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Abstract. A well-balanced scheme for an isolated gravitational hydrodynamic system is defined
as a scheme which exactly preserves an isothermal hydrostatic solution. In this paper, a well-balanced
gas-kinetic symplecticity-preserving BGK (SP-BGK) scheme is developed. In the construction of the
scheme, the gravitational potential is modeled as a piecewise constant function inside each cell with
a potential jump at the cell interface. In the process of designing such a scheme, the energy con-
servation, Liouville’s theorem, and the symplecticity-preserving property of a Hamiltonian flow play
important roles in the description of particles penetration and reflection from a potential barrier.
More importantly, the use of the symplecticity-preserving property is crucial in the evaluation of
the moments of a postinteraction gas distribution function with a potential jump in terms of the
moments of preinteraction distribution function. The SP-BGK method is the first well-balanced
shock-capturing gas-kinetic scheme for the Navier–Stokes equation. A few theorems are proved for
this scheme, which include the necessity to use an exact Maxwellian for keeping the isothermal
hydrostatic state, the total mass and energy (the sum of kinetic, thermal, and gravitational ones)
conservation, and the well-balanced property of the SP-BGK scheme to keep an isothermal hydro-
static state during the process of particle transport and collision. Many numerical examples are
presented to validate the SP-BGK scheme.
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1. Introduction. Generally, macroscopic flow equations with source terms can
be written as

(1) �Ut +∇ · F (�U) = S,

where �U is the vector of conservative flow variables with corresponding fluxes F (�U),
and S is the source term. There is an intrinsic steady state solution due to the balance
between the flux gradient and source term of equations (1), i.e.,

(2) ∇ · F (�U) = S.

The above steady state solution depends on the expression and the boundary condition
of the system. The scheme which could keep the above steady state solution may not
be a well-balanced scheme, because a well-balanced scheme should be one which drives
an isolated gravitational system to an isothermal hydrostatic solution and keeps the
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solution forever. The designing principle of a well-balanced scheme is not to impose
condition (2) directly. It should be an accurate unsteady state flow solver, but it settles
the system down to the isothermal hydrostatic solution. For an isolated gravitational
system, the only hydrostatic solution should be an isothermal one, which can be
explained microscopically. The distribution function of an isolated system under a
gravitational field will finally become a steady equilibrium one. Since the collision
term will not affect the equilibrium state, the Boltzmann equation goes to

(3) �u · ∇f −∇φ · ∇�uf = 0,

where f is the gas distribution function, �u is the particle velocity, φ is the external
gravitational potential, and ∇f and ∇�uf are the gradients of f with respect to �x and
�u, respectively. The general solution of (3) is

(4) f(�x, �u) = F
(
φ+

1

2
�u2
)
,

where F is an arbitrary function and �u2 is the square of the magnitude of �u. This
equilibrium solution clearly shows that the gas of the whole system has the same
temperature, because the temperature becomes a constant multiplier for the function
φ+ 1

2�u
2.

Macroscopically, it may directly use (2) to judge a scheme to be a well-balanced
one or not. However, for the gas dynamic equations, this condition is not sufficient. A
well-known steady state solution from (2) is the solution with the barotropic equation
of state p = p(ρ). For example, the barotropic equation is used to construct a stellar
interior solution all the time. However, a scheme with the capability to keep the
barotropic solution may not be a well-balanced scheme. The barotropic relation used
inside a stellar interior is an approximation. The benefit of this simplification is the
absence of the energy equation. In order to sustain the barotropic relationship, the
energy cannot be conserved at all, so that there needs to be a continuous energy sup-
ply from the solar nuclear energy with convection. But a well-balanced scheme relates
to capturing the solution of an isolated system with the full consideration of mass,
momentum, and energy. If any fluid element in an isolated system undergoes motion
with a barotropic relationship, such as an adiabatic expansion or contraction with
p = Cργ , the fluid element will have a different temperature (due to p = ρRT ) from
the surrounding gas in the new position. As a result, heat conduction takes effect. Ac-
cording to the second law of thermodynamics, the entropy increases inside an isolated
system due to heat conduction, and the system will eventually evolve into an isother-
mal solution with the maximum amount of entropy for the system. Therefore, for an
isolated system the isothermal solution is the only solution which can exist forever.

In order to capture the physical solution of a slowly evolving gravitational hy-
drodynamic system, the numerical scheme needs to be an accurate shock-capturing
scheme as well for the description of general time-dependent gas evolution, and to
have a well-balanced property. A well-balanced scheme requires a precise balance
between the transport and gravitational source effect in the Boltzmann equation. It
is certainly true that the schemes in [5, 14, 2] are well-balanced ones. But the suc-
cesses in these schemes are mainly based on the reconstruction technique, where the
well-balanced solution is directly used from the starting point in order to explicitly
enforce the balance (2) of the Euler equations with gravitational source term even
in nonhydrostatic situations. For an arbitrary initial condition for an isolated grav-
itational system, these schemes cannot capture the accurate time evolution of the
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system and settle the system to a final correct hydrostatic isothermal solution. For
a time-dependent solution, (2) cannot be satisfied and used directly. In [6, 3], the
well-balanced property of Roe scheme is imposed through the connection between
discontinuous states. For some hydrodynamic equations, e.g., the Navier–Stokes (NS)
equations, it is very hard to find such a path to connect two different states. By using
the approximate path, these schemes cannot be exactly well balanced.

In the past few years, a gas-kinetic BGK scheme has been successfully devel-
oped for compressible Euler and Navier–Stokes equations without gravitational field
[11, 12]. The main part of the BGK scheme is to find a gas distribution function f
at a cell interface. Physically, the gravitational forcing effect will change the particle
trajectory. Theoretically, it shouldn’t be difficult for the gas-kinetic scheme to include
the gravitational effect in the modification of the time evolution of a gas distribution
function through the particle acceleration and deceleration. Along this line, a gas-
kinetic scheme for a gravitational system was developed in [10]. This scheme much
improves the solution in comparison with the operator splitting method. However,
mathematically, the use of a piecewise linear gravitational potential inside each cell
makes the exact solution complicated, and a simplification of the particle trajectory
in [10] makes the scheme different from a well-balanced one. So, the novelty of this
paper is to design a well-balanced scheme with the consideration of particle transport
and collision across a potential barrier for hydrodynamic equations under a piecewise
constant gravitational potential field. At the same time, the new scheme should still
be accurate in capturing any time-dependent gas evolution solution. Dynamically, in a
well-balanced situation, the balance between the transport and external forcing effect
in the particle movement is very delicate. As shown in this paper, the use of an exact
Maxwellian distribution function becomes necessary in designing such a scheme. Also,
the use of the symplecticity property of a Hamiltonian flow and Liouville’s theorem
are important in the correct description of particle penetration, reflection, and defor-
mation across a potential barrier. In a previous paper [13], following the approach of
Perthame and Simeoni for the shallow water equations [7], a well-balanced kinetic flux
vector-splitting scheme for gravitational Euler equations was developed. However, in
[13], only a few low-order moments of a gas distribution function are needed, and
these moments can be intuitively guessed. In order to extend the above scheme to
high-order accuracy and to solve the NS equations, much more high-order moments of
a gas distribution function have to be evaluated for a postinteraction gas distribution
function with a potential barrier. In order to systematically evaluate their moments,
the use of the symplecticity property of a Hamiltonian particle system is necessary.

The paper is organized as follows. Section 2 gives a brief review of a previous
BGK scheme without external forcing field. In section 3, the basic physical principles
about the particle interaction with a potential barrier are presented. Section 4 shows
the construction of a symplecticity-preserving BGK (SP-BGK) scheme for the grav-
itational gas dynamic system using the particle transport mechanism derived in the
previous section. Section 5 is about the theoretical analysis of the schemes, such as
the necessity of using an exact Maxwellian and the well-balanced property. Section 6
shows the numerical tests. The last section is the conclusion.

2. A review of the gas-kinetic BGK-NS scheme without external forc-
ing field. The BGK equation (see [1]) without external forcing field in two dimensions
is

(5) ft + �u · ∇f =
g − f

τ
,
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where f is the gas distribution function and g is the equilibrium state approached
by f , ∇f is the gradient of f with respect to �x, �x = (x, y), and �u = (u, v) is the
particle velocity. The particle collision time τ is related to the viscosity and heat
conduction coefficients, i.e., τ = μ/p, where μ is the dynamic viscosity coefficient and
p is the pressure. The relation between the macroscopic quantities, mass density ρ,
momentum density (ρU, ρV ), energy density ρE, and the distribution function f is

(6) W =

∫∫∫
ψfdudvdξ,

where W = (ρ, ρU, ρV, ρE)T , (U, V ) is the macroscopic velocity of the fluid,

ψ = (ψ1, ψ2, ψ3, ψ4)
T =

(
1, u, v,

1

2
(u2 + v2 + ξ2)

)T

,

dξ = dξ1dξ2...dξK , and K is the number of degrees of internal freedom, i.e., K =
(4− 2γ)/(γ− 1) for two-dimensional (2-D) flow and γ is the specific heat ratio. Since
mass, momentum, and energy are conserved during particle collisions, f and g satisfy
the conservation constraint,

(7)

∫∫∫
(g − f)ψαdudvdξ = 0, α = 1, 2, 3, 4,

at any point in space and time. The integral solution of (5) is

(8) f(�x, t, �u, ξ) =
1

τ

∫ t

0

g(�x′, t′, �u, ξ)e−(t−t′)/τdt′ + e−t/τf0(�x− �ut, �u, ξ),

where �x′ = �x−�u(t− t′) is the particle trajectory. The solution f in (8) solely depends
on the modeling of f0 and g.

For a finite volume scheme, the fluxes across a cell interface need to be evaluated
in order to update the cell-average conservative flow variables. In the BGK scheme,
the fluxes are defined by

(9) F =

∫∫∫
uψfdudvdξ,

where F = (Fρ, FρU , FρV , FρE)
T , which depends on the gas distribution function f in

(8) at the cell interface. Locally, around the cell interface, �xj+1/2 = (xj+1/2, yi), with
the assumption that the x-direction is the normal direction and the y-direction is the
tangential direction, a solution in this local coordinate can be obtained.

By using the MUSCL-type limiter, a discontinuous reconstruction of the macro-
scopic flow variables can be obtained around the cell interface (see Figure 1). The
initial gas distribution function f0 in (8) on both sides of a cell interface can be
constructed as

(10)

f l
0(�x, �u, ξ) = gl0(1 + al(x − xj+1/2) + bl(y − yi)− τ(alu+ blv +Al)), x ≤ xj+1/2,

f r
0 (�x, �u, ξ) = gr0(1 + ar(x− xj+1/2) + br(y − yi)− τ(aru+ brv +Ar)), x > xj+1/2,

where the Chapman–Enskog expansion up to the NS order has been used in the
above initial reconstruction. Here gl0 and gr0 are the corresponding Maxwellians
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Fig. 1. Reconstruction of the conservative variables at the cell interface.

Fig. 2. The modeling of the initial and equilibrium distribution functions around the cell
interface for the BGK scheme without gravity (left) and the SP-BGK scheme with a potential jump
(right).

to W l = (ρl, (ρU)l, (ρV )l, (ρE)l)
T and W r = (ρr, (ρU)r, (ρV )r, (ρE)r)

T on both
sides of the interface. The Maxwellian distribution function corresponding to W =
(ρ, (ρU), (ρV ), (ρE))T has the form

(11) g = ρ

(
λ

π

)K+2
2

eλ((u−U)2+(v−V )2+ξ2),

where λ is equal to m/2kT , m is the molecular mass, k is the Boltzmann constant,
and T is the temperature. The equilibrium distribution functions around the cell
interface can be modeled as

(12)

gl(�x, t, �u, ξ) = glj+1/2(1 + al(x − xj+1/2) + b
l
(y − yi) +A

l
t), x ≤ xj+1/2,

gr(�x, t, �u, ξ) = grj+1/2(1 + ar(x− xj+1/2) + b
r
(y − yi) +A

r
t), x > xj+1/2.

In the case without external forcing term, glj+1/2 and grj+1/2 in the above equation

are the same, i.e., glj+1/2 = grj+1/2 (see Figure 2), which can be obtained using the

conservation constraint (7) at �x = �xj+1/2 and t→ 0,

(13)

∫∫∫
glj+1/2ψdudvdξ =

∫∫∫
grj+1/2ψdudvdξ =Wj+1/2

=

∫∫∫
u>0

f l
0(�xj+1/2, �u, ξ)ψdudvdξ +

∫∫∫
u<0

f r
0 (�xj+1/2, �u, ξ)ψdudvdξ.

Therefore, at the cell interface the final distribution function can be fully determined
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using the integral solution (8). The final distribution function can be written as

(14) f(�xj+1/2, t, �u, ξ) =

⎧⎨
⎩

f l(�xj+1/2, t, �u, ξ), u ≥ 0,

f r(�xj+1/2, t, �u, ξ), u < 0,

where f l,r(�xj+1/2, t, �u, ξ) are the integral solutions in (8) at (�xj+1/2, t) with respect

to gl,r and f l,r
0 . The distribution function (14) is used to evaluate the fluxes

(15)

F l
j+1/2(t) = F r

j+1/2(t) =

∫∫∫
u>0

uf l(�xj+1/2, t, �u, ξ)ψdudvdξ

+

∫∫∫
u<0

uf r(�xj+1/2, t, �u, ξ)ψdudvdξ.

The update of the cell-average conservative variables becomes

Wn+1
j =Wn

j +

∫ tn+1

tn

{
1

Δx

[
F r
j−1/2(t)− F l

j+1/2(t)
]

(16)

+
1

Δy

[
F r
i−1/2(t)− F l

i+1/2(t)
]}

dt,

where F l
j−1/2(t) . . . F

r
i+1/2(t) are the fluxes at the center of the cell interfaces.

The definitions and constructions of all parameters related to the spatial and
temporal slopes, such as a, b, and A, can be found in [11] and [12].

In summary, at the cell interface �xj+1/2 we can construct the equilibrium distri-

bution functions glj+1/2 and grj+1/2 from initial distribution f l
0 and f r

0 . Also, we can

find fluxes F l
j+1/2(t) and F

r
j+1/2(t) from the integral solution f l and f r. Without an

external forcing field, all the particles running into the cell interface can freely cross it.
Therefore, the equilibrium states and fluxes at the interface have unique values, i.e.,
glj+1/2 = grj+1/2 and F l

j+1/2(t) = F r
j+1/2(t) (see Figure 2 (left)). In the next section,

we will discuss how the potential jump affects the transport of the particles at the cell
interface, such as the penetration and reflection from a potential barrier. As a result,
the potential jump at the cell interface imposes glj+1/2 �= grj+1/2 (see Figure 2 (right))

and correspondingly F l
j+1/2(t) �= F r

j+1/2(t).

3. Particle transport mechanism across a potential barrier. In this pa-
per, the gravitational potential φ is modeled as a piecewise constant function inside
each cell. With φj in the jth cell and φj+1 in the (j+1)th cell, there exists a potential
jump or barrier at the cell interface. The associated physical impact of the potential
jump on a gas distribution function next to it is the reflection or penetration of the
particles. For a numerical cell j with x ∈ [xj−1/2, xj+1/2], the fluxes at the two ends

of this control volume needs to be evaluated, i.e., F r
j−1/2(t) and F l

j+1/2(t). At any
end of a control volume, the particles of the corresponding distribution function are
coming from different regions, i.e., the same cell or the neighboring cell after the in-
teraction with a potential jump. Also,the reflection and penetration process happens
instantaneously at the interface since the distribution function is defined adjacent the
potential barrier. Therefore, once a time-dependent gas distribution function next to
the potential barrier is given, the postinteraction distribution function with poten-
tial barrier effect can be evaluated simultaneously. The potential barrier affects only
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normal velocity of the particles and its moments, so in this section we consider only
distribution functions with one-dimensional (1-D) velocity. The results obtained in
this section will be used for the construction of the symplecticity-preserving scheme.

For a gas distribution function f(u) next to a potential barrier, the interaction
with the potential jump changes the particle velocity from u to u′, and the distribution
function becomes f(u′). We use the following three physical principles to find the
relation between the velocity moments of f(u′) and f(u).

(a) Hamiltonian preserving property: the Hamiltonian function H of a particle
remains constant, i.e.,

(17) H =
1

2
u2 + φ(x).

This is the energy conservation for a particle movement under a conservative potential
field. Since we consider only the interaction of a particle with a potential barrier at
an instant of time, there is no collision between particles. Therefore, the energy
conservation for individual particle is precisely conserved,

(18)
1

2
u2 + φ =

1

2
(u′)2 + φ′,

from which the relation between u and u′ can be obtained.
(b) Liouville’s theorem: the probability density of a particle in phase space keeps

a constant along its trajectory,

(19) f(u′) = f(u).

In other words, the particle is not lost or created during its impact with the potential
barrier.

(c) The symplecticity-preserving property: a Hamiltonian phase flow has

(20)

∫∫
D′
dx′du′ =

∫∫
D

dxdu,

where D′ and D are the phase volume of particle movement.
During the impact of the particles with the potential barrier, we specially chose

D = (u1, u2)× (ut1, ut2); then D = (u′1, u′2)× (u′t1, u′t2), and (20) changes to

(21)

∫ u′
2

u′
1

u′du′ =
∫ u2

u1

udu.

This relationship is the most important one to be used in the construction of the
connection between moments of f(u′) and f(u). Therefore, the scheme presented in
this paper is called a symplecticity-preserving scheme.

With the above three physical principles, we can derive the relationship between
the nth-order velocity moments of f(u′) and that of f(u). From (19) and (21), we
first have

(22)

∫ u′
2

u′
1

f(u′)u′du′ =
∫ u2

u1

f(u)udu.

Since (18) gives u′ as a function of u, i.e., u′ = u′(u), a general formulation can be
obtained,

(23) nth-order u moment =

∫ u′
2

u′
1

f(u′)(u′)ndu′ =
∫ u2

u1

f(u)(u′(u))n−1udu,
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which connects the moments of the distribution functions before and after impacting
with a potential barrier at an instant of time.

4. The symplecticity-preserving BGK (SP-BGK) scheme.

4.1. The gas-kinetic SP-BGK scheme. With the adaptation of piecewise
constant gravitational potential inside each cell, i.e., φj inside the jth cell, there is a
potential jump at the cell interface �xj+1/2. The distribution function f still satisfies
(5) inside each cell due to the constant potential. Therefore, a similar framework
used in the construction of the BGK-NS scheme can be extended here to design the
symplecticity-preserving BGK (SP-BGK) scheme. The initial distribution function is
the same as (10). After getting the equilibrium states from the initial distribution
function, the integral solution (14) is also valid before considering the effect of the
potential jump. But now we need to modify the distribution functions (10) and
(14) in order to implement the effect of the potential jump on the equilibrium states
construction and the final fluxes evaluation. Due to the potential jump at the cell
interface, the construction of equilibrium state at different side of a cell interface needs
to take into account all particle collisions from the same cell and from neighboring
cells. The particle transport mechanism presented in the last section has to be used
to evaluate the moments for the particle from different regions separately.

The potential jump gives a critical speed Uc =
√
2|φj − φj+1|, which provides

a threshold for the particle movement. Because of the potential jump, not all the
particles running into the cell interface could go through it freely. Some may be
reflected due to lack of enough kinetic energy to overcome the potential barrier (see
Figure 3). For these particles passing through the cell interface, their momentum and
energy are changed due to particle acceleration during the transport process.

Fig. 3. The particle’s movement at the interface with a potential jump φj < φj+1.

Without losing generality, we discuss only the case for φj < φj+1 in this subsec-
tion. Similarly, all the formulae for the case φj > φj+1 can be obtained. Let’s assume
a general gas distribution at a cell interface before the interaction with the potential
jump is

(24) f(�xj+1/2, t, �u, ξ) =

⎧⎨
⎩

fj(�xj+1/2, t, �u, ξ), u ≥ 0,

fj+1(�xj+1/2, t, �u, ξ), u < 0.

After interaction with the potential jump, the above distribution functions change
to f l

j+1/2(t, �u, ξ) and f
r
j+1/2(t, �u, ξ) on the left- and right-hand sides of the cell inter-

face, respectively,

(25) f l
j+1/2(t, �u, ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fj(�xj+1/2, t, �u, ξ), u > 0,

f̃j(�xj+1/2, t, �u, ξ), 0 ≥ u > −Uc,

f j+1(�xj+1/2, t, �u, ξ), u ≤ −Uc,
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and

(26) f r
j+1/2(t, �u, ξ) =

⎧⎨
⎩

f j(�xj+1/2, t, �u, ξ), u ≥ 0,

fj+1(�xj+1/2, t, �u, ξ), u < 0.

The definition of the above distribution functions is from the following consideration
(see Figure 3). Because of the potential jump, it affects only the normal particle
velocity, u. In (25), f̃j is the distribution function of the reflected particle in the
jth cell with the original distribution function fj and positive particle velocity less
than Uc. f j+1 is the distribution function of the particle in the jth cell coming from
the (j + 1)th cell with the original distribution function fj+1 and negative particle
velocity. The particle has been accelerated in the negative normal direction after
passing through the cell interface. Also, f j is the distribution function of the particle
in the (j + 1)th cell coming from the jth cell with the original distribution function
fj and positive particle velocity higher than Uc. The particle gets decelerated in the
positive normal direction after passing through the cell interface. Therefore, the effect
of the potential jump redistributes the original distribution function on both sides,
but the moments of the postinteraction distribution function and the original ones
are related through the physical principles introduced in section 3.

Due to the gravitational jump, the main difference between the SP-BGK and
BGK-NS schemes is the evaluation of the equilibrium states on both sides of a cell
interface, where the corresponding macroscopic variables have to be evaluated based
on the moments of distribution functions, which come from different regions. First,
the initial gas distribution function f0, i.e., fj(�xj+1/2, t, �u, ξ) = f l

0(�xj+1/2 − �ut, �u, ξ)
and fj+1(�xj+1/2, t, �u, ξ) = f r

0 (�xj+1/2 − �ut, �u, ξ), changes according to (25) and (26),
from which two sets of conservative flow variables on different sides of the cell interface
can be obtained,

(27)

W l
j+1/2 =

∫∫∫ ∞

−∞
f l
j+1/2(t = 0, �u, ξ)ψdudvξ

=

∫∫∫ +∞

0

fj(�xj+1/2, t = 0, �u, ξ)ψdu +

∫∫∫ 0

−Uc

f̃j(�xj+1/2, t = 0, �u, ξ)ψdudvdξ

+

∫∫∫ −Uc

−∞
f j+1(�xj+1/2, t = 0, �u, ξ)ψdudvdξ

and

(28)

W r
j+1/2 =

∫∫∫ ∞

−∞
f r
j+1/2(t = 0, �u, ξ)ψdudvξ

=

∫∫∫ +∞

0

f j(�xj+1/2, t = 0, �u, ξ)ψdudvdξ +

∫∫∫ 0

−∞
fj+1(�xj+1/2, t = 0, �u, ξ)ψdudvdξ,

from which two Maxwellians glj+1/2 and grj+1/2 in the equilibrium states (12) can be
fully determined. Then, following the method used in the development of the BGK-
NS scheme [12], the integral gas distributions on the left- and right-hand sides of a cell
interface, i.e., f l and f r in (14), can be obtained. Then, choosing the integral solutions
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as the original distribution functions, i.e., fj(�xj+1/2, t, �u, ξ) = f l(�xj+1/2, t, �u, ξ) and
fj+1(�xj+1/2, t, �u, ξ) = f r(�xj+1/2, t, �u, ξ), and considering their interactions with the
potential jump, these distribution functions are modified according to (25) and (26),
from which the corresponding fluxes at different sides of the cell interface can be
determined:

(29)

F l
j+1/2(t) =

∫∫∫ +∞

−∞
uf l

j+1/2(t, �u, ξ)ψdudvdξ

=

∫∫∫ +∞

0

ufj(�xj+1/2, t, �u, ξ)ψdu +

∫∫ 0

−Uc

uf̃j(�xj+1/2, t, �u, ξ)ψdudvdξ

+

∫∫∫ −Uc

−∞
uf j+1(�xj+1/2, t, �u, ξ)ψdudvdξ

and

(30)

F r
j+1/2(t) =

∫∫∫ +∞

−∞
uf r

j+1/2(t, �u, ξ)ψdudvdξ

=

∫∫∫ +∞

0

uf j(�xj+1/2, t, �u, ξ)ψdudvdξ +

∫∫∫ 0

−∞
ufj+1(�xj+1/2, t, �u, ξ)ψdudvdξ.

In general, glj+1/2 �= grj+1/2 and F l
j+1/2 �= F r

j+1/2. Finally, we can use (16) to update
the cell-average conservative variables.

In the above formulae (27), (28), (29), and (30), we need to find the nth-order
velocity moments of the modified distribution functions, f̃j , f j+1, and f j , in terms of
the moments of the original distribution functions fj , fj+1, and fj, respectively, by
(23).

(a) The nth-order normal velocity moments of f̃j . Recall that f̃j is the distribution
function of the reflected particle in the jth cell. Assume that the normal particle
velocity is u before the reflection, and the distribution of the particle before reflection
is fj(u) with 0 < u < Uc. After its reflection, its velocity becomes u′ and u′ = −u,
and (23) gives

(31)

∫ 0

−Uc

f̃j(u
′)(u′)ndu′ =

∫ 0

Uc

fj(u)u(−u)n−1du =

∫ Uc

0

fj(u)(−1)nundu.

(b) The nth-order normal velocity moments of f j+1. f j+1 is the distribution
function of the particle in the jth cell coming from the (j +1)th cell. Its distribution
function before crossing the potential jump is fj+1 with normal velocity u < 0. After
passing through the interface, the normal velocity changes from u to u′, where u and
u′ are related by the Hamiltonian preserving property, i.e.,

1

2
u2 + φj+1 =

1

2
(u′)2 + φj .

So, with u′ = −√u2 + U2
c , (23) gives

(32)

∫ −Uc

−∞
f j+1(u

′)(u′)ndu′ =
∫ 0

−∞
fj+1(u)(−1)n−1u(u2 + U2

c )
(n−1)/2du.
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(c) The nth-order normal velocity moments of f j . f j is the distribution function
of the particle in the (j +1)th cell coming from the jth cell. Its distribution function
before passing through the potential jump is fj with normal velocity u > Uc. After
passing through the cell interface, the normal velocity changes to u′. The relation
between u and u′ is

1

2
u2 + φj =

1

2
(u′)2 + φj+1.

So, with u′ =
√
(u)2 − U2

c , (23) becomes

(33)

∫ +∞

0

f j(u
′)(u′)ndu =

∫ +∞

Uc

fj(u)u(u
2 − U2

c )
(n−1)/2du.

Based on the above moment evaluations, we can explicitly evaluate the formulae
for W l

j+1/2, W
r
j+1/2, F

l
j+1/2(t), and F r

j+1/2(t) by (27)–(33) for the case φj < φj+1.
The formulae for the case φj > φj+1 can be found similarly. All the formulae are
given in the appendix for the 2-D case.

4.2. Limiting cases.
(a) The 1st-order SP-BGK scheme. Removing all slope terms in (10) and (12),

the SP-BGK scheme becomes a 1st-order scheme. The distribution function in (8)
becomes

(34) f(�xj+1/2, t, �u, ξ) =

⎧⎨
⎩

(1− e−t/τ )glj+1/2 + e−t/τgl0, u ≥ 0,

(1− e−t/τ )grj+1/2 + e−t/τgr0 , u < 0,

which is called the 1st-order SP-BGK scheme.
(b) The SP-KFVS scheme. When the collision time τ goes to +∞, the distribution

function in (14) becomes

(35)

f(�xj+1/2, t, �u, ξ) =

⎧⎨
⎩

f l(�xj+1/2, t, �u, ξ), u ≥ 0,

f r(�xj+1/2, t, �u, ξ), u < 0,
=

⎧⎨
⎩

f l
0(�xj+1/2 − �ut), u ≥ 0,

f r
0 (�xj+1/2 − �ut), u < 0.

The above solution solely comes from free transport, and there is no contribution of
the equilibrium states g in the integral solution f . It is equivalent to solving

ft + �u · ∇f = 0

directly when the initial distribution function is modeled as (10). In other words, we
don’t consider particle collision here, and need not model the equilibrium distribution
function g in (12). This is exactly the same scheme introduced in [13], which is called
the symplecticity-preserving kinetic flux vector splitting (SP-KFVS) scheme. It is
actually a limiting case of the SP-BGK scheme.

5. Theoretical analysis. For simplicity, we prove all the theorems in the 1-D
case. But all the conclusions still hold for multiple dimensions as well, because the
potential jump exists only in the normal direction when we consider a 2-D cell inter-
face. The particle velocity in other directions doesn’t affect the dynamical property in
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the normal direction. When V = 0 in macroscopic velocity �U = (U, V ), the formulae
in the appendix become the formulae for the 1-D case.

In the current scheme, the updated flow variables inside each cell are the mass,
momentum, and energy densities (kinetic + thermal ones). The gravitational energy
is not explicitly included. However, for an isolated gravitational system, the total
energy (kinetic + thermal + gravitational ones) conservation is a necessary condition
in order to get a correct physical solution. In the following theorem, we are first going
to prove the conservation of total energy.

Theorem 5.1. The SP-KFVS and SP-BGK schemes are mass and total energy
conservative schemes.

Proof. The only difference between the SP-KFVS and SP-BGK schemes is that
they have different original distribution functions fj(u) and fj+1(u). However, what-
ever fj(u) and fj+1(u) are, the mass and total energy are updated according to the
fluxes calculated by (70) and (71) or (72) and (73) in the appendix. The concept of
conservation of a variable means that the change of that variable in any fixed domain
depends only on the fluxes across the interfaces of that control volume. We assume the
control volume consists of cells between the cell-index K1 and K2, where K1 < K2.
Then by direct calculation, we have the following.

Mass conservation:

(36)

K2∑
j=K1

ρn+1
j =

K2∑
j=K1

ρnj +
1

Δx

∫ tn+1

tn

[
F r
K1−1/2,ρ − F l

K2+1/2,ρ

]
dt.

Total energy conservation:

(37)

K2∑
j=K1

TEn+1
j =

K2∑
j=K1

TEn
j +

1

Δx

∫ tn+1

tn

[
F r
K1−1/2,ρφK1 − F l

K2+1/2,ρφK2

+ F r
K1−1/2,ρE − F l

K2+1/2,ρE

]
dt.

Therefore, the SP-KFVS and SP-BGK schemes can give the correct shock location
even with the external gravitational forcing term. This is a generalization of the
Lax–Wendroff theorem to the system with gravitational source term [4].

Lemma 5.2. The density ρ(x) of an isothermal hydrostatic state under the grav-
itational field φ(x) in a gas dynamic system satisfies

(38) ρ(x) = C1e
−2λ̃φ(x),

where C1 and λ̃ are constants.
Proof. In the gas dynamic system, an isothermal hydrostatic solution under the

gravitational field φ(x) as mentioned in the introduction satisfies

(39) px = −ρφx, T = constant, U = 0.

Since T = constant and λ̃ = m/2kT , λ̃ is also a constant. Then from (39) and the
ideal gas equation of state

p =
1

2λ̃
ρ,

we have

1

2λ̃
ρx = −ρφx.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2368 JUN LUO, KUN XU, AND NA LIU

Therefore, with a constant C1, the solution becomes

ρ(x) = C1e
−2λ̃φ(x).

Remark. For the well-balanced scheme, the hydrostatic solution always means the
above isothermal hydrostatic one. Without losing generality, in the following proofs,
we always let C1 = 1 for the hydrostatic solution. So, in the hydrostatic case, the
state has the form

(40) ρ = e−2λ̃φ(x), U = 0,

where λ̃ is a constant. Numerically, if we let the potential φ(x) be a constant, φj , in
the jth cell; then

(41) ρj+1 = ρje
−2λ̃(φj+1−φj), Uj = 0,

where ρj and Uj are cell average quantities.
Lemma 5.3. The equilibrium state construction depends on the corresponding

macroscopic variables W l
j+1/2= (ρlj+1/2, (ρU)lj+1/2, (ρE)lj+1/2)

T and W r
j+1/2= (ρrj+1/2,

(ρU)rj+1/2, (ρE)rj+1/2)
T obtained from postinteraction distribution functions on the

left- and right-hand sides of a cell interface. Starting from an initial hydrostatic
state, the above constructed macroscopic variables have the following properties.

1. Both velocities are equal to zero, i.e.,

(42) U l
j+1/2 = U r

j+1/2 = 0.

2. They have the same temperature on both sides of all cell interfaces, i.e.,

(43) λlj+1/2 = λrj+1/2 = λ̃,

where λ̃ is the constant of the initial hydrostatic solution.
3. The densities at both sides of the same cell interface satisfy

(44) ρrj+1/2 = ρlj+1/2e
−2λ̃(φj+1−φj).

4. In the same cell,

(45) ρlj+1/2 = ρrj−1/2.

Proof. With the definition fj(u) = gj(u) and gj(u) being a Maxwellian corre-
sponding to the cell-average conservative variables (ρj , (ρU)j , (ρE)j), W

l
j+1/2 and

W r
j+1/2 are determined by (66) and (67) or (68) and (69) for φj < φj+1 or φj > φj+1.

Here, we prove only the case for φj < φj+1. The other case can be proved similarly.
From direct calculation, we can get

ρlj+1/2 =
ρj
2

+ ρj

(
λ̃

π

) 1
2 ∫ 0

−Uc

e−λ̃u2

du(46)

− ρj+1

(
λ̃

π

) 1
2

Uc + ρj+1λ̃

(
λ̃

π

) 1
2 ∫ +∞

0

e−λ̃t
√
t+ U2

c dt,
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(47) ρrj+1/2 = ρj λ̃

(
λ̃

π

) 1
2 ∫ +∞

U2
c

e−λ̃t
√
t− U2

c dt+
ρj+1

2
,

(48) (ρU)lj+1/2 = (ρU)rj+1/2 = 0,

(49)

(ρE)lj+1/2 =
K

4λ̃
ρlj+1/2 +

ρj

8λ̃
− ρj

4λ̃

√
λ̃

π
e−λ̃U2

cUc +
ρj

4λ̃

√
λ̃

π

∫ 0

−Uc

e−λ̃u2

du

+
ρj+1

4

√
λ̃

π

∫ +∞

0

e−λ̃t
√
t+ U2

c dt,

and

(50) (ρE)rj+1/2 =
K

4λ̃
ρrj+1/2 +

ρj
4

√
λ̃

π

∫ +∞

U2
c

e−λ̃t
√
t− U2

c dt+
ρj+1

8λ̃
,

where Uc =
√
2(φj+1 − φj).

1. From (46) and (47), we can see that ρlj+1/2 > 0 and ρrj+1/2 > 0 when ρj > 0

and ρj+1 > 0. Since U = ρU/ρ, from (48), we get

U l
j+1/2 = U r

j+1/2 = 0.

2. Macroscopically, λ satisfies

(51) ρE − 1

2
ρU2 = ρ

K + 1

4λ
,

where K = (3− γ)/(γ − 1) in one dimension. From (46),

(52)

ρlj+1/2

K + 1

4λlj+1/2

=
K

4λlj+1/2

ρlj+1/2 +
ρj

8λlj+1/2

+
ρj+1

4λlj+1/2

√
λ̃

π
Uc +

ρj
4λlj+1/2

√
λ̃

π

∫ 0

−Uc

e−λ̃u2

du

+
ρj+1

4λlj+1/2

λ̃

√
λ̃

π

∫ +∞

0

e−λ̃t
√
t+ U2

c dt.

Since (ρE)lj+1/2 − 1
2ρ

l
j+1/2(U

l
j+1/2)

2 = ρlj+1/2
K+1

4λl
j+1/2

(see [11]) and U l
j+1/2 = 0, we

have

(53)

(λlj+1/2 − λ̃)

⎧⎨
⎩ 1

λlj+1/2λ̃

⎛
⎝K

4
ρlj+1/2 +

ρj
8

− ρj
4

√
λ̃

π
e−λ̃U2

cUc

+
ρj
4

√
λ̃

π

∫ 0

−Uc

e−λ̃u2

du

⎞
⎠+

1

λlj+1/2

ρj+1

4

√
λ̃

π

∫ +∞

0

e−λ̃t
√
t+ U2

c dt

⎫⎬
⎭ = 0.
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The summation in the braces {...} of (53) is strictly larger than zero. Therefore,

λlj+1/2 = λ̃.

Similarly, we can prove

λrj+1/2 = λ̃.

3. It is easy to prove that

(54)

∫ 0

−Uc

e−λ̃u2

du = e−λU2
cUc + 2λ̃

∫ 0

−Uc

e−λ̃u2

u2du.

So, ρrj+1/2 = ρlj+1/2e
−2λ̃(φj+1−φj),

(46),(47),(54)⇐=======⇒ (is equivalent to)∫ +∞
U2

c
e−λ̃t

√
t− U2

c dt = 2e−λ̃U2
c

∫ 0

−Uc
e−λ̃u2

u2du + e−2λ̃U2
c

∫ +∞
0

e−λ̃t
√
t+ U2

c dt,

left:x=t−U2
c ;right:x=t+U2

c⇐================⇒ ∫ +∞
0 e−λ̃x

√
xdx = 2

∫ 0

−Uc
e−λ̃u2

u2du +
∫ +∞
U2

c
e−λ̃x

√
xdx

⇐⇒ ∫ U2
c

0
e−λ̃x√xdx = 2

∫ 0

−uc
e−λ̃u2

u2du, which is true.
Therefore,

ρrj+1/2 = ρlj+1/2e
−2λ̃(φj+1−φj).

4. ρlj+1/2 = ρrj−1/2,
(46),(47),(41),(54)⇐==========⇒ 2λ̃ρj

∫ 0

−Uc
e−λ̃u2

u2du+ρjλ̃
∫ +∞
U2

c
e−λ̃x

√
xdx =

ρj λ̃
∫ +∞
0 e−λ̃x

√
xdx, which is also correct. Therefore,

ρlj+1/2 = ρrj−1/2.

Remark. The above lemma, especially part 2, illustrates that starting from a
hydrostatic state with the same temperature, the constructed equilibrium states on
both sides of a cell interface have equal temperature as well. In order words, in the
hydrostatic case, particle interaction with the potential barrier and particle collisions
among themselves never alter the equilibrium temperature on both sides of a cell
interface. This is consistent with the second law of thermodynamics. Otherwise, the
temperature differences generated by the particle interaction with a potential barrier
and the collisions among themselves could be used to design an engine to extract work
from an initially isothermal system, which violates the second law of thermodynamics.

Theorem 5.4. For a well-balanced kinetic scheme, the equilibrium distribution
function must be an “exact Maxwellian.”

Proof. In order to keep the hydrostatic solution (41), the numerical mass flux on
both sides of a cell interface must be zero.

Without losing generality, we consider only the case for φj+1 > φj . Since the gas
must be isotropic, we can assume the equilibrium distribution function is ρ(x)G(u2)
and define a =

√
2(φj+1 − φj). Then we require

(55) F r
j+1/2,ρ =

∫ +∞

a

ρjG(u
2)udu+

∫ 0

−∞
ρj+1G(u

2)udu = 0,

where F r
j+1/2,ρ is the mass flux on the right side of the interface. Because of (41), we

have

(56)
1

2

∫ +∞

a2

G(x)dx + e−λa2

∫ 0

−∞
G(u2)udu = 0.
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Taking the derivative of (56) with a2, we get

(57) −1

2
G(a2)− λe−λa2

∫ 0

−∞
G(u2)udu = 0.

It is obvious from (57) that

(58) G(a2) ∼ e−λa2

,

which means that the equilibrium distribution function is an exact Maxwellian distri-
bution.

Theorem 5.5. The 1st-order SP-KFVS and SP-BGK schemes are both well-
balanced schemes.

Proof. In order to prove a scheme to be a well-balanced one, we only need to
verify that the scheme can keep the hydrostatic solution (40) forever. Numerically,
the initial condition for this case is given by (41) in the jth cell. At the next time
step, the above solution must be kept by the well-balanced numerical scheme, i.e.,
Wn+1

j =Wn
j . From (16), we must have

(59) F r
j−1/2 = F l

j+1/2.

Therefore, to complete the proof, we have to show that mass fluxes (F r,l
j+1/2,ρ), mo-

mentum fluxes (F r,l
j+1/2,ρU ), and energy fluxes (F r,l

j+1/2,ρE) satisfy condition (59), re-

spectively.

The 1st-order SP-KFVS scheme. The original distribution function at the
cell interface is

(60) f(xj+1/2, t, u, ξ) =

⎧⎨
⎩

gj(u), u ≥ 0,

gj+1(u), u < 0,

where gj(u) is the Maxwellian corresponding to (ρj , (ρU)j , (ρE)j). The proof is only
a direct calculation of the fluxes at the interface using (70) and (71) or (72) and (73) in
two different cases for φj < φj+1 or φj > φj+1 when the initial hydrostatic condition
(41) can be satisfied. The results are the following.

(a) For mass flux,

(61) F l
j+1/2,ρ = F r

j−1/2,ρ = 0.

(b) For momentum flux,

(62) F l
j+1/2,ρU = F r

j−1/2,ρU =
ρj
2λ
.

(c) For energy flux,

(63) F l
j+1/2,ρE = F r

j−1/2,ρE = 0.

Hence, the 1st-order SP-KFVS scheme is a well-balanced one.
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The 1st-order SP-BGK scheme. The original distribution function is

(64) f(xj+1/2, t, u, ξ) =

⎧⎨
⎩

(1− ε)gj(u) + εglj+1/2(u), u ≥ 0,

(1− ε)gj+1(u) + εgrj+1/2(u), u < 0,

where ε belongs to (0, 1) and is independent of u, gj(u) is the same as that in the
proof for the 1st-order SP-KFVS scheme, and glj+1/2 and grj+1/2 are two equilibrium

states corresponding to W l
j+1/2 and W r

j+1/2, respectively. Here, W l
j+1/2 and W r

j+1/2

are the macroscopic variables calculated by (66) and (67) or (68) and (69) when

fj(u) = gj(u) and fj+1(u) = gj+1(u).

So, the fluxes are the linear combination of two kinds of fluxes F1 and F2 which are
calculated by

f1 =

⎧⎨
⎩

gj(u), u ≥ 0,

gj+1(u), u < 0,
and f2 =

⎧⎨
⎩

glj+1/2(u), u ≥ 0,

grj+1/2(u), u < 0,

respectively.
From the above proof for the 1st-order SP-KFVS scheme, we know that the fluxes

F1 can satisfy (59). Therefore, we only need to prove that F2 can satisfy (59), too.
Note that in the proof for the 1st-order SP-KFVS scheme, the hydrostatic initial
condition (41) is the key. From Lemma 5.3, we know that the equilibrium states also
satisfy the hydrostatic initial condition. So, we can get the same results for the fluxes
corresponding to f2 based on (61), (62), and (63) with W l

j+1/2 and W r
j+1/2.

From all the above proofs, we can conclude that the 1st-order SP-KFVS and
SP-BGK schemes both can keep the hydrostatic solution forever. Therefore, they are
well-balanced schemes.

Remark. In order to make sure the 2nd-order SP-KFVS and SP-BGK schemes are
well-balanced schemes, we use (U, λ, ρe2λφ) to do the reconstruction at the beginning
of each time step. Specifically, for a hydrostatic solution, the flow variables satisfy
the conditions

(65) U = 0, V = 0, λ = constant, Ba = constant,

where Ba = ρe2λφ. We first apply a MUSCL-type limiter to reconstruct the slopes of
(U, V, λ, Ba), i.e., (SU , SV , Sλ, SBa) inside each cell. Since

ρ =
Ba

e2λφ
, ρE =

1

2
ρ(U2 + V 2) +

K + 2

4λ
ρ,

we can get the corresponding slopes for other flow variables,

Sρ =
1

e2λφ
SBa − 2ρφSλ, SρU = SρU + ρSU , SρV = SρV + ρSV ,

SρE =

[
1

2
(U2 + V 2) +

K + 2

4λ

]
Sρ + ρ

[
USU + V SV − K + 2

4λ2
Sλ

]
,

where (Sρ, SρU , SρV , SρE) are the slopes of (ρ, ρU, ρV, ρE) inside that cell. There-
fore, we can reconstruct (ρ, ρU, ρV, ρE) in each cell using its cell-average quantities
and the above slopes. Here, all slopes become zeros when the initial flow is in a
hydrostatic state, and the reconstruction doesn’t introduce numerical error. In other
words, the 2nd-order schemes go back to the 1st-order schemes when the solution is
in a hydrostatic state. Therefore, the 2nd-order schemes are also well-balanced ones.
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Fig. 4. Propagation of the pressure perturbation starting from an isothermal equilibrium solu-
tion. Left: η = 0.01; right: η = 0.001.

6. Numerical examples. In this section, we will present numerical results in
both the 1-D and 2-D cases. Each of the examples is very sensitive to the accuracy
of the scheme. Some of the tests run for millions of time steps. If the scheme is not
a well-balanced one, the accumulation of any small numerical error would become
significant for such a long time evolution (see [10]).

6.1. Perturbation of the 1-D isothermal equilibrium solution. This test
case is from LeVeque and Bale’s paper [5]. An ideal gas with γ = 1.4 stays initially
in an isothermal hydrostatic state,

ρ0(x) = p0(x) = e−x and U0(x) = 0

for x ∈ [0, 1]. Then the initial pressure is perturbed by

p(x, t = 0) = p0(x) + ηeα(x−x0)
2

,

where α = 100, x0 = 0.5, and η is the amplitude of the perturbation. The gravitational
force G takes a value G = −1.0 in the x-direction. So the potential jump at each cell
interface becomes

φj+1 − φj = −GΔx = 0.01.

The computation is conducted with 100 grid points in the whole domain and stops at
time t = 0.25. As shown in [5] and [10], an operator splitting scheme can’t capture
the small perturbation. The gravitational effect has to be explicitly included in the
calculation of fluxes. Our schemes give good results, especially for the 2nd-order SP-
BGK scheme (see Figure 4). The SP-KFVS scheme has larger numerical dissipation
due to its free transport mechanism than the SP-BGK scheme, and the 1st-order
scheme is more dissipative than the 2nd-order one.

Figure 5 shows the convergency rate of the 2nd-order SP-BGK scheme, where
the number of cells is N and the error is the L∞ error. From these figures, we can
conclude that the 2nd-order SP-BGK scheme has a 2nd-order accuracy even with the
modeling of piecewise constant potential.

6.2. Shock tube under gravitational field. This case is the standard Sod test
under gravitational field. The computational domain is x ∈ [0, 1], which is divided
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Fig. 5. Convergency rate of the 2nd-order SP-BGK scheme for the pressure perturbation start-
ing from an isothermal equilibrium solution with η = 0.01 on the left figure, and η = 0.001 on the
right figure.
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Fig. 6. Density distributions for the shock tube problem under gravitational field. From the
comparison of different schemes, the dissipation of the SP-BGK scheme is much smaller than the
SP-KFVS scheme.

into 100 cells. Adiabatic reflection boundary condition is used on both ends. The
initial condition is

ρ = 1.0, U = 0.0, p = 1.0 for x ≤ 0.5

and

ρ = 0.125, U = 0.0, p = 0.1 for x > 0.5.

The gravitational field is the same as in section 6.1. The computational results at
t = 0.2 are presented in Figures 6 and 7. Due to the gravitational force, the density
distribution inside the tube is pulled back in the negative x-direction. In some region,
the flow velocity even becomes negative. This test case illustrates that the SP-BGK
scheme has the shock-capturing property. These schemes which explicitly impose the
well-balanced condition may lose the shock-capturing property in this case.

6.3. One-dimensional gas falling into a fixed external potential. This
case is taken from the paper by Slyz and Prendergast [9] to investigate the numerical
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Fig. 7. Pressure and velocity distributions from the 2nd-order SP-BGK scheme for the shock
tube problem under gravitational field. The shock-capturing property of the SP-BGK scheme is
clearly shown in this test case.

accuracy of the BGK scheme. The gas is initially stationary (U = 0) and homogeneous
(ρ = 1, e = 1, where e is the internal energy). The gravitational potential has the
form of a sine wave,

φ = −φ0 L
2π

sin
2πx

L
,

where L = 64 is the length of the computational domain and φ0 = 0.02. The ratio
of the specific heat has a value γ = 5/3. The periodic boundary conditions are
implemented in this system. Simulation results are presented with Δx = 1 and an
output time t = 2500000 (more than 5000000 time steps). After the initial transition,
the system is expected to reach an isothermal hydrostatic state, where the temperature
settles to a constant and fluid velocity is zero, i.e.,

T (x, t) = T0 and U = 0.

The velocity and temperature distributions computed by different symplecticity-pre-
serving schemes are shown in Figures 8 and 9. The EST-BGK is the scheme developed
in [10]. The velocity distribution shows that the SP-BGK scheme can keep the hydro-
static solution much better than that in [10]. And the error in the SP-BGK scheme
is due to the numerical integration of many integrals in (66)–(69) and (70)–(73).

For example,
∫ 0

−∞ g(u)(− u√
u2+U2

c

)du can’t be calculated exactly, and the numerical

integration has to be used to get the solution. With the reduction of the numeri-
cal integration error through the increasing of integration points, the results can be
improved. Theoretically, without numerical integration error the SP-BGK and SP-
KFVS schemes are well-balanced ones, where the exact hydrostatic solution can be
kept forever. However, it is impossible to improve the results in [10] because the EST-
BGK scheme is not a well-balanced one due to the simplification of particle trajectory
in a linearly distributed potential field. In these figures, the results are calculated by
the 2nd-order SP-BGK scheme with two numerical integration accuracy. With the
inclusion of more integration points for the numerical integral, the integration of accu-
racy 1 has smaller error than the integration of accuracy 2. Basically, this is a tough
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of the integrals. Accuracy 1 uses more integration points for the numerical integral and has higher
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Fig. 9. Velocity distributions for a gas falling into a fixed external potential in the 1-D case.
The exact solution should have a zero velocity. The results from SP-BGK scheme is compared with
that of the EST-BGK method [10]. The SP-BGK accuracy 1 results are closer to the exact solution.
The SP-BGK scheme is a well-balanced one, where the error is due to the numerical integration of
the integrals.

test case. Due to the long time evolution, the capturing of an isothermal solution and
the keeping of a constant total energy are very difficult. The results from SP-BGK
scheme are the best we can find in the literature.

6.4. Rayleigh–Taylor instability. This test case also comes from [5]. Consider
an isothermal equilibrium idea gas (γ = 1.4) in a 2-D polar coordinate (r, θ),

ρ0(r) = e−α(r+r0), p0(r) =
1.5

α
e−α(r+r0), U0 = 0,

where⎧⎨
⎩

α = 2.68, r0 = 0.258 for r ≤ r1,

α = 5.53, r0 = −0.308 for r > r1

and

⎧⎨
⎩

r1 = 0.6(1 + 0.02 cos(20θ)) for density,

r1 = 0.62324965 for pressure.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A SYMPLECTICITY-PRESERVING GAS-KINETIC SCHEME 2377

Fig. 10. Rayleigh–Taylor instability under gravitational field directed radially inward. Density
contours at time t = 0, 0.8, 1.4, 2.0 are shown in the four quadrants, starting with the initial data in
the upper right corner and progressing clockwise.

The potential satisfies −dφ(r)/dr = 1.5. The time evolutions of the density distri-
butions at times t = 0, 0.8, 1.4, and 2.0 are shown in Figure 10. Figure 11 shows a
scatterplot of the density for all numerical cells as a function of the radius. These
figures clearly show that the hydrostatic solution can be well kept and the flow motion
is limited around the unstable interface. If a scheme is not well balanced, the solution
will start to oscillate everywhere in the whole computational domain.

7. Conclusion. With the modeling of piecewise constant potential inside each
cell, based on physical principles of Liouville’s theorem and the symplecticity-pre-
serving property of a Hamiltonian flow, a well-balanced gas-kinetic BGK scheme
(SP-BGK) has been developed for a hydrodynamic system under gravitational field.
For a hydrodynamic gravitational system, the well-balanced solution is defined as an
isothermal hydrostatic solution. In order to design a well-balanced scheme, it is nec-
essary for the equilibrium state used in the kinetic scheme to be an exact Maxwellian
distribution function. At the same time, the mechanism of particle transport across
a potential barrier has to follow the physical principles precisely in order to construct
correct equilibrium states in the integral solution of the BGK model, and the evalu-
ation of final fluxes. Since the physical principles for the particle transport are valid
under any situation, the validity of the current scheme is not limited to the well-
balanced case only. The scheme has the shock-capturing property as well for steady
and unsteady flows. Mathematically, it has been proved that the SP-BGK method
is a well-balanced scheme, which could keep the hydrostatic state forever after the
full consideration of particle transport and collision across a potential barrier. As
far as we know, this is the first method with both well-balanced and shock-capturing
properties for the NS equations under gravitational field.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2378 JUN LUO, KUN XU, AND NA LIU

X

D
en

si
ty

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

X

D
en

si
ty

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

X

D
en

si
ty

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

X

D
en

si
ty

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Fig. 11. Scatterplots of the density for all cells vs. the distance of the cell center to the origin
at different times. The sharp unperturbed lines demonstrate the capability of SP-BGK scheme to
keep the isothermal hydrostatic solution.

Appendix. Formulae in the 2-D case.

A.1. The construction of equilibrium states.
Case 1. φj < φj+1, define Uc =

√
2(φj+1 − φj).

(66)

W l
j+1/2 =

∫∫∫ +∞

0

fj(xj+1/2, 0, u, v, ξ)

⎛
⎜⎜⎝

1
u
v

1
2 (u

2 + v2 + ξ2)

⎞
⎟⎟⎠du dv dξ

+

∫∫∫ Uc

0

fj(xj+1/2, 0, u, v, ξ)

⎛
⎜⎜⎝

1
−u
v

1
2 (u

2 + v2 + ξ2)

⎞
⎟⎟⎠ du dv dξ

+

∫∫∫ 0

−∞
fj+1(xj+1/2, 0, u, v, ξ)

⎛
⎜⎜⎜⎜⎝

− u√
u2+U2

c

u
− uv√

u2+U2
c

1
2 (−u

√
u2 + U2

c − uv2√
u2+U2

c

− u√
u2+U2

c

ξ2)

⎞
⎟⎟⎟⎟⎠du dv dξ.
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(67)

W r
j+1/2 =

∫∫∫ +∞

Uc

fj(xj+1/2, 0, u, v, ξ)

⎛
⎜⎜⎜⎜⎜⎝

u√
u2−U2

c

u
uv√

u2−U2
c

1
2 (u
√
u2 − U2

c +
uv2√
u2−U2

c

+ u√
u2−U2

c

ξ2)

⎞
⎟⎟⎟⎟⎟⎠ du dv dξ

+

∫∫∫ 0

−∞
fj+1(xj+1/2, 0, u, v, ξ)

⎛
⎜⎜⎝

1
u
v

1
2 (u

2 + v2 + ξ2)

⎞
⎟⎟⎠du dv dξ.

Case 2. φj > φj+1, define Uc =
√
2(φj − φj+1).

(68)

W l
j+1/2 =

∫∫∫ +∞

0

fj(xj+1/2, 0, u, ξ)

⎛
⎜⎜⎝

1
u
v

1
2 (u

2 + v2 + ξ2)

⎞
⎟⎟⎠du dv dξ

+

∫∫∫ −Uc

−∞
fj+1(xj+1/2, 0, u, ξ)

⎛
⎜⎜⎜⎜⎜⎝

− u√
u2−U2

c

u
− uv√

u2−U2
c

1
2 (−u

√
u2 − U2

c − uv2√
u2−U2

c

− u√
u2−U2

c

ξ2)

⎞
⎟⎟⎟⎟⎟⎠du dv dξ.

(69)

W r
j+1/2 =

∫∫∫ +∞

0

fj(xj+1/2, 0, u, ξ)

⎛
⎜⎜⎜⎜⎜⎝

u√
u2+U2

c

u
uv√

u2+U2
c

1
2 (u
√
u2 + U2

c +
uv2√
u2+U2

c

+ u√
u2+U2

c

ξ2)

⎞
⎟⎟⎟⎟⎟⎠du dv dξ

+

∫∫∫ 0

−Uc

fj+1(xj+1/2, 0, u, ξ)

⎛
⎜⎜⎝

1
−u
v

1
2 (u

2 + v2 + ξ2)

⎞
⎟⎟⎠du dv dξ

+

∫∫∫ 0

−∞
fj+1(xj+1/2, 0, u, ξ)

⎛
⎜⎜⎝

1
u
v

1
2 (u

2 + v2 + ξ2)

⎞
⎟⎟⎠du dv dξ.
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A.2. The evaluation of fluxes.
Case 1. φj < φj+1, define Uc =

√
2(φj+1 − φj).

(70)

F l
j+1/2(t) =

∫∫∫ +∞

0

fj(xj+1/2, t, u, ξ)

⎛
⎜⎜⎝

u
u2

uv
1
2 (u

3 + uv2 + uξ2)

⎞
⎟⎟⎠du dv dξ

+

∫∫∫ Uc

0

fj(xj+1/2, t, u, ξ)

⎛
⎜⎜⎝

−u
u2

−uv
1
2 (−u3 − uv2 − uξ2)

⎞
⎟⎟⎠ du dv dξ

+

∫∫∫ 0

−∞
fj+1(xj+1/2, t, u, ξ)

⎛
⎜⎜⎝

u

−u√u2 + U2
c

uv
1
2 (u(u

2 + U2
c ) + uv2 + uξ2)

⎞
⎟⎟⎠ du dv dξ.

(71)

F r
j+1/2(t) =

∫∫∫ +∞

Uc

fj(xj+1/2, t, u, ξ)

⎛
⎜⎜⎝

u

u
√
u2 − U2

c

uv
1
2 (u(u

2 − U2
c ) + uv2 + uξ2)

⎞
⎟⎟⎠ du dv dξ

+

∫∫∫ 0

−∞
fj+1(xj+1/2, t, u, ξ)

⎛
⎜⎜⎝

u
u2

uv
1
2 (u

3 + uv2 + uξ2)

⎞
⎟⎟⎠ du dv dξ.

Case 2. φj > φj+1, define Uc =
√
2(φj − φj+1).

(72)

F l
j+1/2(t) =

∫∫∫ +∞

0

fj(xj+1/2, t, u, ξ)

⎛
⎜⎜⎝

u
u2

uv
1
2 (u

3 + uv2 + uξ2)

⎞
⎟⎟⎠ du dv dξ

+

∫∫∫ −Uc

−∞
fj+1(xj+1/2, t, u, ξ)

⎛
⎜⎜⎝

u

−u√u2 − U2
c

uv
1
2 (u(u

2 − U2
c ) + uv2 + uξ2)

⎞
⎟⎟⎠ du dv dξ.
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(73)

F r
j+1/2(t) =

∫∫∫ +∞

0

fj(xj+1/2, t, u, ξ)

⎛
⎜⎜⎝

u

u
√
u2 + U2

c

uv
1
2 (u(u

2 + U2
c ) + uv2 + uξ2)

⎞
⎟⎟⎠du dv dξ

+

∫∫∫ 0

−Uc

fj+1(xj+1/2, t, u, ξ)

⎛
⎜⎜⎝

−u
u2

−uv
1
2 (−u3 − uv2 − uξ2)

⎞
⎟⎟⎠du dv dξ

+

∫∫∫ 0

−∞
fj+1(xj+1/2, t, u, ξ)

⎛
⎜⎜⎝

u
u2

uv
1
2 (u

3 + uv2 + uξ2)

⎞
⎟⎟⎠du dv dξ.

Remarks on the integral evaluation. In the above formulae, there are many inte-

grals which cannot be analytically evaluated, e.g.,
∫ 0

−∞ fj+1(− u√
u2+U2

c

)du. Therefore,

a numerical integration method as shown in [8] has been used.
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