time, these methods have restricted time step in comparison
with the traditional high-order finite volume methods. Progress has
been made continuously in the development of high-order schemes,
such as the recent multimoment constrained finite volume scheme
[11], PNPM scheme [12], and reconstructed-DG (rDG) method
[13,14]. Most of these methods commonly use Riemann solvers
or approximate Riemann solvers in the flux evaluation and the
Runge–Kutta (RK) time-stepping methods for temporal accuracy.
A class of compact high-order gas-kinetic scheme (HGKS) has

been developed recently [15]. With the use of the two-stage temporal
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discretization [16,17], and the Hermite WENO (HWENO) recon-
struction [18], a fourth-order compact gas-kinetic scheme (GKS) on
two-dimensional (2-D) structured mesh is constructed [19]. The
compact scheme has a higher resolution than the conventional non-
compact fourth-order GKS [20] and has similar robustness as a
second-order shock capturing scheme. Most importantly, a large
Courant–Friedrichs–Lewy (CFL) number around 0.5 can be used
in the computation. The success of the above fourth-order compact
GKS lies in the following distinguishable features:
1) The GKS flux is based on an analytical integral solution of the

kinetic model equation with a complete flow physics [21]. The time-
dependent gas distribution function at a cell interface provides a
multiple scale flow evolution from the kinetic particle transport to
the hydrodynamic wave propagation, which bridges the approaches
seamlessly between the kinetic flux vector splitting and the central
difference Lax–Wendroff-type discretization.
2) Both inviscid and viscous fluxes are obtained from themoments

of a single time-accurate gas distribution function, which has special
advantages in the construction of the scheme on unstructured mesh.
3) TheGKS is amultidimensional scheme [22],where both normal

and tangential derivatives of flow variables around a cell interface
contribute to the time evolution of the gas distribution function.
4) Besides fluxes, the time-accurate gas distribution function also

provides time-evolving flow variables at each Gaussian point on the
cell interface. Based on these time-accurate solutions at interfaces,
the time-evolving derivatives of the flow variables in the cell can be
evaluated as well through the Gauss’s theorem. Therefore, the com-
pact HWENO reconstruction can be adopted in the reconstruction.
The update of the slopes in the compact GKS has fundamental
differences from the updating methods in DG/CPR, where a weak
formulation is directly obtained for the update of the corresponding
degrees of freedom. The compact GKS updates the flow variables
and the slopes based on the same gas evolution solution at
cell interface, and it uses the same time step as a noncompact
high-order finite volume scheme and keeps the same robustness in
the discontinuous flow region.
5) Themultistagemultiderivative (MSMD) time discretization can

be adopted due to the existence of the time derivative of the flux
function in GKS. For the Riemann-solver-based methods, for the
same time accuracy more stages in the RK method have to be
used. With the strong stability preserving (SSP) property [23], the
Nth–order accuracy in RK methods requires no less than N stages.
For a classical fourth-order RK method, four stages are basically
needed. Even though the evaluation of the GKS flux is more expen-
sive than the time-independent Riemann solver, with the incorpora-
tion of the MSMD method, the fourth-order time accuracy can be
achieved from two stages with a reduction of expensive recon-
struction in comparison with RK method [20,24].
The compact GKS [19] has been developed up to eighth-order

spatial accuracy in rectangular mesh [25], which has a spectral-like
resolution at large wavenumber and has been successfully applied in
the aeroacoustic problemswith shock interaction [26]. The extension
on triangular mesh [27] also demonstrates excellent robustness in the
hypersonic flow computation. Thus, it becomes natural to develop
three-dimensional (3-D) scheme for real engineering applications.
In this paper, a compact third-order GKS on 3-D multiblock

structured mesh will be constructed under the same GKS framework
[27,28]. In the general hexahedronmesh, different from the direction-
by-direction reconstruction [25,28], multidimensional polynomials
are directly constructed in a least-squares sense. In the constrained
least-square approach, the cell-averaged values are exactly kept,
which shows a favorable linear stability and accuracy for smooth
flow. For structured mesh with curved boundary, the vertices of a
hexahedral cell can become easily non-coplanar. To determine the
location and normal direction at each Gaussian point uniquely, the
trilinear/bilinear interpolation is used with the satisfaction of global
mesh volume conservation. As a result, the scheme is able to keep the
formal order of accuracy under nonuniform or curvilinear meshes.
To deal with discontinuities, most effort has been paid on the spatial
reconstruction. The traditional WENO reconstruction [18,29]
requires a large number of substencils and may have nonpositive

weights on nonuniform mesh [30]. Recently, a new WENO method
was proposed [31], of which the key idea is to construct a whole
weighted polynomial in a cell rather than pointwise value at each
Gaussian point. The linear weights can be chosen to be positive
numbers with a summation of one and the expected order of accuracy
can be kept in the smooth region. Moreover, the number of substen-
cils is less than the conventional WENO method. In turn, efficiency
and robustness are greatly improved in comparison with the tradi-
tional WENO. Following the idea in [31], a new HWENO-type
reconstruction based on the cell-averaged values and the first-order
derivatives is constructed for the initial condition. Different from the
original approach [31] with the use of neighbor-to-neighbor cells in
the stencils, the current reconstruction is designed on a compact
stencil with von Neumann neighbors only and has a better paralleli-
zation capability. This compact reconstruction can be directly imple-
mented on unstructured hexahedron grid. The new scheme inherits
the advantages of the previous compact GKS [19,27]. In comparison
with the third-order RK time-stepping method, the compact GKS
achieves a third-order accuracy in time with one middle stage only.
A CFL number of 0.5 can be taken safely in both smooth and
discontinuous flow simulations, whereas the CFL number is on the
order of 0.2 for a third-order DG method. The comparison of accu-
racy is given between the proposed compact scheme and the non-
compactHGKS [24],which shows that the former one has superiority
in the implicit LES simulations. The tests including hypersonic flow
passing through a sphere also validate the robustness of the current
compact GKS in 3-D structured mesh.
This paper is organized as follows. The basic framework for the

3-D compact high-order GKS is presented in Sec. II. In Sec. III, the
general formulation for the two-stage high-order temporal discreti-
zation is introduced. In Sec. IV, the compact third-order HWENO
reconstruction on hexahedral mesh is presented. Numerical experi-
ments including inviscid and viscous tests are presented in Sec. V to
validate the proposed scheme. The last section is the conclusion.

II. Compact Finite Volume Gas-Kinetic Scheme

The 3-D gas-kinetic Bhatnagar–Gross–Krook (BGK) equation
[32] can be written as

ft � u ⋅ ∇f � g − f

τ
(1)

where f is the gas distribution function, g is the corresponding
equilibrium state, and τ is the collision time; f � f�x; t; u; ξ�, where
x is location in physical space, t is time, and u is particle velocity in
phase space.
The collision term satisfies the following compatibility condition:Z

g − f

τ
ψ dΞ � 0 (2)

where ψ � �1; u; �1∕2��u2 � ξ2��T , dΞ � du1du2du3dξ1 : : : dξK ,
K is the number of internal degree of freedoms (i.e., K � �5 − 3γ�∕
�γ − 1� in 3-D case), and γ is the specific heat ratio.
Based on theChapman–Enskog expansion for BGKequation [33],

the gas distribution function in the continuum regime can be
expanded as

f � g − τDug� τDu�τDu�g − τDu�τDu�τDu�g� � : : : (3)

where Du � ∂∕∂t� u ⋅ ∇. By truncating on different orders of τ,
the corresponding macroscopic equations can be derived. If the
zeroth-order truncation is taken, i.e., f � g, the Euler equations
can be recovered by taking moments of ψ on Eq. (1):

Wt � ∇ ⋅ F�W� � 0

With the first-order truncated distribution function,

f � g − τ�u ⋅ ∇g� gt� (4)
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the N-S equations can be obtained:

W t � ∇ ⋅ F�W;∇W� � 0

with μ � τp and unit Prandtl number.
Based on the time-dependent distribution function f, the macro-

scopic conservative variables are

W�x; t� �
Z

ψf�x; t; u; ξ� dΞ (5)

and the corresponding fluxes F�W�x; t��,

F�x; t� �
Z

uψf�x; t; u; ξ� dΞ (6)

For a finite volume scheme, the cell-averaged conservative varia-

bles are updated through the interface fluxes. Besides the fluxes, the

time-accurate cell interface gas distribution function also provides

flow variables throughEq. (5) at the next time level, and subsequently

determines the cell averaged slopes. The update of cell interface value

W�x; t� requires a high-order gas evolutionmodel with time-accurate

interface solution, which cannot be achieved by the first-order

Riemann solver.

A. Finite Volume Scheme on General Structured Mesh

For a polyhedron cell Ωi in 3-D space, the boundary can be

expressed as

∂Ωi �
[Nf

p�1

Γip

whereNf is the number of cell interfaces for cellΩi, e.g.,Nf � 4 for

tetrahedron and Nf � 6 for cuboid or general hexahedron.

The increment of the cell averaged conservative flow variables in a

finite control volume i in a time interval �tn; tn�1� can be expressed as

Wn�1
i jΩij � Wn

i jΩij −
XNf

p�1

Z
Γip

Z
tn�1

tn

F�x; t� ⋅ np dt ds (7)

with

F�x; t� ⋅ np �
Z

ψf�x; t; u; ξ�u · np dΞ (8)

whereW i is the cell averaged value over cellΩi, jΩij is the volume of

Ωi, F is the interface flux, and np � �n1; n2; n3�T is the unit vector

representing the outer normal direction of Γip. The semidiscretized

form of finite volume scheme can be written as

dW i

dt
� L�Wi� � −

1

jΩij
XNf

p�1

Z
Γip

F�W� ⋅ np ds (9)

Numerical quadratures can be adopted to give a high-order spatial

approximation for Fip�t�, where Eq. (7) can be rewritten as

Wn�1
i jΩij�Wn

i jΩij−
XNf

p�1

jΓipj
XM
k�1

ωk

Z
tn�1

tn

F�xp;k;t� ⋅npdt (10)

The bilinear interpolation is used to describe a given quadrilateral

interface Γip with coplanar or non-coplanar vertices. M � 2 × 2

Gaussian points are used to meet the requirement of a third-order

spatial accuracy. In the computation, the fluxes are obtained under the

local coordinates. Details can be found in [34].

B. Gas-Kinetic Solver

To construct the numerical fluxes at the Gaussian point x �
�0; 0; 0�T , the integral solution of BGK equation (1) is used:

f�x; t; u; ξ� � 1

τ

Z
t

0

g�x 0; t 0; u; ξ�e−�t−t 0�∕τ dt 0

� e−t∕τf0�x − ut; u; ξ� (11)

where x � x 0 � u�t − t 0� is the trajectory of particle, f0 is the initial
gas distribution function, and g is the corresponding equilibrium
state. The integral solution states a physical process from the particle
free transport in f0 in the kinetic scale to the hydrodynamic flow
evolution in the integration of g term. The flow evolution at the cell
interface depends on the ratio of time step to the local particle
collision time Δt∕τ. We refer [33] for the detailed construction of
the gas-kinetic flux function. In short, the second-order time-
dependent gas distribution function is given as

f�0; t; u; ξ� � �1 − e−t∕τn�gc � ��t� τ�e−t∕τn − τ�acxiuigc
� �t − τ� τe−t∕τn�Acgc

� e−t∕τngl�1 − �τ� t�alxiui − τAl�H�u1�
� e−t∕τngr�1 − �τ� t�arxiui − τAr��1 −H�u1�� (12)

where τn is the numerical collision time τn, which will be defined

later;gl;r can be fully determined from the reconstructedmacroscopic

variables W l;Wr at the left and right sides of a cell interface:Z
ψgl dΞ � W l;

Z
ψgr dΞ � Wr (13)

Similarly,Wc are the macroscopic flow variables for the determina-
tion of the equilibrium state gc:Z

ψgc dΞ � Wc

The microscopic coefficients can be determined by the spatial deriv-
atives of macroscopic flow variables and the compatibility condition
as follows:

hax1i �
∂W
∂x1

� Wx1 ; hax2 i �
∂W
∂x2

� Wx2 ; hax3i �
∂W
∂x3

� Wx3 ;

hA� ax1u1 � ax2u2 � ax3u3i � 0 (14)

where h : : : i are themoments of a gas distribution function defined by

h� : : : �i �
Z

ψ� : : : �g dΞ

The details for calculation of each microscopic term from macro-
scopic quantities can be found in [33].
For smooth flow, the time-dependent solution in Eq. (12) can be

simplified as [21]

f�0; t; u; ξ� � gc − τ�acxiui � Ac�gc � Acgct (15)

under the assumptions of continuous functions gl;r � gc, al;rxi � acxi .
The above gas-kinetic solver for smooth flow has less numerical
dissipations than the full GKS solver in Eq. (12) with the consider-
ation of discontinuous initial data.

C. Direct Evolution of the Cell Averaged First-Order

Spatial Derivatives

Distinguished from the schemes based on theRiemann solvers, the
gas-kinetic scheme provides a time evolution solution. Recalling
Eq. (5), the conservative variables at the Gaussian point xp;k can be
updated by taking moments ψ on the interface gas distribution
function in Eq. (12):
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Wp;k�tn�1� �
Z

ψfn�xp;k; tn�1;u; ξ�dΞ; k� 1;: : : ;M (16)

According to the Gauss’s theorem, the cell-averaged first-order

derivatives within each element at tn�1 can be obtained by

�Wn�1
x �

Z
V
∇ ⋅ � �W�tn�1�;0;0�dV � 1

ΔV

Z
∂V
�1;0;0� ⋅n �W�tn�1�dS

� 1

ΔV

Z
∂V

�W�tn�1�n1 dS�
1

ΔV

XNf

p�1

XM
k�1

ωp;kW
n�1
p;k �n1�p;kΔSp;

�Wn�1
y �

Z
V
∇ ⋅ �0; �W�tn�1�;0�dV � 1

ΔV

Z
∂V
�0;1;0� ⋅n �W�tn�1�dS

� 1

ΔV

Z
∂V

�W�tn�1�n2 dS�
1

ΔV

XNf

p�1

XM
k�1

ωp;kW
n�1
p;k �n2�p;kΔSp;

�Wn�1
z �

Z
V
∇ ⋅ �0;0; �W�tn�1��dV � 1

ΔV

Z
∂V
�0;0;1� ⋅n �W�tn�1�dS

� 1

ΔV

Z
∂V

�W�tn�1�n3 dS�
1

ΔV

XNf

p�1

XM
k�1

ωp;kW
n�1
p;k �n3�p;kΔSp

(17)

where np;k � ��n1�mp;k; �n2�p;k; �n3�p;k� is the outer unit normal

direction at each Gaussian point xp;k.

III. Two-Stage Temporal Discretization

The two-stage fourth-order (S2O4) temporal discretization that

has been adopted in the previous compact GKS on 2-D cases is

implemented here [19,27]. Following the definition of Eq. (9), a

fourth-order time-accurate solution for cell-averaged conservative

flow variables W i is updated by

W�
i � Wn

i �
1

2
ΔtL�Wn

i � �
1

8
Δt2

∂
∂t
L�Wn

i �;

Wn�1
i � Wn

i � ΔtL�Wn
i � �

1

6
Δt2

�
∂
∂t
L�Wn

i � � 2
∂
∂t
L�W�

i �
�

(18)

where L�Wn
i � and �∂∕∂t�L�Wn

i � are

L�Wn
i � � −

1

jΩij
XNf

p�1

XM
k�1

ωp;kF�xp;k; tn� ⋅ np;k;

∂
∂t
L�Wn

i � � −
1

jΩij
XNf

p�1

XM
k�1

ωp;k∂tF�xp;k; tn� ⋅ np;k;

∂
∂t
L�W�

i � � −
1

jΩij
XNf

p�1

XM
k�1

ωp;k∂tF�xp;k; t�� ⋅ np;k (19)

The proof for the fourth-order accuracy can be found in [16].
Based on the time-accurate flux function in Eq. (12), the numerical

fluxesFp;k and their time derivatives ∂tFp;k at tn and t� � tn � Δt∕2
can be constructed. Details can be found in [27]. The S2O4 time

integration meets the requirement of a third-order temporal accuracy

for the current scheme with only two stages.
Similar to the two-stage temporal discretization in the flux evalu-

ation [27], the time-dependent gas distribution function in Eq. (16) is

updated by

f� � fn � 1

2
Δtfnt ;

fn�1 � fn � Δtf�t (20)

IV. Compact HWENO Reconstruction

In this section, a newly designed compact HWENO-type
reconstruction will be presented to construct the cell interface values
and their first-order derivatives at each Gaussian point on both sides
of a cell interface. Then, based on such an initial condition the
time-dependent gas distribution function in Eq. (12) can be fully
determined.
As a starting point of WENO reconstruction, a linear recon-

struction will be presented first. For a piecewise smooth function
Q�x� (Q can be conservative or characteristic variables) over cellΩ0,
a polynomialPr�x�with degrees r can be constructed to approximate
Q�x� as follows:

Pr�x� � Q�x� �O�Δhr�1�

where Δh ∼ jΩ0j1∕3 is the equivalent cell size. To achieve a third-
order accuracy and satisfy conservative property, the following
quadratic polynomial over cell Ω0 is obtained:

P2�x� � �Q0 �
X2
jkj�1

akp
k�x� (21)

where �Q0 is the cell averaged value of Q�x� over cell Ω0,

k � �k1; k2; k3�, and jkj � k1 � k2 � k3. The p
k�x� are basis func-

tions, which are given by

pk�x� � xk11 x
k2
2 x

k3
3 −

1

jΩ0j
ZZZ

Ω0

xk11 x
k2
2 x

k3
3 dV

The trilinear interpolation is used to describe a given hexahedron
Ω0 with coplanar or non-coplanar vertices. Detail can be found
in [34].

A. Large Stencil and Substencils

To reconstruct the quadratic polynomial P2�x� on Ω0, the large
stencil for reconstruction includes Ω0 and all its von Neumann
neighbors, i.e., Ωm;m � 1; : : : ; 6, where the averages of Q�x� and
averaged derivatives of Q�x� over each cell are known.
The following values are used to obtain P2�x�:
1) Cell averages �Q for cell 0, 1, 2, 3, 4, 5, 6
2) Cell averages of the x-direction partial derivative �Qx1 for cell 1,

2, 3, 4, 5, 6
3) Cell averages of the y-direction partial derivative �Qx2 for cell 1,

2, 3, 4, 5, 6
4) Cell averages of the z-direction partial derivative �Qx3 for cell 1,

2, 3, 4, 5, 6
The polynomial P2�x; y� is required to exactly satisfyZZZ

Ωm

P2�x; y� dV � �QmjΩmj (22)

where �Qm is the cell averaged value over Ωm;m � 1; : : : ; 6. Then,
the following conditions are imposed in a least-squares sense:ZZZ

Ωm

∂
∂x1

P2�x� dV � � �Qx1�mjΩmj;ZZZ
Ωm

∂
∂x2

P2�x� dV � � �Qx2�mjΩmj;ZZZ
Ωm

∂
∂x3

P2�x� dV � � �Qx3�mjΩmj (23)

where �Qxi ; i � 1; 2; 3 are the cell averaged directional derivatives

over Ωm in a global coordinate, respectively. On a regular mesh, the
system has 24 independent equations. The constrained least-square
method is used to solve the above linear system [35].
The constraints introduced in Eq. (22) can improve the linear

stability of the reconstruction and reduce the numerical errors.
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The information from the cell-averaged values takes up a high

proportion. Under uniform mesh, the coefficients in Eq. (21) for cell

Ωi;j;k are given in the form

a1;0;0 �
�Qi�1;j;k − �Qi−1;j;k

2h
;

a0;1;0 �
�Qi;j�1;k − �Qi;j−1;k

2h
;

a0;0;1 �
�Qi;j;k�1 − �Qi;j;k−1

2h
;

a2;0;0 �
�Qi�1;j;k � �Qi−1;j;k − 2 �Qi;j;k

2 h2
;

a0;2;0 �
�Qi;j�1;k � �Qi;j�1;k − 2 �Qi;j;k

2 h2
;

a0;0;2 �
�Qi;j;k�1 � �Qi;j�1;k−1 − 2 �Qi;j;k

2 h2
;

a1;1;0 �
� �Qx1 �i;j�1;k − � �Qx1�i;j−1;k � � �Qx2 �i�1;j;k − � �Qx2�i−1;j;k

4h
;

a0;1;1 �
� �Qx2 �i;j;k�1

− � �Qx2�i;j;k−1 � � �Qx3 �i;j�1;k − � �Qx3�i;j−1;k
4h

;

a1;0;1 �
� �Qx1 �i;j;k�1

− � �Qx1�i;j;k−1 � � �Qx3 �i�1;j;k − � �Qx3�i−1;j;k
4h

The information from the derivatives only shows in the cross terms. In

addition, it will reduce to a third-order scheme involving the cell-

averaged values only in the 1-D case.
To deal with discontinuity, eight substencils Sj; j � 1; : : : ; 8, are

selected from the large one given in Fig. 1. The following cell

averaged values for each substencil are used to get the linear poly-

nomial P1
j �x�:

P1
1 on S1 � f �Q0; �Q1; �Q3; �Q5g; P1

2 on S2 � f �Q0; �Q3; �Q5; �Q2g;
P1
3 on S3 � f �Q0; �Q5; �Q2; �Q4g; P1

4 on S4 � f �Q0; �Q4; �Q2; �Q6g;
P1
5 on S5 � f �Q0; �Q2; �Q6; �Q3g; P1

6 on S6 � f �Q0; �Q6; �Q3; �Q1g;
P1
7 on S7 � f �Q0; �Q6; �Q4; �Q1g; P1

7 on S7 � f �Q0; �Q4; �Q1; �Q5g

There is always one substencil in smooth region with the appearance

of discontinuity near any one of the interfaces of the target cell. The

method in [30] can be used to obtain P1
j �x; y�, which avoids the

singularity caused by mesh irregularity, and the linear polynomial is

expressed as

P1
j �x� � �Q0 �

X1
jkj�1

aj;kp
k�x� (24)

Note that the choice of the large and substencils is not unique.

B. Define the Values of Linear Weights

P2�x� is written as

P2�x� � d0

�
1

d0
P2�x� −

X8
j�1

dj
d0

P1
j �x�

�
�

X8
j�1

djP
1
j �x� (25)

where the linear weights are chosen as γ0 � 0.92; γj � 0.01;
j � 1; : : : ; 8, according to [27,31].

C. Compute the Nonlinear Weights

The smoothness indicators βj; j � 0; : : : ; 8, are defined as

βj �
Xrj
jαj�1

jΩj�2∕3�jαj−1
ZZZ

Ω
�DαPj�x��2 dV

where α is a multi-index and D is the derivative operator, r0 � 2,
rj � 1; j � 1; : : : ; 8. The smoothness indicators in Taylor series at

�x0; y0� have the order

β0�OfjΩ0j2∕3�1�O�jΩ0j2∕3��g�O�jΩ0j�2∕3�O�h2�;
βj�OfjΩ0j2∕3�1�O�jΩ0j1∕3��g�O�jΩ0j�2∕3�O�h2�; j�1;:::;8

By using a similar technique [31], a global smoothness indicator σ
can be defined:

σ �
�
1

8

X8
1

jβ0 − βjj
�2

� O�jΩ0j2� � O�h6�

then the corresponding nonlinear weights are given by

ωj � dj

�
1� σ

ϵ� βj

�
; j � 0; : : : ; 8;

δj �
ωjP
8
l�0 ωl

� dj �O�h4� (26)

where ϵ takes 10−8 to avoid zero in the denominator.
The final reconstruction polynomial for the approximation ofQ�x�

yields

R�x� � δ0

�
1

d0
P2�x� −

X8
j�1

dj
d0

P1
j �x�

�
�

X8
j�1

δjP
1
j �x� (27)

As a result, the nonlinear reconstruction achieves a third-order accu-

racy R�x� � Q�x� �O�h3�. If any of these values yields negative

density or pressure, the first-order reconstruction is used instead. So

all the desired quantities atGaussian points can be fully determined as

Ql;r
p;k � Rl;r�xp;k�; �Ql;r

xi �p;k �
∂Rl;r

∂xi
�xp;k�

D. Reconstruction of the Equilibrium State

The reconstructions for the nonequilibrium states have the uniform

order and can be used to get the equilibrium state directly, such as

gc; gcxi from a suitable averaging of gl;r; gl;rxi . The simplest way is to

use the arithmetic average, but it is only applicable for smooth flow.

To be consistent with the construction of gc, we make an analogy of

the kinetic-based weighting method for gcxi , which are given by
Fig. 1 The compact stencils of cellΩ0 forHWENO-type reconstruction.
Center: the large stencil. Others: the eight substencils.
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Z
ψgc dΞ � Wc �

Z
u>0

ψgl dΞ�
Z
u<0

ψgr dΞ;Z
ψgcxi dΞ � Wc

xi �
Z
u>0

ψglxi dΞ�
Z
u<0

ψgrxi dΞ (28)

This method has been validated in the noncompact WENO5-GKS
[24]. In thisway, all components of themicroscopic slopes in Eq. (12)
have been fully obtained.
Finally, a summary of the solution procedure is given in Fig. 2.

V. Numerical Tests

In this section, numerical tests will be presented to validate the
compact high-order GKS. For the inviscid flow, the collision time
is defined by

τ � 0

and

τn � εΔt� C

���� pl − pr

pl � pr

����Δt
where ε � 0.01 andC � 1. For the viscous flow, the collision time is
related to the viscosity coefficient,

τ � μ

p

and

τn � μ

p
� C

���� pl − pr

pl � pr

����Δt
where pl and pr denote the pressure on the left and right sides of the
cell interface, μ is the dynamic viscosity coefficient, and p is the
pressure at the cell interface. In smooth flow region, it reduces to
τn � τ � μ∕p. The ratio of specific heats takes γ � 1.4. The inclu-
sion of the pressure jump term is to enlarge the collision time in the
discontinuous region, where the numerical cell size is not enough to
resolve the shock structure. It increases the nonequilibrium transport
mechanism in the flux function to mimic the physical process in the
shock layer.

All reconstructions will be performed on the characteristic varia-
bles. Ghost cells are mainly adopted in the current scheme for
boundary treatment. After obtaining the inner state at the boundary,
a ghost state can be assigned according to boundary condition, and
the corresponding gas distribution function in Eq. (12) can be deter-
mined. A high-order boundary reconstruction is only applied to the
test of subsonic flow passing through a circular cylinder. The time
step is determined by

Δt � CCFLMin

�
Δri

kUik � �as�i
;
�Δri�2
3νi

�

whereCCFL is the CFL number, and kUik, �as�i, and νi � �μ∕ρ�i are
the magnitude of velocities, sound speed, and kinematic viscosity
coefficient for cell i. The Δri is taken as

Δri �
jΩij

MaxjΓipj
The CFL number is set as 0.5 if no specified in the test cases.

A. Accuracy Test

1. Three-Dimensional Sinusoidal Wave Propagation

The advection of density perturbation is tested, and the initial
condition is given as follows:

ρ�x; y; z� � 1� 0.2 sin�π�x� y� z��;
U�x; y; z� � �1; 1; 1�; p�x; y; z� � 1

within a cubic domain �0; 2� × �0; 2� × �0; 2�. In the computation, a

series of uniform meshes with N3 cells are used. With the periodic
boundary condition in all directions, the analytic solution is

ρ�x; y; z; t� � 1� 0.2 sin�π�x� y� z − t��;
U�x; y; z� � �1; 1; 1�; p�x; y; z; t� � 1

The collision time τ � 0 is set since the flow is smooth and inviscid.

The CFL � 0.5 is used for computation. The L1, L2, and L∞ errors
and the corresponding orders with linear and nonlinear Z-type
weights at t � 2 are given in Tables 1 and 2. The expected accuracy
is confirmed.

Yes

No
Smooth flow?

Non-linear 3rd-order
HWENO

reconstruction by Eq.
(27)

Determine the equalibrium state

 by Eq.(28) 

Macroflow variables
Update via two-stage

time discretization

Cell-averaged
conservative 

variables   and
their first-order

derivatives

Linear 3rd-order
reconstruction by Eq.

(22) and (23) 

Gas evolution model

Obtain interface

values ,

Yes

No

Smooth flow?

Determine the time-
accurate distribution

function  by
Eq.(12)

Determine the time-
accurate distribution

function  by
Eq.(15)

The time-accurate fluxes and
conservative variables 

 ,

,

S2O4 in Eq.(18) and (20)

Gauss's theorm 
in Eq.(17)

Determine the non-equalibrium

state , 
 by Eq.(13) and (14) 

Fig. 2 The brief algorithm of the compact GKS.
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TheRiemann-solver-based finite volume schemes with high-order
WENO reconstruction are widely used for compressible flow com-
putations. To compare the efficiency between the Riemann-solver-
based finite volume schemes and the current one, the following
settings are adopted for conventional WENO methods:
1) For the Riemann-solver-based schemes, the noncompact third-

order WENO reconstruction is applied. The reconstruction is per-
formed on a direction-by-direction strategy [36], which is stable and
efficient on structured mesh. The WENO weights are set as close as
the current HWENO reconstruction according to [5,6]. One large
stencil with p2 polynomial and two substencils with p1 polynomials
are adopted. Their linear weights are set as 0.85, 0.075, and 0.075 as
suggested in [5]. The nonlinear weights are chosen as the same
formulation as that in Eq. (26), with the global smooth indica-

tor θ �
�
�1∕2�P2

j�1 jβp2 − βj;p1 j
�
2
.

2) Two representative approximate Riemann solvers are used,
i.e., the Lax–Friedrichs (LF) flux and the HLLC flux. The LF flux
is very efficient but dissipative. TheHLLC fluxmakes a good balance
between the robustness and accuracy [37].
3) Thewidely used three-stage third-order RKmethod with strong

stability property (RK3-SSP) is adopted [38].
4) Both algorithms are developed in the same in-house C++ code.
5) Both linear reconstruction and nonlinearWENO reconstruction

are tested to evaluate the performance of the scheme under smooth

flow and flowwith discontinuities. For linear reconstruction, the gas-
kinetic solver is simplified as that in Eq. (15).
A single core of Intel Xeon E5 2630v4 @2.20 GHz is used for all

simulations. The CPU time and L1 errors are recorded with mesh

number from 53 to 403, as shown in Fig. 3. Under both cases, the

RK3-LF scheme shows the poorest efficiency. The compact GKS

with S2O4 time integration is around 37% faster than theRK3-HLLC

scheme with nonlinear WENO reconstruction on characteristic

variables. The difference becomes even larger when linear recon-

struction is adopted, where the GKS is about 63% faster than the

RK3-HLLC scheme.
Note that even for the current 3-D inviscid flow test, the GKS

always solves the N-S equations. If RK3 Riemann-solver-based
scheme is extended to solve the N-S equations, additional 17–20%
computational cost is needed according to our test.

2. Subsonic Flow Past a Circular Cylinder

This 2-D test has been widely used to test the spatial accuracy of a
high-order scheme with curved wall boundary [39–41]. A circular
cylinder is put in the center of the computational domainwith a radius
of r0 � 0.5. The computational domain is bounded by a concentric
circle with radius rout � 20. Four successively refined meshes with
16 × 4 × 4, 32 × 8 × 4, 64 × 16 × 4, and 128 × 32 × 4 cells are given
according to [39]. Mesh distributions are shown in Fig. 4. The

Table 1 Accuracy test for the 3-D sine-wave propagation by the linear third-order compact
reconstruction (CFL � 0.5)

Mesh number L1 error Order L2 error Order L∞ error Order

53 8.591164e-02 —— 9.529661e-02 —— 1.327066e-01 ——

103 2.201313e-02 1.96 2.442492e-02 1.96 3.422233e-02 1.96

203 3.084179e-03 2.84 3.432916e-03 2.83 5.054260e-03 2.76

403 3.949479e-04 2.97 4.378248e-04 2.97 6.582257e-04 2.94

803 4.954332e-05 2.99 5.490190e-05 3.00 8.289161e-05 2.99

Table 2 Accuracy test for the 3-D sine-wave propagation by the nonlinear third-order compactHWENO
reconstruction with d0 � 0.92, di � 0.01, i � 1;: : : ;8 (CFL � 0.5)

Mesh number L1 error Order L2 error Order L∞ error Order

53 8.428434e-02 — — 9.425905e-02 —— 1.299919e-01 ——

103 2.532893e-02 1.73 2.806704e-02 1.75 4.319655e-02 1.59

203 3.113958e-03 3.02 3.595147e-03 2.96 6.419271e-03 2.75

403 3.949729e-04 2.98 4.378852e-04 3.04 6.576984e-04 3.29

803 4.954332e-05 2.99 5.490190e-05 3.00 8.289162e-05 2.99

CPU time

L
1  e

rr
o

r

100 101 102 103

10-3

10-2

10-1
RK3-LF
RK3-HLLC
S2O4-GKS

CPU time

L
1  e

rr
o

r

100 101 102 103

10-3

10-2

10-1
RK3-LF
RK3-HLLC
S2O4-GKS

Fig. 3 CPU time (in seconds) vsL1 errors. Left: linear reconstruction based on conservative variables is adopted. Right: nonlinear reconstruction based
on characteristic variables is adopted.
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reflective boundary condition is imposed on the wall of the cylinder.

The far-field boundary at the outside of the domain has a freestream

condition

�ρ; U; V;W; p�∞ �
�
1; 0.38; 0; 0;

1

γ

�

with γ � 1.4. The periodic boundary condition is given in the Z
direction. It describes a subsonic inviscid flow at Ma∞ � 0.38
passing through a cylinder. Ideally, the flow is isentropic with

S�x; y; t� � S∞

Thus, an entropy error, defined by

ϵs �
S − S∞
S∞

� p

p∞

�
ρ∞
ρ

�
γ

− 1

is used for measuring the error of the numerical solution. The

simulation is initialized with the freestream condition. The error is

recordedwhen the flow gets to a steady state. To achieve a third-order

accuracy on the cylindrical wall, a one-side compact stencil with six

cells, 0; 1; : : : ; 5, is used to reconstruct a smooth polynomial within a

boundary cell 0. This stencil includes 21 data:
1) Cell averages �W for cell 0, 1, 2, 3, 4, 5
2) Cell averages of the x-direction partial derivative �Wx for cell 0,

1, 2, 3, 4, 5
3) Cell averages of the y-direction partial derivative �Wy for cell 0,

1, 2, 3, 4, 5
4)Cell averages of the z-direction partial derivative �Wz for cell 0, 1,

2, 3, 4, 5
A quadratic polynomial can be determined in a least-squares sense.

Moreover, the normal direction at Gaussian point on the boundary is

adjusted as that proposed in [39]. A third-order convergence rate is

achieved through the above treatments, as shown in Table 3. The

numerical result with low-order boundary reconstruction has a more

visible wake than that with the high-order one, as shown in Fig. 5,

where 20 equidistant Mach contours from 0.038 to 0.76 are plotted.

X

Y

Z

x

y

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4 The mesh sample with 128 × 32 × 4 cells for inviscid flow passing through a 3-D circular cylinder.

Table 3 Accuracy test for subsonic flow passing through a
circular cylinder

Second order Third order

Mesh number L2 error Order L2 error Order

64 × 16 1.15e-03 — — 1.40e-4 ——

128 × 32 5.02e-5 4.51 1.01e-5 3.79

256 × 64 8.75e-6 2.52 1.19e-6 3.21

The curved boundary treatment is applied in both cases.

x

y

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

y

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 5 Subsonic flow passing through a circular cylinder. Mesh 128 × 32 × 4. Left: the second-order boundary reconstruction. Right: the third-order
compact boundary reconstruction. The curved boundary treatment is applied in both cases.
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B. Subsonic Viscous Flow Passing Through a Sphere at Re � 118

This case is used to test the capability of the proposed method in

resolving low-speed viscous flow. The Reynolds number based on

the diameter of the sphere is 118. In such case, the drag coefficient

CD � 1 according to the experimental work [42].
The far-field boundary condition is set around the outside of the

domain, which has a freestream condition

�ρ; U; V;W; p�∞ �
�
1; 0.2535; 0; 0;

1

γ

�

with γ � 1.4 and Ma∞ � 0.2535. The nonslip adiabatic boundary

condition is imposed on the surface of the sphere. The structured

grids with six blocks are used in the computation, as shown in Fig. 6.

The diameter of the sphere isD � 1 and the grid size of the first cell

above thewall is 2.45 × 10−2D. The height of the grid grows from the

wall with a constant ratio and stop at 20D in the radial direction. The

shape of the steady separation bubble agrees well with each other.

Table 4 shows the drag coefficientCD, the separation angle θ, and the
closed wake length L from the experiments and other computations.

The drag coefficient is defined as

Cd � FD

�1∕2�ρ∞U2
∞S

where S � �1∕4�πD2. The definition of θ and L is given in Fig. 7.

With similar degree of freedoms, the current compact GKS has the

closest drag coefficient to the experiment data. Thewake length has a

visible difference from the experiment, but gets very close to DG’s

result [43]. The computational streamlines are compared with the

experimental 4 streamlines [42] in Fig. 8.

Fig. 6 The mesh for viscous flow passing through a sphere with 32 × 32 × 32 × 6 cells.

Table 4 Comparisons among different schemes for the flow
passing through a sphere

Scheme Degree of freedom Cd θ L

Experiment [42] —— 1.0 151 1.07
Current 786,432 1.009 125.1 0.95
Implicit third-order
DDG [43]

1,608,680 1.016 123.7 0.96

Implicit fourth-order
VFV [44]

458,915 1.014 —— ——

Implicit third-order
AMR-VFV [45]

621,440 1.016 —— ——

Fourth-order FR [46] —— — — 123.6 1.04

DDG = direct DG, VFV = variational-reconstruction finite volume method, and

AMR = adaptive mesh refinement.

Fig. 7 The definition of the separation angle θ and the closed wake
length L.

Fig. 8 Comparison of streamlines between the experiment and compu-
tation. Reprinted in part with permission from [42]. © (1956) The Physi-
cal Society of Japan.
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C. Taylor–Green Vortex

The implicit large-eddy simulation (ILES) of a 3-D Taylor–Green
vortex [47] is conducted to validate the new compact GKS for nearly
incompressible viscous flow. The initial condition can be found in
[24]. The specific heat ratio γ � 1.4 and the Prandtl number is
Pr � 1. Two Reynolds numbers Re � 280 and 1600 are studied
here. The linear weights of reconstruction and the smooth flux
function in Eq. (15) are adopted in this case. The equilibrium state
is obtained by the arithmetic average of the nonequilibrium states to
further reduce the numerical dissipations. The CFL is set as 0.3. Two
time dependent variables are investigated in the current study. The
first one is the volume-averaged kinetic energy

Ek �
1

ρ0Ω

Z
Ω

1

2
ρU ⋅ U dΩ

whereΩ is the volume of the computational domain. The second one
is the dissipation rate of the kinetic energy

εk � −
dEk

dt

which is obtained through a second-order interpolation from the data
Ek�ti�; ti ∈ �0; tstop�,

εk�ti� � −
Ek�ti�1� − Ek�ti−1�

ti�1 − ti−1

The numerical results are compared with the reference direct
numerical simulation data in [47] and the noncompact fifth-order

GKS [24]. The isosurfaces ofQ criterion colored byMach number at

t � 5 and 10 for Re � 1600 case are shown in Fig. 9. With the time

increment, the vortex structures become denser and smaller. The case

with high Reynolds number has a rich flow structures, which requires

high-resolution computation.
For Re � 280, the quantitative result agrees with the reference

data under a coarse mesh 963, as shown in Fig. 10. The new third-

order compact GKS even shows better accuracy than the traditional

fifth-orderGKSwith the samemesh points, as shown in Fig. 10c. The

time history of the normalized volume-averaged kinetic energy and

dissipation rate under Re � 1600 with 1283 and 1963 mesh points

are presented in Fig. 11. The zoom-in plots are given in Fig. 12.

Compact GKS is able to capture the complicated vortex structure as

the noncompact one under the same mesh.
The computational cost on a single core of Intel Xeon E5 2630v4

@2.20 GHz is compared for the current compact GKS on a domain

with 1283 mesh points. For the update of a single time step, the

noncompact fifth-order GKS uses 113.93 s, whereas the compact

GKS uses 106.6 s.

D. Three-Dimensional Explosion Test

As an extension of the Sod problem, the spherical explosion test is

considered. The initial condition is given by

�ρ; U; V;W; p� �
( �1; 0; 0; 0; 1�; 0 < r < 0.5;

�0.125; 0; 0; 0; 0.1�; 0.5 ≤ r < 1

Fig. 9 Taylor–Green vortex: the isosurfaces ofQ criterion colored by Mach number at time t � 5 and 10 forRe � 1600. Cell number = 1963. The x–y
plane is shown.
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Fig. 10 Taylor–Green vortex: Re � 280. The time history of kinetic energy and its dissipation rate.
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where r �
																															
�x2 � y2 � z2�

p
. The solution contains a spherical

shock wave and a contact surface traveling away from the center
and a spherical rarefaction wave moving toward the origin �0; 0; 0�.
To save the computational cost, the computation is on a domain
�x; y; z� ∈ �0; 1� × �0; 1� × �0; 1� covered by a uniform mesh dx �
dy � dz � 1∕100. The symmetric boundary conditions are imposed
on the planes x � 0, y � 0, and z � 0, whereas the outflow boun-
dary conditions are imposed on the planes x � 1, y � 1, z � 1.
The density and pressure profiles along different radial directions
at t � 0.25 are given in Fig. 13. The compact GKS resolves thewave

profiles crisply. Slightly overshoot can be observed at the front of the

rarefaction wave.

E. High-Speed Flow Passing Through a Sphere

Tovalidate the robustness of the current schemewith non-coplanar

meshes, high-speed flow pasting through a sphere is tested. The

structured grids with six blocks are used in the computation. A mesh

sample is shown in Fig. 14. The diameter of the sphere isD � 1. Both
inviscid and viscous flows are tested with a CFL � 0.5.
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Fig. 11 Taylor–Green vortex: Re � 1600. The time history of kinetic energy and its dissipation rate.
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Fig. 12 Taylor–Green vortex: Re � 1600. The local enlargement of the time history of kinetic energy dissipation rate.

r

d
en

si
ty

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1 Ref
y=0,z=0
x=0,z=0
x=0,y=0

Ref
y=0,z=0
x=0,z=0
x=0,y=0

r

p
re

ss
u

re

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Fig. 13 Three-dimensional explosion problem with 1003 cells. Left and middle: the density and pressure profiles extracted along the lines of (y � 0,
z � 0), (x � 0, z � 0), and (x � 0, y � 0). Right: 3-D view of pressure distribution.
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For the inviscid case, the slip boundary condition is imposed on the

surface of the sphere. The first grid off the wall is 1 × 10−2D. The

outer domain is around 3.75D in the radial direction. The total cell

number is 32 × 32 × 50 × 6 � 307;200. The supersonic inlet/outlet
is adopted on the outside boundary, which is set according to the

angle between the outer-pointing normal vector of each boundary

interface and the incoming velocity. A supersonic flow withMa � 3
is tested first. The simulation starts with the freestreaming flow

condition. The pressure and Mach distributions at steady state are

shown in Fig. 15. The maximumMach number in the whole domain

Fig. 14 The mesh for supersonic viscous flow passing through a sphere with 16 × 16 × 32 × 6 cells.

Fig. 15 The pressure andMach distributions of the supersonic inviscid flow passing through a sphere atMa � 3. Left: x–y and x–z planes. Right: y–z
plane. The sphere is colored by the temperature.
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is about 5.5. Then, hypersonic flowwithMa � 5 is tested. A primary

flowfield calculated by the first-order kinetic method [33] is used as

the initial field. The numerical results are shown in Fig. 16. The

maximum Mach number MaMax ≈ 7.3 is observed in the whole

domain. The shock is captured sharply and the carbuncle phenome-

non does not appear in both cases. The result is essentially axis-

symmetric. The asymmetric pattern can be observed at the leeward

side of the sphere. A nearly vacuum state forms in this region and the

Fig. 16 The pressure andMach distributions of the hypersonic inviscid flow passing through a sphere atMa � 5. Left: x–y and x–z planes. Right: y–z
plane. The sphere is colored by the temperature.

Fig. 17 Supersonic viscous flowpassing througha spherewithMa � 1.5 andRe � 300. Left: theMachdistributions for thex–zplanes.The streamline is
colored by temperature. Right: the pressure and Mach distributions for the x–y and x–z planes. The sphere is colored by pressure.
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HWENO reconstruction will easily give a negative density or pres-
sure and then reduce to a low-order reconstruction.
For the viscous case, the nonslip adiabatic boundary condition is

imposed on the surface of the sphere. The Reynolds number is set as
300 based on the diameterD. The Prandtl number isPr � 1. The first

grid off the wall is 4.8 × 10−2D with a cell Reynolds number ≈14.
The outer domain is around 10D in the radial direction. The total cell
number is 16 × 16 × 32 × 6 � 49; 152. Two Mach numbers, Ma �
1.5 and Ma � 2, are tested. The numerical results are shown in
Figs. 17 and 18, respectively. Quantitatively comparisons with the
reference results given by Nagata et al. [48] on a very fine mesh are
listed in Table 5. The Cd, θ, and L have the same definition as the
subsonic case. The drag coefficients agree nicely with the reference
data, even with a much coarse grid.

F. Compressible Isentropic Turbulence

A decaying homogeneous isotropic compressible turbulence is
computed within a square box defined as −π ≤ x; y; z ≤ π, and the
periodic boundary conditions are used in all directions [49]. A fixed
Reλ � 72 is investigated in the current work. The random initial

flowfield is determined according to [50].WhenMat � 0.5, the flow
is initially transonic, the maximum Mach number in the flowfield is

about three times of the initial turbulent Mach number. The smooth

GKS solver (15) and the WENO-AO reconstruction with linear

weights can be used under such mild case to achieve a high reso-

lution. Uniform meshes with 643 and 1283 cells are used in the

simulations. Initially the cell-averaged slopes are constructed auto-

matically by setting the first explicit time step Δt1 � 0. The kinetic
energy, root-mean-square of density fluctuation, and the skew factor

are calculated by

K�t� � 1

2
≪ ρU ⋅ U ≫;

ρrms�t� �
																													
≪ �ρ − �ρ�2 ≫

q
;

Su�t� �
X
i

≪ �∂iui�3 ≫
≪ �∂iui�2 ≫3∕2

Since the cell-averaged �Wxi is stored in each cell, the ∂iui can be

calculated conveniently through the chain rule. The time history of

normalized kinetic energy K�t�∕K0 and normalized root-mean-

square of density fluctuation ρrms�t�∕Ma2t agree well with the refer-
ence data and the traditionalWENO-GKSwith 643 cells, as shown in
Figs. 19 and 20. For the higher-order moment, the skew factor needs

finer meshes to be resolved, as shown in Fig. 21. The CPU times

with 1283 mesh points on a single core of Intel Xeon E5 2630v4

@2.20 GHz are the following. In each step, the noncompact fifth-

order GKS uses 124.9 s, whereas the compact GKS uses 110.6 s.

Fig. 18 Supersonic viscous flow passing through a sphere withMa � 2 andRe � 300. Left: theMach distributions for the x–z planes. The streamline is

colored by temperature. Right: the pressure and Mach distributions for the x–y and x–z planes. The sphere is colored by pressure.

Table 5 Quantitative comparisons with the reference data for the
supersonic viscous flow past a sphere

Scheme Ma Cell number Cd θ L

Sixth-order WENO [48] 1.5 909,072 1.370 137.2 0.96
Current 1.5 49,152 1.371 139.4 0.92
Sixth-order WENO [48] 2 909,072 1.386 150.9 0.38
Current 2 49,152 1.345 149.5 0.5
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Fig. 19 Compressible isotropic turbulence: K�t�∕K0. Reλ � 72,Mat � 0.5.
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When theMach number gets higher, the flow becomes supersonic,
and the stronger shocklets are generated, followed by complex
shock–vortex interactions. It is nontrivial for high-order methods to
survive under Mat ≥ 1. In addition, it becomes more challenging
under a coarsemesh, since the discontinuities become stronger due to
the limitation of themesh resolution. Thus, a series of turbulentMach
numbers have been chosen to test the robustness of the current

scheme with the mesh 643. In the computation, the full GKS solver
in Eq. (12) and the nonlinear HWENO reconstruction are used.

Considering the large velocity jump in the initial field, a modified τ
is taken as

τ � μ

p
�

X5
1

δQΔt

where Q means all five primitive variables with
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Fig. 20 Compressible isotropic turbulence: ρrms�t�∕Ma2
t . Reλ � 72,Mat � 0.5.
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Fig. 21 Compressible isotropic turbulence: Su�t�. Reλ � 72,Mat � 0.5.
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Fig. 22 Compressible isotropic turbulence: comparison with differentMat numbers by the new compact GKS. Mesh: 643. CFL � 0.5.
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δQ � jQl −Qrj
jQlj � jQrj � 1e−10

The statistical quantities with respect to different Mach numbers
are presented in Fig. 22. With the increase ofMat, the kinetic energy
gets dissipated more rapidly. The visualized results, i.e., the isosur-
faces ofQ criterion colored byMach number and the selected surface
slice of Mach number distribution at z � −π, are plotted in Fig. 23.
The complex vortices and widespread shocklets can be observed
clearly.

VI. Conclusions

In this paper, a compact high-order gas-kinetic scheme for 3-D
flow simulation is presented. The distinguishable feature of the
scheme is that the high-order GKS evolution model at a cell interface
provides not only the fluxes, but also the time-accurate flow varia-
bles. As a result, based on the cell interface values the first-order
spatial derivatives of flowvariables inside each control volume can be
directly obtained through Gauss’s theorem at the next time level. The
slope update in the current scheme is different from the compact DG-
typemethod, where theweak formulation is used directly for the time
evolution of the corresponding degrees of freedom. Consequently,
the compact GKS can use a large CFL time step and the scheme is
robust in capturing discontinuous solutions without identifying the
trouble cells explicitly. To compute the flowwith shocks and vortices
on nonuniform mesh, a new HWENO reconstruction with less
substencils and all positive weights has been designed for the
initial data reconstruction in the scheme. At the same time, the
two-stage time discretization is used as a time-marching strategy in
the scheme, which subsequently leads to a high efficiency in com-
parison with the traditional RK method for the same temporal accu-
racy. The compact third-order GKS in 3-D shows similar resolution
as the fifth-order gas-kinetic scheme with the noncompact WENO
reconstruction. Overall, the time-accurate evolution model, the
HWENO reconstruction, and the two-stage time marching technique
make the final scheme accurate, robust, and efficient for the com-
pressible flow simulations with smooth and discontinuous solutions.
Although the current scheme is constructed on structuredmesh, it can
be directly extended to unstructured one. The compact third-order
and fourth-order HGKS on 3-D unstructured mesh is on the develop-
ment, which further enlarges the applicable regime of the high-order
gas-kinetic schemes for flow computation with complex geometry.

The development of high-order compact GKSwith implicit and other
acceleration techniques is on the investigation as well for the steady-
state solution.
At the end, the similarities and differences of the current compact

GKS and the popular DG∕rDG∕PNPM methods are summarized as
follows:
1) Spatial discretization: The current compact GKS has the same

reconstruction stencil as the rDG-P1P2 method [13]. In each cell, the
flow variables and their slopes are stored for reconstruction. Thus, the
current scheme has the same compactness as the third-order rDG-
P1P2 scheme, but with different reconstructions.
2) Solvers: High-order moments are evolved based on the weak

solutions in DG and rDG methods. The corresponding volume
integrals are needed to be calculated numerically. The time-indepen-
dent approximate solvers, such as L-F solver, are used to evaluate the
flux at quadrature points. The time step is restricted. For example, the
CFL number of the third-order DG is around 0.2 and the CFL number
of the rDG-P1P2 scheme is around 0.33. However, the cell averaged
slopes for the compact GKS are more or less based on the strong
solution which is obtained by the time-accurate flow variables at the
Gaussian points via the Gauss’s theorem analytically. Both the
conservative variables and fluxes at cell interfaces are evaluated from
the same gas distribution function in Eq. (12) by Eqs. (5) and (6). The
volume integral for the slope update is not required in the current
method. The compact GKS can use a relatively large CFL number
around 0.5 in the computations.
3) Temporal discretization: The traditional rDG-P1P2 uses the

three-stage third-order RK method for temporal discretization [13].
The current compact GKS adopts the S2O4 time discretization,
which can provide a temporal accuracy up to fourth order with only
two stages. However, the time-dependent gas-kinetic flux is more
time-consuming. The two-stage fourth-order building block can also
be adopted into the DG or CPR framework, and significant efficiency
improvement has been reported [51,52].
4) Program feasibility: The current algorithm could be easily

developed from a second-order finite volume code, which has the
same advantages as the rDG/PnPm methods [12,13].
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Fig. 23 Compressible homogeneous turbulence with Mat � 1 at t∕τ0 � 1. Left: isosurfaces of Q criterion. Right: Mach number distribution with

z � −π. Mesh: 643.
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