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A B S T R A C T

The gas–solid particle two-phase flow in a fluidized bed shows complex physics. The multi-scale algorithm
composed of the coupled gas-kinetic scheme (GKS) for the gas phase and unified gas-kinetic wave-particle
method (UGKWP) for the solid particle phase is developed for three-dimensional fluidized bed study. For
the solid-particle phase, different from the widely-used Eulerian and Lagrangian approaches, the UGKWP
unifies the wave (dense particle region) and discrete particle (dilute particle region) formulation seamlessly
according to a continuous variation of particle cell’s Knudsen number (Kn). The GKS-UGKWP for the coupled
gas-particle evolution system can automatically become an Eulerian–Eulerian (EE) method in the high particle
collision regime and Eulerian–Lagrangian (EL) formulation in the collisionless particle regime. In the transition
regime, the UGKWP can achieve a smooth transition between the Eulerian and Lagrangian limiting formulation.
More importantly, the weights of mass distributions from analytical wave and discrete particle are related to
the local Kn by (1 − exp(−1∕Kn)) for wave and exp(−1∕Kn) for discrete particle. The UGKWP provides an
optimal modeling in capturing the particle phase in difference regimes with the full consideration of physical
accuracy and numerical efficiency. In the numerical simulation, the UGKWP does not need any prior division of
dilute/dense regions, which makes it suitable for the fluidized bed problem, where the dilute/transition/dense
regions instantaneously coexist and are dynamically interconvertible. In this paper, based on the GKS-UGKWP
formulation two lab-scale fluidization cases, i.e., one turbulent fluidized bed and one circulating fluidized bed,
are simulated in 3D and the simulation results are compared with the experimental measurements. The typical
heterogeneous flow features of the fluidized bed are well captured and the statistics are in good agreement
with experiment data.
. Introduction

Gas–solid particle fluidization system is widely used in the energy
nd chemical industry. The vigorous interaction between gas and solid
article involves complex dynamics in the determination of mass and
eat transfer [1]. Generally, the fluidization occurs in a container with
large number of solid particles and gas flow blown from below. This

wo-phase system usually shows rich and complex physics, such as
he particle transport and collision, the clustering and dispersion of
arge number of particles, and the coexistence of dilute, transition, and
ense regions, etc. For such a complex system, the prediction through
n analytical solution is almost impossible, and the experiment mea-
urement is expensive and depends highly on the measuring devices.
herefore, computational fluid dynamics (CFD) becomes a powerful
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and indispensable way for studying and understanding dynamics in
fluidization, and guides the design and optimization of fluidized beds,
etc [1–3].

Many numerical methods have been constructed to simulate gas–
solid particle fluidization. The Eulerian–Eulerian (EE) approach, also
called two fluid model (TFM), is one of the important approaches used
in fluidization engineering [4,5]. In the EE approach, both gas and
solid particle phases are described under the Eulerian framework. The
kinetic theory for granular flow (KTGF) is one representative method
of TFM, in which the constitutive relationship, i.e., the stress tensor,
can be derived based on the Chapman–Enskog asymptotic analysis [5–
7]. In general, the underlying assumption in TFM is that the solid
phase stays in a near equilibrium state. In other words, with the slight
vailable online 10 October 2022
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deviation from local Maxwellian distribution for the particle phase,
the corresponding hydrodynamic evolution equations based on the
macroscopic variables (density, velocity, and granular temperature)
can be obtained. In reality, the solid particle phase can be in equi-
librium or non-equilibrium state according to the Knudsen number
(Kn), which is defined by the ratio of the particle mean free path
over the characteristic length scale [8,9]. The solid phase stays in
an equilibrium state at small Kn number under the intensive inter-
particle collisions. This is likely to occur in the dense particle region
in the gas-particle fluidization system. At large Kn number, the particle
keeps the non-equilibrium state and the particle free transport plays
a key role in the evolution, such as the dilute particle region. One of
the outstanding non-equilibrium phenomenon is the particle trajectory
crossing (PTC), where multiple particle velocities have to be captured
at the same space location. The averaged single fluid velocity model
in TFM has difficulty to give an accurate prediction of non-equilibrium
physics [8]. Another alternative approach is Eulerian–Lagrangian (EL)
method, such as the computational fluid dynamic-discrete element
method (CFD-DEM), where all solid particles are tracked explicitly in
the evolution [10,11]. To improve the computational efficiency with
limited number of tractable particles, the numerical parcel concept
for grouping many particles with the same property is employed in
the coarse graining particle method (CGPM) [12,13], and multiphase
particle-in-cell (MP-PIC) [14], etc. EL approach is theoretically able
to give an accurate prediction of solid phase evolution in all regimes,
but the computation cost increases gigantically in the dense partic-
ular flow region to track the tremendous amount of solid particles
or parcels and follow their inter-particle collisions [2,15]. At current
stage, the implementation of EL approach for industrial fluidization
system is almost infeasible computationally, and the TFM is still the
mainstream method in engineering applications [16]. In addition, the
hybrid method that couples EE and EL approaches in different regions
is studied in hope of maintaining both accuracy and efficiency in the
simulation. The coupling strategy between EE/EL approaches plays
an important role in order to achieve a smooth transition and give
a reliable prediction [17,18]. Besides, other methods used for gas–
solid fluidization system have been explored in the community, such
as direct numerical simulation (DNS) [19–21], method of moment
(MOM) [8,22], and material point method (MPM) [23], etc.

To capture the non-equilibrium physics of particular flow, a multi-
scale numerical method GKS-UGKWP for gas-particle two-phase system
has been proposed, where the gas-kinetic scheme (GKS) is used for
gas phase and unified gas-kinetic wave-particle method (UGKWP) for
solid particle phase with dynamic coupling between them [24,25].
UGKWP is a wave-particle version of the unified gas-kinetic scheme
(UGKS) for multiscale flow dynamics simulations [26,27]. UGKS is a
direct modeling method on the scale of cell size and time step and
captures the flow physics according to the cell’s Kn number. It has
been used for flow simulation in all regimes from the free molecular
flow to the continuum Navier–Stokes solution. Based on the same
methodology, UGKS is also successfully extended to other multiscale
transport problems, such as radiative heat transfer, plasma, particular
flow, etc [28–30]. In UGKS, both macroscopic flow variables and
microscopic distribution function with discrete particle velocity points
are updated in a deterministic way. Later, in order to improve the
efficiency of UGKS, especially for the hypersonic flow computation,
a particle-based UGKS, i.e., the so-called unified gas-kinetic particle
(UGKP) method, has been proposed by updating the distribution func-
tion through stochastic particle [31,32]. In UGKP, the particles are
categorized as free transport particles and collisional particles. The
collisionless particle will be tracked in the whole time step; while the
collisional one is only tracked before the first collision and eliminated
within the time step. At the beginning of next time step, all annihilated
particles will be re-sampled from an equilibrium state determined by
the updated macroscopic flow variables within each control volume
2

(cell). Furthermore, depending on the cell’s Kn number, in the next T
time step a proportion of (1-𝑒−1∕Kn) re-sampled particles in UGKP from
he equilibrium state will get collision and be eliminated again. More
mportantly, it is realized that the contribution from these re-sampled
articles to the flux function in a finite volume scheme can be evaluated
nalytically through a wave or field-type representation. Therefore, in
GKP only the free transport particles need to be sampled and tracked

n the next whole time step. The scheme with analytical formulation
or the flux transport from those collisional particles is called unified
as-kinetic wave-particle (UGKWP) method. Tremendous reduction in
omputation cost and memory requirement is achieved in UGKWP for
igh speed flow computations, especially in the transition and near
ontinuum flow regimes [31–34]. UGKWP is intrinsically suitable for
apturing the multiscale non-equilibrium solid particle transport in
he gas-particle two phase flow. At a very small cell Kn, no particles
ill be sampled in UGKWP, and the hydrodynamic formulation for

olid particle evolution will automatically emerge. As a result, GKS-
GKWP method will go to the EE approach. On the contrary, at a

arge cell Kn, such as the collisionless regime, the evolution of the solid
hase is fully tracked in the particle transport, and the GKS-UGKWP
ecomes the EL method. At an intermediate Kn, both wave and particle
ormulations in UGKWP contribute the solid phase’s evolution, and the
umber of the sampled particles in UGKWP depends on the local cell’s
n, which ensures a smooth transition between different regimes. In
ddition, in the continuum regime, the particle phase from UGKWP will
utomatically converge to the kinetic theory-based Navier–Stokes flow
olver, the so-called gas-kinetic scheme (GKS), which is validated in the
low, acoustic wave, and turbulence simulation, etc [35–39]. In the gas–
olid particle fluidization, the GKS is also employed for the gas phase
ith assumption of continuum flow. Therefore, the limiting EE model

rom GKS-UGKWP will become GKS-GKS for the coupled two fluid
hases. In conclusion, due to the coexistence of dilute/transition/dense
olid particle regimes, the multiscale GKS-UGKWP can recover EE and
L formulations seamlessly in a single gas-particle two phase flow
imulation.

In the gas–solid particle two phase flow, the accurate evaluation
f inter-phase interaction is also essential for the accurate simulation
f fluidization. The momentum and energy exchange between gas and
olid phases due to the phase interaction is modeled through the
rag force, buoyancy force, etc [7,8]. Among them, drag force plays
he dominant role [40,41]. The hybrid model proposed by Gidaspow
an be used for both dilute and dense solid particle regimes, and
s widely accepted and employed in fluidization simulation [7]. Due
o the heterogeneous property of gas–solid fluidization, such as the
xistence of clustering, the drag model modified by a scaling factor
as proposed for the further improvement of accuracy [40,42,43].

n addition, the energy-minimization multiscale (EMMS) theory was
uccessfully developed to model the heterogeneous structures in the
as–solid fluidization problem [44]. As an extension of the original
MMS method, the EMMS drag model, including the effect of local
eterogeneous flow structures through EMMS theory, was proposed and
uccessfully employed in the gas–solid fluidization simulation from the
chemes, such as TFM, MP-PIC, etc [16,45–49]. Generally, for all these
pproaches it is essential to employ an accurate drag model in order to
et reliable prediction for the gas-particle flow under the fluidized bed
ondition.

In this paper, two lab-scale fluidized bed problems, i.e., the turbu-
ent fluidized bed from Gao et al. [40] and the circulating fluidized
ed from Horio et al. [50], are calculated in three-dimensional space
y GKS-UGKWP, and the numerical results are compared with the ex-
erimental measurements. The paper is organized as follows. Section 2
ntroduces the governing equations for the particle phase and UGKWP
ethod. Then, Section 3 introduces the governing equations for the

as phase and GKS method. Section 4 introduces the numerical experi-
ents, where the above two problems will be studied by GKS-UGKWP.

he last section is the conclusion.
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2. UGKWP for solid-particle phase

2.1. Governing equation for particle phase

The evolution of particle phase is governed by the following kinetic
equation,
𝜕𝑓𝑠
𝜕𝑡

+ ∇𝑥 ⋅
(

𝐮𝑓𝑠
)

+ ∇𝑢 ⋅
(

𝐚𝑓𝑠
)

=
𝑔𝑠 − 𝑓𝑠

𝜏𝑠
, (1)

where 𝑓𝑠 is the distribution function of particle phase, 𝐮 is the particle
elocity, 𝐚 is the particle acceleration caused by the external force, ∇𝑥
s the divergence operator with respect to space, ∇𝑢 is the divergence
perator with respect to velocity, 𝜏𝑠 is the relaxation time for the
article phase. The equilibrium state 𝑔𝑠 is,

𝑠 = 𝜖𝑠𝜌𝑠

(

𝜆𝑠
𝜋

)
3
2
𝑒−𝜆𝑠

[

(𝐮−𝐔𝑠)2
]

,

here 𝜖𝑠 is the volume fraction of particle phase, 𝜌𝑠 is the material
density of particle phase, 𝜆𝑠 is the value relevant to the granular
emperature 𝜃 with 𝜆𝑠 = 1

2𝜃 , and 𝐔𝑠 is the macroscopic velocity of
article phase. The sum of kinetic and thermal energy for colliding
article may not be conserved due to the inelastic collision between
articles. Therefore the collision term in Eq. (1) should satisfy the
ollowing compatibility condition [30],

1
𝜏𝑠 ∫

𝑔𝑠𝝍d𝐮 = 1
𝜏𝑠 ∫

𝑓𝑠𝝍 ′d𝐮, (2)

where 𝝍 =
(

1,𝐮, 1
2
𝐮2
)𝑇

and 𝝍 ′ =
(

1,𝐮, 1
2
𝐮2 + 𝑒2 − 1

2
(

𝐮 − 𝐔𝑠
)2
)𝑇

.
By Eq. (2), the lost energy due to the inelastic collision in 3D can be
determined,

𝑄𝑙𝑜𝑠𝑠 =

(

1 − 𝑒2
)

3𝑝𝑠
2

, (3)

where 𝑒 ∈ [0, 1] is the restitution coefficient for determining the
ercentage of lost energy in inelastic collision. While 𝑒 = 1 means no

energy loss (elastic collision), 𝑒 = 0 refers to total loss of all internal
energy of particle phase 𝜖𝑠𝜌𝑠𝑒𝑠 =

3
2 𝑝𝑠 with 𝑝𝑠 =

𝜖𝑠𝜌𝑠
2𝜆𝑠

. The accuracy of the
bove model for lost energy due to inelastic collisions depends on the
, which depends on the material properties of solid particles. Besides,
t is worth noting that the solid particles studied in the current model
re assumed to be spherical.

The particle acceleration 𝐚 is determined by the external force,
ncluding the force reflecting the inter-phase interaction. In this paper,
he drag force 𝐃, the buoyancy force 𝐅𝑏, and gravity 𝐆 are considered.
ere 𝐃 and 𝐅𝑏 are inter-phase force, standing for the force applied on

he solid particles by gas flow. The general form of drag force can be
ritten as,

=
𝑚𝑠
𝜏𝑠𝑡

(

𝐔𝑔 − 𝐮
)

, (4)

here 𝑚𝑠 = 𝜌𝑠
4
3𝜋

(

𝑑𝑠
2

)3
is the mass of one particle, 𝑑𝑠 is the diameter of

olid particle, 𝐔𝑔 is the macroscopic velocity of gas phase, and 𝜏𝑠𝑡 is the
particle internal response time. The more commonly-used parameter
in the drag model is 𝛽, called the inter-phase momentum transfer
coefficient, with the relation to 𝜏𝑠𝑡 by 𝛽 = 𝜖𝑠𝜌𝑠

𝜏𝑠𝑡
. The accurate evaluation

f drag plays key roles for the prediction of gas–solid fluidization. Many
tudies about the modeling of drag force have been conducted, such as
he widely-accepted model by Gidaspow [7], the modified drag model
hrough a scaling factor [40,42,43], the EMMS-based drag model [46–
8], etc. Different drag models can be employed in GKS-UGKWP, and
he drag model particularly used in this paper will be introduced in
etail later.

Another interactive force considered is the buoyancy force, which
an be modeled as,

𝑏 = −
𝑚𝑠∇𝑥𝑝𝑔 , (5)
3

𝜌𝑠 𝑔
where 𝑝𝑔 is the pressure of gas phase. Then, the particle’s acceleration
can be obtained as,

𝐚 =
𝐃 + 𝐅𝑏
𝑚𝑠

+𝐆.

.2. UGKWP method

In this subsection, the UGKWP for the evolution of solid particle
hase is introduced. Generally, the kinetic equation of particle phase
q. (1) is split as,

𝑠1 ∶
𝜕𝑓𝑠
𝜕𝑡

+ ∇𝑥 ⋅
(

𝐮𝑓𝑠
)

=
𝑔𝑠 − 𝑓𝑠

𝜏𝑠
, (6)

𝑠2 ∶
𝜕𝑓𝑠
𝜕𝑡

+ ∇𝑢 ⋅
(

𝐚𝑓𝑠
)

= 0, (7)

and splitting operator is used to solve Eq. (1). Firstly, we focus on 𝑠1
part, the particle phase kinetic equation without external force,
𝜕𝑓𝑠
𝜕𝑡

+ ∇𝑥 ⋅
(

𝐮𝑓𝑠
)

=
𝑔𝑠 − 𝑓𝑠

𝜏𝑠
.

For brevity, the subscript 𝑠 standing for the solid particle phase will
be neglected in this subsection. The integration solution of the kinetic
equation can be written as,

𝑓 (𝐱, 𝑡,𝐮) = 1
𝜏 ∫

𝑡

0
𝑔(𝐱′, 𝑡′,𝐮)𝑒−(𝑡−𝑡′)∕𝜏d𝑡′ + 𝑒−𝑡∕𝜏𝑓0(𝐱 − 𝐮𝑡,𝐮), (8)

here 𝐱′ = 𝐱 + 𝐮(𝑡′ − 𝑡) is the trajectory of particles, 𝑓0 is the initial
as distribution function at time 𝑡 = 0, and 𝑔 is the corresponding
quilibrium state.

In UGKWP, both macroscopic conservative variables and micro-
copic gas distribution function will be updated. Generally, in the finite
olume framework, the cell-averaged macroscopic variables 𝐖𝑖 of cell
can be updated by the conservation law,

𝑛+1
𝑖 = 𝐖𝑛

𝑖 −
1
𝛺𝑖

∑

𝑆𝑖𝑗∈𝜕𝛺𝑖

𝐅𝑖𝑗𝑆𝑖𝑗 + 𝛥𝑡𝐒𝑖, (9)

where 𝐖𝑖 =
(

𝜌𝑖, 𝜌𝑖𝐔𝑖, 𝜌𝑖𝐸𝑖
)

is the cell-averaged macroscopic variables,

𝐖𝑖 =
1
𝛺𝑖 ∫𝛺𝑖

𝐖 (𝐱)d𝛺,

𝛺𝑖 is the volume of cell 𝑖, 𝜕𝛺𝑖 denotes the set of cell interfaces of cell 𝑖,
𝑆𝑖𝑗 is the area of the 𝑗th interface of cell 𝑖, 𝐅𝑖𝑗 denotes the macroscopic
fluxes across the interface 𝑆𝑖𝑗 , which can be written as

𝐅𝑖𝑗 = ∫

𝛥𝑡

0 ∫ 𝐮 ⋅ 𝐧𝑖𝑗𝑓𝑖𝑗 (𝐱, 𝑡,𝐮)𝝍d𝐮d𝑡, (10)

here 𝐧𝑖𝑗 is the normal unit vector of interface 𝑆𝑖𝑗 , 𝑓𝑖𝑗 (𝑡) is the
ime-dependent distribution function on the interface 𝑆𝑖𝑗 , and 𝝍 =

1,𝐮, 1
2
𝐮2)𝑇 . 𝐒𝑖 is the source term due to inelastic collision inside each

control volume, where the solid-particle’s internal energy has not been
taken into account in the above equation.

Substituting the time-dependent distribution function Eq. (8) into
Eq. (10), the fluxes can be obtained,

𝐅𝑖𝑗 = ∫

𝛥𝑡

0 ∫ 𝐮 ⋅ 𝐧𝑖𝑗𝑓𝑖𝑗 (𝐱, 𝑡,𝐮)𝝍d𝐮d𝑡

= ∫

𝛥𝑡

0 ∫ 𝐮 ⋅ 𝐧𝑖𝑗
[

1
𝜏 ∫

𝑡

0
𝑔(𝐱′, 𝑡′,𝐮)𝑒−(𝑡−𝑡′)∕𝜏d𝑡′

]

𝝍d𝐮d𝑡

+ ∫

𝛥𝑡

0 ∫ 𝐮 ⋅ 𝐧𝑖𝑗
[

𝑒−𝑡∕𝜏𝑓0(𝐱 − 𝐮𝑡,𝐮)
]

𝝍d𝐮d𝑡

𝑑𝑒𝑓
= 𝐅𝑒𝑞

𝑖𝑗 + 𝐅𝑓𝑟
𝑖𝑗 .

The procedure of obtaining the local equilibrium state 𝑔0 at the
ell interface as well as the construction of 𝑔 (𝑡) is the same as that in
KS [35]. For a second-order accuracy, the equilibrium state 𝑔 around

he cell interface is written as,
( ′ ′ ) (

𝐚 ⋅ 𝐮
(

𝑡′ − 𝑡
)

+ �̄�𝑡′
)

,
𝐱 , 𝑡 ,𝐮 = 𝑔0 (𝐱,𝐮) 1 +
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where 𝐚 =
[

𝑎1, 𝑎2, 𝑎3
]𝑇 , 𝑎𝑖 =

𝜕𝑔
𝜕𝑥𝑖

∕𝑔, 𝑖 = 1, 2, 3, 𝐴 = 𝜕𝑔
𝜕𝑡 ∕𝑔, and 𝑔0 is the

local equilibrium on the interface. Specifically, the coefficients of spa-
tial derivatives 𝑎𝑖 can be obtained from the corresponding derivatives
f the macroscopic variables,

𝑎𝑖
⟩

= 𝜕𝐖0∕𝜕𝑥𝑖,

here 𝑖 = 1, 2, 3, and ⟨...⟩ means the moments of the Maxwellian
istribution functions,

...⟩ = ∫ 𝝍 (...) 𝑔d𝐮.

he coefficients of temporal derivative 𝐴 can be determined by the
compatibility condition,

⟨

𝐚 ⋅ 𝐮 + 𝐴
⟩

=

⎡

⎢

⎢

⎢

⎣

0
𝟎

−𝑄𝑙𝑜𝑠𝑠
𝜏𝑠

⎤

⎥

⎥

⎥

⎦

,

here 𝑄𝑙𝑜𝑠𝑠 =
(

1−𝑒2
)

3𝑝𝑠
2 is the energy lose due to particle–particle

nelastic collision. Now, all the coefficients in the equilibrium state
(

𝐱′, 𝑡′,𝐮
)

have been determined, and its integration becomes,

𝑒𝑞(𝐱, 𝑡,𝐮)
𝑑𝑒𝑓
= 1

𝜏 ∫

𝑡

0
𝑔(𝐱′, 𝑡′,𝐮)𝑒−(𝑡−𝑡′)∕𝜏d𝑡′

= 𝑐1𝑔0 (𝐱,𝐮) + 𝑐2𝐚 ⋅ 𝐮𝑔0 (𝐱,𝐮) + 𝑐3𝐴𝑔0 (𝐱,𝐮) , (11)

ith coefficients,

1 = 1 − 𝑒−𝑡∕𝜏 ,

2 = (𝑡 + 𝜏) 𝑒−𝑡∕𝜏 − 𝜏,

3 = 𝑡 − 𝜏 + 𝜏𝑒−𝑡∕𝜏 ,

nd thereby the integrated flux over a time step for equilibrium state
an be obtained,

𝑒𝑞
𝑖𝑗 = ∫

𝛥𝑡

0 ∫ 𝐮 ⋅ 𝐧𝑖𝑗𝑓
𝑒𝑞
𝑖𝑗 (𝐱, 𝑡,𝐮)𝝍d𝐮d𝑡. (12)

Besides, the flux contribution from the particle free transport 𝑓0
n Eq. (8) is calculated by tracking the particles sampled from 𝑓0.

Therefore, the updating of the cell-averaged macroscopic variables can
be written as,

𝐖𝑛+1
𝑖 = 𝐖𝑛

𝑖 −
1
𝛺𝑖

∑

𝑆𝑖𝑗∈𝜕𝛺𝑖

𝐅𝑒𝑞
𝑖𝑗 𝑆𝑖𝑗 +

𝐰𝑓𝑟
𝑖
𝛺𝑖

+ 𝛥𝑡𝐒𝑖, (13)

where 𝐰𝑓𝑟
𝑖 is the net free streaming flow of cell 𝑖, standing for the

flux contribution of the free streaming of particles, and the term 𝐒𝑖 =
[

0, 𝟎,−𝑄𝑙𝑜𝑠𝑠
𝜏𝑠

]𝑇
is the source term due to the inelastic collision for solid

article phase.
The net free streaming flow 𝐰𝑓𝑟

𝑖 is determined in the following.
The evolution of particle should also satisfy the integral solution of the
kinetic equation, which can be written as,

𝑓 (𝐱, 𝑡,𝐮) =
(

1 − 𝑒−𝑡∕𝜏
)

𝑔+(𝐱, 𝑡,𝐮) + 𝑒−𝑡∕𝜏𝑓0(𝐱 − 𝐮𝑡,𝐮), (14)

where 𝑔+ is named as the hydrodynamic distribution function with ana-
lytical formulation. The initial distribution function 𝑓0 has a probability
of 𝑒−𝑡∕𝜏 to free transport and (1−𝑒−𝑡∕𝜏 ) to colliding with other particles.
The post-collision particles satisfies the distribution 𝑔+ (𝐱,𝐮, 𝑡). The free
transport time before the first collision with other particles is denoted
as 𝑡𝑐 . The cumulative distribution function of 𝑡𝑐 is,

𝐹
(

𝑡𝑐 < 𝑡
)

= 1 − 𝑒−𝑡∕𝜏 , (15)

and therefore 𝑡𝑐 can be sampled as 𝑡𝑐 = −𝜏ln (𝜂), where 𝜂 is a random
number generated from a uniform distribution 𝑈 (0, 1). Then, the free
streaming time 𝑡𝑓 for each particle is determined separately by,

𝑡 = min
[

−𝜏ln 𝜂 , 𝛥𝑡
]

, (16)
4

𝑓 ( ) o
where 𝛥𝑡 is the time step. Therefore, within one time step, all particles
can be divided into two groups: the collisionless particle and the
collisional particle, and they are determined by the relation between
of time step 𝛥𝑡 and free streaming time 𝑡𝑓 . Specifically, if 𝑡𝑓 = 𝛥𝑡 for
one particle, it is collisionless one, and the trajectory of this particle
is fully tracked in the whole time step. On the contrary, if 𝑡𝑓 < 𝛥𝑡 for
one particle, it is collisional particle, and its trajectory will be tracked
until 𝑡𝑓 . The collisional particle is eliminated at 𝑡𝑓 in the simulation
and the associated mass, momentum and energy carried by this particle
are merged into the updated macroscopic quantities of all annihilated
particles in the relevant cell. More specifically, the particle trajectory
in the free streaming process within time 𝑡𝑓 is tacked by,

𝐱 = 𝐱𝑛 + 𝐮𝑛𝑡𝑓 . (17)

The term 𝐰𝑓𝑟
𝑖 can be calculated by counting the particles passing

through the interfaces of cell 𝑖,

𝐰𝑓𝑟
𝑖 =

∑

𝑘∈𝑃
(

𝜕𝛺+
𝑖
)

𝝓𝑘 −
∑

𝑘∈𝑃
(

𝜕𝛺−
𝑖
)

𝝓𝑘, (18)

where 𝑃
(

𝜕𝛺+
𝑖
)

is the particle set moving into the cell 𝑖 during one
time step, 𝑃

(

𝜕𝛺−
𝑖
)

is the particle set moving out of the cell 𝑖 during
one time step, 𝑘 is the particle index in one specific set, and 𝝓𝑘 =
[

𝑚𝑘, 𝑚𝑘𝐮𝑘,
1
2𝑚𝑘(𝐮2𝑘)

]𝑇
is the mass, momentum and energy carried by

article 𝑘. Therefore, 𝐰𝑓𝑟
𝑖 ∕𝛺𝑖 is the net conservative quantities caused

y the free stream of the tracked particles. Now, all the terms in
q. (13) have been determined and the macroscopic variables 𝐖𝑖 can
e updated.

The trajectories of all particles have been tracked during the time
nterval

(

0, 𝑡𝑓
)

. For the collisionless particles with 𝑡𝑓 = 𝛥𝑡, they still
urvive at the end of one time step; while the collisional particles with
𝑓 < 𝛥𝑡 are deleted after their first collision and they are supposed
o go to the equilibrium state in that cell. Therefore, the macroscopic
ariables of the collisional particles in cell 𝑖 at the end of each time step
an be directly obtained based on the conservation law,
ℎ
𝑖 = 𝐖𝑛+1

𝑖 −𝐖𝑝
𝑖 , (19)

here 𝐖𝑛+1
𝑖 is the updated conservative variables in Eq. (13) and

𝑝
𝑖 are the mass, momentum, and energy of remaining collisionless

articles in the cell at the end of the time step. Besides, the macroscopic
ariables 𝐖ℎ

𝑖 account for all eliminated collisional particles to the
quilibrium state, and these particles can be re-sampling from 𝐖ℎ

𝑖 based
n the overall Maxwellian distribution at the beginning of the next
ime step. Now the updates of both macroscopic variables and the
icroscopic particles have been presented. The above method is the

o-called unified gas-kinetic particle (UGKP) method.
The above UGKP can be further developed to UGKWP method. In

GKP method, all particles are divided into collisionless and collisional
articles in each time step. The collisional particles are deleted after the
irst collision and re-sampled from 𝐖ℎ

𝑖 at the beginning of the next time
tep. However, only the collisionless part of the re-sampled particles
an survive in the next time step, and all collisional ones will be deleted
gain. Actually, the transport fluxes from these collisional particles
an be evaluated analytically without using particles. According to the
umulative distribution Eq. (15), the proportion of the collisionless par-
icles is 𝑒−𝛥𝑡∕𝜏 , and therefore in UGKWP only the collisionless particles
rom the hydrodynamic variables 𝐖ℎ

𝑖 in cell 𝑖 will be re-sampled with
he total mass, momentum, and energy,
ℎ𝑝
𝑖 = 𝑒−𝛥𝑡∕𝜏𝐖ℎ

𝑖 . (20)

hen, the free transport time of all the re-sampled particles will be
𝑓 = 𝛥𝑡 in UGKWP. The fluxes 𝐅𝑓𝑟,𝑤𝑎𝑣𝑒 from these un-sampled collisional
article of (1 − 𝑒−𝛥𝑡∕𝜏 )𝐖ℎ

𝑖 can be evaluated analytically [31,32]. Now,
ame as UGKP, the net flux 𝐰𝑓𝑟,𝑝

𝑖 accounting for the free streaming

f the particles across cell interfaces includes the contribution from
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the remaining particles from previous time step and the re-sampled
collisionless ones from 𝐖ℎ𝑝

𝑖 ,

𝑓𝑟,𝑝
𝑖 =

∑

𝑘∈𝑃
(

𝜕𝛺+
𝑖
)

𝝓𝑘 −
∑

𝑘∈𝑃
(

𝜕𝛺−
𝑖
)

𝝓𝑘. (21)

Then, the macroscopic flow variables in UGKWP are updated by

𝐖𝑛+1
𝑖 = 𝐖𝑛

𝑖 −
1
𝛺𝑖

∑

𝑆𝑖𝑗∈𝜕𝛺𝑖

𝐅𝑒𝑞
𝑖𝑗 𝑆𝑖𝑗−

1
𝛺𝑖

∑

𝑆𝑖𝑗∈𝜕𝛺𝑖

𝐅𝑓𝑟,𝑤𝑎𝑣𝑒
𝑖𝑗 𝑆𝑖𝑗+

𝐰𝑓𝑟,𝑝
𝑖
𝛺𝑖

+𝛥𝑡𝐒𝑖, (22)

where 𝐅𝑓𝑟,𝑤𝑎𝑣𝑒
𝑖𝑗 is the flux function from the un-sampled collisional

particles [28,31,32], which can be written as,

𝐅𝑓𝑟,𝑤𝑎𝑣𝑒
𝑖𝑗 = 𝐅𝑓𝑟,𝑈𝐺𝐾𝑆

𝑖𝑗 (𝐖ℎ
𝑖 ) − 𝐅𝑓𝑟,𝐷𝑉𝑀

𝑖𝑗 (𝐖ℎ𝑝
𝑖 )

= ∫

𝛥𝑡

0 ∫ 𝐮 ⋅ 𝐧𝑖𝑗
[

𝑒−𝑡∕𝜏𝑓0(𝐱 − 𝐮𝑡,𝐮)
]

𝝍d𝐮d𝑡

− 𝑒−𝛥𝑡∕𝜏 ∫

𝛥𝑡

0 ∫ 𝐮 ⋅ 𝐧𝑖𝑗
[

𝑔ℎ0 (𝐱,𝐮) − 𝑡𝐮 ⋅ 𝑔ℎ𝐱 (𝐱,𝐮)
]

𝝍d𝐮d𝑡

= ∫ 𝐮 ⋅ 𝐧𝑖𝑗
[

(

𝑞4 − 𝛥𝑡𝑒−𝛥𝑡∕𝜏
)

𝑔ℎ0 (𝐱,𝐮) +
(

𝑞5 +
𝛥𝑡2

2
𝑒−𝛥𝑡∕𝜏

)

𝐮

⋅𝑔ℎ𝐱 (𝐱,𝐮)
]

𝝍d𝐮, (23)

ith the coefficients,

4 = 𝜏
(

1 − 𝑒−𝛥𝑡∕𝜏
)

,

5 = 𝜏𝛥𝑡𝑒−𝛥𝑡∕𝜏 − 𝜏2
(

1 − 𝑒−𝛥𝑡∕𝜏
)

.

he source term 𝐒𝑖 in Eq. (22) is solved in an implicit way, which means

𝑛+1
𝑖 𝐸𝑛+1

𝑖 = 𝜌𝑛𝑖𝐸
𝑛
𝑖 + 𝑆𝑛+1

𝑖 ,

here

𝜌𝑛𝑖𝐸
𝑛
𝑖 = 1

2
𝜌𝑛𝑖

(

𝐔𝑛
𝑖
)2 + 3

2
𝑝𝑛𝑠,𝑖,

𝑛+1
𝑖 𝐸𝑛+1

𝑖 = 1
2
𝜌𝑛+1𝑖

(

𝐔𝑛+1
𝑖

)2 + 3
2
𝑝𝑛+1𝑠,𝑖 ,

nd

𝑛+1
𝑖 = −

3
(

1 − 𝑒2
)

2
𝛥𝑡
𝜏𝑠

𝑝𝑛+1𝑠,𝑖 , (24)

y which the 𝑝𝑛+1𝑠,𝑖 can by obtained,

𝑛+1
𝑠,𝑖 =

3
2 𝑝

𝑛
𝑠,𝑖 +

1
2𝜌

𝑛
𝑖
(

𝐔𝑛
𝑖
)2 − 1

2𝜌
𝑛+1
𝑖

(

𝐔𝑛+1
𝑖

)2

3
2 + 3(1−𝑒2)

2
𝛥𝑡
𝜏𝑠

, (25)

and further 𝜌𝑛+1𝑖 𝐸𝑛+1
𝑖 is updated. Up to now, the first part 𝑠1 has been

updated.
The second part 𝑠2 in Eq. (7) accounts for the external acceleration,

𝜕𝑓𝑠
𝜕𝑡

+ ∇𝑢 ⋅
(

𝐚𝑓𝑠
)

= 0,

here the velocity-dependent acceleration term caused by inter-phase
orces and solid particle’s gravity has the following form,

=
𝐔𝑔 − 𝐮
𝜏𝑠𝑡

− 1
𝜌𝑠

∇𝑥𝑝𝑔 +𝐆.

Taking moment 𝝍 to Eq. (7),

∫ 𝝍
(

𝜕𝑓𝑠
𝜕𝑡

+ 𝐚 ⋅ ∇𝑢𝑓𝑠 + 𝑓𝑠∇𝑢 ⋅ 𝐚
)

d𝐮 = 0,

nd in the Euler regime with 𝑓𝑠 = 𝑔𝑠 + 
(

𝜏𝑠
)

, we can obtain,

𝜕𝐖𝑠 +𝐐 = 0,
5

𝜕𝑡 𝑠 d
where

𝐖𝑠 =
⎡

⎢

⎢

⎣

𝜖𝑠𝜌𝑠
𝜖𝑠𝜌𝑠𝐔𝑠
𝜖𝑠𝜌𝑠𝐸𝑠

⎤

⎥

⎥

⎦

,

𝐐𝑠 =

⎡

⎢

⎢

⎢

⎢

⎣

0
𝜖𝑠𝜌𝑠

(

𝐔𝑠−𝐔𝑔
)

𝜏𝑠𝑡
+ 𝜖𝑠∇𝑥𝑝𝑔 − 𝜖𝑠𝜌𝑠𝐆

𝜖𝑠𝜌𝑠𝐔𝑠⋅
(

𝐔𝑠−𝐔𝑔
)

𝜏𝑠𝑡
+ 3 𝑝𝑠

𝜏𝑠𝑡
+ 𝜖𝑠𝐔𝑠 ⋅ ∇𝑥𝑝𝑔 − 𝜖𝑠𝜌𝑠𝐔𝑠 ⋅𝐆

⎤

⎥

⎥

⎥

⎥

⎦

.

When the first-order forward Euler method is employed for time march-
ing, the cell-averaged macroscopic variable can be updated by,

𝐖𝑛+1
𝑠 = 𝐖𝑠 −𝐐𝑠𝛥𝑡, (26)

Note that the 𝐖𝑠 represents the macroscopic variables after updating
the 𝑠1 part. Besides, the modifications on velocity and location of the
remaining free transport particles can be written as,

𝐮𝑛+1 = 𝐮 + 𝐚𝑡𝑓 , (27)

𝐱𝑛+1 = 𝐱 + 𝐚
2
𝑡2𝑓 . (28)

ow the update of the solid particle phase in one time step has
een finished. In the following, specific variables determination for the
olid-particle phase will be presented.

.3. Particle phase Knudsen number

The particle phase Kn number is defined by the ratio of collision
ime 𝜏𝑠 to the characteristic time of macroscopic flow 𝑡𝑟𝑒𝑓 ,

n =
𝜏𝑠
𝑡𝑟𝑒𝑓

, (29)

here 𝑡𝑟𝑒𝑓 is the characteristic time, defined as the ratio of flow char-
cteristic length to the flow characteristic velocity, 𝑡𝑟𝑒𝑓 = 𝐿𝑟𝑒𝑓∕𝑈𝑟𝑒𝑓 ,

and 𝜏𝑠 is the time interval between collisions of solid particles. In this
paper, 𝜏𝑠 is taken as [8,51],

𝜏𝑠 =

√

𝜋𝑑𝑠

12𝜖𝑠𝑔𝑟
√

𝜃
, (30)

where 𝑑𝑠 is the diameter of solid particle, 𝜖𝑠 is the volume fraction of
solid phase, 𝜃 is the granular temperature. 𝑔𝑟 is the radial distribution
unction with the following form,

𝑟 =
2 − 𝑐

2 (1 − 𝑐)3
, (31)

where 𝑐 = 𝜖𝑠∕𝜖𝑠,𝑚𝑎𝑥 is the ratio of the volume fraction 𝜖𝑠 to the
llowed maximum value 𝜖𝑠,𝑚𝑎𝑥. A typical feature of the gas–solid flow
n fluidized bed is that the instantaneously coexistence of the dilute
nd dense zones. Generally, in the dilute zone, the collision frequency
etween solid particles is low, leading to a large Kn, and in UGKWP
articles will be sampled and tracked to model the transport behavior of
olid particles; on the contrary, for the dense flow, the high-frequency
nter-particle collisions usually make the solid phase in equilibrium
tate, so in UGKWP the evolution can be fully determined the wave
ormula in Eq. (22), and there is no need for particle sampling. The
olid particles’ behaviors and flow states can be directly modeled in
he UGKWP based on Kn, ensuring the consistence of numerical scheme
ith flow physics. More specifically, the particle free transport and

ollision dynamics in UGKWP is mainly determined by the ratio of 𝜏𝑠
to the numerical time step 𝛥𝑡, and the cell’s Knudsen number is defined
by Kn = 𝜏∕𝛥𝑡.

.4. Hydrodynamic equations in continuum flow regime

When the collision between solid particles are elastic with 𝑒 =
, in the continuum flow regime with 𝑓𝑠 = 𝑔𝑠 + 

(

𝜏𝑠
)

, the hy-
rodynamic equations becomes the Euler equations coupled with the
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momentum and energy exchange terms, which can be obtained based
on the Chapman–Enskog asymptotic analysis for the kinetic equation
Eq. (1) [52],

𝜕
(

𝜖𝑠𝜌𝑠
)

𝜕𝑡
+ ∇𝑥 ⋅

(

𝜖𝑠𝜌𝑠𝐔𝑠
)

= 0,

𝜕
(

𝜖𝑠𝜌𝑠𝐔𝑠
)

𝜕𝑡
+ ∇𝑥 ⋅

(

𝜖𝑠𝜌𝑠𝐔𝑠𝐔𝑠 + 𝑝𝑠I
)

=
𝜖𝑠𝜌𝑠

(

𝐔𝑔 − 𝐔𝑠
)

𝜏𝑠𝑡
− 𝜖𝑠∇𝑥𝑝𝑔 + 𝜖𝑠𝜌𝑠𝐆,

(32)
𝜕
(

𝜖𝑠𝜌𝑠𝐸𝑠
)

𝜕𝑡
+ ∇𝑥 ⋅

((

𝜖𝑠𝜌𝑠𝐸𝑠 + 𝑝𝑠
)

𝐔𝑠
)

=
𝜖𝑠𝜌𝑠𝐔𝑠 ⋅

(

𝐔𝑔 − 𝐔𝑠
)

𝜏𝑠𝑡
−

3𝑝𝑠
𝜏𝑠𝑡

− 𝜖𝑠𝐔𝑠 ⋅ ∇𝑥𝑝𝑔 + 𝜖𝑠𝜌𝑠𝐔𝑠 ⋅𝐆.

With the increasing of solid volume fraction, the inter-particle in-
eraction becomes more complex, and a precise evaluation of solid
hase’s pressure becomes difficult. The pressure term 𝑝𝑠 in Eq. (32)
s the so-called kinetic pressure, which plays the dominant role in the
ilute and moderately dense regime. Besides the kinetic pressure part
𝑠, the collisional pressure 𝑝𝑐 closed by KTGF and the frictional pressure
𝑓 reflecting the effect of enduring inter-particle contact and frictions
re widely accepted and employed in TFM, which shows excellent
erformance in the gas–solid fluidization problems [4,6]. Many studies
o improve the accuracy of pressure/stress terms are conducted [53–
5]. To the authors’ knowledge, however, no such a model has been
roposed to give accurate kinetic/collisional/frictional pressure in a
ulti-scale solver for dilute/moderately dense/dense flow. So in this
aper as the first attempt, the models of 𝑝𝑐 and 𝑝𝑓 widely used in
FM are directly added to the macroscopic variables in the UGKWP
ethod. The collisional pressure 𝑝𝑐 , proposed by Lun et al. [6], is
idely employed in the gas–solid flow in fluidized beds, which is used

n this paper and can be written as,

𝑐 = 2 (1 + 𝑒) 𝜖2𝑠𝜌𝑠𝜃𝑔𝑟, (33)

here 𝑒 is the restitution coefficient, taken as 0.8 in this paper unless
pecial notification, and 𝑔𝑟 is the radial distribution function given by
q. (31). The 𝑝𝑓 accounts for the enduring inter-particle contacts and
rictions, which plays important roles when the solid phase is in the
ear-packing state. Some models of 𝑝𝑓 have been proposed [53,56,57].
n this paper, the correlation proposed by Johnson and Jackson is
mployed [56,58],

𝑓 =

⎧

⎪

⎨

⎪

⎩

0 ,𝜖𝑠 ≤ 𝜖𝑠,𝑐𝑟𝑖𝑡,

0.1𝜖𝑠

(

𝜖𝑠 − 𝜖𝑠,𝑐𝑟𝑖𝑡
)2

(

𝜖𝑠,𝑚𝑎𝑥 − 𝜖𝑠
)5

,𝜖𝑠 > 𝜖𝑠,𝑐𝑟𝑖𝑡,
(34)

where 𝑝𝑓 is with unit of 𝑃𝑎. 𝜖𝑠,𝑐𝑟𝑖𝑡 is the critical volume fraction of
article flow, and it takes a value 0.5 in this paper unless special
otification. In this paper, both 𝑝𝑐 and 𝑝𝑓 are considered to recover
more realistic physics. Finally, the momentum and energy equations
nder continuum limiting regime can be written as,

𝜕
(

𝜖𝑠𝜌𝑠𝐔𝑠
)

𝜕𝑡
+ ∇𝑥 ⋅

(

𝜖𝑠𝜌𝑠𝐔𝑠𝐔𝑠 + 𝑝𝑠I + 𝑝𝑐I + 𝑝𝑓 I
)

=
𝜖𝑠𝜌𝑠

(

𝐔𝑔 − 𝐔𝑠
)

𝜏𝑠𝑡
− 𝜖𝑠∇𝑥𝑝𝑔 + 𝜖𝑠𝜌𝑠𝐆.

(35)

𝜕
(

𝜖𝑠𝜌𝑠𝐸𝑠
)

𝜕𝑡
+ ∇𝑥 ⋅

((

𝜖𝑠𝜌𝑠𝐸𝑠 + 𝑝𝑠 + 𝑝𝑐 + 𝑝𝑓
)

𝐔𝑠
)

𝜖𝑠𝜌𝑠𝐔𝑠 ⋅
(

𝐔𝑔 − 𝐔𝑠
)

𝜏𝑠𝑡
−

3𝑝𝑠
𝜏𝑠𝑡

− 𝜖𝑠𝐔𝑠 ⋅ ∇𝑥𝑝𝑔

+ 𝜖𝑠𝜌𝑠𝐔𝑠 ⋅𝐆. (36)

The terms relevant to collisional pressure, ∇𝑥 ⋅
(

𝑝𝑐I
)

, ∇𝑥 ⋅
(

𝑝𝑐𝐔𝑠
)

,
and frictional pressure, ∇𝑥 ⋅

(

𝑝𝑓 I
)

, ∇𝑥 ⋅
(

𝑝𝑓𝐔𝑠
)

, are solved as source
erms in this paper. To avoid the solid volume fraction 𝜖 exceeding
6

𝑠

its maximum value 𝜖𝑠,𝑚𝑎𝑥, the flux limiting model near the packing
condition, proposed in our previous work, is employed in UGKWP
method for solid phase and is not reiterated here [25].

3. GKS for gas phase

3.1. Governing equation for gas phase

The gas phase is regarded as continuum flow and the governing
equations are the Navier–Stokes equations with source terms reflecting
the inter-phase interaction [7,59],

𝜕
(

𝜌𝑔
)

𝜕𝑡
+ ∇𝑥 ⋅

(

𝜌𝑔𝐔𝑔
)

= 0,

𝜕
(

𝜌𝑔𝐔𝑔
)

𝜕𝑡
+ ∇𝑥 ⋅

(

𝜌𝑔𝐔𝑔𝐔𝑔 + 𝑝𝑔I
)

− 𝜖𝑔∇𝑥 ⋅
(

𝜇𝑔𝝈
)

= 𝑝𝑔∇𝑥𝜖𝑔 −
𝜖𝑠𝜌𝑠

(

𝐔𝑔 − 𝐔𝑠
)

𝜏𝑠𝑡
+ 𝜌𝑔𝐆, (37)

𝜕
(

𝜌𝑔𝐸𝑔
)

𝜕𝑡
+ ∇𝑥 ⋅

((

𝜌𝑔𝐸𝑔 + 𝑝𝑔
)

𝐔𝑔
)

− 𝜖𝑔∇𝑥 ⋅
(

𝜇𝑔𝝈 ⋅ 𝐔𝑔 − 𝜅∇𝑥𝑇𝑔
)

=−𝑝𝑔
𝜕𝜖𝑔
𝜕𝑡

−
𝜖𝑠𝜌𝑠𝐔𝑠 ⋅

(

𝐔𝑔 − 𝐔𝑠
)

𝜏𝑠𝑡
+

3𝑝𝑠
𝜏𝑠𝑡

+ 𝜌𝑔𝐔𝑔 ⋅𝐆,

here 𝜌𝑔 = 𝜖𝑔𝜌𝑔 is the apparent density of gas phase, 𝑝𝑔 = 𝜌𝑔𝑅𝑇𝑔 is the
ressure of gas phase and 𝑝𝑔 = 𝜌𝑔𝑅𝑇𝑔 , the strain rate tensor 𝝈 is

= ∇𝑥𝐔𝑔 +
(

∇𝑥𝐔𝑔
)𝑇 − 2

3
∇𝑥 ⋅ 𝐔𝑔I,

nd

𝑔 = 𝜏𝑔𝑝𝑔 , 𝜅 = 5
2
𝑅𝜏𝑔𝑝𝑔 .

n particular, at the right hand side in Eq. (37), the term 𝑝𝑔∇𝑥𝜖𝑔 is called
‘nozzle" term, and the associated work term −𝑝𝑔

𝜕𝜖𝑔
𝜕𝑡 is called 𝑝𝐷𝑉 work

term, since it is similar to the 𝑝𝐷𝑉 term in the quasi-one-dimensional
gas nozzle flow equations [58]. Unphysical pressure fluctuations might
occurs if the ‘‘nozzle" term and 𝑝𝐷𝑉 term are not solved correctly.
According to [60], Eq. (37) can be written as the following form,

𝜕
(

𝜌𝑔
)

𝜕𝑡
+ ∇𝑥 ⋅

(

𝜌𝑔𝐔𝑔
)

= 𝐶𝜖𝑔 𝜌𝑔 ,

𝜕
(

𝜌𝑔𝐔𝑔
)

𝜕𝑡
+ ∇𝑥 ⋅

(

𝜌𝑔𝐔𝑔𝐔𝑔 + 𝑝𝑔I − 𝜇𝑔𝝈
)

= 𝐶𝜖𝑔 𝜌𝑔𝐔𝑔 −
𝜖𝑠𝜌𝑠

(

𝐔𝑔 − 𝐔𝑠
)

𝜖𝑔𝜏𝑠𝑡
+

𝜌𝑔𝐆
𝜖𝑔

,

(38)
𝜕
(

𝜌𝑔𝐸𝑔
)

𝜕𝑡
+ ∇𝑥 ⋅

((

𝜌𝑔𝐸𝑔 + 𝑝𝑔
)

𝐔𝑔 − 𝜇𝑔𝝈 ⋅ 𝐔𝑔 + 𝜅∇𝑥𝑇𝑔
)

= 𝐶𝜖𝑔

(

𝜌𝑔𝐸𝑔 + 𝑝𝑔
)

−
𝜖𝑠𝜌𝑠𝐔𝑠 ⋅

(

𝐔𝑔 − 𝐔𝑠
)

𝜖𝑔𝜏𝑠𝑡
+

3𝑝𝑠
𝜖𝑔𝜏𝑠𝑡

+
𝜌𝑔𝐔𝑔 ⋅𝐆

𝜖𝑔
,

where, 𝐶𝜖𝑔 = − 1
𝜖𝑔

d𝜖𝑔
d𝑡 with d𝜖𝑔

d𝑡 = 𝜕𝜖𝑔
𝜕𝑡 +𝐔𝑔 ⋅∇𝜖𝑔 , and how to solve 𝐶𝜖𝑔 in

this paper will be introduced later.

3.2. GKS for gas evolution

This subsection introduces the evolution of gas phase in gas-particle
two-phase system. The gas flow is governed by the Navier–Stokes
equations with the inter-phase interaction, and the corresponding GKS
is a limiting scheme of UGKWP in the continuum flow regime. In
general, the evolution of gas phase Eq. (38) can be split into two parts,

𝑔1 ∶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕
(

𝜌𝑔
)

𝜕𝑡 + ∇𝑥 ⋅
(

𝜌𝑔𝐔𝑔
)

= 0,
𝜕
(

𝜌𝑔𝐔𝑔
)

𝜕𝑡 + ∇𝑥 ⋅
(

𝜌𝑔𝐔𝑔𝐔𝑔 + 𝑝𝑔I − 𝜇𝑔𝝈
)

= 0,
𝜕
(

𝜌𝑔𝐸𝑔
)

𝜕𝑡 + ∇𝑥 ⋅
((

𝜌𝑔𝐸𝑔 + 𝑝𝑔
)

𝐔𝑔 − 𝜇𝑔𝝈 ⋅ 𝐔𝑔 + 𝜅∇𝑥𝑇𝑔
)

= 0,
(39)
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Fig. 1. The flow chart of GKS-UGKWP method.
𝑔2 ∶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕
(

𝜌𝑔
)

𝜕𝑡 = 𝐶𝜖𝑔𝜌𝑔 ,
𝜕
(

𝜌𝑔𝐔𝑔
)

𝜕𝑡 = 𝐶𝜖𝑔𝜌𝑔𝐔𝑔 −
𝜖𝑠𝜌𝑠

(

𝐔𝑔−𝐔𝑠
)

𝜖𝑔𝜏𝑠𝑡
+ 𝜌𝑔𝐆

𝜖𝑔
,

𝜕
(

𝜌𝑔𝐸𝑔
)

𝜕𝑡 = 𝐶𝜖𝑔

(

𝜌𝑔𝐸𝑔 + 𝑝𝑔
)

− 𝜖𝑠𝜌𝑠𝐔𝑠⋅
(

𝐔𝑔−𝐔𝑠
)

𝜖𝑔𝜏𝑠𝑡
+ 3𝑝𝑠

𝜖𝑔𝜏𝑠𝑡
+ 𝜌𝑔𝐔𝑔 ⋅𝐆

𝜖𝑔
.

(40)

The GKS is constructed to solve 𝑔1 and 𝑔2 separately. Firstly, the
kinetic equation without acceleration term for gas phase 𝑔1 is,

𝜕𝑓𝑔
𝜕𝑡

+ ∇𝑥 ⋅
(

𝐮𝑓𝑔
)

=
𝑔𝑔 − 𝑓𝑔

𝜏𝑔
, (41)

where 𝐮 is the velocity, 𝜏𝑔 is the relaxation time for gas phase, 𝑓𝑔
is the distribution function of gas phase, and 𝑔𝑔 is the corresponding
equilibrium state (Maxwellian distribution). The local equilibrium state
𝑔𝑔 can be written as,

𝑔𝑔 = 𝜌𝑔

(𝜆𝑔
𝜋

)

𝐾+3
2

𝑒−𝜆𝑔
[

(𝐮−𝐔𝑔 )2+𝝃2
]

,

where 𝜌𝑔 is the density of gas phase, 𝜆𝑔 is determined by gas temper-
ature through 𝜆𝑔 = 𝑚𝑔

2𝑘𝐵𝑇𝑔
, 𝑚𝑔 is the molecular mass, and 𝐔𝑔 is the

macroscopic velocity of gas phase. Here 𝐾 is the internal degree of
freedom with 𝐾 = (5 − 3𝛾)∕(𝛾 − 1) for three-dimensional diatomic gas,
where 𝛾 = 1.4 is the specific heat ratio. The collision term satisfies the
compatibility condition

∫
𝑔𝑔 − 𝑓𝑔

𝜏𝑔
𝝍d𝛯 = 0, (42)

where 𝝍 =
(

1,𝐮, 1
2
(𝐮2 + 𝝃2)

)𝑇
, the internal variables 𝝃2 = 𝜉21 +⋯ + 𝜉2𝐾 ,

and d𝛯 = d𝐮d𝝃.
For Eq. (41), the integral solution of 𝑓 at the cell interface can be

written as,

𝑓 (𝐱, 𝑡,𝐮, 𝝃) = 1
𝜏 ∫

𝑡

0
𝑔(𝐱′, 𝑡′,𝐮, 𝝃)𝑒−(𝑡−𝑡′)∕𝜏d𝑡′ + 𝑒−𝑡∕𝜏𝑓0(𝐱 − 𝐮𝑡,𝐮, 𝝃), (43)

where 𝐱′ = 𝐱 + 𝐮(𝑡′ − 𝑡) is the trajectory of particles, 𝑓0 is the initial
gas distribution function at time 𝑡 = 0, and 𝑔 is the corresponding
equilibrium state. The initial NS gas distribution function 𝑓 in Eq. (43)
7

0

can be constructed as

𝑓0 = 𝑓 𝑟
0 (𝐱,𝐮)𝐻(𝑥) + 𝑓 𝑙

0(𝐱,𝐮)(1 −𝐻(𝑥)), (44)

where 𝐻(𝑥) is the Heaviside function, 𝑓 𝑙
0 and 𝑓 𝑟

0 are the initial gas
distribution functions on the left and right side of one cell interface.
More specifically, the initial gas distribution function 𝑓𝑘

0 , 𝑘 = 𝑙, 𝑟, is
constructed as

𝑓𝑘
0 = 𝑔𝑘

(

1 + 𝐚𝑘 ⋅ 𝐱 − 𝜏(𝐚𝑘 ⋅ 𝐮 + 𝐴𝑘)
)

,

where 𝑔𝑙 and 𝑔𝑟 are the Maxwellian distribution functions on the left
and right hand sides of a cell interface, and they can be determined by
the corresponding conservative variables 𝐖𝑙 and 𝐖𝑟. The coefficients
𝐚𝑙 =

[

𝑎𝑙1, 𝑎
𝑙
2, 𝑎

𝑙
3
]𝑇 , 𝐚𝑟 =

[

𝑎𝑟1, 𝑎
𝑟
2, 𝑎

𝑟
3
]𝑇 , are related to the spatial derivatives

in normal and tangential directions, which can be obtained from the
corresponding derivatives of the initial macroscopic variables,
⟨

𝑎𝑙𝑖
⟩

= 𝜕𝐖𝑙∕𝜕𝑥𝑖,
⟨

𝑎𝑟𝑖
⟩

= 𝜕𝐖𝑟∕𝜕𝑥𝑖,

where 𝑖 = 1, 2, 3, and ⟨...⟩ means the moments of the Maxwellian
distribution functions,

⟨...⟩ = ∫ 𝝍 (...) 𝑔d𝛯.

Based on the Chapman–Enskog expansion, the non-equilibrium part of
the distribution function satisfies,
⟨

𝐚𝑙 ⋅ 𝐮 + 𝐴𝑙⟩ = 0, ⟨𝐚𝑟 ⋅ 𝐮 + 𝐴𝑟
⟩ = 0,

and therefore the coefficients 𝐴𝑙 and 𝐴𝑟 can be fully determined. The
equilibrium state 𝑔 around the cell interface is modeled as,

𝑔 = 𝑔0
(

1 + 𝐚 ⋅ 𝐱 + �̄�𝑡
)

, (45)

where 𝐚 =
[

𝑎1, 𝑎2, 𝑎3
]𝑇 , 𝑔0 is the local equilibrium of the cell interface.

More specifically, 𝑔 can be determined by the compatibility condition,

∫ 𝝍𝑔0d𝛯 = 𝐖0 = ∫𝑢>0
𝝍𝑔𝑙d𝛯 + ∫𝑢<0

𝝍𝑔𝑟d𝛯,

∫ 𝝍𝑎𝑖𝑔0d𝛯 = 𝜕𝐖0∕𝜕𝑥𝑖 = ∫𝑢>0
𝝍𝑎𝑙𝑖𝑔

𝑙d𝛯 + ∫𝑢<0
𝝍𝑎𝑟𝑖𝑔

𝑟d𝛯,

𝑖 = 1, 2, 3, and
⟨

𝐚 ⋅ 𝐮 + �̄�
⟩

= 0.
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Fig. 2. Time-averaged solid volume fraction 𝜖𝑠 with different cell size by GKS-UGKWP in 2D. (a): 𝜖𝑠 distribution versus vertical riser height. (b–d): 𝜖𝑠 distribution versus horizontal
adius at three different heights, 0.078 m, 0.138 m, and 0.198 m.
fter determining all parameters in the initial gas distribution function
0 and the equilibrium state 𝑔, substituting Eqs. (44) and (45) into
q. (43), the time-dependent distribution function 𝑓 (𝐱, 𝑡,𝐮, 𝝃) at a cell
nterface can be expressed as,

(𝐱, 𝑡,𝐮, 𝝃) = 𝑐1𝑔0 + 𝑐2𝐚 ⋅ 𝐮𝑔0 + 𝑐3�̄�𝑔0

+
[

𝑐4𝑔
𝑟 + 𝑐5𝐚𝑟 ⋅ 𝐮𝑔𝑟 + 𝑐6𝐴

𝑟𝑔𝑟
]

(1 −𝐻(𝑢)) (46)
+

[

𝑐4𝑔
𝑙 + 𝑐5𝐚𝑙 ⋅ 𝐮𝑔𝑙 + 𝑐6𝐴

𝑙𝑔𝑙
]

𝐻(𝑢).

with coefficients,

𝑐1 = 1 − 𝑒−𝑡∕𝜏 ,

𝑐2 = (𝑡 + 𝜏) 𝑒−𝑡∕𝜏 − 𝜏,

𝑐3 = 𝑡 − 𝜏 + 𝜏𝑒−𝑡∕𝜏 ,

𝑐4 = 𝑒−𝑡∕𝜏 ,

𝑐5 = − (𝑡 + 𝜏) 𝑒−𝑡∕𝜏 ,

𝑐6 = −𝜏𝑒−𝑡∕𝜏 .

Then, the integrated flux over a time step can be obtained,

𝐅𝑖𝑗 = ∫

𝛥𝑡

0 ∫ 𝐮 ⋅ 𝐧𝑖𝑗𝑓𝑖𝑗 (𝐱, 𝑡,𝐮, 𝝃)𝝍d𝛯d𝑡, (47)

where 𝐧𝑖𝑗 is the normal vector of the cell interface. Then, the cell-
averaged conservative variables of cell 𝑖 can be updated as follows,
8

𝐖𝑛+1
𝑖 = 𝐖𝑛

𝑖 −
1
𝛺𝑖

∑

𝑆𝑖𝑗∈𝜕𝛺𝑖

𝐅𝑖𝑗𝑆𝑖𝑗 , (48)

where 𝛺𝑖 is the volume of cell 𝑖, 𝜕𝛺𝑖 denotes the set of interface of
cell 𝑖, 𝑆𝑖𝑗 is the area of 𝑗th interface of cell 𝑖, 𝐅𝑖𝑗 denotes the projected
macroscopic fluxes in the normal direction, and 𝐖𝑔 =

[

𝜌𝑔 , 𝜌𝑔𝐔𝑔 , 𝜌𝑔𝐸𝑔
]𝑇

are the cell-averaged conservative flow variables for gas phase. Now the
update of the first part 𝑔1 has been finished.

The second part, 𝑔2, is from the inter-phase interaction. The in-
creased macroscopic variables for gas phase in 3D can be calculated as

𝐖𝑛+1
𝑔 = 𝐖𝑔 +𝐐𝛥𝑡, (49)

where

𝐖𝑔 =
⎡

⎢

⎢

⎣

𝜌𝑔
𝜌𝑔𝐔𝑔
𝜌𝑔𝐸𝑔

⎤

⎥

⎥

⎦

,

𝐐 =

⎡

⎢

⎢

⎢

⎢

𝐶𝜖𝑔𝜌𝑔
𝐶𝜖𝑔𝜌𝑔𝐔𝑔 −

𝜖𝑠𝜌𝑠
(

𝐔𝑔−𝐔𝑠
)

𝜖𝑔𝜏𝑠𝑡
+ 𝜌𝑔𝐆

𝜖𝑔

𝐶
(

𝜌 𝐸 + 𝑝
)

− 𝜖𝑠𝜌𝑠𝐔𝑠⋅
(

𝐔𝑔−𝐔𝑠
)

+ 3𝑝𝑠 + 𝜌𝑔𝐔𝑔 ⋅𝐆

⎤

⎥

⎥

⎥

⎥

.

⎣

𝜖𝑔 𝑔 𝑔 𝑔 𝜖𝑔𝜏𝑠𝑡 𝜖𝑔𝜏𝑠𝑡 𝜖𝑔 ⎦
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Fig. 3. Sketch of mesh and cross section used in post-processing: (a) the mesh employed in 3D view, (b) the mesh with 476 cells in one 2D cross section, (c) the horizontal cross
sections at heights 0.078 m, 0.198 m, 0.25 m, 0.50 m and 0.75 m, where the flow distributions will be shown at these cross sections later, and (d) the vertical cross section.
Fig. 4. Time-averaged solid volume fraction 𝜖𝑠 and the comparison with experimental measurement. (a): 𝜖𝑠 distribution versus vertical riser height. (b): 𝜖𝑠 distribution versus
horizontal radius at three different heights, 0.078 m, 0.138 m, and 0.198 m.
Note that the 𝐖𝑔 are the macroscopic variables after updating 𝑔1 as
described before. In 𝑄, the term 𝐶𝜖𝑔𝐖𝑔 is caused by the nozzle term
and 𝑝𝐷𝑉 work term in Eq. (37). Here 𝐶𝜖𝑔 is given by 𝐶𝜖𝑔 = − 1

𝜖𝑔

d𝜖𝑔
d𝑡

with d𝜖𝑔
d𝑡 = 𝜕𝜖𝑔

𝜕𝑡 + 𝐔𝑔 ⋅ ∇𝜖𝑔 . In this paper, 𝜕𝜖𝑔
𝜕𝑡 is evaluated as,

𝜕𝜖𝑔 =
𝜖𝑛+1𝑔 − 𝜖𝑛𝑔 . (50)
9

𝜕𝑡 𝛥𝑡
Here ∇𝜖𝑔 is the cell-averaged volume fraction gradient of gas phase in
the cell. For example, 𝜕𝜖𝑔

𝜕𝑥 is calculated by,

𝜕𝜖𝑔,𝑖
𝜕𝑥

=
𝜖𝑔,𝑖+ 1

2
− 𝜖𝑔,𝑖− 1

2

𝛥𝑥
, (51)

where 𝜖𝑔,𝑖− 1
2

and 𝜖𝑔,𝑖+ 1
2

are volume fractions of gas phase at the left and
right interface of cell 𝑖, which can be obtained from the reconstructed
𝜖 according to 𝜖 + 𝜖 = 1. Note that the gravity 𝐆 of gas phase is
𝑠 𝑠 𝑔
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Fig. 5. Instantaneous snapshots of solid volume fraction 𝜖𝑠 by GKS-UGKWP at different times: (a) 𝑡 = 2.5 s, (b) 𝑡 = 3.5 s, (c) 𝑡 = 4.5 s. 𝜖𝑠 distributions near the surface of cylinder
wall and at the horizontal cross sections at heights 0.078 m, 0.198 m, 0.25 m, 0.50 m and 0.75 m, see Fig. 3(c), are presented.
ignored in this paper. Now the update for the gas phase in one time
step has been finished.

Finally, the algorithm of GKS-UGKWP method for the gas-particle
flow is summarized in Fig. 1.

4. Numerical experiments

In the following cases, the time step of gas phase 𝛥𝑡𝑔 is determined
by,

𝛥𝑡𝑔 = CFL ×

[

𝛥𝑐

𝐔𝑔 +
√

𝛾𝑅𝑇𝑔

]

min

,

where 𝛥𝑐 is the cell size. Similarly, the time step of solid phase 𝛥𝑡𝑠 is
determined by

𝛥𝑡𝑠 = CFL ×

[

𝛥𝑐

𝐔𝑠 + 𝑎
√

𝜃

]

min

,

where 𝑎 is taken as 3, and CFL is taken as 0.5 in this paper. For most
fluidized bed problems, 𝛥𝑡𝑠 is larger than 𝛥𝑡𝑔 , more than one order.
Therefore, in this paper, two time steps 𝛥𝑡𝑠 and 𝛥𝑡𝑔 are used in the
evolution of solid and gas phase, respectively; since 𝛥𝑡𝑠 > 𝛥𝑡𝑔 , the solid
phase will be frozen when the gas phase is evolved by 𝛥𝑡 .
10

𝑔

4.1. Turbulent fluidized bed problem

4.1.1. Case description
The first case is a turbulent fluidized bed problem studied exper-

imentally by Gao et al. [40]. This experiment was conducted on a
fluidized system, including a fluidizing column, an expanded column,
and a recycling system. In this paper, only the fluidizing column is
simulated, as the previous study by CFD model [40]. The computational
domain is a three-dimensional cylinder with diameter 𝐷 = 0.095 m and
height 𝐻 = 1 m. The material density and diameter of solid particles
are 𝜌𝑠 = 2400 kg∕𝑚3 and 𝑑 = 0.139 mm, and the maximum solid volume
fraction 𝜖𝑠,𝑚𝑎𝑥 is 0.63. In this paper, the case with initial bed height
𝐻0 = 0.096 m and inlet gas velocity 𝑈𝑔 = 1.25 m∕s is calculated by GKS-
UGKWP. Initially the equivalent solid mass is uniformly distributed
in the computational domain; in the simulation, the solid particles
are free to leave at the top boundary, and the escaped solid mass is
recirculated to the computational domain through the bottom boundary
to maintain a constant solid inventory in the riser. The gas blows into
the fluidized bed with a uniform vertical velocity 𝑈𝑔 and a pressure
𝛥𝑝 = 𝜖𝑠,𝑚𝑎𝑥

(

𝜌𝑠 − 𝜌𝑔
)

𝐺𝐻0. The non-slip wall and slip wall boundary
condition are employed for gas phase and solid phase respectively for
the riser wall. For the turbulent fluidized bed, the particle distributions
composed of dense bottom, transition middle, and dilute top zone
are commonly observed in the previous numerical and experimental
studies. Therefore, the drag model proposed by Gao et al. [40] in all
aforementioned zones is employed in this turbulent fluidized bed study,
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Fig. 6. Solid volume fraction 𝜖𝑠 represented by wave and discrete particle (colored by vertical velocity) at different times: (a) 𝑡 = 2.5 s, (b) 𝑡 = 3.5 s, (c) 𝑡 = 4.5 s, on the vertical
symmetric cross-section shown in Fig. 3(d). The sub-figures give the individual wave and particle decomposition, and the total 𝜖. The wave composition (𝜖𝑤𝑎𝑣𝑒

𝑠 ) is colored by the
epsilon-legend. The discrete particle composition is colored by the vertical velocity-legend. The total 𝜖𝑠 is also colored by the epsilon-legend. Note that 𝜖𝑠 is exactly the sum of
wave and discrete particle decomposition, such as wave + particle = total.
and the inter-phase momentum transfer coefficient 𝛽 in this drag model
can be written as follows,

𝛽 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0.001
(

17.3
𝑅𝑒𝑠

+ 0.336
) 𝜌𝑔|𝐔𝑔 − 𝐮|

𝑑𝑠
𝜖𝑠𝜖

−1.8
𝑔 , 𝜖𝑔 ≤ 0.94,

3
4
𝐶𝑑

𝜌𝑔𝜖𝑠𝜖𝑔|𝐔𝑔 − 𝐮|
𝑑𝑠

𝜖−2.65𝑔 , 0.94 < 𝜖𝑔 ≤ 0.99,

3
4
𝐶𝑑

𝜌𝑔𝜖𝑔|𝐔𝑔 − 𝐮|
𝑑𝑠

, 0.99 < 𝜖𝑔 ≤ 1.0,

(52)

where 𝑅𝑒𝑠 = 𝜖𝑔|𝐔𝑔 − 𝐮|𝑑𝑠∕𝜈𝑔 is the particle Reynolds number, 𝜈𝑔 is the
kinematic viscosity of gas phase, and 𝐶𝑑 is the 𝑅𝑒𝑠 dependent drag
coefficient,

𝐶𝑑 =

⎧

⎪

⎨

⎪

⎩

24
𝑅𝑒𝑠

(

1 + 0.15𝑅𝑒0.687𝑠
)

, 𝑅𝑒𝑠 ≤ 1000,

0.44, 𝑅𝑒𝑠 > 1000.
(53)

4.1.2. Results
To determine the cell size effect, the two-dimensional simulations

in a computational domain 0.095 m × 1 m with different cell numbers
11
are conducted firstly. Specifically, the uniform rectangular mesh with
cell numbers 15 × 150, 20 × 200, 25 × 200, 30 × 200, and 30 × 300,
are calculated by GKS-UGKWP, respectively. Fig. 2 presents the time-
averaged distribution of solid volume fraction 𝜖𝑠 vertically and radially
at different riser heights, 0.078 m, 0.138 m, and 0.198 m. The results
indicate that except for very coarse mesh 15 × 150, other cases give
very similar prediction. Therefore, the mesh sizes with 24 cells in the
diameter 𝐷 and 200 cells in the riser height 𝐻 are employed for three-
dimensional simulation, as shown in Fig. 3. In particular, the mesh
cells are hexahedrons with a total number of 95200 control volumes,
composed of a horizontal 476 cells with 200 layers in the vertical
direction, where the cells are nearly uniformly distributed in the whole
domain.

The time-averaged solid volume fraction 𝜖𝑠 in three-dimensional
simulation during time 2.0 s ∼ 5.5 s is shown in Fig. 4, and the
experimental measurement results are also presented for comparison.
Overall, the profiles of 𝜖𝑠 along with the riser height and the radius
agree well with the experiment measurement. In the current study, an
accurate drag model is employed to reflect the phase-interaction for
accurate capturing of the profile 𝜖 in the vertical direction. However,
𝑠
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Fig. 7. The instantaneous snapshots of: (a) granular temperature 𝜃, (b) Kn, (c) 𝑒−1∕Kn, at 𝑡 = 4.5 s on the vertical symmetric cross-section shown in Fig. 3(d). The legend of 𝜃 and
Kn are in exponential distribution.

Fig. 8. Sketch of geometry and mesh of Horio riser: (a) geometry of the riser employed in this paper, (b) the mesh from the front view (with a section of 0.3 m in height), (c)
the mesh on each cross-section.
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Fig. 9. Time-averaged volume fraction 𝜖𝑠 and vertical velocity 𝑉𝑠 of solid phase from GKS-UGKWP and experiment measurement: (a) 𝜖𝑠 distribution along the riser height, (b) 𝜖𝑠
distribution along the riser radius at 0.36 m and 1.63 m respectively, (c) 𝑉𝑠 distribution along the riser radius at 0.36 m and 1.63 m respectively.
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as shown in Fig. 4(b), the presented 𝜖𝑠 near the wall by GKS-UGKWP
is lower than the experiment measurement at all three heights, where
more accurate model for the near-wall zone has to be developed. Fig. 5
presents the instantaneous snapshots of solid volume fraction 𝜖𝑠 at
times 2.5 s, 3.5 s, and 4.5 s. The distributions of 𝜖𝑠 at different horizontal
cross-sections, at the locations in Fig. 3(c), are shown. The results show
the solid particle dense region (bottom), transition region (middle), and
dilute region (top). Besides, the radial heterogeneous structure of solid
particles can be found in the horizontal cross-sections. In general, the
solid particles concentrate in the near-wall region. These typical flow
features are also observed in the previous experimental and numerical
simulation [40]. Overall, GKS-UGKWP can give a reasonable prediction
for this fluidized bed problem.

In order to show the coupled evolution of wave and particle in
UGKWP for solid particle flow, the constitution of wave and sampled
particle at different times are shown in Fig. 6. More specifically, the
distributions from the decompositions of wave and discrete particle
are clearly presented by ‘‘wave" and ‘‘particle", of which the sum is
exactly the total 𝜖𝑠. As described before, in UGKWP the weights of
mass distribution is based on the local Kn by (1− exp(−1∕Kn)) for wave
decomposition and exp(−1∕Kn) for discrete particle decomposition. The
13
instantaneous distribution of local Kn and the value of exp(−1∕Kn) at
= 4.5 s, corresponding to Fig. 6(c), are presented in Fig. 7(b) and

ig. 7(c), respectively. Here 𝐾𝑛 is determined by 𝜏𝑠∕𝑡𝑟𝑒𝑓 with 𝜏𝑠 defined
n Eq. (30), which depends on the solid volume fraction 𝜖𝑠, shown
n Fig. 6(c) marked by ‘‘total’’, and granular temperature 𝜃, shown in
ig. 7(a). The characteristic time 𝑡𝑡𝑒𝑓 is the time step of solid phase
𝑡𝑠. The results show that for this turbulent fluidized bed, the solid
hase is generally dilute in the riser’s top region (above 0.3 m in
eight), where the particle free transport is dominant with a large Kn,
nd the particle phase is in a non-equilibrium state driven by the gas
low. On the other hand, in the bottom region the particles are highly
oncentrated with a small Kn, especially in the zones near riser wall. In
his region, the intensive particle–particle collision pushes the particle
istribution to an equilibrium state, and the particle phase evolution is
ainly controlled by the wave component through the hydrodynamic

low variables. As a result, in UGKWP few particles will appear in this
egion, even though abundant solid particles exist here. Besides the
bove limiting cases, in the transition regions with an intermediate
n, such as the layers with height between 0.1 𝑚 ∼ 0.2 m, both wave
nd discrete particle influence the evolution and the solution update
hrough the fluxes in Eq. (22), where both hydrodynamic wave (EE)
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Fig. 10. Instantaneous snapshots of solid volume fraction 𝜖𝑠 on the vertical symmetric plane in a zone with heights from 0 to 0.4 m at different times: (a) 𝑡 = 7.0 s, (b) 𝑡 = 7.1 s,
(c) 𝑡 = 7.2 s, (d) 𝑡 = 7.3 s, (e) 𝑡 = 7.4 s.
and discrete particles transport (EL) have contributions. The modeling
in UGKWP captures the multi-scale nature of solid particle transport
and presents a smooth transition to cover the dense, transition, and
dilute particle regions in a fluidized bed.

4.2. Circulating fluidized bed case

4.2.1. Case description
In the following, the 3D circulating fluidized bed of Horio et al. is

simulated by GKS-UGKWP [50]. This case has been taken as a typical
example to validate the numerical methods for gas-particle two-phase
flow [49,61]. The sketch of the riser is shown in Fig. 8(a), and the
computational domain is a cylinder with a diameter 𝐷 = 0.05 m and
a height 𝐻 = 2.80 m, which is 0.01 m higher than the actual size.
The numerical cells are hexahedron. Fig. 8(b) and Fig. 8(c) present
the mesh from the front (a section of 0.3 m in height) and top view,
respectively. The total number of cells is 238700 with 341 in horizontal
surface and 700 in the vertical direction. The cell size is approximately
𝛥 = 2.26 × 10−3 m horizontally and 𝛥 = 4.00 × 10−3 m vertically. For
the circulating fluidized bed, the semi-empirical model proposed by
Pallares can be used to approximately estimate the wall-layer thickness
𝑡𝑤𝑎𝑙𝑙, which is defined as the distance form the wall to the position of
zero local solid flux in vertical direction [62]. In this case the wall-layer
thickness according to Pallares’ model is 𝑡𝑤𝑎𝑙𝑙 = 0.0648𝐷 = 3.24×10−3 m;
and further the near-wall cell size in this paper is around 𝛥𝑤𝑎𝑙𝑙 =
2.24×10−3 m, smaller than the size of estimated 𝑡𝑤𝑎𝑙𝑙. The solid particles
employed in the experiment have material density 𝜌𝑠 = 1000 kg∕𝑚3

and diameter 𝑑𝑠 = 60 um. In the numerical simulation, initially the
solid particles are uniformly distributed in the whole riser with a solid
volume fraction 𝜖𝑠,0 = 0.086. For the gas phase, the top boundary is set
as the outlet pressure, and the air blows from the bottom into the riser
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with the uniform velocity 𝑈𝑔 = 1.17 m∕s and pressure 𝜖𝑠,0
(

𝜌𝑠 − 𝜌𝑔
)

𝐺𝐻 .
Same as the previous case, solid particles can escape from the riser at
the top boundary, and come back into the riser at the bottom boundary,
ensuring a constant solid material in the riser. At the cylinder surface,
the non-slip wall boundary condition is used for the gas phase; while
for the solid phase, the mixed boundary condition proposed by Johnson
et al. is employed [56].

The MP-PIC method coupled with EMMS drag force was employed
to study this case, and the results showed obvious improvement than
the traditional homogeneous drag model proposed by Gidaspow [49].
In the current study, the EMMS drag force model is used in GKS-
UGKWP method for this circulating fluidized bed riser,

𝛽 = 3
4
𝐶𝑑

𝜌𝑔𝜖𝑠𝜖𝑔|𝐔𝑔 − 𝐮|
𝑑𝑠

𝜖−2.7𝑔 𝐻𝐷, (54)

where 𝑅𝑒𝑠 is the particle Reynolds number, and 𝐶𝑑 is the drag coef-
ficient calculated by Eq. (53). The 𝐻𝐷 is the so-called heterogeneity
index, which is defined as,

𝐻𝐷 = 𝑎
(

𝑅𝑒𝑠 + 𝑏
)𝑐 , (55)

and 𝑎, 𝑏, and 𝑐 are the model parameters dependent on the solid volume
fraction 𝜖𝑠 and with the consideration of local heterogeneous flow
structures. The specific values of model parameters (𝑎, 𝑏, 𝑐) are listed
in Appendix A, and more detailed introduction about EMMS drag force
can refer to the previous work [48,49].

4.2.2. Results
The time-averaged distributions of solid particles and the vertical

solid velocity from the time interval 4.0 s ∼ 7.5 s are shown in Fig. 9.
Fig. 9(a) presents the profile of 𝜖𝑠 along with the riser height, which
covers heterogeneous feature of the solid flow from bottom dense
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Fig. 11. The instantaneous snapshots of the solid volume fraction 𝜖𝑠 of wave decomposition and discrete particles, and Kn at 𝑡 = 7.4 s in different vertical zones: (a) ℎ ∈ [0 m, 0.4 m],
(b) ℎ ∈ [1.4 m, 1.8 m]. The sub-figures shown from left to right give the individual wave and particle decomposition, the total 𝜖, and the Kn. The wave composition (𝜖𝑤𝑎𝑣𝑒

𝑠 ) is
colored by the epsilon-legend. The discrete particle composition is colored by the vertical velocity-legend. The total 𝜖𝑠 is also colored by the epsilon-legend. The Kn is colored by
the Kn-legend. Note that 𝜖𝑠 is exactly the sum of wave and discrete particle decomposition, such as wave + particle = total.
region, across middle transition region, and up to the top dilute region.
This flow feature is similar to that in the turbulent fluidized bed.
However, in the circulating fluidized bed, the transition between dense
and dilute regions is moderate, as shown in Fig. 4(a) and Fig. 9(a).
Although a slight deviation exists at the bottom region (below 0.5 m),
the vertical 𝑆-shaped curve of 𝜖𝑠 is captured by GKS-UGKWP for this
circulating fluidized bed problem, and it agrees with the experimental
measurement very well. It may come from accurate inter-phase interac-
tion EMMS drag model. The time-averaged distribution of solid volume
fraction 𝜖𝑠 and solid vertical velocity 𝑉𝑠 along the riser radius at height
0.36 m and 1.63 m are shown in Fig. 9(b) and Fig. 9(c), respectively. At
both bottom region at height 0.36 m and top region at height 1.63 m,
the solid particles show higher concentration in the near-wall region
than that in the central region. At the same time, the solid particle
vertical velocity shows the upward movement in the central region and
15
downward motion in the near-wall region. This so-called core-annular
flow structure is widely observed in the circulating fluidized bed riser.
The obtained 𝜖𝑠 and 𝑉𝑠 by GKS-UGKWP agree well with the experiment
data, and the deviations deserve further investigation.

Several instantaneous snapshots of solid volume fraction 𝜖𝑠 at a
few times in the interval 7.0𝑠 ∼ 7.4 s are shown in Fig. 10. Here the
results are shown at the bottom region with height below 0.4 m on
the symmetric plane. The particle concentrating clusters and diluting
bubbles form, move, and vanish dynamically, which may introduce
challenges for the hybrid EE and EL numerical methods in identifying
the interface between dilute/dense regions. For UGKWP, the wave and
particle decompositions are automatically distributed according to the
local cell’s Kn, where particle appears in tracking the non-equilibrium
dilute region, and vanishes in the intensive collisional dense region.
At 𝑡 = 7.4 s, the wave and discrete particle decompositions on the
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Fig. 12. Solid volume fraction 𝜖𝑠 of wave decomposition and discrete particles at 𝑡 = 7.4 s at different heights: (a) 0.25 m, (b) 0.36 m, (c) 0.80 m, (d) 1.63 m, (e) 2.00 m. At
each height of (a) ∼ (e), three pictures shown from up to down are: wave, particle, total. wave and total are colored by epsilons-legend, and particle is colored by vertical
velocity-legend. 𝜖𝑠 in total is exactly the sum of wave and particle.
symmetric plane at regions 0 ∼ 0.4 m and 1.4 ∼ 1.8 m, and on the
horizontal cross-sections at heights, 0.25 m, 0.36 m, 0.80 m, 1.63 m,
2.00 m, are presented in Fig. 11 and Fig. 12, respectively. The sampled
particles, shown in Figs. 11 and 12, are colored by their vertical
velocity. Furthermore, the local cell’s Kn, which is calculated by ratio
of the solid particles’ collision time 𝜏𝑠 over the time step of solid phase
𝛥𝑡𝑠, is also shown in Fig. 11, and it determines the percentages of wave
and particle component in the solid particle volume fraction. These
results clearly show the evolution of solid particle phase through hydro-
dynamic wave and discrete particle and smooth transition in different
regions. The typical core-annular structures are clearly shown from the
time-averaged variables in Fig. 9, and the instantaneous snapshots in
Fig. 11, and Fig. 12. Particularly, Fig. 12 presents that, the central
zone is in a low concentration (𝜖𝑠 < 0.1) solid particle region, with
high vertical velocity (𝑉𝑠 > 1.0 m∕s). While in the near-wall zone, the
solid vertical velocity is usually negative, which indicates that the solid
particles move upward in the center region, gather and fall down in
the near-wall region. The simulation results validate the GKS-UGKWP
method for the study of gas–solid circulating fluidized bed problem.

Another interesting observation is that the experiment shows a very
sharp jump in the solid particle vertical velocity around 𝑟∕𝑅 = 0.6
position and height 1.63 m, with a velocity change from 1.8 m∕s to
−0.8 m∕s, as shown in Fig. 9(c). It indicates the highly non-equilibrium
transition layer in the solid phase. In practice, UGKWP is capable
of capturing the strong non-equilibrium physics, such as keeping a
bimodal distribution in the particle velocity distribution function, such
as the verification in the problem of two impinging particle jets [24]. In
addition, the stratified flow structure, shown in Fig. 11(b), is most likely
the flow pattern associated with such a sharp velocity jump observed
in the experiment.
16
5. Conclusion

In this paper, the gas–solid particle two phase flows, i.e., the turbu-
lent fluidized bed and the circulating fluidized bed, are simulated by
a 3D multiscale GKS-UGKWP method with coupled wave propagation
and particle tracking in the evolution. For the turbulent fluidized bed,
the bottom dense/middle transition/top dilute regions coexist and are
dynamically interconvertible. This characteristic flow pattern brings
great challenges for the single scale methods and the hybrid EE/EL
method. To capture such a complex multiscale flow pattern smoothly,
UGKWP has the advantages because of its automatic decomposition of
wave and particle representation according to the local cell’s Knudsen
number Kn. At the top dilute regions with a large Kn, the free transport
of solid particle is dominant and UGKWP will track the evolution of
individual particle. On the other hand, at the bottom region with a
small Kn, the particle is highly concentrated with intensive particle–
particle collision. The velocity distribution function of the solid particle
phase will get close to the Maxwellian distribution. As a result, the
evolution of solid phase in this region is mainly determined by the
wave evolution, i.e, the so-called two fluid model approach for the gas–
solid particle system, even though tremendous amount of real particles
exist. Finally, in the transition region with a variable Kn, both wave
and particle decompositions contribute to the dynamic evolution of
the particle phase. UGKWP will automatically find the most efficient
way through the distribution of wave and particle in order to capture
accurate flow physics and keep efficient numerical computation. For
the circulating fluidized bed of Horio, the particle clusters and dilute
bubbles form, move, and vanish dynamically at the bottom region of
the riser. Furthermore, the core-annular flow structures, such that the
solid particles move upward with a low concentration in the center
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Table 1
Parameters in EMMS drag model.
{

𝑎 = 0.8526 − 0.5846
1+(𝜖𝑔∕0.4325)22.6279

𝑐 = 0
0.4 ≤ 𝜖𝑔 <0.46

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎 = 0.0320 + 0.7399
1+(𝜖𝑔∕0.4912)54.4265

𝑏 = 0.00225 + 772.0074

1+1066.3224(𝜖𝑔−0.3987)
+ 0.02404

1+1053.8948(0.5257−𝜖𝑔)
𝑐 = 0.1705 − 0.1731

1+(𝜖𝑔∕0.5020)37.7091

0.46 ≤ 𝜖𝑔 <0.545

⎧

⎪

⎨

⎪

⎩

𝑎 =
(

2124.956 − 2142.3𝜖𝑔
)−0.4896

𝑏 =
(

0.8223 − 0.1293𝜖𝑔
)13.0310

𝑐 = 𝜖𝑔−1.0013

−0.06633+9.1391(𝜖𝑔−1.0013)+6.9231(𝜖𝑔−1.0013)2
0.545 ≤ 𝜖𝑔 <0.99

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎 = 0.4243 + 0.8800
1+𝑒𝑥𝑝(−(𝜖𝑔−0.9942)∕0.00218)

(

1 − 1
1+𝑒𝑥𝑝(−(𝜖𝑔−0.9989)∕0.00003)

)

𝑏 = 0.01661 + 0.2436𝑒𝑥𝑝
(

−0.5
(

𝜖𝑔−0.9985
0.00191

)2
)

𝑐 = 0.0825 − 0.0574𝑒𝑥𝑝
(

−0.5
(

𝜖𝑔−0.9979
0.00703

)2
)

0.99 ≤ 𝜖𝑔 <0.9997

{

𝑎 = 1
𝑐 = 0

0.9997 ≤ 𝜖𝑔 ≤ 1.0
region and fall down with a high volume fraction near the wall, are well
predicted by the time-averaged and instantaneous simulation results.
The solutions of both turbulent fluidized bed and circulating fluidized
bed agree well with the experimental measurement. The GKS-UGKWP
will become a reliable tool to capture multi-scale flow physics in the
fluidized bed simulation with its further development.
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Appendix. Parameters in EMMS drag model

The specific values of model parameters (𝑎, 𝑏, 𝑐) to calculate the het-
erogeneity index 𝐻𝐷 in EMMS drag model are listed as below [48,49],
see Table 1.
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