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c© 2001 Birkhäuser Verlag, Basel

Zeitschrift für angewandte
Mathematik und Physik ZAMP

Entropy analysis of kinetic flux vector splitting schemes
for the compressible Euler equations

Shiu Hong Lui and Kun Xu

Abstract. Flux Vector Splitting (FVS) scheme is one group of approximate Riemann solvers
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1. Introduction

There are many numerical approaches to the solution of the Euler equations. Go-
dunov and Boltzmann schemes are two of them [4]. Broadly speaking, Godunov
scheme is based on the Riemann solution in the gas evolution stage, and the Boltz-
mann scheme uses the microscopic particle distribution function as the basis to
construct the fluxes. While the construction methodology is different between
the Godunov and kinetic schemes, both first order schemes can be written in the
framework of the 3−point conservative methods.

There are mainly two kinds of gas-kinetic schemes, and the differences are in
the governing equations of the gas evolution stage. One of the well-known kinetic
schemes is called KFVS which is based on the collisionless Boltzmann equation
[9, 10], and the other is based on the collisional BGK model [15]. By combining
the dynamical effects from the gas evolution stage and projection stage, the real
governing equation for both KFVS and BGK schemes are physically the same
except the particle collision time τ in the BGK scheme is replaced by the CFL
time step ∆t in the KFVS scheme [14].

The previous paper [11] analyzed the positivity property, such as positive densi-
ty and pressure, for the gas-kinetic scheme. In this sequel, we analyze the entropy
condition for the first order KFVS scheme.
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2. Preliminaries

We consider the one dimensional Euler equations of gas dynamics:
ρt +mx = 0,
mt + (mU + p)x = 0,
Et + (EU + pU)x = 0,

(2.1)

where ρ is the density, U the velocity, m = ρU the momentum, E = 1
2ρU

2 + ρe
the energy per unit mass, e the internal energy density, p the pressure. We assume
that the gas is a γ-law gas, i.e., p = (γ− 1)ρe. In order to obtain the approximate
solution for the above equations, the gas-kinetic scheme solves the Boltzmann
equation in the gas evolution stage.

The Boltzmann equation in the 1-D case is [6]

ft + ufx = Q(f, f),

where f is the gas-distribution function, u the particle velocity, and Q(f, f) the
collision term. The collision term is an integral function which accounts for the
binary collisions. In most cases, the collision term can be simplified and the BGK
model is the most successful one [1],

Q(f, f) = (g − f)/τ,

where g is the equilibrium state and τ the collision time. For the Euler equations,
the equilibrium state g is a Maxwellian,

g = ρ

(
λ

π

)K+1
2

e−λ((u−U)2+ξ2), (2.2)

where ξ is a K dimensional vector which accounts for the internal degrees of
freedom, such as molecular rotation and vibrations, and ξ2 = ξ2

1 + ξ2
2 + ... + ξ2

K .
Note that K is related to the specific heat ratio γ,

K = (3− γ)/(γ − 1).

Monotonic gas has γ = 5/3, and diatomic gas has γ = 1.4. The lower limit of γ
is 1, which corresponds to an infinite number of internal degrees of freedom. For
example, γ = 103/101 is equivalent to K = 100, which gives 98 internal degrees
of freedom for the molecule. In the equilibrium state, λ is related to the gas
temperature T

λ =
m

2kT
,

where m is the molecular mass and k the Boltzmann constant.
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The connection between the distribution function f and macroscopic flow vari-
ables is

(ρ,m,E)T =
∫
ψαfdudξ,

where dξ = dξ1dξ2...dξK and

ψα = (1, u,
1
2

(u2 + ξ2))T

are the moments of density ρ, momentum m and total energy E. The fluxes for
the corresponding macroscopic variables are

(Fρ, Fm, FE)T =
∫
uψαfdudξ. (2.3)

The conservation principle for mass, momentum and energy during the course of
particle collisions requires Q(f, f) to satisfy the compatibility condition∫

Q(f, f)ψαdudξ = 0, α = 1, 2, 3.

In the 1-D case, the entropy condition for the Boltzmann equation is

∂H

∂t
+
∂G

∂x
≤ 0,

where the entropy density is

H =
∫
f ln fdudξ

and the corresponding entropy flux is

G =
∫
uf ln fdudξ.

The first-order numerical conservative scheme can be written as

Wn+1
j = Wn

j + σ(Fnj−1/2 − Fnj+1/2),

where Wj = (ρj ,mj , Ej)T are the cell averaged conservative quantities, Fnj+1/2
are the corresponding fluxes across the cell interface, and σ = ∆t/∆x. For the
1st-order gas-kinetic scheme, the numerical fluxes across a cell interface depend on
the gas distribution function fnj+1/2 via (2.3). The discretized entropy condition
for the above 3-point method is

Hn+1
j ≤ Hn

j + σ(Gnj−1/2 −Gnj+1/2), (2.4)
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where Hj =
∫
fj ln fjdudξ is the cell averaged entropy density and Gj+1/2 =∫

ufj+1/2 ln fj+1/2dudξ is the entropy flux across a cell interface. In this paper,
we prove the above inequality for the KFVS scheme. Since the KFVS scheme
assumes an equilibrium distribution inside cell j at the beginning of each time
step, Hn

j becomes

Hn
j =

∫
gnj ln gnj dudξ

= ρnj ln ρnj + ρnj
K + 1

2
(ln

λnj
π
− 1).

(with the equilibrium distribution in Eq.(2.2)) (2.5)

Since at the beginning of each time step, the gases in the cells j − 1, j, and j + 1
are basically distinguishable due to the numerical mesh effect, the updated flow
variablesWn+1

j inside cell j at time step n+1 are composed of three distinguishable
species from cells j−1, j, and j+1. For the mixture of particles, the total entropy
density Hn+1

j is defined as

Hn+1
j =

3∑
s=1

∫
gs ln gsdusdξs,

which is the addition of the entropy of individual species [12].
It is very difficult to get a rigorous proof of the discretized entropy condition

(2.4) for the nonlinear hyperbolic system. The difficulty is mostly in the interaction
between numerical gas from different cells. The update of the entropy in each cell
is a complicated function of all flow variables including those from the surrounding
cells. Since the entropy condition only tells us the possible direction for a system
to evolve, it does not point out exactly which way to go. So, in order to analyze
the entropy condition for the discretized scheme, we design a “physical path” for
the gas system to evolve. With the same initial and final conditions for the mass,
momentum and energy inside each cell, the proof of the entropy condition becomes
the proofs of the entropy-satisfying solution in each section of the physical path.
Fortunately, for the KFVS scheme, we can design such a physical process. To
show (2.4), we have to use results in statistical mechanics about the definition of
entropy for distinguishable and indistinguishable particles.

3. KFVS Scheme

In this section we consider the kinetic flux-splitting scheme (i.e. collisionless
scheme) proposed by Pullin [10] and Deshpande [2]. The scheme uses the fact
that the Euler equations (2.1) are the moments of the Boltzmann equation when
the velocity distribution function is Maxwellian. As numerically analyzed in [7],
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the flux function of the KFVS scheme is almost identical to the FVS flux of van
Leer [13]. In Section 3.1 we briefly recall the collisionless scheme. In Section 3.2
we prove the entropy condition for KFVS under the standard CFL condition. The
positivity of the KFVS scheme has been analyzed in [3, 9, 11].

3.1. Numerical scheme

In order to derive the collisionless Boltzmann scheme, we need to construct the
numerical fluxes across each cell interface. We suppose that the initial data
(ρ(x),m(x), E(x)) are piecewise constant over the cells Cj = [xj−1/2, xj+1/2]. At
each time level, once ρj ,mj and Ej are given, the corresponding Uj and λj can be
obtained by the following formulae:

m = ρU, E =
1
2
ρU2 +

K + 1
4λ

ρ. (3.1)

Let

gj = ρj

(
λj
π

)K+1
2

e−λj((u−Uj)
2+ξ2) (3.2)

be a Maxwellian distribution in the cell Cj . The corresponding distribution func-
tion at the cell interface is defined by

f(xj+1/2, t, u, ξ) =
{
gj , if u > 0
gj+1, if u < 0.

(3.3)

Using the formulae (2.3), we obtain the numerical fluxes

 Fρ,j+1/2
Fm,j+1/2
FE,j+1/2

 = ρj


Uj
2 erfc(−

√
λjUj) + 1

2
e
−λjU2

j√
πλj(

U2
j

2 + 1
4λj

)
erfc(−

√
λjUj) + Uj

2
e
−λjU2

j√
πλj(

U3
j

4 + K+3
8λj Uj

)
erfc(−

√
λjUj) +

(
U2
j

4 + K+2
8λj

)
e
−λjU2

j√
πλj


(3.4)

+ρj+1


Uj+1

2 erfc(
√
λj+1Uj+1)− 1

2
e
−λj+1U

2
j+1√

πλj+1(
U2
j+1
2 + 1

4λj+1

)
erfc(

√
λj+1Uj+1)− Uj+1

2
e
−λj+1U

2
j+1√

πλj+1(
U3
j+1
4 + K+3

8λj+1
Uj+1

)
erfc(

√
λj+1Uj+1)−

(
U2
j+1
4 + K+2

8λj+1

)
e
−λj+1U

2
j+1√

πλj+1

 ,

where the complementary error function, which is a special case of the incomplete
gamma function, is defined by

erfc(x) =
2√
π

∫ ∞
x

e−t
2
dt.
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Using the above numerical fluxes, we are able to update ρj ,mj , Ej with the stan-
dard conservative formulations: ρ̃j

m̃j

Ẽj

 =

 ρj
mj

Ej

+ σ

 Fρ,j−1/2 − Fρ,j+1/2
Fm,j−1/2 − Fm,j+1/2
FE,j−1/2 − FE,j+1/2

 , (3.5)

where W̃j = Wn+1
j . The scheme can be viewed as consisting of the following three

steps (although it is not typically implemented this way):

ALGORITHM (KFVS Approach)
1. Given data {ρnj , Unj , Enj }, compute {λnj } using (3.1).
2. Compute the numerical flux {Fρ,j+1/2, Fm,j+1/2, FE,j+1/2} using (3.4).
3. Update {ρnj ,mn

j , E
n
j } using (3.5). This gives {ρn+1

j ,mn+1
j , En+1

j }.

3.2. Entropy analysis

The analysis of entropy condition for the KFVS scheme has attracted some at-
tention in the past years. In [2], Deshpande stated the entropy condition in the
smooth flow regions. In [5], Khobalatte and Perthame gave a proof of the maxi-
mum principle entropy condition for a gas kinetic scheme with a specific equilib-
rium distribution and a piecewise constant entropy function. In [8], an entropy
inequality is introduced for a special distribution function. In this section, for the
first time, we show that at the discretized level, the KFVS scheme satisfies the
entropy condition with the exact equilibrium Maxwellian distribution.

With the same initial and final mass, momentum and energy densities in
Eq.(3.5), we can design a physical path for the flow updating process. The proof
of the entropy condition is based on the entropy-satisfying solution in each section
of the evolving path.

In the first step, we consider the case when there is only gas flowing out from
cell Cj . This gives

W ∗ =

 ρ∗j
m∗j
E∗j

 =

 ρj
mj

Ej

+σ


∫
u<0 ugjdudξ −

∫
u>0 ugjdudξ∫

u<0 u
2gjdudξ −

∫
u>0 u

2gjdudξ∫
u<0

u
2 (u2 + ξ2)gjdudξ −

∫
u>0

u
2 (u2 + ξ2)gjdudξ

 .

(3.6)
The second step is to consider the inflow from adjacent cell Cj−1,

Ŵ =

 ρ̂j
m̂j

Êj

 = σ


∫
u>0 ugj−1dudξ∫
u>0 u

2gj−1dudξ∫
u>0

u
2 (u2 + ξ2)gj−1dudξ

 . (3.7)

In the third step, the inflow from adjacent cell Cj+1 is considered,

W̄ =

 ρ̄j
m̄j

Ēj

 = σ

 −
∫
u<0 ugj+1dudξ

−
∫
u<0 u

2gj+1dudξ

−
∫
u<0

u
2 (u2 + ξ2)gj+1dudξ

 . (3.8)
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The fourth step is to include particle collisions to let W ∗, Ŵ and W̄ in the
above equations to exchange momentum and energy inside cell j and to form
the individual equilibrium states W ∗′, Ŵ ′ and W̄ ′ with a common velocity and
temperature,

W̃ =

 ρ̃j
m̃j

Ẽj

 =

 ρ∗j
m∗j
E∗j

+

 ρ̂j
m̂j

Êj

+

 ρ̄j
m̄j

Ēj


=

 ρ∗j
m∗j
′

E∗j
′

+

 ρ̂j
m̂′j
Ê′j

+

 ρ̄j
m̄′j
Ē′j

 . (3.9)

During the above collisional phase, the individual mass, total momentum and
total energy are unchanged. It can be verified that (ρ̃j , m̃j , Ẽj) obtained by (3.9)
are exactly the same as those obtained by using (3.5). In terms of updating
conservative variables, the above four stages form the complete KFVS scheme.
The entropy density Hn+1

j at time n+ 1 inside cell Cj is the sum of the individual
entropy of different species.

Suppose that the CFL condition

σ ≤ 1
maxj (|Uj|+ cj)

(3.10)

is satisfied, where cj =
√
γ/2λj is the local speed of sound. It has been shown

in [11] that the positivity conditions are precisely satisfied for the flow variables
ρ∗j ≥ 0 and ρ∗jE

∗
j − 1

2 (m∗j )
2 ≥ 0, as well as ρ̃j ≥ 0 and ρ̃jẼj − 1

2(m̃j)2 ≥ 0.
In the following, we prove that the discretized entropy condition is satisfied in

the above four physical processes. As a result, the whole numerical path in the
flow updating scheme satisfies the entropy condition (2.4).

Lemma 3.1. Assume that the CFL condition is satisfied. If ρj ≥ 0 and ρjEj ≥
1
2m

2
j , then the entropy condition is satisfied in the updating process for (ρ∗j ,m

∗
j , E

∗
j ).

Proof. We need to show that∫ ∞
−∞

g∗j ln g∗j dudξ ≤
∫ ∞
∞

gj ln gjdudξ+σ
[∫

u<0
ugj ln gjdudξ −

∫
u>0

ugj ln gjdudξ
]
.

(3.11)
We use the following relations to express the ∗ states in terms of the j states.

ρ∗j = ρj − σρj
{

1
2
Ujαj + βj

}
,

m∗j = mj − σρj

{(
U2
j

2
+

1
4λj

)
αj + Ujβj

}
,

E∗j = Ej − σρj

{(
U3
j

4
+
K + 3

8λj
Uj

)
αj +

(
U2
j

2
+
K + 2

4λj

)
βj

}
,
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where

αj = erfc
(
−
√
λjUj

)
− erfc

(√
λjUj

)
; βj =

e−λjU
2
j√

πλj
. (3.12)

The equilibrium state g∗j has an Maxwellian distribution which corresponds to the
macroscopic densities (ρ∗j ,m

∗
j , E

∗
j ).

After some long but straightforward algebra,∫ ∞
−∞

g∗j ln g∗j dudξ −
∫ ∞
−∞

gj ln gjdudξ

− σ
[∫

u<0
ugj ln gjdudξ −

∫
u>0

ugj ln gjdudξ
]

= ρjF,

where

F =
{(

1− σ

2
(Ujαj + 2βj)

)
(

(K + 2) ln
(

1− σ

2
(Ujαj + 2βj)

)
− K + 1

2
lnh1

)
− σ

2
βj

}
,

h1 = 1− σλj
K + 1

(Ujαj + 2βj)
(
U2
j +

K + 1
2λj

)
− σλj
K + 1

(
1− σ

2
(Ujαj + 2βj)

)
{(

U2
j +

K + 3
2λj

)
Ujαj +

(
2U2

j +
K + 2
λj

)
βj

}
+

2σλj
K + 1

{(
U2
j +

1
2λj

)
αjUj + 2U2

j βj

}

− 2σ2λj
K + 1

{(
U2
j

2
+

1
4λj

)
αj + Ujβj

}2

.

The goal is to show that F ≤ 0 for all positive σ up to the CFL limit. We
can reduce the number of parameters by one by introducing the non-dimensional
number z =

√
λjUj which is equivalent to the local Mach number in cell j. We

also replace the parameter σ by c ∈ (0, 1] (CFL number) which is defined by:

σ =
c
√
λj

|z|+
√
γ/2

. (3.13)

Let

φ =
αj z

2
+
e−z

2

√
π

= erf(z) z +
e−z

2

√
π
,

ψ =
e−2z2

π
+ z erf(z)

e−z
2

√
π
− erf(z)2

2
,

d =
c

|z|+
√
γ/2

.
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Then

F = (1− dφ)
[
ln(1− dφ) − K + 1

2
lnh
]
− e−z

2
d

2
√
π

where

h = 1− d

(K + 1)(1− dφ)2

(
e−z

2

√
π
− dψ

)
.

We now proceed to show that F = F (z,K, c) ≤ 0, where the arguments of the
function are related to Mach number, gas constant, and CFL number, respectively.
First note that F is an even function of z and hence we can restrict to the case
z ≥ 0. By a direct calculation, dφ/dz = erf(z) > 0 for z > 0 and thus φ is
minimum at z = 0 where it equals 1/

√
π. This shows that φ is a positive function.

Next we show that 1 − dφ is positive and less than one. Since both d and φ
are positive, it is clearly less than one. To show that it is positive, it is sufficient
to show this for c = 1. Noting that e−z

2
/
√
π ≤ 1/

√
2, we have

0 <
1√
2
− e−z

2
√
π

z + 1√
2

≤
z + 1√

2
− erf(z)z − e−z

2
√
π

z + 1√
2

≤ 1− dφ.

Now

e−z
2

√
π
− dψ =

e−z
2

√
π

[
1− d

(
erf(z)z +

e−z
2

√
π

)]
+
d

2
erf(z)2

=
e−z

2

√
π

(1− dφ) +
d

2
erf(z)2 > 0.

From the above, 0 < h < 1.
The key observation is that for any fixed K and z, F attains its maximum at

c = 0 or c = 1. To show this, we explicitly compute the second derivative of F
with respect to c,

F ′′ =
d′2φ2

1− dφ +
(K + 1)(1− dφ)h′2

2h2 +
d′2erf(z)2

2h(1− dφ)3 ,

where ′ denotes differentiation with respect to c. Since F ′′ > 0, F is maximum at
c = 0 or c = 1 as claimed. Hence if F is negative at these values of c, then we can
conclude that F is a negative function.

The first term in the Taylor series expansion of F for small c is

F = −dφ+O(c2)

and hence F is negative for all small c. We now restrict to the CFL limit c = 1.
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Figure 1.
Plot of F (z,K) at c = 1.

For each fixed z ≥ 1, the maximum of F occurs at K =∞, where it equals

(1−d∞φ) ln(1−d∞φ)+
d∞

2(1− d∞φ)

[
e−z

2

√
π

(1− d∞φ) +
d∞erf(z)2

2

]
−e
−z2

2
√
π
d∞ ≡ G.

Here
d∞ = d(K =∞) =

1
|z|+

√
.5
.

Now G is a function of z alone and it is maximum at z = ∞. An asymptotic
expansion of G for large z is

G ∼
√
.5
z

ln
√
.5
z

< 0.

This shows that F is a negative function. When z < 1, it can be shown that
F < 0. In Figure 1, we plot F for |z| ≤ 100 and 2 ≤ K ≤ 100.

In paper [11], the positivities for both ρ∗j ≥ 0 and ρ∗jE
∗
j −

m∗j
2

2 ≥ 0 under the
CFL condition have been proved. So, a distribution function f∗ with f∗ ≥ 0 for
the state (ρ∗j ,m

∗
j , E

∗
j ) can be constructed.

Next we show that entropy increases in the second step where gas moves into
cell Cj from its neighboring cells. It is sufficient to show only the case when gas
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from the left cell Cj−1 moves into cell Cj . Denote the quantities after one time
step by (ρ̂j , m̂j , Êj). See (3.7).

Before proving the entropy condition in the above process, from Jensen’s in-

equality, it can be shown that ρ̂j ≥ 0 and ρ̂jÊj −
m̂2
j

2 ≥ 0, which means that the
state (ρ̂j , m̂j , Êj) satisfies the positivity condition. So, a gas distribution function
f̂ with f̂ ≥ 0 can also be obtained from this state.

Lemma 3.2. Assume that ρ̂j , m̂j , Êj are computed by (3.7). With the CFL
condition, the entropy condition is satisfied in the process to obtain (ρ̂j , m̂j , Êj).

Proof. After some long but straightforward algebra, we have∫ ∞
−∞

ĝj ln ĝjdudξ − σ
∫
u>0

ugj−1 ln gj−1dudξ =
1
2
ρj−1

c

|z|+
√
γ/2

F,

where

F = φ

ln

(
cφ

2(|z|+
√
γ/2)

)
+ (K + 1) ln

φ√
φ2 + ψ

K+1

+
e−z

2

2
√
π
,

φ = z erfc(−z) +
e−z

2

√
π
,

ψ =
e−2z2

π
+ z erfc(−z)

e−z
2

√
π
− erfc(−z)2

2
.

The goal is to show that the entropy condition is satisfied or equivalently, F (z,K, c)
≤ 0. As previously, we have introduced the non-dimensional number z =

√
λj−1Uj−1

and the number c is as defined in (3.13) but with j changed to j − 1. First note
that φ > 0 for all real values of z. To show this, note that dφ/dz = erfc(−z) > 0
and thus the minimum of φ occurs at z = −∞ where φ = 0. Hence it is apparent
that among the possible values of c ∈ (0, 1], F is maximum at c = 1. Thus it is
sufficient to demonstrate that F ≤ 0 for c = 1. We shall assume this value of c for
the remainder of this proof so that F is now a function of K and z.

Since dψ/dz < 0 and ψ(−∞) = 0, ψ is negative for all z. Now for a fixed z,
the term

ln

(
φ

2(|z|+
√
γ/2)

)
in F is increasing in K and thus maximum when γ = 1 or K = ∞. The second
term

(K + 1) ln

 φ√
φ2 + ψ

K+1
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Figure 2.
Plot of F (z,K).

is a decreasing function of K. This can be shown by taking its derivative with
respect to K and it is

D = −1
2

ln(1 + y) +
1
2

y

1 + y
,

where
y =

ψ

(K + 1)φ2 .

Note that −1 < y < 0. The derivative D can be shown to be negative for all
y ∈ (−1, 0). Thus the second term achieves its maximum at K = 2. Hence we
conclude that

F < φ

[
ln
(

φ

2(|z|+
√
.5)

)
− 3

2
ln
(

1 +
ψ

3φ2

)]
+
e−z

2

2
√
π
≡ G(z).

For z ∈ (0,∞), Gz < 0 and since G(0) = −.05775 · · · , we have shown that G < 0
on [0,∞). For z < 0, G is maximum at z = −∞. As z → −∞, the first term of
the asymptotic expansion of G is

G ≈ −3e−z
2

ln |z|
2
√
πz2

and so it is a negative function for z < 0. Thus we conclude that F is negative and
thus the entropy condition is satisfied. We have finished the proof of the lemma.

We plot F (z,K) in Figure 2.
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As a result, we have∫ ∞
−∞

ĝj ln ĝjdudξ ≤ σ
∫
u>0

ugj−1 ln gj−1dudξ. (3.14)

Similarly, we have∫ ∞
−∞

ḡj ln ḡjdudξ ≤ −σ
∫
u<0

ugj+1 ln gj+1dudξ. (3.15)

for the particles coming from the cell j + 1 on the right hand side.
After all terms of (ρ∗,m∗, E∗), (ρ̂, m̂, Ê), (ρ̄, m̄, Ē) are obtained, the flow vari-

ables in each cell Cj are updated according to Eq.(3.9). Since positivity is satisfied
for each species (ρ∗,m∗, E∗), (ρ̂, m̂, Ê) and (ρ̄, m̄, Ē), the distribution functions
g∗, ĝ, ḡ satisfy the conditions g∗ ≥ 0, ĝ ≥ 0, ḡ ≥ 0. In the collisional step, dif-
ferent species with its individual identification W ∗, Ŵ and W̄ are mixed to form
equilibrium states g∗′, ĝ′ and ḡ′ with a common velocity U and temperature λ. In
the collisional process, the individual mass, total momentum and total energy are
conserved, and the individual equilibrium states become

g∗′ = ρ∗
(
λ

π

)K+1
2

e−λ((u−U)2+ξ2),

ĝ′ = ρ̂

(
λ

π

)K+1
2

e−λ((u−U)2+ξ2), (3.16)

ḡ′ = ρ̄

(
λ

π

)K+1
2

e−λ((u−U)2+ξ2),

where λ and U are determined from the total momentum and energy conservations
Eq.(3.9),

(ρ∗ + ρ̂+ ρ̄)U = m∗ + m̂+ m̄

and

(ρ∗ + ρ̂+ ρ̄)(
1
2
U2 +

K + 1
4λ

) = E∗ + Ê + Ē.

Lemma 3.3. The collision stage from (g∗, ĝ, ḡ) to (g∗′, ĝ′, ḡ′) satisfies the entropy
condition.

Proof. Since
g∗ ≥ 0 , ĝ ≥ 0 , ḡ ≥ 0,
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and the individual mass, total momentum and energy conservations are satisfied,
we have∫

g∗′ ln g∗′dudξ +
∫
ĝ′ ln ĝ′dudξ +

∫
ḡ′ ln ḡ′dudξ −

∫
g∗ ln g∗dudξ

−
∫
ĝ ln ĝdudξ −

∫
ḡ ln ḡdudξ

=
∫

(g∗′ − g∗) ln g∗′dudξ +
∫
g∗ ln(g∗′/g∗)dudξ +

∫
(ĝ′ − ĝ) ln ĝ′dudξ

+
∫
ĝ ln(ĝ′/ĝ)dudξ +

∫
(ḡ′ − ḡ) ln ḡ′dudξ +

∫
ḡ ln(ḡ′/ḡ)dudξ

=
∫
g∗ ln(g∗′/g∗)dudξ +

∫
ĝ ln(ĝ′/ĝ)dudξ +

∫
ḡ ln(ḡ′/ḡ)dudξ

≤
∫
g∗(g∗′/g∗ − 1)dudξ +

∫
ĝ(ĝ′/ĝ − 1)dudξ +

∫
ḡ(ḡ′/ḡ − 1)dudξ

=
∫

(g∗′ − g∗)dudξ +
∫

(ĝ′ − ĝ)dudξ +
∫

(ḡ′ − ḡ)dudξ

= 0.

In conclusion, we have∫
g∗′ ln g∗′dudξ +

∫
ĝ′ ln ĝ′dudξ +

∫
ḡ′ ln ḡ′dudξ

≤
∫
g∗ ln g∗dudξ +

∫
ĝ ln ĝdudξ +

∫
ḡ ln ḡdudξ.

(3.17)

Once we have g∗′, ĝ′ and ḡ′, the total entropy of the distinguishable particle
system inside cell Cj is

H ′ =
∫
g∗′ ln g∗′dudξ +

∫
ĝ′ ln ĝ′dudξ +

∫
ḡ′ ln ḡ′dudξ, (3.18)

and the corresponding distribution function is

g = g∗′ + ĝ′ + ḡ′

= ρ∗
(
λ

π

)K+1
2

e−λ((u−U)2+ξ2) + ρ̂

(
λ

π

)K+1
2

e−λ((u−U)2+ξ2)

+ ρ̄

(
λ

π

)K+1
2

e−λ((u−U)2+ξ2) = (ρ∗ + ρ̂+ ρ̄)
(
λ

π

)K+1
2

e−λ((u−U)2+ξ2).
(3.19)
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With the updated (ρ̃, m̃, Ẽ) inside cell Cj in Eq.(3.9), the total entropy Hn+1
j is

composed of the sum of the individual entropies of three species,

Hn+1
j = H ′

=
∫
g∗′ ln g∗′dudξ +

∫
ĝ′ ln ĝ′dudξ +

∫
ḡ′ ln ḡ′dudξ

= ρ∗ ln ρ∗ + ρ∗
K + 1

2
(ln

λ

π
− 1) + ρ̂ ln ρ̂+ ρ̂

K + 1
2

(ln
λ

π
− 1)

+ ρ̄ ln ρ̄+ ρ̄
K + 1

2
(ln

λ

π
− 1)

= ρ∗ ln ρ∗ + ρ̂ ln ρ̂+ ρ̄ ln ρ̄+ (ρ∗ + ρ̂+ ρ̄)
K + 1

2
(ln

λ

π
− 1).

(3.20)

With the Lemma(3.1-3.3) and the total entropy of three species at step n+ 1,
we have

Theorem 3.1. The entropy condition (2.4) is satisfied in the KFVS scheme.

Proof. From Equations (3.11), (3.14), (3.15), (3.17), and (3.19), the new total
entropy for the three species at cell j is

Hn+1
j = H ′

=
∫
g∗′ ln g∗′dudξ +

∫
ĝ′ ln ĝ′dudξ +

∫
ḡ′ ln ḡ′dudξ

≤
∫
g∗ ln g∗dudξ +

∫
ĝ ln ĝdudξ +

∫
ḡ ln ḡdudξ (Lemma 3.3)

≤ Hn
j +

∆t
∆x

(Gnj−1/2 −Gnj+1/2). (Add Eqns.(3.11), (3.14) and (3.15))

Remark: the flow variables Wn+1
j inside cell j at n + 1 do consist of three dis-

tinguishable species. The different locations of the particles at step n due to the
numerical mesh distinguish them initially.

For any numerical scheme, basically we are only remembering the conservative
quantities inside each cell and the amount of entropy is a function of the conser-
vative variables when there is a single component. However, since the entropy
concept is also related to information, the amount of entropy is different for a
gas composed of one single color and a gas composed of two different colors even
with the same total mass, momentum and energy. Numerically, at the beginning
of each time step, we divide the gas into different cells. Consequently, the gases
in different cells become distinguishable. For example, ρnj−1 can be regarded as
blue, ρnj as yellow and ρnj+1 as red. As a result, inside cell Cj at the end of time
step n + 1, the gas ρn+1

j is composed of three species, i.e., red, yellow and blue,
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and the entropy Hn+1
j is the sum of the entropies of the individual species. The

distinguishable effect of particles is from numerical artifacts, such as discretized
space, but it has a physical consequence.

It is tempting to remove the numerical effect at time step n+ 1 inside cell Cj .
For example, we can simply erase the different “colors” of the gas. As a result, the
total density ρ̃ CANNOT keep the information of the individual densities (ρ∗, ρ̂, ρ̄),
and the equilibrium state Eq.(3.19) goes to

gn+1
j = ρ̃

(
λ

π

)K+1
2

e−λ((u−U)2+ξ2).

The corresponding entropy becomes

H =
∫
g̃ ln g̃dudξ

= ρ̃ ln ρ̃+ ρ̃
K + 1

2
(ln

λ

π
− 1). (3.21)

Physically, from a statistical mechanics point of view, we cannot do the above post-
processing, because the amount of entropy is different between a single component
(Eq.(3.21)) and a gas mixture (Eq.(3.20)) [12], although the above post-process
has no direct dynamical effect on the KFVS scheme in the updating of conservative
variables.

Even with three species inside cell Cj , the entropy proof presented in this
section can be continued to the next time step if we keep on following the evolution
of individual species and considering the collisions between them and with those
from other cells. The global entropy should be defined as the sum of the entropy of
all species and the total number of species is equal to the number of mesh points.
In other words, once we construct mesh at the beginning of simulation time, we
separate gases into different cells and distinguish them from the start.

4. Conclusion

The gas-kinetic scheme provides an approximate Riemann solution for the Euler
equations. The entropy condition for the Kinetic Flux Vector Splitting is proved
in this paper. Based on the positivity and entropy analysis, we can conclude that
the KFVS is one of the most robust schemes for CFD applications.
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